машины переносные электрические

ОБЩИЕ ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И МЕТОДЫ ИСПЫТАНИЯ

Издание официальное

ГОССТАНДАРТ РОССИИ
Москва

Предполовие

- 1 РАЗРАБОТАН И ВНЕСЕН ТК 262 «Инструмент механизированный и ручной»
- 2 ПРИНЯТ И ВВЕДЕН В ДЕЯСТВИЕ Постановлением Госстандарта России от 13.05.94 № 150
- З Настоящий стандарт содержит полный аутентичный текст международного стандарта МЭК 1029—1—90 «Безопасность переносных электрических машин. Часть 1. Общие требования»
 - 4 ВВЕДЕН ВПЕРВЫЕ

В Издательство стандартов, 1994

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта России

Содержание

3	Область	прим	певени	Я												1
2	Нормати	виме	ссыля	N N						,						2
3	Определе															3
4	Общие 1	гребог	яния													8
5	Испытав	ая. О	ющие	пол	эжен	HR										- 8
6	Номинал	ьное	напря	*en	He											,12
7	Классиф	икаци	8													.12
8	Маркиро	вка														12
9	Защита	OT HO	раже	RHI	мект	риче	CKHM	TOKO	M							17
10	Пуск															19
16	Потребы	яемая	мощ	носта	. H	TOK										20
12	Нагрев							,								20
	Tox yre	RE														26
	Подавле		адно-	18 7	елеп	омех										28
15	Защита	OT HD	оники	эвени	a no	CTOD	OREN	тве	рдых	тел	и вл	aroci	ойко	сть		28
	Сопроти															29
	Надежно								:						0	32
	Непорма		веж.	им п	абот	ы										33
	Устойчив						опаси	ость								35
20	Механич	еская	прочи	ость		1.770								-	9.1	36
21	Конструк	RHES				_										38
22	Внутрени	u RRB	ровод	ка		•							0	•	•	43
23	Комплек	TVIOU	не на	дели	a .											45
	Подключ					ние с	нбки	e saf	ели	11 1111	IVDЫ				1	48
	Зажимы											3			9.1	53
	Заземлен							-							0.	59
	Винты и		нения			•		•				:	:		3	61.
	Пути ут				983	оры	и тол	инян	a B36	ляп	ня					64
29	Теплосто	AKOCT.	L OUR	ecros	кост	L H	CTORK	oets.	K 06	0830	SHHE	TOR	опро	BOIR		
	ших мос									P						68
ND.	Коррози			OCT.			-	•			•	-			•	70
15	Радиация	or many	CIONE	di i	•	15	*	•	•		•		•		•	71
	сунки .	• •			•			•	•	•		•	•			71
		AT	onune:		TOTO.		Marin	others		rin ceres	:	mene	enva	ir	•	76
7.	иложенне иложение	n a	Chena	- Contract	ease.	an H	yerp	UNCT	oa sa	LU, III	. 01	nepe	- Py	-13		77
45	BUOMERNE	CW	sex the	TUA	CX4	imbi	maria :	n por				oth				82
n.P	иложение	Con	эмере	ine i	lyrek	yre	THE REP	# BUC	ауш	AD ME	38301	JUB			•	86
·P	иложение	14 (_xewa	цепи	для	n3M	орени	M TOP	s yr	LAKH		•	•			130

машины переносные электрические

Общие требования безопасности и методы испытаний

Transportable motor-operated electric tools.

General safety requirements and testing methods

Дата введения 1995-01-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает требования безопасности и методы испытаний, являющиеся общими для всех электрических переносных машии.

Стандарт распространяется на электрические машины с приводом от электрического или электромагнитного двигателя, предназначенные для эксплуатации в помещениях и на открытом воздухе и имеющие все указанные инже особенности:

- а) легко перемещаются одним человеком; для удобства перемещения могут снабжаться приспособлениями типа ручек, колес и т. п.;
- б) используются в надежном стационарном положении без закрепления или с закреплением с помощью, например, быстрозажимных устройств, болтовых креплений и т. п.
 - в) работают под контролем оператора;
 - г) не рассчитаны на работу при непрерывном производстве;
- д) предназначены для подключения к электрическому источнику питания с помощью электрического шнура с вилкой;
- е) работают при максимальном номинальном напряжении 250 В при переменном однофазном или постоянном токе и 440 В при переменном трехфазном токе;
- ж) имеют максимальную номинальную потребляемую мощность 2500 Вт при переменном однофазном или постоянном токе и 4000 Вт при переменном трехфазном токе.

Примечания

Примеры электрических переносных машин (далее — машин);

дисковые лилы, ленточные вилы, строгальные машины, рейсмусовые машины, круглопильные машины, одношпиндельные фрезерные машины по дереву, лучко-

Издание официальное

вые пилы, ножовочные пилы, шипорезные пилы, токариме машины по дереву, денточношинфовальные машины, дисковые шлифовальные машины, цепные доленые машины, иногооперационные машины, гребнечесальные машины, гокарные машины для обработки металла, пастольные шлифовальные машины, явстольные сверхильные машины, машины для нарезлини резьбы на трубах, трубогибъчные машины, полы для разрезния труб, шлоночно-нарезные машины, заточные машины, пожищы для резки листового металла, пилы для нарезляни швоя и бетоне, размельчители древесним, трубоочистители.

2 Допускается применять дополнительный привод для подачи охлаждающей

жицьости или явыеудавливающих устройств.

- 3 При эксплуатации машни в местах с особыми условнями окружающей среды, например, во върывоопасной среде или местах повышенной опасиости, создаваемой имлью и отнем, требуются слевиальные меры предосторожности или специальные конструкции.
- 4 Многооперационные машины с четким режимом работы при выполнении каждой операции должны соответствовать отдельным требованиям по каждому режиму работы.

5 Стандарт не распространяется на:

– электроприборы бытового и подобного назначения по ГОСТ 27570.0;

— ручные электрические машины по ГОСТ 12.2.013.0;

электрооборудование для станков промышленного назначения по ГОСТ 27487;

низковольтные настольные станки, работающие от трансформатора и предназначенные для изготовления моделей, например, радиоуправляемых моделей самолетов, автомобилей и т. п.

Стандарт касается безопасности и учитывает влияние на безопасность составных частей, нужных для достижения требуемой степени подавления разно- и телепомех.

В стандарте методы испытаний выделены курсивом.

Требования настоящего стандарта являются обязательными.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты.

ГОСТ Р 50324-92 (МЭК 85-84) Система электрической изо-

ляции. Оценка нагревостойкости и классификация

ГОСТ Р 50539-93 (МЭК 127-3-88) Миниатюрные плавкие

предохранители. Субминиатюрные плавкие вставки

ГОСТ 12.2.006—87 (МЭК 65—85) ССБТ. Аппаратура радиоэлектронная бытовая. Требования безопасности и методы испытаний

ГОСТ 12.2.013.0—91 (МЭК 745—1—82) ССБТ. Машины ручные электрические. Общие требования безопасности и методы испытаний

ГОСТ 7396.1—89 (МЭК 83—75) Соединители штепсельные бытового и аналогичного назначения. Основные размеры

ГОСТ 14254—80 (МЭК 529—76, МЭК 529—76 (2—83) Изделии электротехнические, Оболочки, Степени защиты, Обозначения, Методы испытаний

ГОСТ 25516-82 Выключатели для электроприборов Общие

требования безопасности и методы испытаний

ГОСТ 26413.0 - 85E (МЭК 227—1—79, МЭК 227—2—79, МЭК 245—1—85, МЭК 245—2 - 80) Провода и шнуры соединительные силовые. Общие технические условия

ГОСТ 27487—87 (МЭК 204—1—81) Электрооборудование пронаводственных машин. Общие технические требования и методы

испытаний

ГОСТ 27570 0—87 (МЭК 335—1—76) Безопасность бытовых и аналогичных электрических приборов. Общие требования и мето-лы защиты

ГОСТ 28190—89Е (МЭК 320—81) Соединители бытового и аналогичного назначения. Технические требования и методы испы-

таний

ГОСТ 29146.1—91Е (МЭК 309—1--88) Соединители электрические промышленного назначения. Часть 1. Общие требования

ГОСТ 29146 2—91Е (МЭК 309—2—89) Соедизители электрические промышленного назначения. Часть 2. Требования к взаимозаменяемости размеров изтырей и контактных гиезд аппаратов

з определения

В настоящем стандарте применяют следующие термины

Примечание — Под терминами «напряжение» и «ток» понимают их средние квадратические значения, осли нет других указаний.

- 3.1. Номинальное напряжение напряжение (при трехфазном питании — линейное напряжение), указанное для мащины изготовителем.
- 3.2. Диапазон номинальных напряжений диапазон напряжений, указанный для машины изготовителем и выраженный нижним и верхним пределами.
- 3.3. Рабочее напряжение максимальное напряжение, приложенное к рассматриваемой части, когда машина работает при номинальном напряжении и в вормальных условиях эксплуатации.

Примечания

 Пормальные условия эксплуатации условия, включающие в себя возможные изменения напряжения внутри машаны, которые дозникают, например, при сработывает выключателя цепи или повреждении ламаы.

 При определении рабочего напражения не принимают чо внамание величива наприжения, вознакающие веледетнии переходных процессов в асточнике питация.

- 3.4 Номинальная потребляемая мощность потребляемая мощность при номинальном напряжении, указанная для машины изготовителем
- 3.5 Номинальный ток ток при номинальном напряжении или при нижнем пределе диапазона номинальных напряжений, указанный для машины изготовителем.

Примечание — Если поминальный ток мишины не указан, то его определног расчетным путем по поминальной потребляемой мощности и номинальном папряжению или изменно или изменно или изменно или изменно или изменальной илируме.

- 3.6 Номинальная частота частота, указанная для машины изготовителем.
- 3.7 Диапазон номинальных частот двапазон частот, указанный для машины изготовителем, выраженный нижним и верхним пределами.
- 3.8 Номинальная скорость на холостом ходу скорость на холостом ходу при номинальном напряжении или верхнем пределе днапазона номинальных напряжений, указанная для машины изготовителем.
- 3.9 Съемный гибкий кабель гибкий кабель для питания или других целей, предназначенный для присоединения к машине при помощи штепсельного соединителя.

Примечание — Штексельные соединители бытового и подобного общего из-начения рассматривают в ГОСТ 28:90.

- Шнур питания гибкий кабель или шнур для питания, соединенный с машиной одним из следующих способов:
- сосдинение типа X способ соединения, при котором гибкий кабель или шнур может быть легко заменен без помощи специальных инструментов другим кабелем или шнуром без особой подготовки;
- соединения типа М, при котором гибкий кабель или шнур может быть заменен без помощи специальных инструментов, специальным кабелем или шнуром, например, с формованным защитным устройством кабеля или опрессованными наконечниками.
- 3.11 Основная изоляция изоляция частей, находящихся под напряжением, предназначенная для основной защиты от поражения электрическим током.

Примечание — Основная изоляция не обязательно включает изоляцию, применяемую цеключительно для функциональных целей,

- 3.12 Дополнительная изоляция независимая изоляция, предусмотренная как дополнение к основной изоляции для обеспечения защиты от поражения электрическим током в случае повреждения основной изоляции.
- 3.13 Двойная изоляция изоляция, включающая как основную, так и дополнительную изоляцию.

3.14 Усиленная изоляция — единая система изоляции частей, находящихся под напряжением, обеспечивающая такую же степень защиты от поражения электрическим током, как и двойная изоляция в условиях, указанных в настоящем стандарте.

Примечание — Термин «единая система изоляции» не означает, что изоляция должна обязательно состоять из единственного слоя. Она может охватывать несколько слоев, которые нельзя испытать отдельно как дополнительную или основную изоляцию.

3.15 Машина класса 1 — машина, в которой защита от поражения электрическим током обеспечивается как основной изоляцией, так и дополнительными мерами безопасности, при которых доступные токопроводящие части соединены с защитным (заземляющим) проводом сети таким образом, что не могут оказаться под напряжением в случае повреждения основной изоляции.

Примечания

- 1 Для машин, предназначенных для использования с гибким кабелем или шнуром, должен быть предусмотрен защитный провод, являющийся частью гибкого кабеля или шнура;
- 2 Машины класса I могут иметь части с двойной или усиленной изоляцией либо части, работающие при безопасном сверхнизком напряжении.
- 3.16 Машина класса II машина, в которой защита от поражения электрическим током обеспечивается как основной изоляцией, так и дополнительными мерами безопасности, такими как двойная и усиленизя изоляция, и которая не имеет защитных провода или контакта заземления.

Машина такого класса может быть отнесена к одному из следующих типов:

- а) машина, имеющая прочный, практически сплошной кожух из изоляционного материала, который покрывает все металлические части, за исключением небольших деталей, таких как цитки, винты и заклепки, которые изолированы от частей под напряжением изоляцией, эквивалентной, по крайней мере, усиленной изоляции; такую машину называют машиной класса II с изоляционным кожухом;
- б) машина, имеющая практически сплошной металлический кожух, в которой повсюду применена двойная изоляция, за исключением тех деталей, где применена усиленная изоляция, так как применение двойной изоляции практически невыполнимо; такую машину называют машиной класса II с металлическим кожухом;
 - в) машина, представляющая комбинацию типов а) и б).
- 3.17 Машина класса 111 машина, в которой защиту от поражения электрическим током обеспечивают путем ее питания от безопасного сверхнизкого напряжения и в которой не возникают напряжения больше, чем безопасное сверхнизкое напряжение.

Примечание — Машины, предназначенные для работы при безопасном сверхнизком напряжения и имеющие внутренние цели, работающие при напряжение, которое не является безопасным сверхнизким напряжением, не включены в настоящую классификацию в являются предметом дополнительных гребований.

- 3.18 Сверхнизкое напряжение напряжение, получаемое от источника, встроенного в машину, и которое при работе машины на ее номинальном напряжении не превышает 42 В между проводниками и землей или для трехфазного питания не превышает 24 В между проводниками и нейтралью; цепь сверхнизкого напряжения изолирована от других цепей только с помощью основной изоляции.
- 3.19 Безопасное сверхнизкое напряжение номинальное напряжение, не превышающее 42 В между проводниками, а также между проводниками и землей, наи, в случае трехфазного питания, не превышающее 24 В между проводниками и нейтралью; при этом напряжение холостого хода не превышает соответственно 50 и 29 В.

Примечания

- Если безопасное сверхинзкое напряжение получают путем преобразования более высохого напряжения, то это следует осуществлять посредством безопасного изолирующего трансформатора или преобразователя с раздельными обмотками.
- 2 Указанные предельные величины напряжений относятся к работе безопасного изолирующего трансформатора или преобразователя, питаемого номинальным напряжением.
 - Величины напряжений для постоянного тока находятся в стадин рассмотжения.
- 4 Пределы напряжений ниже 50 В переменного тока должны оговариваться в стандартах на конкретные виды машни, особенно, когда речь идет о непосредственном контакте с токоведущими частями.
 - 5 Отделение от сети защитным сопротивлением не допускается,
- 3.20 Безопасный изолирующий трансформатор трансформатор, входная обмотка которого электрически отделена от выходных обмоток с помощью изоляции, эквивалентной, по крайней мере, двойной или усиленной изоляции, предназначенный для питания распределительной цепи машины или другого оборудования безопасным сверхнизким напряжением.
- 3.21 Нормальная нагрузка нагрузка, имитирующая средние нагрузки машины в условиях нормальной эксплуатации с учетом указаний о кратковременном или повторно-кратковременном режиме работы; нагревательные элементы (если они имеются) включают как при нормальной эксплуатации, если нет других указаний в настоящем стандарте или в стандартах на машины конкретных видов.

Примечание — Нормальная нагрузка основана на номинальном напряжении или верхнем пределе диацазона номинальных напряжений, 3.22 Номинальная продолжительность работы — продолжительность работы, указанная для машины изготовителем.

3.23 Непрерывный режим работы — работа при нормальной на-

грузке в течение неограниченного периода времени.

3.24 Кратковременный режим работы — работа при нормальной нагрузке в течение определенного периода времени, начиная с холодного состояния; интервалы между каждым периодом работы являются достаточно продолжительными, чтобы машина могла охладиться до температуры окружающего воздуха.

3.25 Повторно-кратковременный режим работы — работа при последовательном чередовании одинаковых циклов, каждый из которых включает период работы при нормальной нагрузке, за которым следует период отдыха, при котором машина функциовиру-

ет на холостом ходу или выключается.

3.26 Несъемная часть — часть, которая может быть отделена только при помощи инструмента.

Примечание — Во встречающихся в настоящем стандарте выражениях «при помощи инструмента», «без помощи инструмента» и «требует применение инструмента», слово «инструмент» означает отвертку, монсту или другой предмет, который можно использовать для отвинчивания или завинчивания винта или другого подобного средства соединения.

3.27 Съемная часть - - часть, которая может быть отделена без

применения инструмента.

3.28 Термовыключатель — устройство, ограничивающее температуру машины или ее частей при ненормальной работе путем автоматического размыкания цепи или уменьшения величины тока, и которое сконструировано так, что его уставка не может быть изменена потребителем.

3.29 Термовыключатель без самовозврата — термовыключатель, который восстанавливает величину тока после ручного вмещатель-

ства или после замены детали.

3.30 Путь утечки — наименьшее расстояние между двумя токопроводящими частями или между токопроводящей частью и граничной поверхностью машины, измеренное по поверхности изоляционного материала.

3.31 Воздушный зазор — наименьшее расстояние между двумя токопроводящими частями и граничной поверхностью машины, из-

меренное по воздуху.

Применание — Граничной поверхностью машины является внешняя поверхность кожуха, которая определяется фольгой, прижамаемой к доступным метадлическим поверхностям.

3.32 Полное отключение — отключение всех питающих проводов (за исключением защитного провода) одним действием.

 Π рим ечание — Защитный заземляющий провод не считают питающим проводом.

3.33 Доступная часть или доступная поверхность — часть или поверхность, к которой можно прикоснуться стандартным испытательным пальцем, в соответствии с рисунком 1.

:Примечания

1 Металлические части, которые находятся в электрической связи с доступ-

гимми металлическими частими, считают тоже доступными.

2 Термин «корпус» охватывает все доступные металлические части, оси руковток, кыопок, ручек и т. в., а также металлическую фольту, соприкасающуюся е доступными поверхностями изоляциюнного материала, но он не распространается на недоступные металлические части.

3.34 Силовая цепь — цепь, в составе которой имеется электрооборудование, предназначенное для генерации, трансформации, распределения и потребления электроэнергии.

3.35 Цень управления — вспомогательная цень, служащая для

управления электрооборудованием.

3.36 Устройство управления — устройство в виде, например, жнопок, переключателей, которое служит для управления вручную работой машины.

4 ОБЩИЕ ТРЕБОВАНИЯ

4.1 Машины должны быть сконструированы и изготовлены таким образом, чтобы при нормальной эксплуатации обеспечивалась их надежная работа и не создавалась опасность для людей и окружающей среды даже в случае небрежного обращения с машиной, жах это может быть при нормальной эксплуатации.

Проверку проводят с помощью указанных ниже испытаний.

5 ИСПЫТАНИЯ. ОБЩИЕ ПОЛОЖЕНИЯ

5.1 Испытания, проводимые в соответствии с настоящим стандартом, являются общими для всех машин, входящих в область распространения стандарта. Для машин каждого конкретного вида следует учитывать указания стандарта на машины этого вида.

5.2 Если нет других указаний в настоящем стандарте или в стандартах на машины конкретных видов, испытания проводят на одном образце машины в состоянии поставки. Образец должен выдержать все испытания.

Примечания

 Если машина рассчитана на раздичные напряжения питания как переменного, так и постоянного тока, на раздичные скорости и т. д., может потребозваться болсе чем один образец.

2 Если требуются испытания машины в соответствии с ГОСТ 14254, когда машина рассчитана на более высокую степсиь защиты, чем 1Р20, нужно вепытывать еще один образец.

- 3 При испытании комплектующих изделий может возникнуть необходимость в дополнительных образцах этих изделий. В этом случае они должны поставальных вместе с машиной.
- 5.3 Если нет других указаний в стандартах на машины конкретных видов, испытания проводят в порядке, приведенном в настоящем стандарте.

Перед началом испытания машина должна быть подключена к сети при номинальном напряжении или нижнем пределе диапазона номинальных напряжений для установления ее исправности..

5.4 Машины или их подвижные части испытывают в наиболеенеблагоприятных положениях, которые могут возникнуть при нормальной эксплиатации машины.

5.5 Если на результаты испытания влияет температура окружающей среды, то ее поддерживают в пределах (20±5)°С. Однако, если температура какой-либо части ограничивается устройством, чувствительным к температуре, или на нее влияет температура фазового перехода (например, температура кипящей воды), то температуру окружающей среды в случае сомнения поддерживают в пределах (23±2)°С.

5.6 Машины, предназначенные для работы только на переменном токе, испытывают переменным током при нормальной частоте, если она указана. Машины, предназначенные для работы только на постоянном токе, испытывают постоянным током, а предназначенные для работы как на переменном, так и на постоянном то-

ках — при наиболее неблагоприятном роде тока.

Машины, предназначенные для работы на переменном токе, на которых не указана номинальная частота или указан диапазон частот от 50 до 60 Гц, испытывают при частоте 50 или 60 Гц, в зависимости от того, при какой частоте создаются наиболее неблагоприятные условия.

Машины, на которых указан диапазон номинальных частот, отличающийся от 50—60 Гц, испытывают при наиболее неблагопри-

ятной частоте в пределах указанного диапазона.

Машины, предназначенные для работы при более чем одном номинальном напряжении, испытывают при наиболее неблагоприятном напряжении.

Если нет других указаний в настоящем стандарте или в стандартах на машины конкретных видов, машины, рассчитанные на один или более диапазонов номинальных напряжений, испытывают при наиболее неблагоприятном напряжении в пределах соответствующего диапазона.

Если указано, что питающее напряжение равно номинальному, умноженному на коэффициент, то питающее напряжение для машин, маркированных диапазоном номинальных напряжений, должно равняться:

- верхнему пределу диапазона номинальных напряжений, умноженному на коэффициент, если он более 1;
- нижнему пределу диапазона номинальных напряжений, умноженному на коэффициент, если он менее 1.

Примечания

1 Максимальная или минимальная номинальная потребляемая мощность номинальная потребляемая мощность, оти:сящаяся соответственно к верхнему или няжиему пределу днапазона номинальных напряжений.

