ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВЕЩЕСТВА ПОВЕРХНОСТНО-АКТИВНЫЕ

ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ТЕКУЧЕСТИ С ПОМОЩЬЮ РОТАЦИОННОГО ВИСКОЗИМЕТРА

3 4-03/201

госстандарт России

CO W

Предисловие

- 1 ПОДГОТОВЛЕН И ВНЕСЕН ТК 193 «Кислоты жирные синтетические, высшие жирные спирты, поверхностно-активные вещества
- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 19.05.93 № 144
- З Настоящий стандарт подготовлен на основе применения аутентичного текста международного стандарта ИСО 6388—89 «Вещества поверхностно-активные. Определение характеристик текучести с помощью ротационного вискозиметра»
 - 4 ВВЕДЕН ВПЕРВЫЕ

С Издательство стандартов, 1993:

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без резпешения Готовата Госсии

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

THE RESERVE THE RESERVE THE PARTY OF THE PARTY.

ВЕЩЕСТВА ПОВЕРХНОСТНО-АКТИВНЫЕ

Определение характеристик текучести с помощью ротационного вискозиметра

Surface active agents.

Determination of flow properties using a rotational viscometer

Дата введения 1994-07-01

1 НАЗНАЧЕНИЕ

Настоящий стандарт описывает метод, характеризующий свойства текучести нетвердых поверхностно-активных веществ (ПАВ), либо одних, либо в виде смесей, а также продуктов, состоящих в основном из поверхностно-активных веществ, используя коаксиальный цилиндр, воронку и плоскость или двойную воронку, ротационный цилиндр и т. д.

Примечание — В реологическом поведении системы, содержащей ПАВ, часто наблюдаются аномалии. Это, главным образом, происходит из-за тенденции, молекул ПАВ к ассоциации. Реологическое поведение в основном является функцией природы и концентрации ПАВ. Небольшие изменения температуры, концентрации неорганических солей, а также наличие других веществ могут повлиять на реологическое поведение ПАВ, даже иногда может измениться сам тип реологии. Метод, описанный в настоящем стандарте, учитывает все эти факторы. Что касается специальных ПАВ, то могут быть использованы и другие методы для определения. Для ньютоновских систем, например, можно использовать ГОСТ 33 и ГОСТ 10722, которые в данном случае являются наиболее точными.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 33-82. Нефтепродукты. Метод определения кинемати-

ческой и расчет динамической вязкости

ГОСТ 2517—85. Нефтепродукты. Метод отбора проб

ГОСТ 10722—76. Каучуки и резиновые смеси. Метод определения вязкости и способности к преждевременной вулканизации

3 ОПРЕДЕЛЕНИЯ

3.1 Общие сведения

Динамическая вязкость жидкости η в паскаль-секундах, находящейся между двумя параллельными плоскостями, одна из которых движется в своей собственной плоскости прямолинейно и равномерно относительно другой, определяется уравнением Ньютона

$$\gamma = \frac{r}{D} , \qquad (1)$$

где r — напряжение сдвига;

Скорость сдвига, которую рассчитывают по уравнению:

$$D = \frac{d}{dz}, \qquad (2)$$

где v — скорость сдвига одной плоскости относительно другой; z — координата, перпендикулярная к обеим плоскостям.

Примечание — Продукты, для которых вязкость является независимой от скорости сдвига, при которой проводят измерения, имеют ньютоновское поведение и называются «ньютоновскими». Другие — имеют неньютоновское поведение и называются «неньютоновскими».

Кажущаяся вязкость неньютоновского продукта представляет собой отношение полученного напряжения сдвига к применяемой скорости сдвига.

Значения кажущейся вязкости, функции скорости сдвига — зависят от термического и реологического гистерезиса образца в

аппарате.

Размерность вязкости $L^{-1}MT^{-1}$, а в Международной системе единиц (СИ) — единица вязкости равна ньютон секунда на квадратный метр ($H \cdot c/m^2$) или паскаль секунда ($\Pi a \cdot c$)¹⁾.

3.2 Реологическое явление (см. рисунки 1 и 2)

Примечание — Реологическое явление описано для определенного напряжения сдвига.

¹⁾ L H-c/м² = 1 Па-с = 10³ сП (сантипуаз), 1 м-H-c/м² = 1 м Па-с = 1 сП (сантипуаз).

