МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МЕТОДЫ ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ МАТЕРИАЛОВ ДЛЯ ЩЕТОК ЭЛЕКТРИЧЕСКИХ МАШИН

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ Минск

Предисловие

1 РАЗРАБОТАН Российской Федерацией

ВНЕСЕН Техническим секретариатом Межгосударственного Совета по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 7-95 от 26 апреля 1995 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Республика Беларусь	Белстандарт
Российская Федерация	Госстандарт России
Украина	Госстандарт Украины

- 3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 16 ноября 1995 г. № 574 межгосударственный стандарт ГОСТ 30262—95 (МЭК 413—72) ввелен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1997 г.
- 4 Настоящий стандарт представляет собой полный аутентичный текст международного стандарта МЭК 413—72 "Методы определения физических свойств материалов для щеток электрических машин" с дополнительными требованиями, отражающими потребности экономики страны
 - 5 B3AMEH FOCT 9506.3-74, FOCT 9506.4-74, FOCT 9506.5-74

© ИПК Издательство стандартов, 1996

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

FOCT 30262-95

Содержание

1	Общие положения	ı
2	Нормативные ссылки	2
3	Испытуемый образец	3
4	Плотность и пористость: Общее положение	5
5	Твердость: Общее положение	3
6	Удельное электрическое сопротивление: Общее положение 2	6
7	Предел прочности при поперечном изгибе	2
8	Массовая доля золы: Общее положение	4
Γ	Триложение A Метод определения пикнометрической плот- ности	9
	Іриложение Б Библиография	

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МЕТОДЫ ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ МАТЕРИАЛОВ ДЛЯ ШЕТОК ЭЛЕКТРИЧЕСКИХ МАШИН

Test procedures for determining the physical properties of brush materials for electrical machines

Дата введения 1997-01-01

1 ОБШИЕ ПОЛОЖЕНИЯ

Настоящий стандарт распространяется на щетки электрических машин и устанавливает методы определения физико-химических свойств щеточных материалов *

Значения величин физических свойств, публикуемые в каталогах и подобных изданиях, должны основываться на методах испытаний, которые приводятся в настоящем стандарте.

Целью настоящего стандарта является обеспечение одинаковой методики определения следующих свойств щеточных материалов

- плотности и пористости;
- тверлости;
- удельного электрического сопротивления;
- предела прочности при поперечном изгибе;
- массовой доли золы

^{*}Шеточный материал включает в себя понятия собктвенно "щетка", как готовое изделие, и электроугольный полуфобрикат, т е материал на избои стадии технологического процесса изготовления щеток (заварочныи порошок, заварочная смесь, блоки, заготовки, плиты)

Одни методы испытаний пригодны для контроля качества изделий, другие - для более тщательных исследований, для которых требуется точное лабораторное оборудование.

Не следует забывать, что поскольку щеточные материалы являются обычно хрупкими пористыми материалами, то, естественно, их свойства изменяются намного больше, чем те же свойства в металлах.

Образцы для данных испытаний следует отбирать из партии материала в соответствии с общепринятой методикой.

Количество образиов, отбираемых для испытаний, должно быть указано в стандартах или технических условиях на щетки конкретных марок.

Результаты всех испытаний оформляют протоколом.

Образцы считают выдержавшими испытания, если полученные результаты соответствуют значениям, указанным в стандартах или технических условиях на щетки конкретных марок.