Если испытываемые машины предназначены только для работы на постоянном токе, принимают во внимание возможное влияние полярности на работу ма-

шины.

- 2 Если машина предначначена для одного номинального напряжения или более чем для одного днапазона номинальных напряжений, может возникнуть необхотимость провести некоторые испытания при минимальном, среднем и максимальном значениях моминального напряжения, чтобы установить наиболее неблагоприятное напряжение.
- 57 Машины, для которых предусмотрены сменные нагревательные элементы или насадки, испытывают в соответствии со стандартами на конкретные виды машин, с такими элементами или насадками, которые дают самые неблагоприятные результаты при условии, что эти элементы или насадки соответствуют техническим условиям изготовителя машины.
- 5.8 Если при нормальной эксплуатации нагревательный элемент не может функционировать при неработающем двигателе, то элемент испытывают при работающем двигателе. Если нагревательный элемент может функционировать при неработающем двигателе, то его испытывают при работающем или неработающем двигателеле, в зависимости от того, что является наиболее неблагопризатным. Нагревательные элементы, встроенные в машину, подключают к отдельному источнику питания, если нет других указаний, и испытывают по ГОСТ 27570.0.
- 5.9 Если нет других указаний, машины, снабженные регулирующим или подобным устройством, испытывают с этим устройством при самых неблагоприятных уставках, если уставка может быть изменена потребителем.

Примечания

- 1 Если средства регулировки работы машины доступны без применения инструмента, указанные требования применяют, когда уставка может быть изменена вручную или с применением инструмента. Если средства ресулировки недоступны без применения инструмента, указанные требования применяют только тогда, когда уставка может быть изменена вручную.
- Соответствующее пломбировани: синтеют достаточным для защиты от изменений уставки лотребителем
- 5.10 Если условия нормальной нагрузки указаны в стандартах на машины конкретных видов, машину нагружают в соответствии с этими условиями, независимо от маркировки кратковременного или повторно-кратковременного режимов, за исключением случаев.

когда из конструкции машины очевидно, что эти условия не наступят при нормальной эксплуатации.

Если условия нормальной нагрузки не указаны в стандартах на машины конкретных видов, машину нагружают в соответствии с инструкцией изготовителя. При отсутствии такой инструкции машину нагружают при непрерывном режиме работы нагрузкой, соответствующей номинальной потребляемой мощности.

Испытания с насадками, выполняющими функции, установленные соответствующим разделом стандартов на машины конкретных видов, проводят в соответствии с требованиями этого раздела.

Остальные принадлежности испытывают в соответствии с инструкцией изготовителя. При отсутствии такой инструкции машину испытывают при непрерывном режиме работы с нагрузкой, соответствующей номинальной потребляемой мощности.

Электронные устройства для регулирования скорости устанав-

ливают на самую высокую скорость.

5.11 Если нормальная нагрузка или нормальные условия эксплуатации не указаны в стандартах на машины конкретных видов, то испытания проводят при номинальной потребляемой мощности.

- 5.12 Если нагрузку производят тормозным моментом, его приложение должно осуществляться таким образом, чтобы на рабочем конце вала не возникло дополнительных напряжений (например, бокового нажима). Дополнительные нагрузки, необходимые для нормальной работы машины, должны быть учтены.
- 5.13 Машины, предназначенные для работы при безопасном сверхнизком напряжении, испытывают вместе с питающим трансформатором, если его поставляют вместе с машиной.
- 5.14 При испытаниях по разделам 9, 16, 24 и 26 части, отделенные от токоведущих частей двойной или усиленной изоляцией, рассматриваются как части, которые не могут оказаться под напряжением в случае повреждения изоляции. Присоединение доступных металлических частей к защитному зажиму или защитному контакту не устраняет необходимости в проведении этих испытаний.
- 5.15 Если машины класса / имеют доступные металлические части, которые не присоединены к защитным зажиму или контакту или не отделены от частей под напряжением промежуточной металлической частью, присоединенной к защитным зажиму или контакту, то такие части должны испытываться на соответствие требованиям, установленным для машин класса 11.
- 5.16 Если машины классов I и II имеют части, работающие при безопасном сверхнизком напряжении, то такие части должны испытываться в соответствии с требованиями для машин класса III.
- 5.17 Машины со встроевными электронными схемами испытывают в соответствии с приложением В.

в номинальное напряжение

Максимально допустимыми значениями номинального напряжения являются:

- 250 В для машин, работающих на однофазном переменном или постоянном токе;
 - 440 В для машин, работающих на трехфазном токе.

Проверку проводят осмотром маркировки.

Рекомендуемыми значеннями номинального напряжения машни класса III являются 24 и 42 В.

7 КЛАССИФИКАЦИЯ

Машины подразделяют:

 7.1 по типу защиты от поражения электрическим током на машины классов I, II и III;

7.2 по степени защиты от проникновения посторонних твердых тел и влаги — в соответствии с ГОСТ 14254.

8 МАРКИРОВКА

- 8.1 На каждой машине должны быть нанесены следующие данные:
- номинальное (ые) напряжение (я) или диапазон (ы) номинальных напряжений в вольтах;
 - условное обозначение рода тока, при необходимости;
- номинальная частота или диалазой номинальных частот в герцах, если машина не предназначена только для постоянного тока или для переменного тока 50 и 60 Гц;
- номинальная потребляемая мощность в ваттах или киловаттах или номинальный ток в амперах;
 - номинальный ток в амперах, если он превышает 10 А;
- наименование, товарный знак или условное обозначение изготовителя;
- обозначение типа или модели машины по классификации изготовителя;
- номинальную продолжительность работы или номинальную продолжительность работы и номинальное время перерыва в часах, минутах или секундах, при необходимости;
- условное обозначение конструкции класса 11, только для машин этого класса;
- условное обозначение степени защиты от проникновения посторонних твердых тел и влаги, если она больше чем IP20.

Примечания

1 На машлиах с соединением «звезда-преугольник» дольных быть отчетливо обозначены два номинальных напряжения (например 2204/380Y).

2 Номинальную потребляемую мощность или номинальный ток, указываемые на машине, определяют как общую потребляемую мощность или общий ток, которые могут потребляться одновременно от сети.

3 Если машниа имеет переменно действующие комплектующие изделия, которые могут выбираться устройством управления, номинальная потребляемая

мощность должиз соответствовать возможно наиболее высокой нагрузке,

4 Допускается дополнительная маркировка при условии, что она не вызовет неправильного лонимания. Если двигатель машины маркируется отдельно, то маркировка машины и двигателя должна неключать сомнения отвосительно номинальных данных машины и ее изготовителя.

8.2 На машинах, предназначенных для кратковременного или повторно-кратковременного режима работы, должна быть указана продолжительность номинального рабочего периода или продолжительность номинального периода и номинального периода отдыха, если продолжительность рабочего периода не ограничена конструкцией машины или режим работы не соответствует определению нормальной нагрузки, приведенному в стандартах на машины конкретных видов.

Маркировка кратковременного или повторно-кратковременного режима работы должна соответствовать условиям нормальной

эксплуатации.

Повторно-кратковременный режим работы обозначается номинальным рабочим пернодом времени, за которым следует номинальный период отключения или холостого хода. Обозначения должны быть разделены наклонной чертой.

8.3 На машинах со встроенными нагревательными элементами должна быть нанесена дополнительно на щитке машины полная

маркировка нагревательных элементов по ГОСТ 27570.0.

8.4 Если машину можно устанавливать на различные номинальные напряжения или номинальные потребляемые мощности, напряжение или потребляемая мощность, на которые она установлена, должны быть легко и ясно различимы.

Требование не относится к машинам с соединением «звездатреугольник».

Примечание — Для маший, в которых не требуется частых изменений уставки напряжения, это гребование считают выполненным, если номинальное напряжение мли номинальная потребляемая мощность, на которые установлена машина, могут быть определены из схемы соединений, закрепленной на машине. Схема соединений может находиться на внутренней стороне крышки, которую надо снять, чтобы подсоединить провода питания. Этв схема может быть выполнена на прикрепленной звилеплены к крышке пластинке, на бумажной или другой этвкетке, приклеенной к крышке. Схему не допускается помещать на свободно прикрепленной к машине бирке.

8.5 Машины, маркированные более чем на одно номинальное напряжение или более чем на один диапазон номинальных напряжений, должны маркироваться номинальной потребляемой мощностью для каждого из этих напряжений или диапазонов. Верхний и нижний пределы номинальной потребляемой мощности должны быть обозначены на машине таким образом, чтобы было видно соотношение между потребляемой мощностью и напряжением, за исключением случая, при котором разность пределов диапазонов номинальных напряжений не превышает 10 % среднего значения диапазона. В этом случае обозначение номинальной потребляемой мощности допускается относить к среднему значению диапазона.

8.6 Используют следующие условные обозначения:

```
— вольт:
A
          ампер;
I'm
          -- герц;
Вт
          — ватт:
кВт
          — киловатт;
мкФ

микрофарад;

JI
          – литр;

    килограмм;

KΓ
H/cm<sup>2</sup>

    ньютон на квадратный сантиметр;

Па
          паскаль;
          — час:
мин
          - минута;
          секунда;

    переменный ток;

    трехфазный переменный ток;

3~
3N ~

    трехфазный переменный ток с нейтралью;

    постоянный ток;

n_0

скорость холостого хода;

          - машина класса II;
IPXX

степень защиты;

          - число оборотов или
                                    возвратно-поступательных
MHH-I
             движений в минуту.
```

Условное обозначение рода тока помещают непосредствению за обозначением номинального напряжения.

Размеры условного обозначения машин класса II должны быть такими, чтобы длина стороны квадрата приблизительно равнялась двойной длине стороны внутрениего квадрата.

Длина стороны внешнего квадрата должна быть не менее 5 мм. Условное обозначение машины класса II должно быть размещено так, чтобы было ясно, что оно является частью технической информации и чтобы его нельзя было перепутать с другой маркировкой.

8.7 Зажимы, предназначенные только для нейтрального провода, должны быть обозначены буквой N. Защитные зажимы заземления должны быть обозначены услов-

Эти обозначения не допускается помещать на винтах, съемных шайбах и других деталях, которые могут быть сняты при соединении проводников.

 8.8 Различные положения регулировочных устройств и выключателей на машине должны быть указаны цифрами, буквами или

иными визуальными средствами.

Если для обозначения различных положений используют цифры, то положение выключено должно быть обозначено цифрой «0», а положения, соответствующие большей величине полезной или потребляемой мощности, скорости и т. д., должны обозначаться больщим числом либо соответствующим символом.

При использовании кнопок положение «выключено» обозначают цифрой «О», а сам исполнительный орган должен быть, помимо

того, красного цвета.

Положение «включено» должно обозначаться цифрой «1», а цвет исполнительного органа может быть любым, за исключением красного.

Выключатели, не имеющие средств блокировки, маркировать не иужио, если и так ясно, для какой операции они предназначены.

Кнопки ручного возврата в исходное положение термовыключателей, встроенных в электродвигатель, не подпадают под действие этого пункта при условии, что эти кнопки нельзя спутать с основными органами управления.

8.9 Маркировка должна быть легко различима и долговечна.

Маркировка по 8.1—8.12 должна быть расположена на основной части машины таким образом, чтобы можно было ее ясно различить, когда машина подготовлена к эксплуатации.

Примечание — Для машин со степенью защиты IPX0 допускается применение накленваемых маркировочных табличек, которые размещают в углублениях корпуса машивы вля на поверхности, где их нельзя повредить при вормадымой эксплуатации

Маркировка и обозначение для выключателей, терморегуляторов, термовы ключателей и других устройств управления должны находиться вблизи этих элементов и не должны помещаться на съемных частях, если эти части могут быть повторно установлены так, что маркировка может быть понята неправильно

Проверку проводят осмотром и протиркой вручную маркировки в течение 15 с куском ткани, смоченной в воде, а затем в течение 15 с — куском ткани.

смоченной в бензике.

После всех испытаний по настоящему стандарту маркировка должна быть ясно различима; таблички не должны легко сниматься и деформироваться. 8.10 Регулирующие и другие устройства, предназначенные для регулировки во время работы, должны быть снабжены обозначениями направления регулировки для увеличения или уменьшения значения регулируемой величины.

Примечания

- Обозначения знаками «+» и «--» считают достаточными,
- 2 Требование не распространяется на регулирующие устройства, снабженные управляющим органом, движущимся возвратно-поступательно, если его положение «полностью включенное» противоположио положению «отключено».

3 Обозначение положений управляющего органа допускается не распола-

гать на самом устройстве.

8.11 Выключатели должны быть размещены или обозначены так, чтобы было ясно, к какой части машины они относятся, за исключением случая, когда это очевидно не является необходимым.

Обозначения, применяемые с этой целью, должны быть такими, чтобы не требовалось знания языка, стандартов и т. п. для их понимания.

8.12 Машины, предназначенные для присоединения к более чем двум питающим проводам, должны быть снабжены схемой соединений, прикрепленной к машине, за исключением случаев, когда правильный способ является очевидным.

Примечания

 Правильный способ присоединения очевиден, если, например, зажимы для присоединения питающих проводов отмечены стрелками, направленными к зажимам. Защитный провод не является питающим проводом.

2 Для машин с соединением «звезда-треугольник» схема соединений долж-

на показывать, каким образом следует соедивить обмотки,

- 3 Схема соединений может совпадать со схемой, указанной в 8.4.
- 8.13 Вместе с машиной изготовитель или поставщик должны представить справочник или информационный листок, где охвачены указанные ниже вопросы применительно к конкретному случаю. Информация должна быть представлена на официальном языке страны, в которую будет поставлена машина.

Вопросы эти следующие:

- а) Инструкция по монтажу:
- Установка или, если необходимо, крепление машины в устойчивом положении.
 - 2 Распаковка и сборка.
- 3 Подключение к источнику питания требования к кабелю, предохранителям, штепселям, заземлению.

4 Описание функций с иллюстрациями.

- 5 Ограничение по условиям окружающей среды.
- 6 Перечень комплектующих.
- б) Техника безопасности:
- Меры предосторожности и применение спецодежды (где это необходимо).

- 2 Специальные меры предосторожности.
- 3 Улавливание пыли.
- 5 Ограждение; надежность и регулировка.
- е) Инструкция по эксплуатации:
- I Регулировка и испытание.
- 2 Зажим инструмента.
- 3 Зажим обрабатываемого изделия.
- 4 Предельные размеры обрабатываемого изделия.
 - Общая инструкция по применению.
 г) Техническое обслуживание и уход:
 - Регулярная очистка, обслуживание и смазка.
- Работы по обслуживанию, проводимые фирмой-изготовителем или поставщиком; список адресов.
 - 3 Перечень деталей, заменяемых потребителем.
 - 4 Специальный инструмент, который может потребоваться.

9 ЗАЩИТА ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

9.1 Машины должны быть изготовлены и защищены так, чтобы обеспечивалась необходимая защита от случайного соприкосновения с частями, находящимися под напряжением, а для машинкласса П — с металлическими частями, отделенными от частей, находящихся под напряжением, только основной изоляцией, даже после удаления съемных частей. Должна быть также обеспеченанеобходимая защита от опасности соприкосновения с основной изоляцией.

Это требование справедливо при всех положениях машины, когда она подключена и работает в нормальном режиме, даже: после открытия крышек и дверец, производимого без помощи инструмента и снятия съемных деталей.

Если по инструкции изготовителя потребитель должен снятькакую-либо деталь во время нормальной эксплуатации или обслуживания машины, проводимого потребителем, то такую детальсчитают съемной, даже если для снятия ее требуется инструмент.

Изолирующие свойства лака, эмали, обычной бумаги, хлопчатобумажной пряжи или ткани, оксидных покрытий металлических частей, изоляционных бус, а также заливочной массы не считают обеспечивающими достаточную защиту от случайного прикосновения к частям под напряжением.

Кожух машины не должен иметь отверстий, через которые возможен доступ к частям под напряжением, а для машин класса 11 — также к частям, изолированным от частей под напряжением только основной изоляцией, за исключением отверстий, необходимых для эксплуатации машины. Примечания

 Если нет других указаний, части, работающие при безопасном сверхинзжом вапряжении до 24 В, считают частями, не находящимися под напряжением.

Проверку проводят внешним осмотром, а при необходимости, испытанием

«тандартным испытательным пальцем, приведенным на рисунке 1,

Кроме того, отверстия в машинах класса II, как и отверстия в машинах жласса I, за исключением отверстий в металлических частях, присоедименных к защитному зажиму или защитному контакту, испытывают испытательным инумом, приводенным на рисунке 2.

После удаления съемных частей, испытательные палец и щуп прикладывают во всех возможных положениях; испытательный палец — без особого усилия, ис-

мытательный щуп - с усилием 10 Н.

Отверстия, в которые испытательный палец не входит, испытывают затем жүн комощи прямого монолитного испытательного пальца тех же размеров, который прикладывают и усилием 50 Н. Если этот палец входит, повторяют испытание сочлененным испытательным пальцем, приведенным на рисунке 1, при не-«Эбходимости калец проталкивают в отверстие.

Из допускается возможность прикосновения испытательным пальцем, а для машин класса II испытательным щутом к неизолированным частям под напряжением или частям под напряжением, защищенным лаком, эмалью, обычной бумагой, клончатобимажной пряжей или тканью, оксидным покрытием, изоляци-

гонными бусами или заливочной массой.

Для машин класса II не допускается возможность прикосновения испытательным шутом к неизолированным частям под напряжением или прикосновения испытательным пальцем к металлическим частям, отделенным от частва под мапряжением лишь основной изоляцией.

Должна быть исключена возможность прикосновения испытательным паль-

щем к основной изоляции.

 Рекомендуется для обнаружения контакта применять дампу напряжением вие ниже 40 В.

При вводе лачночек и их вынимании необходимо следить за тем, чтобы не было примого контакта с токоведущими деталями патрона.

9.2 Детали, обеспечивающие защиту от поражения электричежим током, должны быть прочными, а их крепление не должно оснабляться при нормальной эксплуатации.

Крепление этих деталей должно быть таким, чтобы не было

возможным их снятие без применения инструмента.

Проверку проводят внешним осмотром, ручным опробованием и испытаниями по разделам 17 и 20.

 Валы и оси управляющих ручек, кнопок, рычагов и т. п. не должны находиться под напряжением.

Проверку проводят осмотром.

9.4 Для машин, за исключением машин класса III, управляющие ручки или кнопки выключателей и переключателей, если они сделаны из металла, должны быть либо покрыты изоляционным материалом, либо их доступные части должны быть отделены от звалов или креплений дополнительной изоляцией.

Проверку проводят осмотром.

9.5 В машинах класса II не допускается присоединение конденсаторов к доступным металлическим частям.

Металлические кожухи конденсаторов должны быть отделены: от доступных металлических частей дополнительной изоляцией.

Проверку проводят внешним осмотром и испытаниями, уста-

новленными для дополнительной изоляции.

9.6 Машины должны быть сконструированы таким образом, чтобы при нормальной эксплуатации не существовало опасности поражения электрическим током от заряженных конденсаторов.

Проверку проводят следующим испытанием, которое проводят

10 pas.

Машина работает при номинальном напряжении или на верхнем пределе диапазона номинальных напряжений. Выключатель машины, если таковой имеется, ставят затем в положение «отключено» и машину отключают от питания, выдернув вилку из сети.

Через 1 с после отключения напряжения между штырями вил-

ки не должно превышать 34 В.

Примечания

 Для замера напряжения нужно применять прибор, не оказывающий заметного влияния на измеряемую величину.

2 Конденсаторы с номинальной емкостью, не превышающей 0.1 мкФ, имсчитают оласным с точки эрения поражения электрическим током,

10 ПУСК

10.1 Машины должны запускаться при всех нормальных значениях напряжения, которые могут возникнуть при эксплуатации.

Центробежные выключатели и другие автоматические пусковые устройства должны работать надежно и без вибрации контак-TOB.

Проверку машины проводят, включая ее на холостом ходу последовательно три раза на напряжение, равное 0,85 номинального напряжения или нижнего предела диапазона напряжений, при этом регулирующие устройства, если таковые имеются, устанавливают как при нормальной эксплуатации.

Машины с центробежными выключателями или другими автоматическими пусковыми устройствами включают дополнительнотри раза на напряжение, равное 1,06 номинального напряжения или верхнего предела диапазона напряжений. Во всех случаях работа машины должна быть безопасной и нормальной.

В соответствии с 5.5 испытание должно проводиться при темпеparype $(23\pm2)^{\circ}C$

10.2 Устройства защиты от перегрузки не должны срабатывать в условиях нормального пуска.

Проверку проводят испытанием по 10.1.

11 ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ И ТОК

11.1 Потребляемая мощность машины при работе на номинальном напряжении и нормальной нагрузке может превышать номинальную потребляемую мощность, но не более допустимого отклочения, указанного в таблице 1.

Таблаца 1 — Превышение потребляемой мощности

Номинальния потреблиемая мещность, Вт	Превышение			
До 33,3 включ. Св. 33,3 до 150 » > 150 » 300 »	+10 BT +30 % +45 BT +15 %			

Проверку проводят измерением величины потребляемой мощжости машины, работающей при номинальном напряжении или при среднем значении диапавона номинальных напряжений, если он не превышает 10 % своего среднего значения при нормальной нагрузже.

Примечание — Для машин, на которых указаи днапазон поминальных знапражений с пределами, отличающимися более чем на 10 % от среднего значения давлазона, предельные отклонения потребляемой мощности определяют для хаждого из пределов днапазона.

11.2 Если на машине указан номинальный ток, то измеренный ток при нормальной нагрузке не должен превышать номинального тока более чем на 15 %.

Проверку проводят измерением тока машины, работающей при нормальной нагрузке и при номинальном напряжении или при среднем значении диапазона номинальных напряжений, если он не превышает 10 % своего среднего значения.

Примечание — Для машин, на которых указан диапазон поминальных жанряжений с пределами, отличающимися более чем на 10 % от среднего значения диапазона, предельные отклонения тока определяют для каждого из пределов диапазона,

12 НАГРЕВ

 12.1 Машины не должны перегреваться при нормальной эксяплуатации.

Проверку проводят путем определения превышения температуры различных частей машины при следующих условиях.

12.2 Машина работает в помещении, свободном от посторонних мсточников движущихся потоков воздуха при нормальной нагруз-ке или нагрузке тормозным моментом, при котором машина рабо-

тает при номинальной потребляемой мощности или при нагрузке, указанной в стандартах на машины конкретных видов, в зависи-мости от того, что приводит к более высоким превышениям температуры, и при напряжении питания, равном 0,94, 1,00 или 1,06 номинального напряжения, в зависимости от того, какая из величин наиболее неблагоприятная.