3.2.1 Пседопластичность — это ослабление без гистерезиса кажущейся вязкости с повышением скорости сдвига при изотермических и обратимых условиях.

3.2.2 Дилатанция — это повышение кажущейся вязкости с повышением скорости сдвига при изотермических и обратимых ус-

ловиях и без гистерезиса.

3.2.3 Вязкость в зависимости от времени

При обратимых и изотермических условиях наблюдается изменение кажущейся вязкости потока с постоянной скоростью сдвига.

3.2.3.1 Тиксотропия — снижение вязкости или консистенции во время сдвига при изотермических и обратимых условиях от вязкости или консистенции в состоянии покоя (сразу после начала сдвига) до конечного значения (в зависимости от скорости сдвига).

Когда наблюдается прерывность сдвига, то вязкость или консистенция в состоянии покоя должна быть повторно установлена в течение определенного времени, которое называется «временем

восстановления тиксотропии».

3.2.3.2 Реопексия — явление, при котором время восстановления тиксотропии после прерывания относительно высокой скорости сдвига, уменьшается при использовании небольшой скорости сдвига.

3.2.3.3 Антитиксотропия — повышение вязкости или консистенции во время сдвига при изотермических и обратимых условиях от вязкости или консистенции в состоянии покоя (сразу же после начала сдвига) до конечного значения (в зависимости от скорости сдвига).

Когда сдвиг прерывается, вязкость в состоянии покоя должна быть повторно установлена в течение определенного времени, ко-

торое называется «временем восстановления тиксотропии».

3.2.3.4 Реологический гистерезис. Если скорость сдвига при изотермических и обратимых условиях возрастает линейно относительно времени от нуля до максимального значения (верхняя кривая) и затем снижается таким же образом (нижняя кривая), то скорость сдвига на диаграмме представляет собой петлю гистерезиса, которая используется для выявления и характеристики тиксотропии или антитиксотропии.

3.2.4. Пластичность

Пластичное вещество ведет себя как эластичное тело, если его подвергают напряжению до значения менее критического, τ_0 «напряжение пластического течения». Выше этого предельного значения наблюдается обтекание тела. Когда функция $D=f(\tau)$ (D — скорость сдвига) для $\tau \geqslant \tau_0$ — представлена прямой линиг ей, вещество называют пластичным веществом (телом) Бингхема).

4 СУЩНОСТЬ МЕТОДА

Свойства потока ньютоновского или неньютоновского опытного образца определяют с помощью стандартизованного ротационного вискозиметра 1), который позволяет одновременно установить скорость сдвига для ньютоновских продуктов, а также измерить различные видимые скорости сдвига, используемые в процессе определения для неньютоновских продуктов.

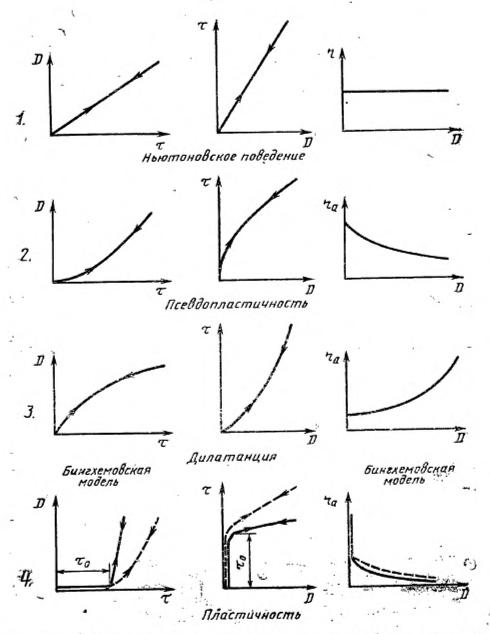
5 ЭТАЛОННЫЕ ВЕЩЕСТВА

Ньютоновские жидкости должны быть использованы в качестве эталонных веществ.

6 АППАРАТУРА

- 6.1 Вискозиметры с коаксиальными цилиндрами, конусом и пластинкой, двойным конусом или комбинация этих двух типов со следующими спецификациями.
- 6.1.1 Что касается вискозиметров с коаксиальными цилиндрами, наружний и внутренний диаметры цилиндров (статор и ротор) d_e и d_l соответственно должны быть такими, чтобы значение отношения d_e/d_l было как можно меньше и, предпочтительно, меньше или равно 1,10 и ни в коем случае не более 1,50.