Дополнительные требования, отражающие потребности народного хотяйства, набраны курсивом

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие станпарты

ГОСТ 2.601-68 ЕСКД. Эксплуатационные документы

ГОСТ 8.326--89 ГСИ. Метрологическая аттестация средств измерений

ГОСТ 166-89 Штангенциркуль. Технические условия

ГОСТ 450-77 Кальций хлористый технический. Технические условия

ГОСТ 1050-88 Прокат сортовой, калиброванный со специальной отделкой поверхности из углеродистой качественной конструкционной стали. Общие технические условия

ГОСТ 1770—74 Посуда мерная лабораторная стеклянная. Ци-линдры, мензурки, колбы, пробирки. Технические условия

ГОСТ 2789-73 Шероховатость поверхности. Параметры и характеристики

ГОСТ 3722—81 Подшипники качения. Основные размеры ГОСТ 4461—77 Кислота азотная. Технические условия ГОСТ 6507—90 Микрометры. Технические условия

ГОСТ 6613-86 Сетки проволочные тканые с квадратными ячейками. Технические условия

ГОСТ 8711-93 Амперметры и вольтметры. Общие технические условия

ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровыс. Технические условия

ГОСТ 11109-90 Марля бытовая хлопчатобумажная. Общие тех-

нические условия

ГОСТ 11125-84 Кислота азотная особой чистоты. Технические **УСЛОВИЯ**

ГОСТ 12026—76 Бумага фильтровальная лабораторная. Техничес-

кие условия

ГОСТ 12232-89 Шетки электрических машин. Размеры и методы определения переходного электрического сопротивления между щеткой и токоведущим проводом и определения усилия вырывания токоведущего провода

ГОСТ 18300--87 Спирт этиловый ректификованный техничес-

кий. Технические условия

ГОСТ 18481-81 Ариометры и цилиндры стеклянные. Технические условия

ГОСТ 22524-77 Пикнометры стеклянные. Технические условия ГОСТ 22867-77 Аммоний азотнокислый. Технические условия

ГОСТ 23677-79 Твердомеры для метадлов. Общие технические

требования ГОСТ 23683-89 Парафины нефтяные твердые. Технические условия

ГОСТ 23932-90 Посуда и оборудование лабораторные стеклянные. Общие технические условия

ГОСТ 24104-88 Весы лабораторные общего назначения и образ-

цовые. Общие технические условия ГОСТ 25347—82 ЕСДП. Поле допусков и рекомендуемые посадки ГОСТ 29227-91 Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

з испытуемый образец

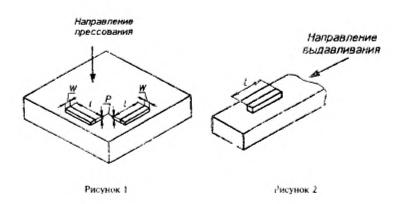
Отдельные свойства определяют на стандартном образце, имею-

щем нижеприведенные размеры.

Если испытуемый образец вырезают из блока щеточного материала, то необходимо (с целью получения точных значений при измерении твердости и предела прочности при поперечном изгибе), чтобы размеры (рисунки 1 и 2) высоты p, ширины w и длины /были выбраны в зависимости от направления прессования или оси выдавливания. Размер / следует располагать перпендикулярно к направлению прес-сования для прессованных блоков или вдоль оси выдавливания для выдавленных блоков. В образцах, предназначенных для измерения удельного электрического сопротивления, размеры p, w и l следует располагать аналогичным образом. У слоистых щеточных материалов размер р следует располагать перпендикулярно к слоям (параллельно направлению прессования).

Размеры pxwxl стандартного испытуемого образца должны быть:

10×10×64 MM


или

4×8×32 MM.

При необходимости, испытуемый образец вырезают из готовой шетки.

Допускается вырезать образцы из плит и заготовок,

Соотношения между размерами p, w и l испытуемого образца и направлением прессования или направлением выдавливания

В случае невозможности вырезать испытуемый образец стандарт ного размера из готовой щетки размер его должен быть согласован между потребителем и изготовителем. Следует соблюдать осторожность при испытании образнов меньшего размера, так как могут быть большие отклонения в показаниях из-за сложности в проведении измерений.

Не рекомендуется применять образцы меньшего размера. При необходимости и по соглашению с заинтересованными органи

зациями допускается проводить испытания на образцах других размеров и форм, что должно быть указано в стандартах или технических условиях на щетки конкретных марок.