Тормозной момент поддерживают постоянным, равным значению, соответствующему работе машины при номинальном напряжении или при среднем значении диапазона номинальных напряжений, при наиболее неблагоприятных из трех указинных вышеусловий нагрузки, а напряжение устанавливают на 0,94 или 1,06номинального напряжения или среднего значения диапазона номинальных напряжений.

В случае прикладывания тормозного момента, при котором машина работает при номинальной потребляемой мощности, режимработы должен соответствовать указанному для нормальной нагризки.

12.3 Превышения температуры обмоток определяются методом сопротивления, за исключением случаев, когда обмотки неоднородны или затруднительно выполнить соединения, требуемые дляшямерения сопротивления. В этом случае измерение проводят призпомощи термопар.

Превышение температуры измеряют такими тонкопроволочными термопарами и так выбранными и расположенными, чтобы они: оказывали минимальное воздействие на температуру испытуемой детали.

При определении превышения температуры рукояток, кнопок, ручек и т. п. необходимо учитывать все детали, к которым при нормальной эксплуатации прикасаются руками, а если они изготовлены из изоляционных материалов, то и части, которые соприкасаются с горячим металлом.

Превышение температуры электрической изоляции, не считах изоляции обмоток, определяют на поверхности изоляции в местах, где повреждение может привести к короткому замыканию, контакту между частями под напряжением и доступными металлическими частями, образованию токопроводящих мостиков на изоляции или уменьшению путей утечки или воздушных вазоров по сравнению со значениями, указанными в 28.1.

12.4 Машина должна проработать:

- в течение номинального периода времени для машин скратковременным режимом работы;
- при последовательном чередовании предписанных циклов работы до достижения установившегося теплового режима для машин с номинальным повторно-кратковременным режимом рабо—

ты, причем соблюдают номинальный рабочий период и номинальный период отключения;

— до достижения установившегося теплового режима — для

машин с непрерывным режимом работы.

12.5 Во время испытания термовыключатели не должны срабатывать. Превышения температуры не должны быть больше значений, указанных в таблице 2, за исключением случаев, предусматриваемых в 12.6.

Герметизирующий состав, если он имеется, не должен вытекать.

Таблица 2 — Превышение температуры

Части	Превышение температуры ¹ С		
Обмотки ^{1;} и магнитопроводы в контакте с ними, если изоляция обмотки выполнена из материала кизесов:			
A ²⁾			
E ²)	75 (65)		
B ²)	90 (80)		
F ²)	98 (85)		
H ²⁾	115		
	140		
Корпус выключателей и терморегуляторов, марки- рованные с номинальными данными ³³ :			
— без маркировки T	30		
— с маркировкой T	T 25		
Штыри приборных вилок исполнений: — очень теплостойкого	100		
— теплостойкого — теплостойкого	130 95		
 обычного 	40		
Резиновая или поливинилхлоридная изоляция витерении и внешних проводов, включая шнуры витания:			
— без маркировки T	50 ⁴⁾ .		
— с маркировкой T	T — 25 ⁵⁾		
Оболочка шнура, используемая в качестве допол-	1 - 23		
нительной изоляции	35		
Резина, применяемая для сальников или других			
теталей, повреждение которых может повлиять на			
безопасность;			
 при использовании в качестве дополнительной или усиленной изоляции 	40		
— в других случаях	50		
Материал, используемый в качестве изоляции.			
троме изоляции проводов и обмоток ⁶⁾ :			
 пропитанияя или лекированная ткань, бумага 			
или прессованный картон	70		
 прессованные слонстые пластики, связанные 			
смолами:			
меламинформальдегидной, фенолформальдегид- ной или фенолфурфурольной	95 (175)		
non may denoughly housings	85 (175)		

. Части	Превышение температуры, °С		
карбамидформальдегидной	65 (150)		
 прессованные материалы из: " 	,,,		
фенолформальдегида с наполнителем из целлю-			
W03FF	85 (175)		
фенолформальдегида с минеральным наполни-	100 (000)		
телем	100 (200)		
меламинформальдегида карбамидформальдегида	75 (150) 65 (150)		
 полиэфир, армированный стекловолокном 	110		
 кремнийорганическая (силиконовая) резина 	145		
— политетрафторэтилен	265		
- чистая слюда и плотноспекаемая керамическая			
масса, если их используют как доподнятель-			
ную или усиленную изоляцию	400:		
 термопластические материалы⁷⁾ 	_		
Древесина, в общем ⁸⁾	65		
Внешняя поверхность конденсаторов:			
 с маркировкой максимальной рабочей темпе- 			
ратуры (Т)	T 35		
 без маркировки максимальной рабочей гемпе- 			
ратуры: небольшие керамические конденсаторы для по-			
давления радиопомех	50		
другие конденсаторы	20		
Внешний кожух, за исключением рукояток, кото-			
ые цержат в руках при нормальной эксплуатации			
Рукоятки, кнопки, ручки и т. п., которые длитель-			
о держат в руках при нормальной эксплуатации:	-		
— из метадла	30		
 из фарфора или стекловидного материала из прессованного материала, резины или 	40		
 на прессованного материала, резины или древесины 	50		
Рукоятки, киопки, ручки и т. п., которые кратко-			
ременно держат в руках при нормальной эксплу-			
тации (например, выключатели):			
из металла	35		
 из фарфора или стекловидного материала 	45		
 из прессованного материала резины или 			
древесины	60x		
Части, соприкасающиеся с маслом, вмеющим тем- ературу вспышки t°C	1 50		
charth) tennement (c	1 - 30		

Значення, приведенные без скобок, применяют при использовании метода сопротивлений, а значения, приведенные в скобках, — при использования метода термопар. Для обмоток катушек вибраторов и двигателей переменного тока значения без скобок применяют в обоих случаях.

Предпочтительными являются результаты измерений температуры, полученные методом сопротивления.

² Классы изоляции — по ГОСТ Р 50324:

К материалам класса А относятся:

Окончание таблицы 2

 пропитанная хлопчатобумажная ткань, натуральный и некусственный шелк, бумага;

- змаля на основе масляных или полнамидных смол.

К материалам класса В относятся:

 асбест, стекловоложно, меламинформальдегидные и фенолформальдегидные смолы.

К материалам класса Е относятся:

 прессованные материалы с целлюлозными наполнителями, слоистые материалы из хлоячатобумажной ткани и бумаги на основе меламинформальметидной, фенолформальдегидной и фенолфурфуроловой смол.

полиэфирные смолы сетчатой структуры, пленки из триацетата целлю-

жозы, или полиэтилентерефталата;

 покрытая лаком полиэтилентерефталатная ткань, пропитанная лаком из алкидной смолы, модифицированной маслом.

эмали на основе поливинилформальдегидных, полиуретановых или

эпоксидных смол.

Не указаны предельные величины для обмоток, изолированных материавами, не относящимися к изоляции классов A, E, B или F, которые должны выдержать испытание по 12.6.

Эти испытания проводят всегда, если превышение температуры обмоток и магвитопроводов более 75°C и возникает сомнение относительно классифи-

кации изоляции обмоток.

Двигатели полностью закрытого типа могут иметь превышения темпера-

туры, соответствующие влассам А, Е и В, плюс 5°С.

Двигатель полностью закрытого типа — двигатель у которого предотвращена циркуляция воздуха между внутренними и внешними частями, при этом внутренние части не обязательно являются герметичными.

Буква Т обозначает максимальную рабочую температуру.

Для этого испытания выключатели и терморегуляторы, имеющие индивидуальную маркировку номинальных данных, допускается считать не имеющими маркировки максимальной рабочей температуры, если на это есть указание изготовителя машины.

 Давный предел относится к кабелям, шнурам и проводам, выполненным во соответствующим стандартам, в других случаях он может быть иным.

Маркировка относится к шнурам и проводам с теплостойкой изолицией.

в Значения в скобках относятся к местам, где рукоятки, кнопки, ручки

и т. п. соприкасаются с горячим металлом.

⁷ Не установлен предел для термопластических материалов, которые должны выдержать испытания по 29.1 или 29.2, для этих испытаний исобходимо определить превышение температуры.

Повреждение поверхности древесивы во внимание не принимают.

При использовании этих и других материалов допускается применять их при гемпературах, вс превышающих их теплостойкости, определенной опытным лугем на самих материалах.

Примечание — Значения, указанные в таблице, приведены для температуры охружающей среды, не превышающей 25 °С, но иногда достигающей 35 °С.

Значения превышения температуры даны, исходя из температуры воздуха 25°C.

При определении температуры выключателей и терморегуляторов, превышение температуры в результате прохождения тока через выключатель или терморегуляторы не учитывают, если оно не влияет на температуру окружающей среды.

Значения превышения температуры медной или алюминиевой

обмотки определяют по формулам:

$$\Delta t = \frac{R_2 - R_1}{R_1} (234, 5 + t_1) - (t_2 - t_1)$$
 (для меди);

$$\Delta t = \frac{R_1 - R_1}{R_1} (225, 0 + t_1) - (t_2 - t_1)$$

(для специальных марок алюминия, предназначенных для изготовления электропроводов)

где Δt — превышение температуры, °C;

R₁ — сопротивление обмотки в начале испытания, Ом;

R₂ — сопротивление обмотки в конце испытания, Ом;

 t_1 — температура воздуха помещения в начале испытания, °C; t_2 — температура воздуха помещения в конце испытания, °C.

В начале испытания температура обмоток должна быть равна температуре воздуха помещения.

Рекомендуется определять сопротивление обмоток в конце испытания как можно скорее после отключения, а затем через короткие интервалы, таким образом, чтобы можно было построить кривую изменения сопротивления во времени для определения сопротивления в момент отключения.

12.6 Если превышение температуры обмотки выше значения предельного превышения температуры по 12.5, то три дополнительных образца подвергают следующим испытаниям:

1) определяют превышения температуры обмоток испытанием

no 12.2;

 испытанные образцы разбирают, насколько это возможно, без повреждения отдельных частей. Обмотки и магнитопроводы выдерживают в течение 10 сут (240 ч) в нагревательной камере, температура в которой на (80±1)°С выше превышения температуры, определенного при испытании по пункту 1);

3) образцы собирают и проверяют на отсутствие межвитковых

коротких замыканий.

Межвитковые замыкания могут быть обнаружены прибором для испытания обмоток;

4) образцы испытывают по разделу 16;

5) образцы подвергают воздействию влаги по 15.3.

После этой обработки они снова должны пройти испытания по разделу 16.

Считают, что машины не соответствуют требованиям 12.1, если обнаружатся неисправности более чем в одном образце при одном из испытаний 3) — 5).

Если неисправность обнаружится только у одного образца при одном из испытаний, то все испытания 1) — 5) повторяют на дру-гой группе из трех образцов, при этом повторные испытания должны выдержать все три образиа.

Примечание - Неисправности, которые могут появиться в изоляции, имеющей превышения температуры не выше допустимых при испытании по 1), не учитывают и, в случае необходимости, устраняют для продолжения этого-

13 ТОК УТЕЧКИ

13.1 Ток утечки при нормальной эксплуатации не должен быть

чрезмерно большим.

Соответствие этому требованию проверяют испытанием по 13.2, проводимому непосредственно после испытания по 12.2, когда машина работает в условиях по 12.2 при напряжении питания, равном 1,06 номинального напряжения.

Машины, работающие на трехфазном токе, но применимые также при однофазном питании, испытывают как однофазные маши-ны с тремя параллельно соединенными секциями. Испытания проводят, подключив машини к источники питания.

13.2 Измеряют ток итечки между любым полюсом источника

питания и:

 — доступными металлическими частями и металлической фоль-гой площадью не более (20×10) см, соприкасающейся с доступ-ными поверхностями изоляционного материала, соединенными между собой;

металлическими частями машин класса II, отделенными от

токоведущих частей только основной изоляцией. Схема измерения тока утечки приведена:

 для однофазных машин с номинальным напряжением не более 250 В и для трехфазных машин испытываемых как однофазные:

для машин класса II— на рисунке 3; для остальных машин, кроме машин класса II,— на рисунке 4; для трехфазных машин, не приспособленных для работы на однофазном токе:

для машин класса II — на рисунке 5;

для остальных машин, кроме машин класса ІІ, — на рисунке б. Измерительная цепь имеет общее сопротивление (1750±250) Ом и шунтируется с помощью конденсатора таким образом, чтобы постоянная времени цепи составляла (225±15) мс.

Испытания проводят при переменном токе, за исключением случаев, когда машина рассчитана только на постоянный ток и тогда ее испытывают при постоянном токе.

Пля однофазных машин с номинальным напряжением не бо-

лее 250 В и для трехфазных машин, которые должны испытываться как однофазные, ток утечки измеряют, пользуясь переключателями, показанными на рисунках 3 и 4 при обоих положениях 1 и 2.

Для трехфазных машин, не предназначенных для однофазного питания, ток утечки измеряют при условии, что выключатели а, b, c, показанные на рисунках 5 и 6, замкнуты; эти измерения повторяют при поочередном отключении одного из выключателей а, b, с и включенном положении двух других выключателей; для машин, подключаемых в соединение звезда только с отсоединенной нейтралью.

После работы машины по 12.4 ток утечки не должен превы-

шать следующих значений:

для машин класса III — 0,5 мА;

для машин класса 1 — 0,75 мА;

для машин класса II — 0,25 мA;

к металлическим частям машин класса II, отделенных от частей под напряжением только основной изоляцией, в зависимости от степени защиты от проникновения воды:

для машин IPXO — 5,0 мА; для остальных машин — 3,5 мА.

Если в машину, которая имеет однополюсный выключатель, встроен один или более конденсаторов, измерения повторяют с выключателем, установленным в положение «отключено».

Для машин со встроенными нагревательными элементами общий ток утечки не должен превышать вышеуказанных предельных значений или предельных значений по ГОСТ 27570.0, указанных для нагревательных приборов, в зависимости от того, что больше, но оба предела не должны суммироваться.

Примечания

 Измерительная схема имеет точность в пределах 5 % на всех частотах от 20 до 5000 Гц

2 В случаях, когда ток утечки, измеренный в цепи, имеющей общее сопротивление 1600 Ом, превышает 5 мА, то отсчеты по прибору уменьшают на 5 %.

 Данные о цепи, необходимой для измерения токов утечки, приведены в приложении С.

4 Рекомендуется подавать витание на машину через разделительный трансформатор, в противном случае машина должна быть изолярована от земли.

5 Металлическая фольга должна занимать возможно больщую площадь на испытуемой поверхности без превышения указанных размеров. Есля площадь фольги меньше испытуемой поверхности, фольгу передвигают таким образом, чтобы можно было испытать все части поверхности Металлическая фольга не должна влиять из отвод тепля.

6 Испытание с выключателем, установленным в положении «отключено», проводят, чтобы убедиться, что конденсаторы, присоединенные после однополюс-

ного выключателя, не вызовут появление чрезмерного тока утечки

7 Если машина имеет термовыключатель, который срабатывает во время испытаний по разделу 12, ток утечки измеряют непосредственно перед тем, как термовыключатель разрывает цепь.

14 ПОДАВЛЕНИЕ РАДИО- И ТЕЛЕПОМЕХ

14.1 Элементы помехоподавляющих устройств, необходимые для обеспечения соответствующей степени подавления радно- и телепомех, не должны снижать безопасности машины.

Проверку проводят испытаниями по настоящему стандарту.

Примечание — Степень подавления радиопомех считают достаточной, если их уровень не превышает указанный в нормах СИСПР.

15 ЗАЩИТА ОТ ПРОНИКНОВЕНИЯ ПОСТОРОННИХ ТВЕРДЫХ ТЕЛ И ВЛАГОСТОЙКОСТЬ

15.1 Машины, имеющие маркировку с указанием степени защиты от проникновения посторонних твердых тел, должны обеспечивать эту степень защиты в условиях эксплуатации.

Проверку проводят испытанием по ГОСТ 14254.

15.2 Машины, обеспечивающие в условиях эксплуатации степень защиты 1РХО, должны отвечать соответствующим требованиям ГОСТ 14254.

Крышки и другие части, которые можно снять без помощи инструмента, снимают и, при необходимости, испытывают вместе с основной частью машины.

Примечание — Более подробная информация об условиях испытания находится в стадии рассмотрения.

15.3 Машины должны быть влагостойкими при влажности, которая может иметь место в условиях нормальной эксплуатации.

Проверку проводят влажной обработкой, за которой сразу же

следуют испытания по разделу 16, следующим образом

Крышки и другие части, которые могут быть удалены без применения инструмента, удаляют и, если необходимо, подвергают

влажной обработке вместе с основной частью.

Испытание проводят в камере влажности, где воздух имеет относительную влажность от 91 до 95 %. Температуру воздуха во всех местах, где можно поместить образцы, поддерживают в пределах ±1°C любого соответствующего эначения температуры t между 20 и 30°C.

Перед помещением образца в камеру влажности его выдер-

живают при температуре от t до (t±4)°Č в течение 24 ч.

Образец выдерживают в камере:

2 сут (48 ч) — для машин со степенью защиты IPXO;

— 7 сит (168 ч) — для остальных машин.

Примечания

1 В большинстве случаев образец может быть привечен к установленной температуре путем выдерживания его при этой температуре не менее 4 ч перед вельятанием на влагостоймость.

- 2 Относительную влажность от 91 до 95 % можно создать помещая в камеру насыщениый раствор сернокислого натрия (Na₂SO₄) или азотнокислого калия (KNO₃) в волу с достаточно большой поверхностью соприкосновения с воздухом.
- 3 Для достижения требуемых условий в камере следует обеспечивать постонивую церкуляцию воздуха и использовать камеру с тепловой изоляцией
- 15.4 Машины, у которых при нормальной эксплуатации возможен перелив жидкости, должны быть сконструированы таким образом, чтобы это не оказывало влияния на их электрическую изоляцию.

Проверку проводят следующим испытанием.

Машины со штепсельным разъемом снабжают соответствующим соединителем и гибким кабелем или инуром; другие машины с заменимыми шнурами тнабжают гибким кабелем или инуром самого легкого типа с минимальным сечением проводов по 24.4.

Сосуд для жидкости машины полностью наполняют водой, затем добавляют постепенно в течение 1 мин количество воды, равное 15% емкости сосуда.

Непосредственно после этого машина должна быть испытана на электрическую прочность изоляции по 16.3.

Осмотр машины должен подтвердить, что в нее не попало какого-либо заметного количества воды и никаких следов воды нет на изолирующих частях, для которых в 28.1 указаны минимальные значения путей утечки.

Можно провести испытания еще на одном образце.

16 СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ И ЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ

16.1 Машины должны иметь достаточное сопротивление изоляции и электрическую прочность.

Проверку проводят испытаниями по 16.2 и 16.3 на холодной машине, непосредственно после испытания по 15.3 в камере влажности или в помещении, в котором образец был доведен до установленной температуры, после повторной сборки ранее удаленных частей.

16.2 Сопротивление изоляции измеряют напряжением постоянного тока порядка 500 В через 1 мин после подведения напряжения, при этом нагревательные элементы, если таковые имеются, должны быть отключены.

Сопротивление изоляции должно быть не менее приведенного в таблице ${\bf 3}.$

FOCT P M3K 1029-1-94

Таблица 3 — Сопротивление изоляции

Испытуемая изоляция	Сопротивление изоляции, МОж	
Между частями, находящимися под напряжением, и корпусом:		
— для основной изоляции — для усиленной изоляции	2	
Между частями, находящимися под напряжени- ем, и металлическими частями машин класса II, от-	,	
деленных от частей под напряжением только о́снов- ной изоляшей	q	
Между металлическими частями машин класса II, отделенными от частей под напряжением только	•	
основной изоляцией и корвусом	5	

16.3 Непосредственно после испытания по 16.2 изоляцию подвергают в течение 1 мин испытанию практически синусоидальным напряжением частотой 50 или 60 Гц. Величина испытательного напряжения и места его приложения приведены в таблице 4.

Таблица 4 — Испытательное напряжение

Места приложения испытательного напряжения	Испытательное напряжение, В, иля машин классов				
	111	11	1		
1 Между частями, находящимися под- капряжением, и частями корпуса, отделен- ными от частей под напряжением: — только основной изоляцией — усиленной изоляцией 2 Между частями, находящимися под капряжением различной полярности 3 Для частей с двойной изоляцией ме- жду металянескими частями, отделениеми от частей под напряжением только основ- ной изоляцией и находящимися под напря- жением, и:	500 500	3750 1250	1250 3750 1250		
— частями под напряжением — корпусом 4 Между металлическими крышками или комухами, покрытыми изнутри изоляцион- ным материалом и металлической фольгой, соприкасающейся с внутренней стороной изоляционного покрытия, если расстояние между частями под напряжением и этими крышками и кожухами, измеренное через нокрытие, меньше трабиемого воздишного	Ξ	1250 2500	1250 2500		
назора по 28.1	2500	1250	_		

Места приложения аспытательного напряжения	Испытательное напряжение, В, Оля машин классов					
	11.	11	1			
5 Между металлической фольгой, сопри- касающейся с рукоятками, кнопками, рук- ками и т. п. и их валами и осями, если они могут оказаться под напряжением в случае повреждения изоляции 6 Между корпусом и металлической фольгой, обернутой вокруг шнура питания, либо металлическим стержнем того диа- метра, что и шнур питания, вставленный вместо него внутри входных втилок из	-	2500	2500			
изоляционного материала, муфт, креплений шнура питанил и т. д. 7 Между точкой соединения обмотки и конденсатора, если между этой точкой и любым из зажимов для внешних проводов	-	2500	1250			
возникает резонансное напряжение U, и: — кортусом — металлическими частями, отделенны- ми от токоведущих частей только основ-		-	2U+1000			
ной изоляцией	-	2U+1000				

Если отдельное испытание основной и домолнительной изоляции невозможно без демонтажа машин, используют дополнительный образец, который подвергают испытанию по 15.3 после проведения демонтажа.

Испытание между частями под напряжением различной полярности проводят только в том случае, если можно осуществить необходимые рассовди-

нения без повреждения машин,

Испытание не проводят между контактами выключателей с микрозазорамикрозах выключателей электродвивателей, реле, терморегуляторов, термовыключателей и т. п., а также по отношению к изолящии конденсаторов, включенкых между частями под напряжением различной полярности.