Если отношение имеет значение более 1,10, то это должно быть указано в протоколе испытаний и, по возможности, должны быть сделаны поправки, которые также необходимо указать в протоколе испытаний²).


Кроме того, если в аппарат не входит геометрическое устройство (коническое основание и расположенное выше охранное кольцо) для поправки краевого эффекта, то должно быть учтено дополнительное требование:

$$\frac{h_i}{d_i} \geqslant 1.5,\tag{3}$$

где h_i — высота внутреннего цилиндра.

Формулы поправки обычно указывают изготовители аппаратуры.

¹⁾ Существуют два типа вискозиметров: один, когда напряжение сдвига определяется при постоянной скорости сдвига (постоянное число оборотов), в данном случае результаты определения представлены в виде графика т функции D (см. рисунки 1 и 2), другой — когда скорость сдвига определяют при постоянном напряжении сдвига, в данном случае результаты определения представлены в виде графика D финкции τ (см. рисунки 1 и 2). Наиболее часто применяется первый тип, и данный тип вискозиметра описан в настоящем стандарте.

Примечание — Эти графики предвазначены для более точного представления явления.

Рисунок 1 — Типичные графики текучести для систем при постоянном напряжении [D=f(r)] и систем при постоянной скорости сдвига [r=f(D)].

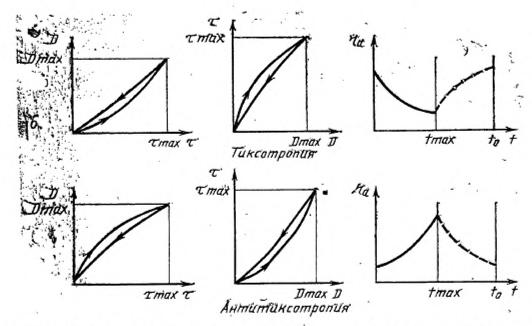


Рисунок 2 — Изображение кривой гистерезиса для продукта, на реологическое поведение которого сильно влияет длительность приложения сдвига.

Примечание — Эти графики предназначены для более точного представления явления.

6.1.2 Если речь идет о вискозиметрах с конусом и пластинкой или двойным конусом, то угол α, образованный полученной линией конуса и пластинкой или полученными линиями двух конусов, должен быть как можно меньше и, предпочтительно, меньше или равен 1° и ни в коем случае ни больше 4°. Если же угол α больше 1°, то это должно быть указано в протоколе испытаний, и по возможности, должны быть сделаны поправки, которые также должны быть указаны в протоколе испытаний 1).

6.1.3 Что касается вискозиметров, комбинирующих два предыдущих принципа, то должно быть учтено каждое из особенностей, если только одно из устройств не вносит очень малый вклад и что

может рассматриваться, как поправка.

6.1.4 Прибор должен во всех случаях использовать различное

число оборотов.

Точность его должна быть 2 % от общего диапазона шкалы для измерения вязкости и для каждой комбинации ротора, статора и частоты вращения.

формулы поправки обычно указывают изготовители аппаратуры.

Предельное значение вязкости и скорость сдвига, которую прибор может установить, должны соответствовать установленным.

 Π р и м е ч а и и е — При использовании различных статоров, роторов и методик скорости вращения большая часть промышленных приборов позволяет определить вязкость в пределах, по крайней мере 10^{-2} Π a·c — 10^{3} Π a·c (10 с Π a — 10^{6} с Π a).

Скорости сдвига, полученные на различных приборах, сильно отличаются.

Установка и калибровка приборов обычно осуществляется предприятием-изготовителем.

Рекомендуется установку и калибровку приборов повторять время от времени, используя жидкости с известной вязкостью.

- 6.2 Вискозиметры с измерительными системами, не имеющие определенной геометрии (пластинки, Т-форма и т. д.).
- 6.3 Термостатически регулируемые бани, в которых исследуемый продукт доводится и поддерживается при температуре испытания (обычно 23 °C) с точностью до 0,2 °C.

Допустимое отклонение $\pm 0.2\,^{\circ}$ С применимо для температур в пределах $0\,^{\circ}$ С— $50\,^{\circ}$ С. Однако для более точного измерения и в обычном диапазоне температур может потребляться меньшее допустимое отклонение (например $\pm 0.1\,^{\circ}$ С).