Все смежные поверхности следует располагать под прямыми углами. Поверхность образца должна быть обработана так же тщательпо, как поверхность готовых щеток. Следы на поверхности образца, оставленные после прессования или выдавливания, должны быть **улалены**

На поверхности образцов не должно быть трещин, сколов, вмятин, раковин и загрязнений. Образцы тщательно очищают от пыли. Проверку проводят внешним осмотром. Шероховатость поверхности образиов не грубее Rz = 80 мкм по ГОСТ 2789.

Допуск на размеры р и w равен ±0.04 мм, а допуск на размер / --±0.8 MM.

При определении плотности, когда приходится иметь дело с большим числом испытуемых образцов, к размеру 1 следует применять допуск ±0,04 мм.

В случае прямоугольного сечения допуск на углы должен быть +15'.

Параллельность, определяемая разницей между размерами двух противоположных сторон при любом поперечном сечении, перпендикулярном к размеру І, должна находиться в пределах 0,04 мм.

4 ПЛОТНОСТЬ И ПОРИСТОСТЬ: ОБЩЕЕ ПОЛОЖЕНИЕ

Промышленный углерод является природным пористым материалом, поэтому изготовителю электроугольных изделий удобно проводить контроль продукции, измеряя кажущуюся плотность и кажущуюся пористость.

4.1 Условные обозначения

Используют следующие буквенные обозначения:

- т масса испытуемого образца (сухого), г;
- V_b кажущийся объем материала (включая открытые и закрытые поры), см³;
 - $-V_0$ объем открытых пор образца, см³;
 - 8_A кажущаяся плотность, г/см³;
 - P_s кажущаяся пористость, %;
 P общая пористость, %;

 - d диаметр, мм.

Кажущуюся плотность (б_b) в граммах на кубический сантиметр рассчитывают по формуле

$$\delta_b = \frac{m}{V_b} \tag{1}$$

Кажущуюся пористость (P_s) в процентах рассчитывают по формуле

$$P_s = \frac{V_o}{V_h} \quad 100 \tag{2}$$

42 Методы определения кажущейся плотности и пористости

Кажущуюся плотность δ_δ определяют одним из следующих стандартных методов

- методом измерения и взвещивания,
- методом погружения,

в табораторных условиях

методом абсорбции масла

Кажущуюся пористость P_{ς} определяют методом абсорбции масла Метод измерения и взвещивания применяют для контроля качества продукции, и он является предпочтительным Метод погружения считают альтернативным и применяют его в том случае, когда не может быть применен или является неподходящим метод измерения и взвещивания Метод абсорбции масла пригоден для использования

С помощью данных методов получают результаты с точностью до трех значащих цифр, что является достаточным для определения этих своиств, так как у углеродных изделии различии больше, чем у металлов

 Π р и м е ч а н и е C помощью метода абсорбции мясла можно получить неточные результаты для материала с пористостью выше 30%

- 43 Метод измерения и взвешивания Настоящий метод основан на измерении объема и массы образца и применим для измерения кажущейся плотности образцов правильной геометрической формы
 - 4 3 1 Оборудование и испытуемый образец
 - микрометр с ценой деления 0,01 мм по ГОСТ 6507
- весы для взвешивания испытуемого образца с погрешностью взвешивания не более 0,5% (Для образцов небольших размеров обычно применяют весы с пределом взвешивания 100 г и чувствительностью ±0,005 г);
- весы лабораторные общего назначения 2-го класса с ценой деления 0,0001 г и наибольшим пределом взвешивания 200 г — по ГОСТ 24104,

весы технические 2-го класса типа Т-2 с индексом Т-200 и Т-1000
 по нормативно-технической документации;

пила и другое приспособление для резки образца необходимого

размера;

 шлифовальный круг или другое приспособление для обработки испытуемого образца таким образом, чтобы все смежные поверхнос-

ти находились под прямыми углами друг к другу.

 образец в соответствии с разделом 3 или любой другой образец прямоугольной формы, имеющий ровные края, расположенные пол прямыми углами к его сторонам, или образец цилиндрической формы соответствующего размера.