Первоначально подают не более половины заданного напряжения, затем его быстро повышают до полного значения.

Во время испытания не должно происходить перекрытия или пробоя изоляции.

Примечания

 Необходимо обеспечить такое расположение металлической фольги, чтобы на ее краях не происходило перекрытия.

2 Для маший класса II, ймеющих усиленную и двойную изоляцию, необходямо следить за тем, чтобы напряжение, подводямое ж усиленной изоляции, не

перегружало основную или дополнительную изоляции.

3 При испытании изоляционных барьеров металлическая фольга может быть прижата к изоляции при помощи мешка с песком такого размера, чтобы давление составляло около 5 кПа (0.5 Н/см³). Испытание может быть ограничено в местах, в которых предползгается ослабление изоляции, например, где под изоляцией расположены острые металлические кромки.

4 При возможности, изоляшнонные покрытия испытывают отдельно.

5 Трансформатор высокого напряжения, применяемый при непытании, должен быть таким, чтобы при закороченных выходных зажимах, после регуляровки выходного напряжения до достижения соответствующего испытательного значения напряжения, выходной ток составлял не менес 200 мА.

6 Реле максимального тока, включенное в цель, не должно срабатывать от

выхода тока менее 100 мА.

17 НАДЕЖНОСТЬ

17.1 Машины должны быть сконструированы таким образом, чтобы при эксплуатации в нормальных условиях не возникали электрические или механические неисправности, нарушающие соответствие машины требованиям настоящего стандарта. Изоляция не должна иметь повреждений, а контакты и соединения не должны ослабляться вследствие нагреватия, сибрации и т. д.

Устройства защиты от перегрузок не должны срабатывать при

нормальных условиях эксплуатации.

Проверку проводят испытаниями по 17.2, а для машин, снабженных центробежным или другим автоматическим пусковым выключателем, — также испытанием по 17.3.

Непосредственно после этих испытаний машина должна выдержать и испытание на электрическую прочность изоляции по 16.3, причем испытательные напряжения должны быть снижены до 75 % от указанных значений. Соединения не должны ослабляться и не должны появляться повреждения, снижающие безопасность при нормальной эксплуатации.

17.2 Машина должна проработать на холостом ходу при повторно-кратковременном режиме работы в течение 24 ч при напряжении, равном 1,1 номинального напряжения, а затем в течение 24 ч при напряжении, равном 0,9 номинального напряжения.

Каждый рабочий цикл состоит из периода положения «включено» в течение 100 с и периода положения «отключено» в течение 20 с, причем период положения «отключено» включается в

предписанное время работы.

Рабочий период для машин с кратковременным или повторнократковременным режимом работы должен равняться продолжительности работы, ограниченной конструкцией машины. В противном случае он должен соответствовать значениям, указанным в стандартах на машины конкретных видов или в маркировке, в зависимости от того, что является более неблагоприятным.

При возможности установки машины в разные положения в процессе нормальной эксплуатации, ее испытывают, установив в самое неблагоприятное из рекомендуемых изготовителем рабочих

положений.

Если превышение температуры любой части машины больше превышения температуры, измеренного во время испытания по 12.1, то предусматривают принудительное охлаждение или периоды отдыха, которые не включают в указанное время работы.

Во время этих испытаний защитные устройства от перегрузок не должны срабатывать.

Примечания

- 1 Допускается эключение и отключение машины проводить другим выключателем, отличным от встроенного в машину,
- 2 Во время ислытания допускается замена шегок, а смазку производят также, как и в условеях нормальной эксплуатации.
- 17.3 Машину с центробежным или другим автоматическим пусковым выключателем запускают 10 000 раз при нормальной нагрузке и при напряжении, равном 0,9 номинального напряжения; рабочий цикл должен соответствовать указанному в 17.2.

18 НЕНОРМАЛЬНЫЙ РЕЖИМ РАБОТЫ

18.1 Исполнение машины должно быть таким, чтобы опасность возникновения пожара, механической травмы или поражения электрическим током в результате ненормальной работы или небрежного обращения с машиной были сведены к минимуму.

Проверку проводят нижеуказанным испытанием, при котором с машины снимают рабочий инструмент типа пильного полотна,

шлифовального круга и т. п.:

— машины с двигателями последовательного возбуждения должны работать при напряжении, равном 1,3 номинального напряжения или верхнего предела диапазона напряжения, в течение I мин на холостом ходу.

После испытания обмотки и соединения не должны быть ослаблены, а машина должна быть годной для эксплуатации;

- машины, имеющие асинхронный двигатель и характерные тем, что они:
- имеют пусковой момент меньше тормозного момента при полной нагрузке;
 - 2) запускаются от руки;
- имеют движущиеся части, которые склонны к заклиниванию и которые можно остановить рукой с включенным при этом двигателе, включают в холодном состоянии на номинальное напряжение или на верхний предел диапазона номинальных напряжений, заблокировав движущиеся части в течение:
- 30 с для машин, запускаемых от руки в условиях эксплуатации;
- 5 мин для машин, не предназначенных для работы без надзора;
- машины, имеющие трехфазный двигатель, запускают в холодном состоянии и дают проработать в течение 30 с при поддер-

живаемом вручную непрерывном включении или нагружении, а при отсутствии такового— в течение 5 мин, при этом одна фаза должна быть отключена, а крутящий момент должен соответствовать нагрузке.

При истечении указанного периода испытания или в момент срабатывания плавких предохранителей, термовыключателей, защитных устройств двигателя и т. п. температура обмоток не должна превышать значений, указанных в таблице 5.

Таблица 5 — Предельная температура

Зещита обжиток	Предельная температура, "С. для изолячин к засс						
	A	ε	В	F	н		
Защита полным собст- венным сопротивлением Защита защитными уст-	150	165	175	190	210		
ройствами, срабатываемы- ми во время испытания	200	215	225_	240	260		

Примечание — Плавкие предохранители, термовыключатели, реле максимального тока и т. п., встроенные в машину, считают достаточными средствами защиты против возгарания,

18.2 Машина со встроенными электронными устройствами должна быть изготовлена таким образом, чтобы в случае отказа электронной аппаратуры не создавалось никакой опасности.

Проверку машины проводят включением ее в течение 1 мин на напряжение, равное номинальному напряжению или средней величине диапазона напряжений, на холостом ходу, с короткозамкнутым электронным устройством.

Это испытание повторяют с разомкнутым электронным устройством.

Во время испытания в машине не должны возникать повреждения, приводящие к отступлению от требований настоящего стандарта.

Примечание — Если в машину встроено устройство для ограничения скорости при отказе электронного устройства, то считают результат испытания удовлетворительным, если это устройство сработает во время испытания.

18.3 Переключатели или другие устройства реверсирования двигателя машины должны выдержать нагрузки, возникающие при изменении направления вращения на ходу, если такое изменение является возможным при нормальной эксплуатации.

Проверку проводят следующим испытанием.

Машину пускают в ход при напряжении, равном номинальному или верхнему пределу диапазона номинальных напряжений на холостом ходу, при этом устройство реверсирования направления вращения находится в положении, при котором ротор вращается с максимальной скоростью.

После этого устройство реверсирования ставят в положение, при котором направление вращения реверсируется без задержки в промежуточном положении «отключено».

Эту последовательность срабатывания повторяют 25 раз.

Во время испытания не должны появляться электрические или механические повреждения устройства, а также обгорание или точечная эрозия его контактов.

После испытания в машине не должны возникать повреждения, которые приводят к отступлению от требований настоящего стандарта.

19 УСТОЙЧИВОСТЬ И МЕХАНИЧЕСКАЯ БЕЗОПАСНОСТЬ

19.1 Движущиеся и другие опасцые части машины должны быть, насколько это совместимо с применением и работой машины, расположены и ограждены так, чтобы при нормальной эксплуатации была обеспечена достаточная защита людей от травм.

Защитные кожухи, крышки, ограждения и т. п. должны иметь необходимую механическую прочность, чтобы соответствовать своему назначению.

При отсутствии потребности в частом доступе к опасным частям машины их ограждают постоянно закрепленными ограждениями, съем которых возможен только с помощью инструмента. В случаях, когда требуется доступ в опасные части машины, используют подвижные или съемные ограждения.

Ограждение, служащее для защиты рабочего элемента, должно иметь доступное средство точной регулировки с целью уменьшения доступа к опасным частям.

Применения ограждения и его регулировки не должны создавать дополнительной опасности, связанной, например, с ограничением и снижением обзора оператора.

Все рабочие элементы, включая специальные устройства или насадки, служащие частью машины, должны ограждаться таким образом, чтобы при нормальной эксплуатации не создавалось опасности их вылета.

Примечание — Опасность такого рода может быть вызвана вибранией, изменением направления движения и электрическим торможением.

Проверку проводят осмотром, испытанием по разделу 20 и испытанием стандартным испытательным пальцем, приведенным на рисунке 1. Испытательный палец не должен касаться движущихся частей, представляющих опасность. 19.2 Машины, рассчитанные на работу без прикрепления к по-

лу или столу, должны иметь необходимую устойчивость.

Проверку проводят следующим испытанием; при этом машины имеющие штепсельный разъем, снабжают соответствующим соединителем и гибким кабелем или шниром.

Машину с выключенным двигателем устанавливают в любое нормальное эксплуатационное положение на плоскости, наклоници под углом 10° к горизонтали, причем кабель или шнур располагают на наклонной плоскости в наиболее неблагоприятном положении. Если машина при наклоне на 10° касается горизонтальной плоскости частью, в нормальном положении не соприкасающейся с плоскостью опоры, то ее устанавливают на горизонтальную опору и наклоняют под углом 10° в наиболее неблагоприятном направлении.

Машины с дверцами испытывают при закрытом и открытом положении дверок в зависимости от того, какое положение более

неблагоприятное.

Машины, предназначенные для заполнения жидкостью при нормальной эксплуатации, испытывают пустыми или заполняют наиболее неблагоприятным количеством воды в предслах номинальной емкости.

Машина не должна опрокидываться.

19.3 Машина должна иметь необходимую устойчивость при использовании ее в самых трудных условиях нормальной эксплуатации согласно инструкции изготовителя.

Проверка на соответствие этому требованию должна быть

установлена в стандартах на машины конкретных видов.

19.4 Доступные части машины, до которых приходится дотрагиваться в процессе нормальной эксплуатации, не должны иметь острых кромок, зазубрин, заусенцев и т. п.

Проверку проводят осмотром.

20 МЕХАНИЧЕСКАЯ ПРОЧНОСТЬ

20.1 Машина должна обладать механической прочностью и быть изготовлена таким образом, чтобы могла выдержать грубое обращение, которому она может быть подвергнута в условнях нормальной эксплуатации.

Проверку проводят испытанием, указанным в 20.2.

После этого испытания машина должна выдержать испытание на электрическую прочность по 16.3 и не получить никаких повреждений, подпадающих под пункты настоящего стандарта, в частности, части, находящиеся под напряжением, не должны стать достиными. Примечанкя

- Повреждения покрытий, исбольшие вдавливании, не вызывающие уменьшение путей утечки и воздушных зазоров ниже значевий, указанных в 28.1, а также небольшие сколы, не оказывающие неблагоприятного влияния на защиту от поражевия электрическим током или проинкновения воды, не принямают во виммание.
- Вое это не должно мешать срабатыванию механических предохранительных устройств
- 3 Трещины, не вядимые невооруженным глазом, и поверхностиме трещины в прессованных материалах, армированных волокнистым материалом, не принимают во внимание.
- 4 Если поверх внутреннего кожуха имеется еще декоративный кожух, то его растрескивание не принимают во внимание, если внутренний кожух выдерживает испытание после снятия декоративного.

20.2 На машину воздействуют ударами, производимыми прибором для ударных испытаний, приведенным на рисунке 7.

Пружину ударника настраивают таким образом, чтобы ее сжатие и энергия удара, наносимого ударником, соответствовали указанным в таблице 6.

Таблица 6 — Энергия удара

Испытуемая часть	Энергия удара, Им ±0,05	Сжатие, им	
Қолпачки щеткодержателей Остальные части	0.5	20.0	

Пружины спускового механизма должны быть отрегулированны на минимальное давление, необходимое лишь для удержания зажимов спускового механизма в состоянии зацепления.

Ударный механизм взводят путем отвода кнопки до тех пор, пока зажимы спускового механизма не войдут в соответствующий паз стержня ударника.

Удары наносят по образцу нажатием спускового конуса в направлении, перпендикулярном поверхности в испытуемой точке.

Давление постепенно увеличивают так, чтобы конус перемещался назад до тех пор, пока он не коснется размыкающих стержней спускового механизма, которые включают спусковой м. ханизм и освобождают ударник для нанесения удара.

Образец закрепляют жестко и наносят по три удара в каждос

место, которое считают наиболее слабым.

Если необходимо, удары наносят также по ручкам, рычалим, кнопкам и т. д.

20.3 Щеткодержатели и их коллачки должны обладать достаточной механической прочностью.

Проверку проводят осмотром, а в сомнительных случаях и посредством снятия и установки щеток десять раз, при этом приложенный крутящий момент для затягивания колпачков щеткодержателей должен соответствовать значениям, указанным в таблице 7.

Таблица7 — Приложенный крутящий момент

Ширина лезвия испытательной отвертки, жм	Крутлиций момент, Н-м		
До 2,8 еключ. Св. 2,8 до 3,0 еключ. > 3,0 > 4,1 > > 4,1 > 4,7 >	0,4 0,5 0,6 0,9 1,0 1,25		
5,3 > 6,0 >			

После испытания щеткодержатель не должен иметь повреждений, мешающих его дальнейшему применению. Резьба, если таковая имеется, не должна быть повреждена, а на колпачке не должно быть трещин.

Примечание — Ширана лезвия испытательной отвертки может быть большей, но не превышающей длину шлица в колпачке. Если днаметр резьбы меньше длины шлица, ширина лезвия не должна превышать этого диаметра, Крутящий момент прикладывают без рывков.

21 КОНСТРУКЦИЯ

Машины должны иметь конструкцию только классов I, II или III.

Проверку проводят внешним осмотром.

21.2 Машины, которые можно устанавливать на различные напряжения или скорости вращения, должны иметь такую конструкцию, чтобы не происходило случайного изменения уставки, если это может привести к возникновению опасности.

Проверку проводят внешним осмотром и ручным опробовани-

em.

21.3 Машины должны быть исполнены таким образом, чтобы случайное изменение уставки регулирующих устройств не было возможным.

Проверку проводят ручным опробованием.

21.4 Удаление частей, обеспечивающих требуемую степень защиты от проникновения воды, должно быть невозможным без применения инструмента.

Проверку проводят ручным опробованием.

21.5 Если рукоятки и кнопки используют для указания положения выключателей или подобных устройств, должна исключаться возможность установки их в неправильное положение.

Проверку проводят внешним осмотром и ручным опробованиem.

21.6 Комплектующие изделия, замена которых может оказаться необходимой, например, выключатели и конденсаторы, должны быть закреплены таким образом, чтобы их замена не вызывала затруднения.

Проверку проводят внешким осмотром и, при необходимости,

ричным опробованием.

Примечания

1 Требование считают выполненным, если комплектующие изделия являются

частью узла, прикрепленного соответствующим способом.

2 Крепление пайкой или втычное допускается только для небольших резисторов, конденсаторов, катушек видуктивности, если эти детали могут быть соответствующим образом закреплены при помощи собственных средств присоединения. Крепление заклепками не допускается,

З Долускается крепление схобами или соответствующим оформлением кожу-

ка, создающим углубление, которое финсирует изделие.

21.7 Если замена гибкого кабеля или шнура требует временного перемещения выключателя, который содержит клеммы для наружных проводников, то она должна быть возможной при условии, что внутренняя проводка не подвергается недопустимому натяжению. После установки выключателя в начальное положение и перед окончательной сборкой машины следует обеспечить возможность проверки правильного положения внутренней проводки.

Проверки проводят осмотром и ручным опробованием.

21.8 Древесина, хлопчатобумажные материалы, шелк, обычная бумага и полобные волокнистые или гигроскопические материалы могут быть применены в качестве изоляции только в пропитанном состоянии или, если они преобразованы хамическим путем, как неволокнистые.

Примечания

1 Изоляционный материал считают пропиганным, если промежутки между воложнами практически заполнены подходящим изоляционным материалом.

2 В данном случае асбест рассматривают как волокныстый материал.

Приводные ремни не обеспечивают электрической изоляции.

Проверку проводят внешним осмотром.

21.9 Усиленная изоляция должна применяться только в случаях, когда отдельное применение основной и дополнительной изоляций практически невозможно.

Проверку проводят внешним осмотром.

Примечание -- Штелсельные разъемы машин, выключатели, щетко гржатели и обмотки якорей на валах являются примерами, когда можно праменить усиленную изоляцию.

21.10 Изоляционные барьеры машин класса II и части маший этого класса, которые служат дополнительной или усиленной изояяцией и которые могут быть опущены во время повторной сборки после текущего обслуживания, должны быть:

- закреплены так, чтобы они могли быть удалены без серьез-

ного повреждения, или

изготовлены так, чтобы не могли быть установлены в неправильном положении, в противном случае, машина будет неработоспособной или очевидно неукомплектованной.

Проверку проводят внешним осмотром и ручным опробовани-

em.

Примечания

I Текущее обслуживание включает в себя замену несъемных гибких кабелей или шнуров, выключателей, за исключением машин сменного типа.

2 Требование считают выполненным, если барьеры закреплены таким обра-

зом, что их можно удалить только разрезанием или разрывом.

3 Крепление приклеиванием допустимо, если механические свойства соеди-

нения эквивалентны барьерам.

4 Внутреннюю облицовку из изоляционного материала или подходящее внутреннее изоляционное покрытае металлических кожухов считают изоляционвыми барьерами, если они не могут быть легко удалены соскабливанием.

5 Для машин класса II гибкую изоляционную трубку на изолированном проводе внутренних соединений считают достаточной изоляционной преградой, если ее можно удалить только разрезанием или разрывом, яли если она при-

креплена с обоих концов.

- 6 Грунтованные металлические кожухи с покрытием лаком или другим матерналом, который может быть легко удален соскабливанием, рассматривают как не удовлетворяющие требованиям настоящего стандарта.
- 21.11 Любой монтажный зазор шириной более 0,3 мм в дополнительной изоляции не должен совпадать с любым таким зазором в основной изоляции. Любой такой же зазор в усиленной изоляции не должен открывать прямолинейного доступа к частям, находящимся под напряжением.

Проверку проводят внешним осмотром и измерением.

21.12 Машины класса I должны быть изготовлены так, чтобы в случае ослабления провода, винта, гайки, шайбы, пружины или подобной детали, или выпадения их они не могли занять положения, при котором доступная металлическая часть попала бы под напряжение.

Машины класса II должны быть изготовлены так, чтобы в случае ослабления или выпадения из занимаемого положения такой детали, она не могла занять положения, при котором пути утечки и воздушные зазоры по дополнительной или усиленной изоляции снизилась бы до значения менее 50 % от установленного в

28.1.

Машины класса II, за исключением машин с изоляционным кожухом, должны быть снабжены изоляционным барьером между доступными металлическими частями, электродвигателем и остальными частями, находящимися под напряжением.

Проверку проводят внешним осмотром, измерением и ручным опробованием.

Примечания

 У машин класса I это требование может быть соблюдено при помощи разделительных изоляционных барьеров или соответствующего закрепления деталей и обеспечения достаточных путей утечки и воздушных зазоров.

2 Одновременное ослабление или выпадение двух независимых деталей счи-

тают практически невозможным,

3 Для электрических соединений пружинные шайбы не считают достаточны-

ми для предохранения частей от ослабления.

4 Считают вероятным освобождение проводов от зажимов присоединения или пайки, если они не закреплены в месте, близком к зажиму или пайке способом, независимым от присоединения к зажиму или пайки.

5 Считают маловероятным, его короткие жесткие провода могут выпасть на зажима, если они сохраняют свое положение после ослабления зажимного пинта.

21.13 Дополнительная и усиленная изоляции должны быть изготовлены или защищены таким образом, чтобы их качество не ухудшалось под воздействием загрязнения или пыли, выделяющейся от частей машины, до такой степени, чтобы пути утечки и воздушные зазоры не становились ниже указанных в 28.1.

Детали из натуральной или синтетической резины, используемые в качестве дополнительной изоляции машин класса II, должны быть устойчивы к старению, расположены таким образом и иметь такие размеры, чтобы величины путей утечки не станови-

лись ниже указанных в 28.1 даже при появлении трещин.

Проверку проводят внешним осмотром и измерением, а для деталей из натуральной или синтетической резины — следующим

испытанием.

Детали из резины подвергают старению в атмосфере кислорода под давлением. Образцы свободно подвешивают в кислородном баллоне, причем полезная емкость баллона должна быть равна не менее чем 10 кратному объему образцов. Баллон заполняют техническим кислородом чистотой не менее 97

под давлением (2,1±0,07) МПа.

Образцы выдерживают в баллоне при температуре (70±1)°С в течение 4 сут (96 ч). После этого их вынимают из баллона и выдерживают не менее 16 ч при комнатной температуре, не допуская попадания на них прямого дневного света.

После испытания образцы подвергают внешнему осмотру. На образцах не должно быть трещин, видимых невооруженным глазом.

Примечания

Для материалов, кроме резины, в сомнительных случаях могут быть проведены специальные испытавия.

- При проведении испытаний в кислородном баллове должны быть приняты меры предосторожности во избежании взрыва.
- 21.14 Машины должны быть сконструированы таким образом, чтобы внутренняя проводка, обмотки, коллекторы, контактные кольца и другие подобные детали, а также изоляция в целом не подвергались воздействию масла, смазки и других подобных веществ, за исключением случаев, когда конструкция предполагает воздействие смазки на изоляцию, например, в редукторах. В этом случае масло и смазки должны обладать достаточными изоляционными свойствами. Свойства применяемых смазочных материалов должны быть указаны в инструкции по эксплуатации.

Проверку проводят внешним осмотром.

Првиечания

- Г. Доступ масла, смазки и подобных веществ ко внутренией проводке, обмоткам, коллекторам, контактным кольцам, а также к изоляции в целом допускается при условии, что эти вещества не оказывают вредного воздействия на данные части.
 - 2 Изоляционные свойства смазки проверяют испытанием по 16.3.

 Доступ к щеткам без применения инструмента не должен быть возможным.

Виптовые колпачки щеткодержателей должны быть изготовлены таким образом, чтобы при их затягивании прижимались одна

к другой две поверхности.