Следует отметить, что в случае, когда скорость сдвига высока, процесс измерения сам вызывает нагрев образца, поэтому необходимо это учесть, применяя, например, коррекцию (часто указываемую изготовителем вискозиметра).

Примечание — Обычно применяемые в промышленности вискозиметры включают встроенное термостатическое устройство.

7 ОТБОР ОБРАЗЦА

Лабораторный образец поверхностно-активных веществ готовят и хранят в соответствии с требованиями ГОСТ 2517.

8 ПРОВЕДЕНИЕ ИСПЫТАНИЯ

8.1 Образец для испытаний

Образец для испытаний осторожно отбирают из гомогенизированного лабораторного образца (раздел 7), проверяя при этом отсутствие пузырьков воздуха.

Примечания: 1 Когда имеют дело с продуктами, которые способны разделяться на двефазы в определенном днапазоне температур, определение необходимо проводить за пределами данного днапазона.

- 2 В случае применения других продуктов с изменяемыми свойствами в зависимости от времени следует убедиться, что процессы обработки (включая нагрев), которым подвергаются продукты, всегда идентичны и указаны в протоколе испытаний.
 - 8.2 Определение
- 8.2.1 Образец для испытаний (8.1) помещают в термостатированный измерительный сосуд и устанавливают выбранную для определения температуру. Затем вставляют коаксиальный измерительный цилиндр или любое другое выбранное устройство в измерительный сосуд. Запускают прибор при постоянной частоте вращения и измеряют момент приложенной пары сил (вращающий момент).

На том же образце проводят несколько измерений и повторяют определения при различных скоростях сдвига вискозиметра.

8.2.2 Когда используют приборы с каоксиальными цилиндрами, радиальное распределение напряжения сдвига т, в пределах зазора между коаксиальными цилиндрами, вычисляют по формуле

$$\hat{\tau}_r = \frac{T}{2\pi l} \times \frac{1}{r^2} , \qquad (4)$$

где T — момент приложения пары сил;

І — длина промежутка между коаксиальными цилиндрами;

r — радиус.

Напряжение сдвига на стенках внутреннего и наружного цилиндров τ_i и τ_e соответственно вычисляют по формулам:

$$\tau_l = \frac{2T}{\pi l} \times \frac{1}{d_l^2} \; ; \tag{5} \; \mathsf{u}$$

$$\tau_e = \frac{2T}{\pi l} \times \frac{1}{d_e^2} , \qquad (6)$$

где T и l — имеют такие же значения, как и в предыдущих измерениях;

 d_i — диаметр внутреннего цилиндра;

 d_e — диаметр наружного цилиндра.

8.2.2.1 Определение ньютоновских продуктов

Что касается измерений на ньютоновских продуктах, то скорость сдвига рассчитывают умножением частоты вращения цилиндра на коэффициент, значение которого устанавливается изготовителем прибора. В сущности рассчитывают скорость сдвига на стенке цилиндра, где также измеряют вращающий момент. Теоретически скорость сдвига определяют по формулам:

$$D_t = \frac{4\pi n}{60} imes \frac{d_e^2}{d_e^2 - d_t^2}$$
; (7) и

$$D_e = \frac{4\pi n}{60} \times \frac{d_i^2}{d_e^2 - d_i^2} \ , \tag{8}$$

тде D_t и D_e — скорости сдвига в обратных секундах на внутреннем и наружном цилиндре, соответственно;

п — частота вращения ротора в минуту;

 d_e и d_i — имеют такие значения, как и раньше.

Примечание — При использовании формул (7) и (8), не имеет значения, какой из двух цилиндров действительно вращается.

8.2.2.2 Измерения неньютоновских продуктов

В случае измерения на неньютоновских продуктах скорость сдвига на стенке движущейся части прибора не может быть рассчитана умножением частоты вращения цилиндра на коэффициент для ньютоновских тел.

В этом случае полученное значение соответствует «кажущейся скорости сдвига», Da.

Отношение между Dа и τ_i или τ_e — выражено кривой «кажущейся текучести» (или мобильности). Отношение τ_i/D а или τ_e/D а соответствует кажущейся вязкости.