4.3.2 Проведение испытания

С помощью микрометра проводят измерения, необходимые для определения объема испытуемого образца, т.е. измеряют высоту, ширину и длину прямоугольных образцов или диаметр и длину образцов цилиндрической формы. Эти измерения должны быть выполнены с точностью до сотой доли миллиметра.

Каждый линейный размер образца вычисляют как среднее арифметическое трех измерений: двух параллельных друг другу ребер, лежащих

в плоскости одной грани, и средней между ребрами линии.

Диаметр образца цилиндрической формы измеряют в двух взаимно перпендикулярных направлениях на верхнем и нижнем основаниях цилиндра. Размер диаметра образца вычисляют как среднее арифметическое четырех измерений.

Длину образца цилиндрической формы вычисляют как среднее арифметическое измерений четырех образующих цилиндра, расположенных на двух взаимно перпендикулярных плоскостях, пересекающих цилиндр по его вертикальной оси.

Массу образца определяют в граммах с точностью до трех значаних цифр.

4.3.3 Расчеты

Кажущийся объем материала (V_b) в кубических сантиметрах рассчитывают по формулам

$$V_b = p \cdot w \cdot l$$
 (3)

или
$$\frac{\pi}{4} \frac{d^2}{d} \cdot L$$
 (4)

Кажущуюся плотность образца (δ_b) в граммах на кубический сантимето рассчитывают по формуле

$$\delta_b = \frac{m}{V_b}.$$
 (5)

4.4 Метод погружения

Вариант А

- 4.4.1 Оборудование и испытуемый образец:
- резервуар с водой достаточного объема для погружения в него испытуемого образца;
 - весы в соответствии 4.3.1;
- жир или другой водоотталкивающий защитный материал для покрытия образца с целью предотвращения абсорбции воды;
- нить для крепления образца во время его взвещивания в процессе погружения. Диаметр нити не должен превыщать 0,08 мм;
- испытуемый образец. Поскольку данный метод можно применять к образцам неправильной формы, особой подготовки его для проведения испытания не требуется; необходимо чтобы испытуемый образец был чистым, сухим и свободным от инородных металлов или других инородных материалов.
 - 4.4.2 Проведение испытания

Образец взвещивают на воздухе Покрывают всю его поверхность, по возможности, более тонким слоем жира или другого водооттал-кивающего защитного материала, Снова взвещивают образец на воздухе. Увеличение массы образца после покрытия не должно превышать 0,005 первоначальной массы. Результат записывают в граммах с точностью до трех значащих цифр.

Подвешивают образец с помощью нити к весам. Погружают об разен полностью в воду и после того, как исчезнут все пузырьки возлуха, его взвешивают в погруженном состоянии. Длина нити должна быть как можно меньше.

4.4.3 Расчеты

Во время взвещивания на образец действует сила гяжести $G_{\rm n}$. Когда образец погружен в воду, на него по закону Архимеда, кроме силы тяжести $G_{\rm a}$, действует сила выталкивания $\gamma_{\rm w}\cdot V_b$ ($\gamma_{\rm w}-$ удельная масса воды, а V_b- объем образца), таким образом, что масса его, измеренная в воде, равна

$$G_l = G_a - \gamma_w \cdot V_b , \qquad (6)$$

$$V_b = \frac{m}{\delta_b} = \frac{G_a}{g \cdot \delta_b}$$
(7)

и

$$\gamma_{\mathbf{w}} = \mathbf{g} \cdot \delta_{\mathbf{w}}$$
, (8)

где g — ускорение свободного падения; δ_w — плотность воды.

Таким образом:

$$G_l = G_a - \frac{\delta_w \cdot G_a}{\delta_b}$$
(9)

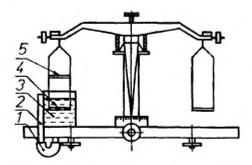
или

$$\delta_b = \delta_w \cdot \frac{G_a}{G_a - G_l}.$$
(10)

δ_ω очень близка к 1.