Щеткодержатели, удерживающие щетки в нужном положении при помощи запирающего устройства, должны быть сконструированы так, чтобы запирание не зависело от натяжения пружины щетки, если ослабление запирающего устройства может привести к тому, что доступные металлические части окажутся под напряжением.

Винтовые коллачки щеткодержателей, доступные с внешней стороны машины, должны быть изготовлены из изоляционного материала или покрыты изоляционным материалом соответствующей электрической и механической прочности. Они не должны выступать за наружную поверхность машины.

Проверку проводят внешним осмотром и ручным опробованием,

а свойства иголяционных материалов проверяют испытаниями:

 по 20.1 и 20.3 — для винтовых колпачков щеткодержателей, доступных с внешней стороны машины;

— указанными для дополнительной изоляции у машин классов I и III;

указанными для усиленной изоляции у машин класса II.

21.16 Устройства для подавления радио- и телепомех должны быть расположены в машине так, чтобы они были соответствующим образом защищены от механического повреждения.

Проверку проводят осмотром и испытанием по 20.1.

Примечання

 Устройства для подавления радио- и телепомех могут быть встроены в кожух машины или в прочими корпус, жестко прикрепленный к машине.

2 При конструировании машины следует предусмотреть необходимое про-

странство для расположения помехоподавляющих устройств.

21.17 Машина должна иметь выключатель.

21.18 Выключатели следует располагать таким образом, чтобы исключалась возможность их случайного включения.

Проверку проводят внешним осмотром.

 11.19. На машине должен быть установлен выключатель или устройство управления, с помощью которого оператор мог бы легко и безопасно остановить машину.

Проверку проводят осмотром,

 21.20. Возобновление работы машины лосле временного прекращения подачи энергии и последующего восстановления напряжения не должно создавать опасности.

22 ВНУТРЕННЯЯ ПРОВОДКА

22.1 Внутренняя проводка должна быть или достаточно жесткой и хорошо закрепленной или изолированной таким образом, чтобы при нормальной эксплуатации пути утечки и воздушные зазоры не становились ниже указанных в 28.1.

Изоляция, если она имеется, не должна повреждаться в усло-

виях нормальной эксплуатации.

Проверку проводят внешним осмотром, ручным опробованием и измерением.

Примечания

 При возникновении сомнений относительно изоляции проводят испытание из электрическую прочность напряжением 2000 В, приложенным между проводом и метадлической фольгой, обернутой вокруг изоляции, в течение 15 мин.

2 Могут потребоваться и другие испытания.

22.2 Внутренняя проводка и электрические соединения между различными частями машины должны быть в достаточной степени защищены или закрыты;

22.3 Қаналы для прокладки проводов должны быть гладкими, без острых кромок, которые могут быть причиной повреждения

изоляции проводов.

Отверстия в металле, через которые проходит изолированный провод, должны иметь или втулку из изоляционного материала, или гладкую закругленную поверхность.

Проводка должна быть защищена от соприкосновения с дви-

жущимися частями эффективным способом.

22.4 У машины класса II должен быть предотвращен непосредственный контакт между изоляцией проводки, имеющей только основную изоляцию, и доступными металлическими частями.

Примечание — Для предотвращения такого контакта допускается применять изоляционные трубки, если они соответствуют требораниям к дополнительной изоляции и не могут быть потеряны при проведении текущего обслуживания.

22.5 Провода, обозначенные комбинацией желто-зеленого цвета, не должны присоединяться к другим зажимам, кроме зажимов заземления.

Проверку по 22.2-22.5 проводят осмотром.

22.6 Провода, соединяющие различные части машин, которые при нормальной эксплуатации и обслуживании, могут перемещаться друг относительно друга, и их электрические соединения, включая те, которые обеспечивают непрерывность заземления, не должны подвергаться чрезмерно большим напряжениям.

Если для защиты проводов, соединяющих эти части, используют гибкие металлические трубки, то такие трубки не должны пов-

реждать изоляцию находящихся в них проводов.

Спиральные пружины, витки которых не соприкасаются друг с

другом, не должны использоваться для защиты проводов.

Если для защиты проводов используют спиральные пружины, витки которых соприкасаются друг с другом, то помимо изоляции проводов должно быть предусмотрено дополнительное изоляционное покрытие.

Проверку проводят осмотром и следующим испытанием,

Если при нормальной эксплуатаций имеет место изгиб, то машина должна быть установлена в нормальное рабочее положение и работать при номинальном напряжении или верхнем пределе диапазона номинальных напряжений в условиях нормальной теплоотдачи и/или при нормальной нагрузке.

Подвижную часть перемещают вперед и назад так, чтобы провод изгибали под максимальным углом, допускаемым конструкци-

ей машины.

Число изгибов провода, подвергаемого изгибу в процессе нормальной эксплуатации, равно 10000, и частота изгибов — 30 в миниту.

После этого испытания на машине не должно быть повреждений, нарушающих требования настоящего стандарта и препятствующих ее дальнейшему использованию. В частности, проводка и ее соединения должны выдерживать испытания на электрическую прочность изоляции по 16.3. При этом испытания проводят только между токоведущими частями и другими металлическими частями испытательным напряжением, значение которого понижают до-1000 В.

Примечания

1 Под изгибом понимают одно движение вперед или назад.

Защитную оболочку гибкого кабеля или шиура, соответствующую требованиям ГОСТ 26413.0, считают достаточным изоляционным покрытием.

22.7 При перемещении проводов в условиях нормальной эксплуатации, необходимо принимать меры, чтобы между движущимися частями и проводами постоянно выдерживалось расстояние не менее 25 мм.

В случаях, где это требование выполнить невозможно, следует предусмотреть средства для предупреждения контакта между проводкой и движущимися частями.

роводкой и движущимися частя:

Проверку проводят осмотром.

 22.8 Алюминиевые провода не должны использоваться для внутренней проводки.

Примечание — Обмотки двигателей не считают внутревней проводкой.

23 КОМПЛЕКТУЮЩИЕ ИЗДЕЛИЯ

23.1 Комплектующие изделия должны соответствовать требованиям по безопасности соответствующих стандартов в такой мере, насколько это целесообразно.

Если на комплектующих изделиях указаны их рабочие характеристики, то условия эксплуатации их в машине должны соответствовать этим данным (см. примечание 3 к таблице 2).

На конденсаторах, соединенных последовательно с обмоткой двигателя, должны быть указаны их номинальное напряжение в вольтах и номинальная емкость в микрофарадах.

Примечания

1 В случае отсутствия специального стандарта на термовыключатели и устройства защиты от перегрузок, последние должны соответствовать гребовациям изложениям в приложении А.

Проверку проводят испытаниями, предусмотренными стандартом на комплек-

тующее изделие.

Сначала проверяют соответствие маркировки комплектующих изделий, обозначенных номинальными данными в условиях, которые могут возвикнуть при эксплуатации машины Затем комплектующие изделия испытывают в соответствии с их маркировкой, при этом число образуов выбирают по соответствующим стандартам. Если на комплектующее изделие отсутствует стандарт или на комплектующем изделии не указаны номинальные данные, или условия эксплуатации не соответствуют номинальным данным, то комплектующее изделие испытывают в условиях работы машины, причем, количество испытуемых образуюв выбирают в соответствии со стандартом на аналогичное изделие.

Для конденсаторов, соединенных последовательно с обмоткой двигателя, проверяют, чтобы напряжение на конденсаторе не превышало 1,1 номинального напряжения конденсатора при работе машины с напряжением, равным 1,1 номи-

нального напряжения и минимальной нигрузкой.

 Дополнительные испытания для электролатических конденсаторов находятся в стадии разработки.

 Комплектующие изделия, встроенные в машину, подвергают всем испытаниям на соответствие требованиям настоящего стандарта как часть машины.

4 Соответствие требованиям соответствующих стандартов не означаст, что обеспечивается выполнение требований настоящего стандарта.

23.2 Сетевые выключателя должны обладать соответствующей коммутационной способностью, должны быть рассчитаны на частую коммутацию в иметь зазор между контактами не менее 3 мм. Проверку проводят внешним осмотром и следующим испыта-

нием.

Сетевые выключатели испытывают совместно с машиной при номинальном напряжении или верхнем пределе диапазона номинальных напряжений машины.

Затем электродвигатель застопоривают, а выключатель включают 50 раз, причем каждый период положения «включено» должен иметь продолжительность не более 0,5 с, каждый период по-ложения «отключено» должен иметь продолжительность не менее 10 c.

Если при нормальной эксплуатации электронное регулирующее устройство выключает ток перед размыканием главных контактов, число шиклов именьшают до 5 при короткозамкнитом электронном регилириющем истройстве.

Во время испытания не должно возникнуть продолжительного горения диги, чрезмерного обгорания, точечной эрозии или сварки контактов, а также электрических и механических повреждений.

Сетевые выключатели, маркированные индивидуальными но-

минальными данными, ислытывают по ГОСТ 25516.

Для сериесных и универсальных двигателей вылючатели, не маркированные номинальными данными, испытывают в исловиях работы машины, причем ток Ім соответствиет значению тока машины при номинальной потребляемой мощности.

При этом значение тока при испытаниях выключателей на разрывную мощность должно приниматься равным 6 1, при включе-

нии и 3 I_п — при выключении.

Для испытаний при нормальной эксплуатации ток должен в 5 раз превышать ток In при включении и соответствовать In при выключении.

Коэффициент мощности во всех случаях равен 1. Число образ-

цов берется, как указано в ГОСТ 25516.

Для других видов двигателей выключатели, не маркированные номинальными данными, испытывают в условиях работы их в машине в следующем порядке.

Замеряют токи и соответствующие им коэффициенты мощности при включении и во время работы, исходя из условий обеспечения необходимого теплоотвода и/или при нормальной нагрузке машины

Затем выключатель можно испытать отдельно в соответствии с требованиями ГОСТ 25516.

При этом значения токов и коэффициентов мощности, измеренные при включении машины, использиют при проведении испытаний на коммутационную способность, а значения токов и коэффициентов мощности, измеренные при работе машины в условиях нормального теплоотвода и/или при нормальной нагрузке, — для испытаний на износостойкость по ГОСТ 25516.

23.3 Сетевые выключатели не должны устанавливаться на гиб-

ких кабелях и шнурах.

Проверку проводят осмотром

23.4 Устройства защиты от перегрузок должны быть без самовозврата.

Проверку проводят осмотром

23.5 Штепсельные вилки и розетки для цепей безопасного сверхнизкого напряжения или для частот св. 50 или 60 Гц, а также штепсельные соединители на гибких кабелях и шнурах, используемые для промежуточных соединений различных частей машины, не должны быть взаимозаменяемы со штепсельными вилками и розетками по ГОСТ 7396.1 и со штепсельными соединителями и приборными вводами по ГОСТ 28190, если непосредственное питание этих частей от сети может быть опасным для людей и окружающей среды или вызвать повреждение машины.

Проверку проводят осмотром и ручным опробованием.

 Конденсаторы не должны включать между контактами термовыключателей.

Проверку проводят осмотром.

23.7 Комплектующие изделия для основного подавления радно-

помех не должны быть встроены в штепсельную вилку.

23.8 Қатушки индуктивности для подавления раднопомех, включенные в защитную цель, не должны чрезмерно нагрезаться в условиях нормальной эксплуатации и должны выдерживать токи короткого замыкания, возникающие при повреждении изоляции.

Проверку проводят следующим испытанием.

Катушку индуктивности нагружают в течение 1 ч током 19 А, после чего перегрев катушки индуктивности и частей вблизи нее не должен превышать более чем в 1,7 раз допустимых значений, указанных в таблице 2.

Катушки индуктивности потом подсоединяют к источнику переменного тока напряжением 250 В, защищенным предохранителем на 10 А, после чего машину коротко замыкают на защитную цепь.

После испытания катушка индуктивности не должна иметь повреждений, отрицательно влияющих на ее дальнейшее применение.

Примечание — Ток 19 A соответствует наименьшему испытательному току предохранителя на 10 A.

23.9 Штепсельные соединители и приборные вводы должны соответствовать ГОСТ 28190.

24 ПОДКЛЮЧЕНИЕ К СЕТИ И ВНЕШНИЕ ГИБКИЕ КАБЕЛИ И ШНУРЫ

24.1 Обычные машины должны быть снабжены либо несъемным питающим шнуром соединения типа X, либо соединения типа M, либо штепсельным разъемом.

Не должна быть возможной легкая замена щнура питания сос-

динения типа М шнуром соединения типа Х.

При применении штепсельного разъема его следует располагать таким образом, чтобы присоединение осуществлялось без затрудиений.

Штепсельный разъем должен быть расположен и защищен таким образом, чтобы не было возможности для случайного прикосновения к частям под напряжением или штырям при сочленении

или расчленении штепсельного разъема.

Соответствие проверяют внешним осмотром и испытанием с помощью стандартного испытательного пальца, приведенного на рисунке 1, либо, для штепсельных разъемов, с помощью соответствующих калибров по ГОСТ 28190.

24.2 Тил несъемного кабеля или шнура должен соответствовать или быть выше качества соединительных проводов с поливинил-хлоридной изоляцией по ГОСТ 26413.0 или проводов с резиновой изоляцией по ГОСТ 26413.0, если в стандартах на машины конкретных видов нет других требований.

Несъемный гибкий кабель или шнур машин класса I должен быть снабжен проводом желто-зеленого цвета, присоединяемым к внутреннему защитному контакту штепсельной вилки, если она

имеется.

24.3 Если машина снабжена штепсельной вилкой, то последняя должна соответствовать требованиям ГОСТ 7396.1, ГОСТ 29146.1, ГОСТ 29146.2.

24.4 Номинальные сечення гибких кабелей или шнуров должны быть не менее указанных в таблице 8.

Табляца 8 — Минимальная ялошадь поперечного сечения гибких кабелей или шнуров

Номинальный ток машивы А	Номинальная площадь поперечного сечения, мм ²
До 6 включ. Св. 6 до 10 включ.	0,75
Св. 6 до 10 включ.	1
> 10 > 16 >	1,5
> 16 > 25 >	2,5
> 25 × 32 >	4
> 32 > 40 >	6
> 40 > 63 >	10

Проверку проводят осмотром и измерением.

24.5 Машины с несъемным гибким кабелем или шнуром должны иметь такие устройства крепления кабеля или шнура, чтобы проводники не подвергались натяжению и скручиванию в местах подсоединения к зажимам и чтобы их оболочка была защищена от истноания.

Для гибких кабелей или шнуров соединения типа X способ разгрузки от натяжения и скручивания должен быть очевидным, причем не допускаются вспомогательные меры, например, завязыва-

ние кабеля или шнура узлом или перевязка бечевкой.

Устройство крепления кабеля или шнура машин класса II должны быть изготовлены из изоляционного материала или, если они из металля, изолированы от доступных металлических частей изоляцией, соответствующей требованиям к дополнительной изоляции.

В машинах класса I провода гибкого кабеля или шнура должны быть расположены таким образом, чтобы при ослаблении устройства крепления кабеля или шнура заземляющий провод оставался без натягивающих напряжений до тех пор, пока остальные провода, находящнеся под напряжением, остаются в состоянии контакта со своими зажимами.

Устройства крепления кабеля или шнура машин, кроме машин класса II, должны быть изготовлены из изоляционного материала или иметь изоляционную облицовку, если в результате повреждения кабеля или шнура доступные металлические части могут оказаться под напряжением. Облицовка должна быть прикреплена к деталям устройства крепления, кроме втулки, являющейся частью указанного в 24.6 защитного устройства.

Устройства крепления кабеля или шнура соединения типа Х

должны быть изготовлены так, чтобы:

 кабель или шнур не касался зажимных винтов устройсти крепления, если эти винты являются доступными металлическими частями или находятся в электрической связи с доступными металлическими частями;

- кабель или шнур не зажимался металлическим винтом, ко-

торый непосредственно касается кабеля или шнура;

 элементы крепления не могли быть легко потеряны при замене кабеля или шнура, и хотя бы одна часть их должна быть надежно закреплена на основной части машины;

замена гибкого кабеля или шнура не требовала применения

специального сконструнрованного для этой цели инструмента;

 они были пригодны для различных типов гибкого кабеля или шнура, которые могут быть присоединены, если машина не рассчитана только на один тип кабеля или шнура.

Устройства крепления кабеля или шнура типа X должны быть сконструированы так, чтобы обеспечивалась их легкая замена. Примечание — Устройство крепления кабеля или шнура может быть частью сетевого выключателя.

Вниты устройства крепления кабеля или шнура не должны служить для крепления другой детали, кроме случаев, когда их отсутствие или неправильная установка делают машину неработосвособной или явно недоукомплектованной, или, когда элементы, закрепляемые этими винтами, не снимаются при замене шнура.

Сальники не должны быть использованы как устройства крепления кабелей или шиуров питания.

Проверку машины проводят внешним осмотром и следующим испытанием.

Машины снабжают гибким кабелем или шнуром, а концы проводов вводят в соединительные зажимы, причем зажимные винты, если таковые имеются, затягивают лишь настолько, чтобы провода не могли легко изменять свое положение. Крепление кабеля или имура выполняют обычным способом, затягивая винты крутящим моментом, равным 2/3 момента, указанного в 27.1.

Испытания проводят сначала с гибким кабелем или шнуром наиболее легкого типа наименьшего сечения по 25.2, а затем гибким кабелем или шнуром последующего, более тяжелого типа с наибольшим предписанным сечением, кроме случая, когда машина предназначена для установки кабеля или шнура только одного типа.

После проведения этой подготовки должна быть исключена возможность проталкивания кабеля или шнура внутрь машины настолько, чтобы это вызвало повреждение кабеля или шнура или внутренних частей машины.

Затем кабель или шнур подвергают 100-кратному натяжению согласно приведенной таблице. Натяжение прикладывают в точке, расположенной в 250 мм от устройства крепления кабеля или шнура, в наиболее неблагоприятном направлении, без рывков. Каждое натяжение должно продолжаться 1 с.

Непосредственно после этого к кабелю или шнуру прикладывают в течение 1 мин крутящий момент по таблице 9.

Таблица 9 — Натяжение и вругящий момент прикладываемые к кабелю

Масса мащины, кг	Натяжение, Н	Крутлиций можент Н-м	
До 1 включ.	30	0,1	
Св. 1 до 4 включ.	60	0,26	
Св. 4	100	0,35	

Во время испытаний кабель или шнур не должны быть повреждены.

После испытания кабель или шнур не должны смещаться продольно более чем на 2 мм, а провода не должны смещаться в зажимах более чем на 1 мм. В местах соединения не должно быть заметного натяжения.

В начале испытания для измерения продольного смещения на кабеле или шнуре в натянутом состоянии наносят отметку на рас-

стоянии ≈ 20 мм от устройства крепления.

После испытания замеряют смещение отметки на кабеле или шнуре по отношению к устройству крепления в натянутом состоянии кабеля или шнура.

Затем устройство крепления затягивают и расслабляют 10 раз, предварительно присоединив гибкий кабель или шнур наиболее тяжелого типа, который можно ввести в защитное устройство, указанное в 24.6.

После проведения испытаний устройство крепления кабеля или шнура не должно иметь повреждений, нарушающих требования настоящего стандарта.

Пути утечки и воздушные зазоры не должны уменьшаться ниже

указанных в разделе 28.

24.6 Гибкие кабели и шнуры машины должны быть защищены от чрезмерного изгиба в местах, где шнур или кабель проходит через входное отверстие машины, при помощи защитного устройства из изоляционного материала.

Эти защитные устройства не должны составлять единое целое

с несъемным кабелем или шнуром соединения типа Х.

Эти устройства должны быть надежно закреплены так, чтобы они выступали из входного отверстия машины на расстояние, равное не менее 5-кратного диаметра кабеля или шнура, поставляемого с машиной.

Проверку машины проводят внешним осмотром, измерением и следующим испытанием.

Машину снабжают защитным устройством шнура или кабеля и гибким кабелем или шнуром длиной приблизительно на 100 мм больше длины устройства.

Машину устанавливают так, чтобы ось защитного устройства шнура в том месте, где от него отходит кабель или шнур, была направлена вверх под углом 45° к горизонтальной плоскости.

 К свободному концу кабеля или шнура прикрепляют массу, равную 10D№ г, где D равно предельному диаметру (в мм) гибкого кабеля или шнура, поставляемого вместе с машиной.

Если защитное устройство чувствительно κ температуре, то его испытывают при температуре (23 ± 2) °C.

Непосредственно после того, как масса приложена, радиус кривизны кабеля или шнура в любом месте не должен быть менее 1,5 D.

24.7 Входные отверстия для кабелей или шнуров должны быть сконструированы так, чтобы защитная оболочка не подвергалась

повреждениям при вводе кабеля или шнура.

Входные отверстия гибких кабелей и шнуров должны быть выполнены из изоляционного материала или должны иметь втулки из изоляционного материала, практически неподлающегося процессу старения при нормальной эксплуатации. Отверстия или втулки должны быть так выполнены, чтобы защищали от повреждения кабель или шнур.

Входные втулки должны быть надежно закреплены и не долж-

ны сниматься без применения инструмента.

Для машин класса II с входным отверстнем в металле втулки не должны быть резиновыми или быть частью защитного устрой-

ства кабеля или шнура.

Для остальных машин с входными отверстиями в металле втулки также не должны быть резиновыми, за исключением случаев, когда они являются частью защитного устройства кабеля или шнура.

Проверку проводят осмотром и ручным опробованием.

Примечание — Свитстическую резилу не считают резилой.

24.8 Пространство для гибкого кабеля или шнура внутри машины должно быть достаточным, чтобы беспрепятственно вводить и подсоедниять провода, а крышка, если такая имеется, должна устанавливаться так, чтобы была исключена возможность повреждений проводов или их изоляции. Должна быть обеспечена возможность проверки правильного соединения и положения проводов до установки крыщки.

Для сиятия крышки, обеспечивающей доступ к зажимам внешних проводов, не должен применяться специальный инструмент.

Машины класса I со шиуром соединения типа X и все машины класса II должны быть сконструированы таким образом, что если неизолированный конец проводника высвобождается от клеммы, он не должен приходить в соприкосновение с доступными металлическими частями.

Проверку проводят внешним осмотром и присоединением гибких кабелей или инуров с наибольшим сечением по 25.2.

Машины со шнуром соединения типа X подвергают следующим дополнительным испытаниям.