Примечания:

1 Если отношение d_e/d_i — менее или равно 1,10, то для ньютоновских — жидкостей различия между D_i , D_e и D_a — незначительны. Вязкость η может быть рассмотрена как кажущаяся вязкость η_a , τ . е. не наблюдается заметного различия между реологическим поведением и кажущейся реологической кривой.

2 В случае неньютоновской жидкости или, если отношение d_e/d_i — больше 1,10 для коаксильной системы или даже намного больше в случае использования прибора неопределенной геометрии, то частота вращения (n) ротора может быть использована вместо D_a . Сравнение этих кривых с кривыми D_a в качестве функции τ_i или τ_e не представляется возможным.

8.3 Калибровка

Применяют метод с эталонными веществами (раздел 5).

Измеряют вязкость каждого из этих веществ. Используют эталонное вещество для каждого прибора.

Кривую, представляющую D, как функцию τ , обязательно проводят через начало отсчета. Для приборов с неопределенной геометрией кривая калибровки должна быть прямой линией, проходящей через начало отсчета, независимо от размерностей на координатных осях.

9 ОБРАБОТКА РЕЗУЛЬТАТОВ

9.1 Результаты предпочтительно должны быть даны в виде кривой потока D_a как функции τ_i или τ_e или в виде диаграммы или таблицы, представляющей кажущуюся вязкость η_a как функцию D или τ .

9.2 Результаты, полученные с применением приборов неопределенной геометрии, обычно представляются в виде кривой со значениями по оси абсцисс и со значениями кажущейся вязкости, соответствующими частоте вращения n по оси ординат:

$$\frac{CT}{n} = \eta_a(n). (9)$$

где T — момент пары сил (или любое другое значение, пропорциональное этому);

п — частота вращения ротора;

С — константа.

Константу калибровки C определяют заранее, измеряя $\eta_a(n)$ для ньютоновского эталонного вещества известной вязкости η .

9.3 Когда определения проводят на пластичном теле, обычно устанавливают предел текучести τ_0 , если известно точное значение 1).

9.4 При определении гистерезиса на тиксотропных или антитиксотропных продуктах необходимо установить программу сдвига и способ работы с продуктом.

Примечание — Реологическая кривая и кажущаяся вязкость зависят также от геометрии используемого тела, имеет ли прибор определенную геометрию или нет. Кривые могут сравниваться с другими только в том случае, если они получены с применением одного и того же типа прибора.

Из-за слоистности состава большое количество концентрированных растворов или паст дают неодинаковые результаты при каждом определении. На практике бывает трудно определить методы получения воспроизводимых образцов.

Таким образом, полученная информация относится только к аспектам кривых, которые могут быть нанесены на график и не представляется возможным сделать выводы относительно реологии данной системы.

Следует отметить, что на реологическое поведение большого числа ПАВ влияет присутствие небольшого количества примесей, электролитов, растворителей, гидрофобных агентов, а также колебания температур.

Большинство ротационных вискозиметров снабжены устройствами, которые позволяют точно определять предел текучести.

9.5. Точность полученных измерений, в частности, зависит от

характеристик потока.

Кроме того, наблюдается воздействие образца, программы сдвига и используемой системы измерения. Поэтому в каждом конкретном случае должна быть указана требуемая точность.

10 ПРОТОКОЛ ИСПЫТАНИЙ

Протокол испытаний должен включать следующую информацию:

 а) всю информацию, необходимую для полной идентификации образца;

б) ссылку на применяемый метод (ссылку на настоящий стан-

дарт);

- в) полученные результаты, а также единицы, в которых они выражаются;
 - г) условия испытания:

данные о гомогенности образца;

- описание испытуемого образца и приготовление образца (особенно, когда влияние оказывает длительность наблюдения сдвига);
 - температура испытания;

 система измерения с используемыми узлами, отношение диаметров цилиндров и величина зазора между ними;

 программа сдвига, количество положений переключателя, частота вращения, время, необходимое для измерения при каж-

дом положении, общее время сдвига;

 д) все операции, не предусмотренные настоящим стандартом или необязательные, а также все явления, которые могут повлиять на результаты. УДК 661.185.001.4:006.354

Л29

Ключевые слова: поверхностно-активные вещества, вискозиметр, текучесть, вязкость, тиксотропия, реопексия, пластичность, гистерезис, дилатанция

ОКСТУ 2409