Вариант Б

4.4.4 Данный вариант метода погружения (гидростатический метод) применяют для всех видов испытаний, кроме сертификационных.


Метод распространяется на щетки электрических машин, а также другие электроугольные изделия и электроугольный полуфабрикат (блоки, заготовки, плиты).

4.4.5 Оборудование и испытуемый образец:

 весы лабораторные общего назначения 2-го класса с ценой деления 0,0001 г и наибольшим пределом взвешивания 200 г — по ГОСТ 24104;

весы технические 2-го класса с приспособлением для гидростатического взвешивания (рисунок 3) ФЭО.001.064 ПС [1];

- баня водяная;
- термометр с пределами измерений от 0 до 100°С по нормативно-технической документации;
 - стакан фарфоровый по ГОСТ 9147;
 - щипцы тигельные;
 - марля бытовая по ГОСТ 11109;
 - парафин по ГОСТ 23683;
 - вода дистиллированная;
 - бумага фильтровальная лабораторная по ГОСТ 12026;
- образцы любой геометрической формы должны иметь объем не менее 5 см³ и внешний вид — в соответствии с разделом 3 и 4.4.1.

1 — шланг; 2 — водомерное стекло, 3 — сосуд с водой;
 4 — нижняя чаша для взвешивания образца в воде;
 5 — верхняя чаша для взвешивания образца на воздухе

Рисунок 3 — Весы технические с приспособлением для гидростатического взвешивания

4.4.6 Проведение испытания

Испытуемый образец помещают на верхнюю чашу весов, взвешивают на воздухе.

Образец массой до 10 г взвешивают с погрешностью ± 0.001 г, более 10 г — с погрешностью ± 0.01 г.

Необожженные изделия и изделия горячего прессования взвешивают в воде без предварительного парафинирования.

У обожженных изделий и изделий, не содержащих связующее, перед взвешиванием в воде закрывают поверхностные поры путем погружения их в стакан с расплавленным на водяной бане парафином, температура которого около 90°C.

После прекращения выделения пузырьков воздуха образец вынимают тигельными щипцами из стакана, ставят на бумагу и удаляют избыток парафина с поверхности образца тщательным обтиранием его бумагой так, чтобы толщина пленки была минимальной.

Образец после обработки вновь помещают на верхнюю чашу весов и взвешивают на воздухе.

Образец перекладывают на нижнюю чашу весов, погружают полностью в емкость с дистиллированной водой и взвещивают. Уровень воды в сосуде при взвещивании должен быть постоянным. Воду в сосуде меняют ежедневно.

Периодически, примерно через 30 мин, измеряют температуру воды,

в которой проводят взвешивание, и определяют ее плотность по таблице 1.

Таблица 1

Температура, "С	Плотность воды, г/см3
18	0,9986
19	0.9984
20	0,9982
21	0,9980
22	0,9978
23	0,9976
24	0,9973
25	0,9971

4.4.7 Расчеты

Кажущуюся плотность ($\delta_{\mathbf{k}}$) определяют по формуле (11) для непарафинированных образцов и (12) для парафинированных образцов

$$\delta_{K} = \frac{m \cdot \delta_{w}}{m - m_{1}}; \qquad (11)$$

$$\delta_{K} = \frac{m \cdot \delta_{w}}{m_{2} - m_{3}}, \qquad (12)$$

где т и т₁ — масса непарафинированного образиа в воздухе и в воде соответственно, г;

т₂ и т₃ — масса парафинированного образца в воздухе и в воде соответственно, г;

 δ_w — плотность воды при температуре определения, г/см³.

Результаты расчетов округляют до двух значащих цифр после запятой

Погрешность измерения ±2% отн.