В случае зажимов колонкового типа, когда проводники не закреплены при помощи специального устройства на расстоянии, не превышающем 30 мм от зажима, как и при других клеммах с винтовым закреплением, прижимающее средство ослабляют. Без удаления провода с места расположения проводников, силу в 2 Н прикладывают к жиле в каждом возможном направлении по соседству с зажимом, винтом или шпилькой. Неизолированный конец провода не должен соприкасаться с доступными металлическими частями или с металлическими частями, присоединенными к ним.

Примечания

 Для зажимов колонкового типа, когда проводник закреплен отдельно сисциальным устройством на расстоянии, не превышающем 30 мм от клеммы, считают, что машина соответствует требованиям, если неизолированияй конец провода не может прийти в прикосновение с доступными металлическими частями.

2 Специальное устройство для дополнительного закрепления проводов может

быть, например, устройством крепления кабеля или шнура.

25 ЗАЖИМЫ ДЛЯ ВНЕШНИХ ПРОВОДОВ

25.1 Машины должны быть снабжены зажимами, в которых соединения выполняют с помощью винтов, гаек или других подобно действующих средств.

Зажимные винты и гайки должны иметь метрическую резьбу и не должны служить для крепления других деталей, кроме внутренних проводов, если они размещены так, чтобы не произошло их

смещение при присоединении внешних проводов питания.

Для машии со шнуром соединения типов X и М номинальной потребляемой мощностью, не превышающей 100 Вт, могут быть применены паяные соединения для внешних проводов при условии, что провод расположен или фиксирован так, чтобы закрепление не осуществлялось только одной пайкой, кроме случаев, когда предусмотрены перегородки, благодаря которым при обрыве или отрыве провода от паяного соединения пути утечки и воздушные зазоры между частями под напряжением и другими металлическими частями не уменьшаются до величины, менее 50 % значений, указанных в 28.1.

Примечания

1 Применение требований к питающим шнурам:

-- не предполагает одновременное ослабление двух независимых креплений; -- припавиные провода не считают достаточно закрепленными, если они не поддерживаются вблюзи своето конца, независамо от пайки. Зацепление их перед местом пайки рассматривнот в общем как подходящий метод для укрепления в необходимом положении при условии, что отверстие, через которое проходит проводиих, не является слишком больщим.

2 Зажимы комплектующих изделий (например, выключателей), встроенных в машину, при условии, что они отвечают требованиям изстоящего пункта, могут быть использованы как зажимы, предназначенные для гисшних проводов.

3 Выключатели с соединительными проводами допускаются, если место подсоединения находится внутри рукоятки или тела и устройство крепления кабеля или шнура соответствует требованням 24.5. 25.2 Зажимы и паяные соединения для соединения типа X должны обеспечивать подсоединения проводов номинального сечения жил, указанного в таблице 10.

Таблица 10 - Сечение жилы проводов

Номинальный ток машины, А	Номинальная площадь поперечно сечения, мм?					
До 6 включ. Св. 6 до 10 включ.	От 0.75 до 1 » 0.75 » 1.5					
> 10 > 16 >	* 0,75 * 1,5 * h * 2,5					
» 16 » 25 »	» 1,5 » 4					
* 25 * 32 *	» 2.5 » 6					
» 32 » 40 »	» 4 » 10					
» 40 » 63 »	» 6 » 16					

Проверку на соответствие требованиям 25.1 и 25.2 проводят внешним осмотром, измерением и путем присоединения кабелей или шнуров с наименьшим и наибольшим из указанных сечений.

25.3 Зажимы и паяные соединения для соединения типа М должны быть подходящими для их предназначения.

Проверку проводят внешним осмотром и натяжением с силой: 5 H.

25.4 Зажимы должны быть закреплены таким образом, чтобы при затягивании или ослаблении зажимных элементов крепление зажимов не ослаблялось, внутренняя проводка не подвергалась натяжению, а пути утечки и воздушные зазоры не становились менее указанных в 28.1.

Проверку проводят внешним осмотром и измерением после 10-кратного затягивания и ослабления провода с наибольшим сечением по 25.2, причем прикладываемый крутящий момент должен быть равным 2/3 момента по 27.1.

Примечания

Для предотвращения ослабления зажимов может использоваться закрепление зажима двумя винтами, закрепление одним винтом в профильном гнезде (чтобы не было значительных зазоров) или другим подходящим способом

2 Требование фиксации зажимов не исключает установки зажимов питания на выключателях или подобных устройствах в гнезде, если после подсоединения визменения и обратной установки выключателя или подобного устройства в гнездо осмотр может подтвердить, что эти комплектующие изделия и питающий кабель после повторной сборки машины занимают правильное положение.

3 Покрытие зажима заливочной массой без других фиксирующих средств считают недостаточной защитой от ослабления крепления. Допускается использование самотвердеющей смолы для фиксации зажимов, которые при нормальной эксплуатации не подвергают кручению. 25.5 Зажимы должны быть изготовлены таким образом, чтобы они зажимали провод между металлическими поверхностями с достаточным контактным давлением, но без повреждения провода.

25.6 Зажимы машин с номинальным током, не превышающим 16 А, должны быть такими, чтобы не была нужна специальная подготовка для правильного соединения, и они должны быть изготовлены и расположены таким образом, чтобы проводник не выскальзывал при завинчивании прижимающих винтов и гаск.

Проверку на соответствие требованиям 25.5 и 25.6 проводят внешним осмотром зажимов и проводов после испытания по 25.4.

Примечания

I Термин «специальная подготовка провода» — это пайка жил, применение кабельных наконечников, образование ветелек и т. п. Допускается придание формы проводу перед его введением в зажим и закручивание многожильного провода для упрочисиям его конца.

2 Провода считают поврежденными, если на них обнаружены глубокие и

острые вмятивы.

25.7 Зажимы колонкового типа должны иметь размеры, соответствующие указанным в таблице 11, за исключением длины резьбы в колонке, которая может быть уменьшена, если механическая прочность достаточна и резьба имеет не менее двух полных витков в зацеплении при сильно затянутом проводе с минимальным сечением по 25.2.

Таблица II — Размеры зажимов колонкового типа Размеры в миллиметрах

Номиналькый ток машины, А	Номинальный днаметр резьбы, не межее	Днаметр отверстия для провода, не менес	Длина резьбы в колонке, не менюе	Размость между два- метром от- верстия и поминальным дваметром резьбъь, не более
До 6 включ. Св. 6 до 10 включ.	2,5 3,0	2,5 3,0	1,8 2,0 2,5	0,5 0,6
ъ 10 » 16 »	3,5	3,5	2.5	0,6
> 16 > 25 >	4,0	4.0	3,0	0,6
> 25 > 3/2 >	4,0 5,0	4,0 4,5 5,5	3,0	1.0
> 32 > 40 »	5,0	5,5	4,0	1,3
> 40 > 63 >	6,0	7.0	4,0	1,5

Длина нарезной части зажимного винта должна быть не менее суммы размеров диаметра отверстия для провода и длины резьбы в колонке.

ГОСТ Р МЭК 1029-1-94

Поверхность, к которой прижимают провод, должна быть безострых вмятин и выступов.

Зажимы должны быть изготовлены и размещены так, чтобы конец введенного в отверстие провода был виден или мог пройти за резьбовым отверстием на расстоянии, равном не менее половины номинального диаметра резьбы или 2,5 мм, в зависимости от того, какая из величин больше.

Примечания

Дливу нарезной части в колонке измеряют до той точки, где резьба впервые прерывается отверстием для провода.

2 Если резьбовое отверстие раззенковано, то длина винтов с головками дол-

жна быть соответственно увеличена.

 Допускается, чтобы часть, к которой прижимается провод, не съставляла единого целого с деталью, в которой установлен зажимной зият

25.8 Винтовые зажимы должны иметь размеры не менее приведенных в таблице 12, за исключением длины резьбы, которая может быть уменьшена, если механическая прочность достаточна и резьба имеет не менее чем два полных витка в зацеплении при слабозатянутом проводнике с максимальным сечением по 25.2.

Если требуемая длина резьбы в резьбовом отверстии зажима получается в результате вытяжки, то край резьбы должен быть ровным, а длина резьбы должна превышать указанное минимальное значение не менее чем на 0,5 мм. Длина вытянутой части резьбового отверстия должна быть не более 80 % первоначальной толщины металла, кроме случаев, когда механическая прочность достаточна и при большей длине.

Если между головкой винта и проводом вставлена промежуточная часть, например, прижимная пластина, то длина резьбы на винте должна быть соответственно увеличена, а диаметр головки винта может быть уменьшен на:

```
1 мм — для номинальных токов до 16 А;
2 мм » » св. 16 А
```

Промежуточная часть должна быть закреплена от поворота.

Если промежуточную часть крепят несколькими винтами, то допускается применять винты со следующим номинальным диаметром резьбы:

```
3,5 мм — для номинальных токов до 25 А;
4,0 мм » » св. 25 А.
```

Примечание — Если резьба в резьбовом отверстии или в гайме утоплена, длина винтов с головкой должна быть соответственно увеличена.

Таблица 12 - · Размеры винтовых зажимов Размеры в миллиметрах

Номенальный ток машины, А	Номиналь- ный два- метр резьбы	Длияа резьбы из вянте	Длива резьбы в отверс- тии под винт пли в гайке	Номинальная разность между дна- метрами го- ловки и стержнем винта	Высота головки винта
До 6 включ. Св. 6 до 10 включ	2,5 3,0	4,0	1,5	2,5	1,5
	3,0	4,0	1,5	3,0	1,8
> 10 > 16 > 25 >	3,5 4,0	4.0	1,5	2,5 4,0	2.0
> 25 > 32 >	5,0	5,5 7,5	3,0	50	2,4 3,5
> 32 > 40 >	5,0	9,0	3,5	5,0 5,0	3,5
» 40 » 63 »	6,0	10,5	3,5	6,0	5,0

25.9 Шпильковые зажимы должны иметь шайбы, а их размеры соответствовать приведенным в таблице 13.

Таблица 13 — Размеры шпильковых зажимов Размеры в миллиметрах

	Номякальный диамето	Разность нежду диаметром резьбы и			
Номинальный ток машины, А	резьбы, не менее	внутренням диаметром шайбы, не более	вэружным дивистром шайбы, ис непсе		
До 6 включ. Св. 6 до 10 включ.	2,5	0,4	3,5		
	3,0	0,4	4,0		
» 10 » 16 »	3,5	0,4	4,5		
» 16 » 25 »	4,0	0,5	4,5 5,0		
> 25 > 32 →	4,0	0,4 0,5 0,5	5,5		

Проверку на соответствие требованиям 25.7—25.9 проводят осмотром, измерением и, если необходимо, испытаниями по 25.10. Допускается отклонение минус 0,15 мм для номинального диаметра резьбы и номинальной разности между диаметром головки и хвостовика винта.

Примечание — Если один яли несколько размеров превышают указанные в 25.7—25.9, то остальные размеры соответствени увеличивать необязательно, однако отклонения от установлениых значений не должны ухудшать работу, зажима.

25.10 Если длина резьбы в колонке на винте, в резьбовом отверстии или гайке меньше, указанных в таблицах или длина вытянутой части резьбового отверстия превышает 80% первоначальной толщины металла, то механическую прочность зажима проверяют следующим образом.

Винты и гайки испытывают по 27.1 крутящим моментом, увеличенным до 1,2-кратного установленного момента.

После этого испытания зажим не должен иметь повреждений,

исключающих его дальнейшее применение.

Конец одного провода снова зажимают способом, указанным в 25.4, и подвергают в течение 1 мин максимальному натяжению без рывков величиной, приведенной в таблице 14.

Таблица 14 - Величина натяжения провода

Номинальный ток машины, А	Натяжения, Н				
По 6 включ	40				
Св. 6 до 10 включ.	50				
> 10 > 16 >	60 60				
» 16 » 25 »	60				
> 25 > 32 >	80				
> 32 > 40 >	90				
> 40 > 63 >	100				

Во время этого испытания провод не должен заметно сдвигаться в зажиме

25.11 У машин с соединениями типов X и М каждый зажим, предназначенный для подсоединения провода гибкого кабеля или шиура, должен быть расположен вблизи соответствующего зажима или зажимов различной полярности и защитного зажима, если он имеется.

Проверку проводят осмотром.

25.12 Зажимные устройства не должны быть доступными без помощи инструмента.

Проверку проводят осмотром и ручным опробованием.

25.13 Клеммы для припайки должны иметь такую конструкцию, чтобы провод удерживался на своем месте независимо от пайки, не мог выскользнуть, если пайка или сварка будет нарушена.

Проверку проводят осмотром.

25.14 Зажимы и клеммы для припайки у машин с соединениями типа X и, если это применимо, типа M должны быть расположены или закрыты так, чтобы при введении многожильного провода в зажим, если одна из проволок осталась свободной, не возникла опасность случайного контакта частей под напряжением с доступными металлическими частями, а для машин класса 11 — между частями под напряжением и металлическими частями, отделенны-

ми от доступных металлических частей только дополнительной взолящией.

Проверку проводят внешним осмотром, ручным опробованием

и следующим испытанием.

Конец многожильного провода с поперечным сечением по 24.4 зачищают от изоляции на длине 8 мм. Одну проволоку многожильного провода оставляют свободной, а остальные провода полностью вводят и зажимают в зажиме.

Неприсоединенную проволоку изгибают без нарушения целостности изоляции во всевозможных направлениях, не делая, однако,

острых изгибов около барьеров.

Неприсоединенная проволока провода, присоединенного к зажиму под напряжением, не должна касаться какой-либо доступной металлической части и части, соединенной с доступной металлической частью, а для машины класса II — металлической части, отделенной от доступных металлических частей только дополнительной изоляцией. Неприсоединенная проволока провода, присоединенного к защитному зажиму, не должна прикасаться к частям под напряжением.

Если метод присоединения требует специальной подготовки провода (например, пропайка) или, если клеммы предусмотрены для соединения типа М (например, обжатием), эту подготовку

проводят, причем одну проволоку оставляют свободной.

26 ЗАЗЕМЛЕНИЕ

26.1 Доступные металлические части машин класса I, которые могут оказаться под напряжением в случае повреждения изоляции. должны быть постоянно и надежно присоединены к защитному зажиму машины или защитному контакту штепсельного разъема машины.

Защитные зажимы и защитные контакты не должны быть электрически подсоединены к нейтральному зажиму, если он имеется.

Машины классов II и III не должны иметь устройств для защитного заземления.

Проверку проводят осмотром.

Примечания

1 Если доступные металлические части отделены от частей, находящихся под напряжением, металлическими частями, подсоединенными к защитному зажиму или защитному контакту, то в соответствии с требованиями данного пункта их не считают частями, которые могут попасть под наприжение при новреждении изоляции.

 Доступные металлические части, отделенные от частей, находящихся под напряжением, двойной или усиленной изолящией, не считают частями, которые

могут попасть под напряжение при повреждении изоляции.

Металлические части под декоративным кожухом, не выдерживающие испытания по разделу 20, считают доступными металлическими частями.

26.2 Защитные соединения нельзя исполнять путем применения безвинтовых зажимов.

Прижимающие средства защитных зажимов должны иметь такую конструкцию, которая не позволила бы случайного ослабления. Ослабление этих средств не должно быть возможным без помощи инструмента.

Проверку проводят внешним осмотром, ручным опробованием

и испытаниями по разделу 25.

Примечание — Как правило, конструкции, обычно используемые для токоведущих зажимов, кроме некоторых зажимов коловкового типа, обеспечивают достаточную упругость, чтобы отвечать указанному пыше требованию. Для остальных конструкций необходимы специальные приспособления, например, применение соответствующих упругих деталей, которые невозможно сиять случайно.

26.3 Все части защитного зажима должны быть такими, чтобы не возникла коррозия из-за контакта между этими частями и медью заземляющего провода или другими металлическими деталями, находящимися в контакте с этими частями.

Корпус защитного зажима должен быть из латуни или другого металла, коррозионная стойкость которого не хуже латуни, кроме случаев, когда он является частью металлической рамы или кожуха. В этом случае винт или гайка должны быть из латуни или планкированной стали, отвечающей требованиям раздела 30, или из другого металла, коррозионная стойкость которого не хуже латуни.

Если корпус защитного зажима является частью рамы или кожуха из алюминия или алюминиевых сплавов, то должны быть приняты меры, предотвращающие коррозию, которая может возникнуть из-за контакта между медью и алюминием или его сплавами.

Проверку проводят осмотром.

Примечание — Требования в отношения предотвращения возможности коррозии не исключают применения гаек или винтов с подходящим покрытием.

26.4 Для машин с сетевыми шнурами питания расположение зажимов или длина проводов между креплением шнура и зажимами должны быть такими, чтобы токоведущие провода натянулись раньше, чем защитный провод, если кабель или шнур выскользиет из свого крепления.

Примечание — Метод испытания на соответствие этому требованию в настоящее время находится в стадяи рассмотрения.

26.5 Соединения между защитным зажимом или защитным контактом и частями, которые должны быть присоединены к ним, должны иметь малое сопротивление.

Проверку проводят следующим образом. Катушки индуктивности для подавления радиопомех, если они имеются, остаются

включенными в цепь защитного заземления.

Ток, составляющий 1,5 номинального тока или 25 А, в зависимости от того, что больше, полученный от источника переменного тока, напряжение которого без нагрузки не больше 12 В, пропускают между защитным зажимом или контактом и каждой из доступных металлических частей по очереди.

Измеряют падение напряжения между защитным зажимом или защитным контактом штепсельного разъема и доступной металли-

ческой частью.

Сопротивление, рассчитанное по току и падению напряжения, не должно превышать 0,1 Ом.

Примечания

Сопротивление тибкого кабеля или шиура не учитывают при измерении.

сопротивления,

2 Обращают внимание на то, чтобы переходное сопротивление между наконечником измерительного шупа и испытуемой металлической частью не оказывало влияния на результаты испытаний

26.6 Винтовые защитные зажимы не должны служить для других целей, например, не должны использоваться для механических креплений.

27 ВИНТЫ И СОЕДИНЕНИЯ

27.1 Винтовые электрические и другие соединения должны выдерживать механическую нагрузку, которая может возникнуть при нормальной эксплуатации. Винты, передающие контактное давление, и винты, которые могут быть затянуты потребителем и имеющие номинальный диаметр менее 3 мм, должны завинчиваться в металл.

Винты не должны быть изготовлены из мягкого металла, склонного к ползучести типа цинка или алюминия.

Винты из изоляционного материала должны иметь номинальный днаметр не менее 3 мм; они не должны использоваться для

электрических соединений.

Винты не должны быть из изоляционного материала, если их замена металлическими винтами может повредить дополнительную или усиленную изоляцию. Из изоляционного материала не должны изготавливаться также винты, которые можно удалить при замене несъемного сетевого шнура питания или при проведении текущего ремоита, если их замена металлическими частями может повредить электрическую изоляцию.

Проверку проводят внешним осмотром, а для винтов и гаек, передающих контактное давление или предназначенных для затя-

гивания потребителем, следующим испытанием.

Винты и гайки затягивают и ослабляют:

10 раз — для винтов, завинчиваемых в изоляционный материал;

5 раз — для гаек и других винтов.

Винты, завинченные в изоляционном материале, каждый раз полностью удаляют и снова ввинчивают.

При испытании зажимных винтов и гаек в зажиме закрепляют гибкий провод с наибольшим сечением по 25.2.

Испытание проводят с помощью соответствующих испытательных отверток и ключей с приложением крутящего момента по таблице 15, в приведенных графах:

 для металлических винтов без головки, если винт после затягивания не выступает из отверстия;

для других металлических винтов и гаек;
 для винтов из изоляционного материала;

имеющих шестигранную головку с размером «под ключ», пре-

вышающих внешний диаметр резьбы, или имеющих цилиндрическую головку и углубление под ключ, причем размер по диагонали превышает внешний диаметр резьбы, или

с головкой, имеющей прямой или крестообразный шлицы, длина которых превышает в 1,5 раза внешний диаметр резьбы;

3 — для других винтов из изоляционного материала.

Таблица 15 - Крутящий момент, прикладываемый к винту

	Крутящий монент, Н-м					
Номинальный диаметр винга, мм	1	2	3			
До 2,8 включ. Св. 2,8 до 3,0 включ.	0,2 0,25 0,3	0,4 0,5 0,6 0,8	0,4			
Св. 2,8 до 3,0 включ.	0,25	0,5	0,5 0,6 0,6			
2 3,0 × 32 ×	0,3	0,6	0,6			
* 3,2 * 3,6 *	0.4	0,8	0,6			
3 3,6 3 4,1 3	0.7	1.2	0,6			
> 4.1 > 4.7 >	0,8	1,8	0,9			
≥ 4.7 ≥ 5.8 ≥	0,4 0,7 0,8 0,8	2,0	1,0			
+ 5.3 × 6.0 ×		2,5	1,25			

Провод сдвигают каждый раз после ослабления винта или гайки.

Во время испытания не допускаются повреждения, ухудшающие дальнейшее использование винтовых соединений.

Примечания

1 В число винтов и гаек, которые могут затягиваться потребителем, входят винты и гайки зажимов, винты для закрепления крышек, если они должны ослабляться для того, чтобы открыть или сиять крышки, а также винты для закрепленяя рукояток, ручек.

- Форма лезвия вецытательной отвертки должна соответствовать шлицу исрытуемого винта. Крутящий момент должен прикладываться без рывков.
- 27.2 Винты, завинчиваемые в резьбу в изоляционном материале, должны иметь длину свинчивания не менее 3 мм плюс треть номинального диаметра резьбы или 8 мм, в зависимости от того, какая из величии меньше.

Введение винта в резьбовое отверстие или гайку без перекоса должно быть обеспечено соответствующим способом.

Примечание — Это требование не относится к винтовым колпачкам щеткодержателей.

Проверку проводят осмотром, измерением и ручным опробова-

Примечание — Требование, относительно правильного введения винта, считают выполненным, если перекос при завертывание винта предотвращен, например, направлением винта закрепляемой детадью, зенкованием внутренней резьбы или применением винтов с удаленными начальными витками резьбы.

27.3 Электрические соединения должны быть сконструированы таким образом, чтобы контактное давление не передавалось через изоляционный материал, склонный к усадке или деформации, за исключением случаев, когда используют металлические детали, упругая деформация которых может компенсировать любую возможную усадочную деформацию изоляционных материалов.

27.4 Винты с крупной резьбой (из листового мегалла) не допускается использовать для соединения токоведущих частей, кроме случаев, когда они прижимают эти части непосредственио друг к другу и снабжены средствами, предотвращающими их ослабление.

Не допускается использовать самонарезающие вниты (саморезы) для соединения токоведущих частей, если последние не имеют резьбы, соответствующей стандартной. Такие винты нельзя применять также, если они будут завинчиваться или отвинчиваться потребителем, кроме случая, когда их резьба выполнена высадкой в штампе.

Самонарезающие винты и винты с крупной резьбой могут быты использованы для обеспечения непрерывности защитного соединения при условии, что нет необходимости нарушать данное соединение при нормальной эксплуатации и для каждого соединения использованы не менее двух винтов.

Проверку на соответствие требованиям 27.3 и 27.4 проводят осмотром.

27.5 Винты для механических соединений между различными частями машины не должны допускать ослабления соединения, если соединение является токопроводящим.

Заклепки, используемые для токопроводящих соединений, следует предохранять от ослабления, если эти соединения подвергают кручению при нормальной эксплуатации.

FOCT P M3K 1029-1-94

Проверку проводят осмотром и ручным опробованием.

Примечания

 Пружинные шайбы и подобные им детали могут обеспечивать удовлетворительное фиксирование против ослабления.

2 Некруглую форму стержия закленок или соответствующий паз считают

достаточной защитой от ослабления.

3 Заливочный компаунд, который размягчается при нагревании, обеспечивает удовлетворительную фиксацию только для тех винтовых соединений, которые не подвергают крутящему моненту при нормальной эксплуатации.

28 ПУТИ УТЕЧКИ, ВОЗДУШНЫЕ ЗАЗОРЫ И ТОЛЩИНА ИЗОЛЯЦИИ

 Пути утечки, воздушные зазоры и толщина изоляции не должны быть ниже значений, указанных в таблице 16.

Примечания

 Требование к толидине изоляции между исталлическими деталлии не означает, что указанняя толидина должна измеряться голько через сплошную изоляцию, она может включать определенную толицияу сплошной изоляции плюс

один или несколько ноздушных промежутков,

2 Требования к толиние изоляции между металлическими частями не принимают во внимание, если в качестве изоляция используют гонкие листы, а изоляция образована по крайней мере тремя слоями, при условии, что два слоя, приложеные одив к другому, выдерживают испытание на электрическую прочность, предусмотренное для усиленной изоляции, с приложением испытательного напряжения к наружным поверхностям этих двух слоев.

3 Для токоведущих частей разной полярвости, разделенных только основной изоляцией, допусклются пути утечки и воздушные зазоры меньше указанных в таблице, при условии, что машина не будет иметь викаких поврежденных в соответствии с требованиями настоящего станларта при последовательном замыкании накоротко этих путей утечки и воздушных зазоров и что путь утечки будет проходить по изоляцковному материалу, выдерживающему испытание

по 29.3.

Если между точкой, в которой соединена обмотка и конденсатор, и металлическими частями, отделенными от токоведущих частей только основной изоляцией, возникает резонансное напряжение, то пути утечки и воздушные зазоры должны быть не меньше значений, соответствующих резонансному напряжению; в случае усиленной изоляции эти значения должны быть увеличены на 4 мм.

Проверку проводят измерением.

Для машин со штепсельным разъемом измерения проводят с присоединением соответствующим соединителем, а также без соединителя, Для машин с соединением типа X измерения проводят с проводами питания наибольшего сечения по 25.2, а также без проводов, для других машин измерения проводят на машине в том виде, как она поставлена потребителю.

Измерения также проводят с ремнями (если такие имеются) и устройствами для изменения натяжения ремней в наиболее неблагоприятном положении в диапазоне их регулировки, а также без ремней.

Подвижные части помещают в наиболее неблагоприятное положение; считают, что гайки и винты с некруглой головкой завинчены в наиболее неблагоприятном положении.

Воздушные зазоры между зажимами и доступными металлическими частями измеряют также с винтами и гайками, отвинченными насколько это возможно, однако в этом случае воздушные зазоры должны быть не менее 50% величин, указанных в таблице 16.

Таблица !6 — Пути утечки и воздушные зазоры Размеры в миллиметрах

			Машины других классов						
Расстояние	Мой класс	111 10 111			Рабочее напряжение св. 130 до 250 В		Рабочее папряжение св. 250 до 440 В		
	п ути утечки	2830- 2830- 2830- 2930-	путы утечка	803- ДУШ- НЫС 3230- РЫ	аутя утачки	ры 3230- 2ўш- ные	дута утечан	808- Душ- ные 3880- ры	
Между токоведущими частями различной по- лярности? — защищенными от									
скопления грязи — не защищенными от	1,0	1,0	0,1	1,0	2.0	2.0	2,0	2,0	
скопления грязи если обмотки пок- рыты лаком или	2,0	1,5	2,0	1,5	3,0	2,5	4,0	3,0	
эмалью Между токоведущимя изтими частим металлическими частими по основной схоляции. — защищенной от скопленяя грязи скопленяя грязи скопленяя грязи скопленя грязи скопленя грязи скопленяя грязи скопленяя грязи скопленяя грязи скопленяя грязи скопленяя грязи скопленяя грязи скоплена грязи скоплена грязи скоплена грязи гр	1,0	1.0	1,5	1,5	2,0	2,6	2,0	3,0	
керамического ма- тернала, чистой слюды и т. п. • если изоляция	1,0	1,0	1,0	1,0	2,5-	2,5*	-	~~	
гого материала гого материала	1.5	1,0	1,5	1,0	3,0	2.0	-	~	
 не защищенной от скопления грязи если токоведущими частями являются обмоткы, покрытые 	2,0	1,5	2,0	1,5	4,0	3,0	-	-	
лаком или эмалью	1,0	1.0	1,5	1,5	2,0	2,0	-	_	

Окончание таблицы 16

Расстояние			Машины других классов					
	Машины живсев III		Рабочее жапряжение до 130 В¹		Рабочее папряжение св. 130 до 250 В		Рабочее напряжение св. 250 до 440 В	
	пути утечки	вов- душ- ные эвэо- ры	пути утечки	воз- душ- ные зазо- ры	вутн утечка	вор- душ- ные зазо- ры	йутн утечки	103- душ- ные зазо- ры
 на коние трубчатых нагревательных элементов с защитной оболочкой между токоведущими частями по поверхности усиленной изоляции: если токоведущими частями в по поверхности усиленной изоляции: 	-	_	1,0	1,0	1,0	1,0	_	_
обмотки, покрытые лаком или эмалью — для других токо-	-	-	6,0	6,0	6,0	6,0	- 1	-
ведущих частей Между металлически- ми частями, разделевны-	-	-	8,0	8,0	8,0	8,0	-	-
ми дополнительной изо- лящей между токоведущими частями, расположенны- ми в углублении со сто- ромы установочной по- верхности машины и по- верхностью. к которой	-	-	4,0	4,0	4,0	4,0	-	-
ее крепят	2,0	2,0	6,8	6.0	6.0	6,0	- 1	_

Значения, указанные в этой графе, не распространяются на цечатные схемы, эля которых значения находятся в стадия рассмотрения.

Указанные расстояния не распространяются на воздушные зазоры между контактами терморетулирующих устройств, устройств защиты от перегрузки, микропереключателей и т. п. элементов или на воздушные зазоры между токоведущими элементами таких устройств, воздушные зазоры которых измеряются при перемещения контактов.

² Внутреннюю часть машины, имеющую достаточно пылезащитный кожух, считают защищевной от скопления грязи при условии, что при работе машины в ней самой не образуется пыль; при этом герметичное уплотиение не требуется.

⁴ Если части являются жесткими или запрессованными, или, если конструкция исключает возможность уменьшения расстояния вследствие деформации или перемещения этих частей, указанное значение может быть уменьшено до 2.0 мм.

⁵ Эти значения относятся только к машинам класса 1.

Примечания

І Способы измерения путей утечки и воздушных зазоров указаны в приложении С.

2 При наличии промежуточной перегородки, которая состоит из двух частей, не склеенных между собой, путь утечки измеряют также через соединение

этих частей.

3 При налични промежуточной перегородки воздушный зазор измеряют через перегородку или, если перегородка состоит из двух частей с сопряженными поверхностями, не склеенными между собой, через соединение этих частей.

4 При определении путей утечки и воздушных зазоров учитывают влияние виутренних изоляционных покрытий на металлических кожухах или крышках.

5 Внутренние провода считают обнаженными, если их изоляция не выдерживает испытание на электрическую прочность испытательным напояжением 2000 В. прикладываемым в течение 15 мин между проводом и металлической фольгой, обернутой вокруг изоляции провода.

6 Обмотки считают имеющими основную изоляцию, если они бандажированы лентой и пропитавы или на них нанесено покрытке из самотвердеющей смолы, и после испытания по 15.3 они выдерживают испытание на электрическую прочность по 16.3, причем испытательное напряжение прикладывают между проводами обмотки и металлической фольгой, контактирующей с поверхностью изблянии

Расстояние через щели или отверстия в наружных деталях из изоляционных материалов измеряют до металлической фольги, соприкасающейся с доступной поверхностью; причем фольгу вдавливают в углы стандартным испытательным пальцем, приведенным на рисунке 1, но не прижимают ее через отверстия.

При необходимости усилие прикладывают к любой точке неизолированных проводов, неизолированных капиллярных трубок терморегиляторов и аналогичных устройств, а также к наружной поверхности металлических кожухов с целью- уменьшения- путей утечки и воздушных зазоров в ходе измерений.

Усилие прикладывают посредством вершины испытательного

пальца, приведенным на рисинке I и величиной усилия:

 — 2 Н — для неизолированных проводов, неизолированных капиллярных трубок терморегуляторов и аналогичных устройств;

— 30 Н — для кожихов.

28.2 Расстояние через изоляцию между металлическими частями при рабочих напряжениях до 250 В включ, не должно быть менее 1 мм, если эти части разделены дополнительной изоляцией, и не менее 2 мм, если эти части разделены усиленной изоляцией.

Это требование не распространяется на изоляцию, за исключением слюды и аналогичного чешуйчатого материала, которая имеет вид тонкого листа и состоит:

- в случае дополнительной изоляции не менее чем из двух слоев при условии, что хотя бы один из них выдерживает испытание на электрическую прочность, установленное для дополнительной изоляции:

 в случае усиленной изоляции не менее чем из трех слоев при условии, что два из них, приложенные друг к другу, выдерживают испытание на электрическую прочность, установленное для усиленной изоляции; во время этих испытаний испытательное напряжение прикладывают между внешними поверхностями одного слоя или двух слоев, в зависимости от конкретного случая.

Примечания

 Это требование не означает, что указанное расстояние должно быть только через сплошную изоляцию; оно может складываться из толщины сплошной

изоляции и плюс одного или нескольких воздушных промежутков

2 Для машин, имеющих части с двойной изоляцией в тех местах, где между основной и дополнительной изоляциями отсутствуют металлические части, измерение проводят так, как будто между основной и дополнительной изоляциями находится металлическая фольта.

28.3 Для машин номинальный ток которых превышает 25 А, расстояние между зажимами и металлическими кожухами должно быть не менее 9.5 мм.

Проверку на соответствие требованиям 28.2 и 28.3 проводят осмотром и измерением.

29 ТЕПЛОСТОЙКОСТЬ, ОГНЕСТОЙКОСТЬ И СТОЙКОСТЬ К ОБРАЗОВАНИЮ ТОКОПРОВОДЯЩИХ МОСТИКОВ

Внешние части из изоляционного материала, повреждение которых может сделать машину опасной, должны быть достаточно теплостойкими.

Проверку проводят, подвергая кожух и другие внешние части из изоляционных материалов испытанию металлическим шариком под давлением с помощью прибора, приведенного на рисунке 8.

Поверхность испытуемой части устанавливают в горизонтальном положении и подвергают давлению стальным шариком диа-

метром 5 мм на эту поверхность силой 20 Н.

Испытание проводят в термостате при температуре (75 ± 2) °C или при температуре которая на (40 ± 2) °C выше значения превышения температуры соответствующей части, определенного во время испытания по разделу 12, в зависимости от того, что больше.

Через 1 ч шарик удаляют и измеряют диаметр оставленного шариком отпечатка, который не должен превышать 2 мм.

Примечание — Это испытание не проводят на частях машин, изготовленных из керамического матернала.

Дзоляционные части, предназначенные для крепления дсталей под напряжением, должны быть достаточно тепло- и огнестойкими.

Проверку проводят следующим испытанием.

Испытание проводят по 29.1, но при температуре $(125\pm 2)\,^{\circ}\mathrm{C}$ или при температуре, которая на $(40\pm 2)\,^{\circ}\mathrm{C}$ выше значения пре-

вышения температуры соответствующей части, определенного во время испытания по разделу 12, в зависимости от того, что больше.

Дополнительно изоляционные части подвергают также испытаниям на огнестойкость горячим коническим сердечником в при-

боре, приведенном на рисунке 9.

Сердечник вставляют в коническое отверстие, просверленное в испытуемой части, таким образом, чтобы участки конической части сердечника выступали с обеих сторон на одинаковую длину. Образец прижимают к сердечнику с силой 12 Н. Приспособление, с помощью которого прикладывают силу, фиксируют, чтобы предотвратить его дальнейшее движение. Однако, если образец начинает размягчаться или плавиться во время испытания, к образцу прикладывают в горизонтальном направлении силу, достаточную для сохранения контакта образца с сердечником.

Сердечник нагревают до 300°С в течение ≈3 мин и эту температуру поддерживают с отклонением ±10°С в течение 2 мин. Температуру измеряют термопарой, расположенной внутри сер-

дечника.

Во время испытания в течение 5 мин над верхней поверхностью образца в том месте, где сердечник выступает и соприкасается с образцом, производят искровые разряды длиной около 6 мм высокочастотным генератором, электроды которого продвигают около сердечника, чтобы охватить всю поверхность образца по соседству с сердечником.

Как образец, так и газы, образующиеся во время испытания, не

должны воспламеняться от искры.

Примечание — Испытание не проводят на частях, изготовленных из керамического материала, изоляционных частях коллектора, на коллачках щеткодержателей и т. п., также на каркасах катушек, не применяемых в качестве усиденной изоляции.

29.3 Изоляционные части, предназначенные для крепления деталей под напряжением, как и дополнительная изоляция машин класса И с металлическим кожухом должны быть изготовлены из материала, обладающего стойкостью к образованию токоведущих мостиков, если машины подвергаются чрезмерному воздействию влаги или загрязнению в условиях нормальной эксплуатации, исключения составляют случаи, когда пути утечки по крайней мере вдвое больше значений, указанных в 28.1.

Для материалов, кроме керамических, проверку проводят сле-

дующим испытанием.

Плоскую поверхность испытуемой детали размером по возможности не менее (15×15) мм устанавливают в горизонтальное положение.

Два платиновых электрода или электроды из другого достаточно стойкого к коррозии материала размерами по рисунку 10 помещают на поверхность образца так, чтобы закругленные края электродов соприкасались с образцом по всей длине.

Сила давления каждого электрода на поверхность должна быть

приблизительно 1 Н.

Электроды подсоединяют к источнику питания частотой 50 Γ ц практически синусоидальным напряжением 175 B. Общее сопротивление цепи, когда электроды замкнуты накоротко, регулируют с помощью переменного резистора так, чтобы ток был равен $(1,0\pm0,1)$ A при коэффициенте мощности от 0,9 до 1. Реле максимального тока, включенное в цепь, должно сработать в течение 0,5 c.

Поверхность образца смачивают каплями раствора хлористого аммония в дистиллированной воде, которые должны падать с высоты от 30 до 40 мм посередине между электродами. Раствор должен иметь объемное удельное сопротивление 400 Ом см при 25°С, что соответствует концентрации около 0,1%. Объем капель должен составлять 20⁴⁵ мм³.

Интервал между падением двух капель должен составлять (30 ± 5) с.

Поверхностный пробой или пробой через изоляцию не должен произойти, пока не упадет 50 капель.

Испытание проводят в трех местах образца.

Примечания

 Перед началом каждого испытания следует проверить чистоту электродов, правильность формы и расположення.

2 В сомнительных случаях испытание повторяют, если необходимо, на новом

образце

3 Это испытание не проводят на изоляционных частях коллекторов или колпачков шеткодержателей.

30 КОРРОЗИОННАЯ СТОИКОСТЬ

30.1 Части, изготовленные из сплавов со значительным содержанием железа, коррозия, которых может сделать машину опасной при эксплуатации, должны быть соответствующим образом защищены от коррозии.

Проверку проводят следующим испытанием.

С испытуемых частей удаляют всю смазку погружением их в четыреххлористый углерод или трихлорэтан на 10 мин.

Затем части погружают на 10 мин в 10 %-ный водный раствор хлористого аммония при температуре (20 ± 5) °C.

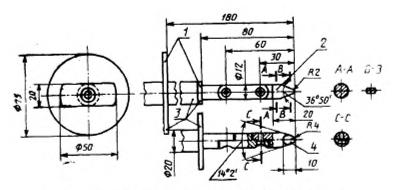
Без высушивания, но после стряхивания капель, части помещают на 10 мин в камеру влажности при температуре (20 ± 5) °C.

После того, как части просушат в течение 10 мин в сущильном шкафу при температуре (100±5) °C, на их поверхности не должно быть следов коррозии.

Примечания

 При использовании жидкостей, предусмотренных для проведения испытания, необходимо прияять соответствующие меры предосторожности, предотвращеющие вдыхание их паров.

2 Следы ржавчины на острых краях и желтоватую пленку, которую можно


снять протиркой, не принимают во внимание.

3 Для небольших спиральных пружин и для частей, полвергаемых истиранию, слой смазки может обеспечить соответствующую защиту от коррозии Такие части подвергают испытанию только в случае, если есть сомнение относительно эффективности смазки, а испытание в этом случае проводят без предварительного сиятия смазки.

31 РАДИАЦИЯ

31.1 Машины не должны быть источником вредных излучений. Соответствие требованию проверяют испытанием.

Методику испытания приводят в стандартах на машины конкретных видов.

1-стопорияя иластина; 2-цилиндрическая часть; 3-изоляционный материал

Допуски:

на угловые размеры ±5';

на линейные размеры.

менее 25 мм: - 0,05 мм;

более 25 мм: ±0,2 мм

Рисунок 1 — Стандартный испытательный палец

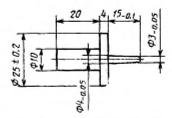
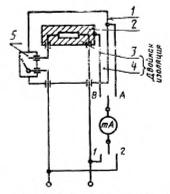



Рисунок 2 — Испытательный щуп

I—доступная часть; 2—недоступная металлическая часть; 3—основная изолиция; 4—дополицительная изоляция; 5—усиленная изоляция

Рисунок 3 — Схема измерения тока утечки при рабочей температуре для однофазных машин класса П

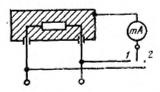
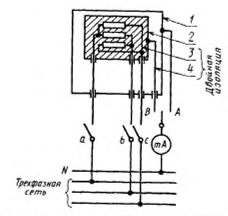
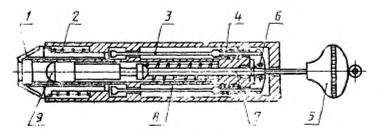
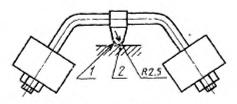



Рисунок 4 — Схема измерения тока утечки при рабочей температуре для остальных однофазных машии (кроме иласса II)

І-доступная часть: 2-недоступная часть; 3-основная вооляция; 4-дополнительная взоляция

Рисунок 5 — Схема измерения тока утечки при рабочей температуре для трехфазных машин класса II


Рисунок 6 — Схема измерения тока утечки при рабочей температуре для остальных трехфазных машин (кроме класса 11)

FOCT P M9K 1029-1-94

1—свусковой конус; 2-пружина копуса; 3—сгержень спускового механизма; 4—пружина спускового иеханизма; 5—натажная анопка; 6—спусковой зажим; 7—стержень ударника; 6—пружина ударника; 5—головка ударника

Рисунок 7 — Прибор для ударных испытаний

1-еферическая часть; 2-образец
 Рисунок 8 — Прибор для вдавливания шарика

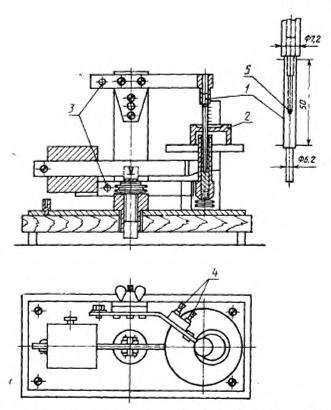
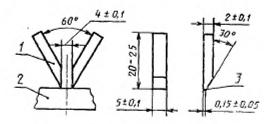



Рисунок 9 — Прибор для испытания горячим коническим сердечником

1~электрод; 2~образец; 3~слеска закругленный край Рисунок 10 — Расположение и размеры электродов для непытаний на стойкость к образованию токоведущих мостнков

ПРИЛОЖЕНИЕ А (обязательное)

ТЕРМОВЫКЛЮЧАТЕЛИ И УСТРОЙСТВА ЗАЩИТЫ ОТ ПЕРЕГРУЗОК

А.1 Термовыключатели и устройства защиты от перегрузок должны работать надежно.

Испытание проводят при 1,25 величины тока, протекающего через устройство, и при 1,1 величины прикладываемого к нему напряжения, когда машина работает при номинальном напряжении или верхнем пределе диапазона номинальных напряжений и при нормальной нагрушке.

Испытание проводят соответствующим видом тока (постоянным, переменным), причем испытание переменным током проводят при коэффициенте мощности, величина которого определена соответственно при работе машим с нормальной нагризкой.

Устройство должно сработать 15 раз.

После этого испытания на образцах не должно быть заметных повреждений,

исключающих их дальнейшее применение.

А.2 Термовыключатели и устройства защиты от перегрузок должны быть сконструированы так, чтобы их уставка не изменялась заметно при нагреве, вибрациях, возможных при условиях нормальной эксплуатации.

Проверку проводят внешним осмотром во время испытания по разделу 17.

ПРИЛОЖЕНИЕ В* (обязательное)

ЭЛЕКТРОННЫЕ СХЕМЫ

В.1 Область применения

Настоящее приложение относится к схемам, состоящям не менее чем из одного электронного элемента.

В.З Определения

Дополинтельные определения

В.3.101 Электронный элемент — деталь, у которой проводимость происходит главным образом благодаря электронам, движущимся в вакууме, газе или по-

лупроводнике.