- 4.5 Метод абсорбции масла
- 4.5.1 Оборудование и испытуемый образец:
- весы в соответствии с 4.3.1
- гидрометр со шкалой удельной массы от 0,800 до 0,900 г/см³ при 20°C с ценой деления 0,001;
 - цилиндрический гидрометр;
 - термометр со шкалой от минус 10 до плюс 100°C;
 - мензурка с широкой горловиной емкостью 1000 см³;
 - вакуумная сушилка или колоколообразный колпак;

 вакуумный насос, способный создать абсолютное давление до 20 мм рт.ст. (около 25 мбар);

водяная баня при температуре ниже 20°C;

нефтяное масло марки AE-10 (24-32 сСт при 50°С) или керосин,

 пила или другое приспособление для резки образца необходимого размера;

- шлифовальный круг или другое приспособление для обработки

неровных краев;

— испытуемый образец массой от 25 до 100 г. Если образец взят от части, которая имеет металлическую арматуру, гальваническое покрытие и т.п., то все эти инородные материалы стедует удалить. Все поверхности должны быть сглажены, чтобы не было заусенцсв или неровных краев во избежание сколов во время испытания. Предназначенные для испытания образцы из металлографитных марок и высокоплотных материалов должны быть большего размера, чем образцы из других шеточных материалов.

4 5.2 Проведение испытания

Образцы массой до 100 г взвещивают на возлухе с точностью до грех значащих цифр. Образцы массой свыше 190 г взвещивают с гочностью не менес 0,005 измеряемой величины

Помещают образец и термометр в мензурку, соединяют насос с мензуркой и постепенно понижают давление до 29 -60 мм рг ст (около 25--80 мбар).

Не нарушая вакуума, в мензурку постепенно вводят предварите в но нагретые до температуры 70°С масло или керосин таким образом, чтобы образец был полностью покрыт маслом или керосином.

Поддерживают давление от 20 до 60 мм рт ст (примерно 25— 80 мбар) до тех пор, пока из образца не прекратится выделе че пузырьков

Охлаждают мензурку и ее содержим- е в воляной бане до температуры ниже 20°C

Извлекают мензурку из водяной бани и повышают темпер..туру по 20°C

При этой гемпературе извлекают образец из масла или из керосина и вытирают его насухо

В венивают пропитанный маслом или керосином образен на воздухе с точностью до трех значащих пифр или с точностью не мечее 0,005 измеряемой величины и записывают полученную массу как G₂.

Переливают масло или керосин из мензурки в цилиндрический гидрометр, нагревают его до температуры 20°С и определяют сто удельную массу. Записывают полученное значение как δ_{ij}

Взвещивают пропитанный маслом или керосином, погруженный в воду образец в соответствии с 4.4.2. Записывают эту массу как G₃.

4 5.3 Расчеты

Масса абсорбированного масла равна

$$G_0 = G_2 - G_0$$
. (13)

Таким образом, объем абсорбированного масла равен

$$V_o = \frac{G_o}{\delta_o}$$
. (14)

Аналогично расчетам по формулам (6—10) кажущаяся плотность б_b равна

$$\delta_b = \delta_w \cdot \frac{G_a}{G_2 - G_3}, \qquad (15)$$

а кажущаяся пористость $P_s = \frac{V_o}{V_b} \cdot 100$. (16)

4.6 Метод определения общей пористости

Данный метод применяют для всех видов испытаний, кроме сертификационных.

Общую пористость определяют расчетным методом на основании полученных значений пикнометрической и кажущейся плотности на одних и тех же образцах.

Общую, пористость (Р) в процентах рассчитывают по формуле

$$P = (1 - \frac{\delta_b}{\delta}) \cdot 100, \tag{17}$$

где δ_b — кажущаяся плотность образца, г/см³;

 пикнометрическая плотность образца, определяемая в соответствии с приложением А настоящего стандарта, г/см³

5 ТВЕРДОСТЬ: ОБЩЕЕ ПОЛОЖЕНИЕ

Для определения твердости щеточных материалов в основном применяют два метода:

метод отскока;

метод вдавливания.

Следует отметить, что прямой зависимости между твердостью прегочного материала и его абразивностью нет.