В.3.102 Защитное сопротивление — сопротивление, подключаемое между токоведущими частями и доступными электропроводными деталями, и вмеющее таную величину, при которой ток в условиях нормальной эксплуатации и возможных всисправностей машины ограничивается до безопасной величины

В.5 Испытания, Общие положения

Лополнения

В 5.1 Требования всех пунктов основной части стандарта с учетом требований настоящего приложения а также требований стандартов на машины кон-

кретных видов, относятся к электронным схемам.

В.5.2 Необходимо избегать симмирования предельных нагрузок, возникающих при последовательных испытаниях машины. При необходимости допускается замени поврежденных образиов или применение для этих испытаний добавочных образцов.

Примечание — Количество образион, применяемое для оценки электронной схемы, должно быть возможно наименьшим.

Дополнительный пункт

В.5.101 Во время испытаний сеть и другие источники питания не должны иметь помех, которые могут повлиять на регультаты испытаний.

В 9 Защита от поражения электрическим током

В.9.1 Объясвение, касающееся безопасного сверхнизкого напряжения, не является приемлемым.

Дополнение

Доступную часть не считают находящейся под напряжением, если:

 часть получает питание от безопасного изолирующего траисформатора при условии, что

для переменного тока пиковое значение напряжения не превышает 42.4 В: для постоянного тока напряжение не превышает 42,4 В;

часть отделена от токоведущих частей защитным сопротивлением.

В случае установки защитного сопротивления ток между частью и источником питания не должен превышать 2 мА для постоянного тока, а его пиковое значение не должно превышать 0,7 мА для переменного тока и, кроме того-

для напряжений, имеющих паковое значение св. 42,4 до 450 В включ.,

емкость не должна превышать 0.1 мкФ:

 для напряжений, имеющих пиковое значение си 450 до 15 кВ включ. разряд не должен превышать 45 мкКл.

В приложении В нумерация разделов и пунктов соответствует нумерации. основной части стандарта. Нумерация дополнительных пунктов начинается со 101.

Напряжения и токи измеряют между данной частью и кымдым полюсом источника пытания. Величины, характеризующие разряд, измеряют непосредствеч-

но после прекращения питания.

Цель для измерения тока имеет полное сопротивление (1730±250) Ом в она изунтируется конденсатором таким образом, что постоянное времени цепи составляет (225±16) мкс. Более подробные данные о гребуемой цепи даны , поиложении IA.

Примечания

Измерительная цепь имеет точность в пределах 5 % для всех частот от 20 до 5000 Гц

Для напряжений, имеющих пиковое значение св. 15 кВ. 19сбования в настоящее время пересматриваются.

В.9.6 Дополнение

Это требование не относится к конденсаторам, удовлетносяющим требова-

B.12 Harpen

В.12.5 Доволнение к таблице 2

	Правышение темнературы. °С
Конденсаторы, отвечающие требо- наниям ГОСТ 12.2.006 Печатымс платы со связующим на основе эпоксидной смолы	50) Превышение темпоратуры кондоч свторов, закорачьваемых по разделу В.16, не ограничивается

В 13 Ток утечки

В.13.1 Дополнение

Перед началом испытания отключают защитное сопротинление от токоведущих частей.

В 16 Сопротивление изоляции и электрическая прочность

В.16.1 Дополнение

Перед началом испытания отключают защитное сопротнельски; от токолегдущих частей.

В.16.3 Дополнение

Испытание на электрическую прочность между частями ришной поляркосне проводят в случае выполнения требований раздела В.18 при эдмероч начечастях.

В 18 Ненормальный режим работы

Дополнительные пункты

В. IS.101 Электронные схемы должны быть сконструировань и применены таким образом, чтобы вследствие их повреждения опасность в отношении поражения электрическим током, возникновения пожара или механической травмы была ограничена до минимума

Проверку проводят путем оценки отказов, указанных в В 18.103 для всет видов схем или отдельных частей схем, за исключением случаев, когда они от-

вечают условиям, указанным в В.18.102,

Если безопасность машины при любом из отказов завинит от срабатывания миниатюрной плавкой вставки, соответствующей требованиям ГОСТ Р 50539, в этом случае проводят испытание по В.18.104. В процессе и после каждого испытания температура облоток не должна превышать значений, указанных в таблице 5, и машина должна отвечать требованиям 18.1. В частности токоведущие части не должны быть доступны для испытательного пальща или испытательного ицупа, в соответствии с 9.1. Величина тока, проходящего через защитное сопротивление, не должна првежиоть значений, иказанных в В.9.1.

При размыкании проводника печатной платы машины считают выдержавшей

конкретное испытание, если:

 материал печатной платы выдерживает испытание на горсние по ГОСТ 12.2.006;

 мюбое ослабление проводника не приводит к снижению путей утечки и воздушных зазоров между токоведущими и доступными металлическими частяжи по сравнению с величинами, указанными в разделе B.28;

— машина выдерживает испытание по В.18.103 при размыкании проводии-

ка мостовой схемы.

Применания

1 Обычно изучение и анализ машины и ее принципиальной схемы дает возможность заранее определить те повреждения, которые нужно имитировать, чтобы при испытаниях огранцииться случаями, дающими наиболее неблагоприятный результат.

 В отдельных случаях может оказаться предпочтительной имизация всех веблагоприятных ситуаций по сравнению с анализом пранципцальной схемы.

3 Как правило, при испытаниях учитывают любой отказ, который можее произойти в результате отридательных воздействий на питание от сети. Однако в случаях, когда возможно одновременное воздействие сразу на несколько элементов, могут патребоваться дополнительные испытания, которые в настоящее время находятся в стадии рассмотрения.

В.18.102 Повреждения 1) — 6), указанные в В.18.103, не относятся к схежам или частям схем, если в них выполняются одновременно указанные ниже всловия:

 электронная цепь представляет собой маломощную цепь, соответствующую приведенному ниже опредслению;

 защита от поражения электрическим током, возникновение пожара поянмение механической опасности или неправильное срабативание в других частях машины, приводящее к опасным ситуациям, не зависят от нармального финкционирования электронной цепи.

Определение маломощной цепи дано ниже (пример цепи приведен на ри-

сунке В1).

Машина работает при номинальном напряжении или верхнем пределе диапозона номинальных напряжений, переменный резистор, установленный в положение, соответствующее максимальному сопротивлению, подключают между ис-

следуемой точкой и противоположным полюсом источника питания

Затем сопротивление резистора начинают уменьшать до тех пор, пока мощпость, потребляемая резистором, не достигнет своего максимального значения Яюбая наиболее близкая к источнику питания точка, в которой потребляемая мощность по отношению к этому резистору не превышает 18 Вт спустя 5 с, иззывается маломощной точкой. Часть цепи, наиболее удаленную от источники шитания, считают маломощной цепью.

Примечания

 Измерения проводят только от одного полюса источника питавия, причем вредпочитают тот, у которого наименьшее количество маломещиму точек

 При определении маломощиму точек, рекомендуется начинать с точек, расположенных наиболее близко к источнику питания.

- 3 Мощность, потребляемую переменным резистором, измеряют ваттметром. В.18.103 При испытании рассматривают следующие возможные повреждения и, при необходимости, последовательно их создают вместе со связанными с ними неисправностями:
- Закорачивание путей утечки и воздушных зазоров между токоведущими частями различной полявности, если они меньше значений, истановленных в разделе В.28, и если эти части соответствующим образом не загерметизированы.

2) Короткое замыкание токоведущих частей различной полярности через изоляцию которая не выдерживает испытание по разделу 16.

Размыкание зажимов любого компонента,

 Короткое замыкание конденсаторов, кроме случаев, когда они соответствиют требованиям ГОСТ 12.2.006.

5) Короткое замыкание между двумя зажимами электронных элементов или

блоков, помимо интегральных схем.

б) Отказ интегральной схемы. В этом случае оценивают возможные опа:ные ситуации для машины, чтобы ибедиться, что безопасность машины не зависит от работоспособности такого элемента.

При отказе интегральной схемы проверяют все возможные выходные сигналы. Если есть возможность истановить, что возникновение какого-либо конкретного выходного сигнала маловероятно, тогда соответствующую неисправность не рассматривают.

Примечание — Микропроцессоры рассматривают как интегральные схемы.

Каждию маломощнию цепь закорачивают, присоединяя маломощнию точку к полюси источника питания, от которого проводилось измерение.

Для того, чтобы сымитировать состояние повреждения, машину включают в работу в условиях, соответствующих разделу 12, но при номинальком напряжении или наиболее неблагоприятном напряжении внутри диапазона.

При моделировании неисправных состояний продолжительность испытания

равна:

 указанной в 12.4, но только в тенение одного рабочего цикла и только в том случае, когда потребитель не может определить повреждение, например, изменение температуры;

иказанной в 18.1. всям потребитель может определить повреждение, нап-

ример, когда стопорится двигатель:

— времени, необходимому до достижения установившегося режима для испей постоянного подключения к сети питания, например, для дублирующих це-

В любом случае испытание считают законченным, если произойдет разрыв цепи питания.

Повреждение 5) не относится к случаю короткого замыкания между ске мами онгрона.

Если в машину встроена электронная схема, работа которой обеспечивает соответствие требованиям раздела 18, в этом случае соответствующее испытанию повторяют, моделируя одну неисправность, как указано выше в 1) — 6).

Неисправность 6) относится к элементам, заключенным в герметичный корпус, и другим аналогичным элементам в том случае, если оценка схем другими

способами не возможна.

Резисторы с положительным температурным коэффициентом сопротивления, и варисторы не закорачивают, если их применяют с соблюдением указанных

изготовителем технических характеристик.

В 16.104 Если для любого повреждения, иказанного в В.18 103, безопасность машины зависит от финкционирования миниатюрной плавкой вставки, соответствующей гребованиям ГОСТ Р 50539, испытание повторяют, но вместо плавкий вставки устанавливают амперметр

Если измеренный ток превышает номинильный ток плавкой вставки в 2,1 раза, то контур не считают достаточно защищенным и испытание повторяют с закороченной плавкой вставкой.

Если измеренный ток не менее чем в 2,75 раза превышает номинальный ток

плавкой вставки, то контур считают надежно защищенным.

Если измеренный ток находится в пределах от 2,1 до 2.75 номинального то-

ка, то плавкую вставку закорачивают, а испытание проводят:

- при быстродействующих плавких предохранителях в течение соответствующего периода времени или в течение 30 мин, в зависимости от того, какое время короче.
- при инерционных плавких предохранителях в течение соответствующего периода времени или в течение 2 мин, в зависимости от того, какое время короче.

Примечания

В сомнительных случаях при определении значения тока принимают во

внимание максимальное сопротивление плавкой вставки.

- 2 Проверка, осуществляемая с целью определения, является ли плавкая вставка защитным устройством, основана на характеристиках плавления, указанных в ГОСТ Р 50539, где также двется информация, необходимая для расчета максимального сопротивления плавкой вставки.
- Другие плавкие предохранители рассматривают как преднамеренно слабые детали в соответствии с 18.1.

В.21 Конструкция

Дополнительные пункты

В.21.101 Части, отделенные защитным сопротивлением, должны соответствовать требованиям, предъявляемым к двойной или усиленной изоляции.

В.21.102 Усиленную изоляцию допускается применять для частей, отделенных трансформатором безопасного сверхнизкого напряжения или защитным

сопротивлением, и частей, отделенных оптроиом.

В.21.103 Защитное сопротивление должно состоять, по крайней мере, из двух отдельных элементов, у которых полное сопротивление почти не изменяется в процессе срока службы машины. Если у одного из этих элементов происходит короткое замыжание или размыжание, в этом случае не допускается превышать значения, указанные в В.9.1.

Проверку проводят осмотром и измерением.

Примечание — Считают, что этому требованию удовлетворяют резисторы и конденсаторы, отвечающие требованиям ГОСТ 12.2.006.

В.26 Заземление

В.26.1 Дополнение

Для обеспечения непрерывности защитной цепи заземления не допускается использовать разъемы печатных плат.

В 28 Пути утечки, воздушные зазоры й толщина изоляции

В.28.1 Дополнение

Для проводящих узоров на печатных платах, исключая находящиеся у их кромок, габличные значения расстояний между частями разной полярности допускается снижать, если пиковое значение напояжения не превышает:

— 150 В при минимальном расстоянии 0,2 мм при наличии защиты от скоп-

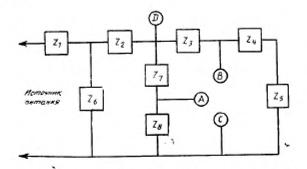
ления грязи;

— 100 В при минимальном расстоянии 0,5 мм при отсутствии защиты от

скопления грязи.

При пиковых напряжениях свыше 50 В снижение путей утечки допускается только, если у печатной платы показатель защиты от образования токопроводящих мостиков больше 175.

ГОСТ Р МЭК 1029-1-94


Эти пути утечки можно снизить еще больше при условии, если машина отвечает требованиям раздела В.18 при поочередном закорачивании этих путей.

Примечание — В случаях, когда указанные выше пределы приводят к значениям, превышающим табличные, следует руководствоваться табличными значениями.

Для токоведущих частей размой полярности, отделенных только основной изоляцией, пути утечки и воздушные зазоры могут быть меньше табличных в том случае, если при поочередном закорачивании этих путей утечки и зазоров выполняются требования раздела В 18

Пути утечки и воздушные зазоры в оптронах не измеряют в случаях, когда отдельные слои изоляции в достаточной жере изолированы и между отдельными

слоями нет воздиха.

D—двиболее удаленная от источника витания точка, в которой потребляемых мощность превышает 18 Вт. A в B—маяболее близкие к источнику питания точка, в которых потребляемая мощность и в превышает 15 Вт. Это маломощиме точки. A и B в отдельности ээкорачивают из точку C. Условия возреждения по веречислениям 1 - 0), указывными B в B.18.100, рассматривымого C0 по очереди в целях Z1, Z2, Z3, Z4, Z5 в отдельности.

Рисунок В1 — Пример электронной схемы с маломощными точками

ПРИЛОЖЕНИЕ С (обязательное)

ИЗМЕРЕНИЕ ПУТЕЙ УТЕЧКИ И ВОЗДУШНЫХ ЗАЗОРОВ

Способы измерения путей утечки и воздушных зазоров, которыми следует руководствоваться при испытании по 28.1, показаны в настоящем приложевии на рисунках, изображающих примеры 1—10.

Эти примеры не учатывают различия между зазорами и пазами или видами

изоляции.

Предполагинтся следующие допущения:

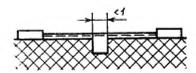
1 Паз может иметь параллельные, сходящиеся или расходящиеся стенки;

 Любой паз с расходящимися стенками, имеющий минимальную ширинр больше 0,25 мм, глубину больше 1,5 мм и ширину у дна 1 мм или более, считают воздушным зозором (см. пример 8);

3 Любой угол, с внутренним углом менее 80°, считают шунтированных деталью из изолящинного материала шириной 1 мм (0.25 мм — в местох защищенных от сколления грязи), помещенной в самое неблагоприятное положение (см. пример 3);

4 Если расстояние между верхними кромками паза равно 1 мм (0,25 мм в местах защищенных от скопления грязи) или больше, то расстояние по воздуку между этими кромками не считают путем утечки (см. пример 2);

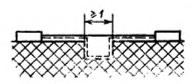
5 Если воздушный промежуток, указанный в перечислении 2 превышает


0,25 мм, то его не считают путем утечки;

6 Пути утечки и воздушные зазоры, подлежащие измерению между частями, перемещающимися друг относительно друга, измеряют тогда, когда эти части находятся в самом неблагоприятном стационарном положении;

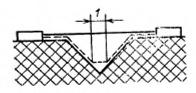
7 Рассчитанный путь утечки никогда не бывает меньше измеренного воздуш-

ного зазора;


8 При расчете суммарного воздушного зазора любой воздушный зазор исприной менее 1 мм (0.25 мм — в местах, защищенных от скопления грязи) не учитывают.

Условне: Рассматриваемый путь включает паз с парадлельными или сходящимися боковыми стенками любой глубины, шириной менее 1 мм.

Правило: Путь утечки и воздушный зазор измеряют непосредственно через паз, как указано на рисунке.


Пример 1

Условие: Рассматриваемый путь включает паз с параллельными боковыми стенками любой глубины, шириной 1 мм и более.

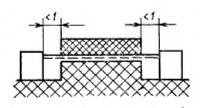
Правило: Воздушным зазором считают длину «прицельной прямой». Путь утечки проходит по контуру паза.

Пример 2

Условие: Рассматриваемый путь включает V-образный паз с внутренним уг-

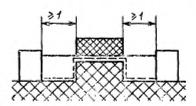
лом менее 80° и шириной более 1 мм.

Правило: Воздушным зазором считают длину «прицельной прямой». Путь утечки проходит по контуру паза, однако «шунтируют» дно паза элементом длиной 1 мм (0,25 мм — в местах, защищенимх от осаждения грязи).


Пример 3

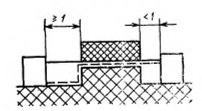
Условие: Рассматриваемый путь включает ребро.

Правило: Воздушным зазором считают изикратчайшее расстояние по воздуху. Путь утечки проходит по контуру ребра.


Пример 4

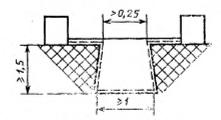
Условие: Рассматриваемый путь включает несклеенное соединение с пазами шириной менее 1 мм $\{0,25$ мм — в местах, защишенных от осаждения грязи) с каждой стороны.

Правило: Путем утечки и воздушным зазором счигают длину «прицельной


прямой», как указано на рисунке.

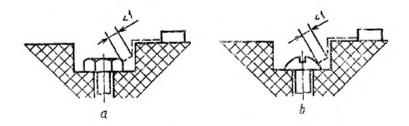
Условие: Рассматриваемый путь включает несклесиное ссединение с назами ширивой (им или более с каж той стороны

Правило: Воздушным зетором считают длину «прицельной примой». Путь утечки проходит по контурам пазов.

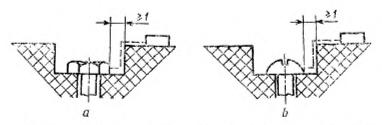

Пример 6

Условие: Рассматриваемый путь включает несклеенное соединение с пазом на одной стороне, который уже 1 им, п с лахом на другой стороне 1 мм и более.

Правило: Воздушный зазор и путь утечин измеряют, как указано на рисунке.


Пример 7

Условие: Рассматриваемый путь включает ваз с расходящимися боковыми стенхами глубиной 1,5 мм или более, шариной в самом узком месте более 0.25 мм и шариной у дна 1 мм или более.


Правило: Воздушими зазором считают дливу «працельной прамой». Путь этечки проходит по контуру паза.

Пример 8

Затор между головкой винта и стенкой впадины силыком мал и его ил при-

Пример 9

Завор между головкой винта и стенкой впадины достаточно велик и сто принамают во вицмание.

Пример 10

ПРИЛОЖЕНИЕ 1A (справочное)

СХЕМА ЦЕЛИ ДЛЯ ИЗМЕРЕНИЯ ТОКА УТЕЧКИ

Схема цени, рекомендуемая для измерения тока утечко, прицедена на расунке [A]

Цебь содержит выпрямитель с германиевыми дводами D и измерительный прибор с подвижной катушкой M, резисторы и кондевсатор C для настренки характеристик цеби и переключатель S для выбора предела диавазона измерений прибора.

Цепь для измерения тока должна иметь полное сопрозивление (1750±250)
Ом и она инитиристся конденсатором таким образом, что постоянная времени цепи состояняе; (225±15) мкс, а точность измерения должна быть 5 % для всех частот от 20 до 5000 Fu.

Наиболее чувствительный диапизов прибора не должен превыщать $1.0\,$ мА: более высокие диапазоны получают путем шунтирования катушки, измерительного прибора безындукционными резисторами R_* при одновременном выборе величны последовительно включенных резисторов RV так, чтобы общее сопротивление цени R_*+RV+R_* , было равно задавиому.

Основными точками градувровки прибора при свиусондальном токе частотой

50 или 60 Гц являются: 0,25; 0,50 и 0,75 мА.

Примечания

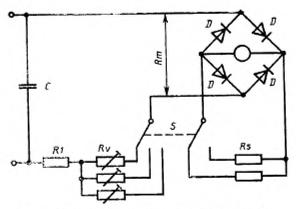
 Цель может вметь защиту от сверхтока; однако способ защиты должен быть выбран таким, чтобы он не оказывал отрицательного влияния на характеристики цели.

2 Сопротивление резистора R_m рассчитывают по падению напряжения на выпрямителе при токе 0,5 мA, а сопротивления резисторов RV подбирают так, чтобы общее сопротивление цепи для каждого из днапазонов измерений было равно заданному.

З Измерительная цель имеет точность 5 % для всех частот от 20 до

000 Fu

4 Есля ток утечки в данный можент превышлет 5 мА, а замеренное в цепи полное сопротивление меньше чем 1600 Ом, то отсчеты по прибору уменьшают


a 5 %.

Германиевые диоды используют потому, что они имеют более визкое падение вапряжения по сравмению с другими типами диодов, что позволяет получить более винейную шкалу, предпоитение при этом отдаму типам диодов, в которых выводы кристаллов припажим золотом. Номинальные деньше диодов выбирают с учетом максимального диаввазона измерительного прибора; однаво ток не дотжен превышать 25 м Å, так как диоды, рассчитанные на большой номинальный ток, имеют более высокое падение напряжения.

Желательно, чтобы переключатель был выполнен так, чтобы ов автоматически возвращался в положение, спответствующее максимальному дианазону измерений для предотвращения повреждений прибора вследствие невнимательного

с инм обращения.

Емкость может быть подобрана на конденсаторов со стандартными плачеяпями емкостей, вылючаемых по последовательно-параллельной схеме,

Рисунов 1А1 — Схема цени для измерения тока утечки

УДК 658.382:006.355

Ключевые слова; машины электрические переносные; безопасность; испытания

OKII 48 3331

Редактор В. П. Огурцов Технический редактор Н. С. Гришанова Корректор В. И. Кануркина

Спано в наб. 09.06.96. Подп. в печ. 12.08.94, Усл. п. л. 5.75, Усл. кр.-отт. 5,88. Уч.-изд. л. 6,56. Тираж 649 экл. С 1574,

Ордена «Знак Почета» Издательство ставдартов, 197076, Москва. Колодезный пер., 14. Калужская типография стандартов. ул. Московская. 256. Зак. 1190