Результаты, полученные для отдельно взятого метода, могут быть проверены только по результатам, полученным этим же методом, и могут стандартизоваться по эквивалентным стандартам

Значения твердости, полученные для отдельно взятых щеток, нельзя сравнивать с значениями твердости других щеток или щеточных блоков, если направление прессования (или выдавливания) было различное.

5.1 Метод отскока

Этот метод применяют для проверки качества продукции, в частности, не очень мягкого материала.

- 5.1.1 Оборудование и испытуемый образец.
- для испытания образца щеточного материала применяют склероскоп "ШОР" модели С2 или равнозначный прибор, снабженный специальным бойком.
 - П р и м е ч а и и е Боек и составляющие его элементы должны иметь следующие характеристики:
 - а) масса 2,2 г ±5%,
 - b) наружный диаметр 5,94^{+0,01} мм;
 - с) общая длина от 20,7 до 21,4 мм.
 - а) зарор между бойком и трубкой в верхней части трубки от 0.19 до 0.31 мм, в нижней части трубки от 0,04 до 0,08 мм.
 - е) высота, с которой падает боек 251,21-6.38 мм.

f) кончик бойка должен состоять из алмаза овальной формы, вставленного в клиновидное отверстие корпуса бойка. Корпус бойка должен состоять из закаленной стали с содержанием углерода прибличительно 1,2%. После укрепления алмаза корпус бойка следует закалить и отпустить. Контактная поверхность алмаза должна иметь раднус 1 32 мм 15% по дуге длиной 0,61 мм.

Испытуемый образец по размерам может быть в соответствии с разделом 3 или любого другого подходящего размера. Наружный слой с испытуемого образца должен быть удален. Поверхность его обработать таким образом, чтобы она была гладкой и на ней не было каких-либо дефектов, грязи, жира или других инородных материалов. У прямоугольного образца должны быть, по крайней мере, две параллельные поверхности. Цилиндрический образец должен иметь одинаковый диаметр по всей его длине. В противном случае удар получится скользящим, вследствие чего будет получен неправильный результат. При испытании цилиндрических образцов желательно для обеспечения точности торцевые поверхности обработать.

5.1.2 Настройка прибора

Прибор устанавливают на прочной опоре.

Прибор следует выравнять.

Проверяют, чтобы грузило "plumb bob" перед прибором свободно свисало в кольцо.

Проверяют калибровку прибора с помощью предварительно подготовленных эталонных шаблонов (образцов).

Подготавливают наковальню для испытуемого образца

Если поперечное сечение образца круглое и торцевые поверхности нельзя отшлифовать, следует применять клиновидную (V-образную) блок-наковальню. Если образец имеет прямоугольное поперечное сечение, следует применять основную плоскую наковальню (являющуюся частью прибора).

П р и м е ч а и и е Наковальни следует содержать в чистоте Пыль и грязь укалить с наковален мягкой тканью, не содержащей хлопковое волокно В случае V-образной наковальни следует протереть плоскую наковальню и сопряженную (соединенную) поверхность V-образной блок-наковальни прежде, чем их соединить вместе Частицы грязи между двумя наковальнями могут быть вричиной ошибочных результатов

5.1.3 Проведение испытания на твердость

Образец помещают на соответствующую наковальню таким образом, чтобы удар бойка приходился в направлении усилия прессования для щеток и шеточных блоков и был перпендикулярен к оси выдавливания для материалов, полученных методом выдавливания.

Опускают трубку на испытуемый образец и прочно ее держат до

тех пор, пока длится испытание.

Высвобождают боск и отмечают высоту отскока.

По мере возможности твердость следует определять в пити точках на каждой стороне испытуемого образца

Во избежание получения разброса показаний прибора не учитывают самые низкие показания каждой из двух групп, состоящей из пяти показаний. За показатель твердости образца принимают среднее арифметическое значение из восьми оставшихся показаний

5.2 Метод вдавливания

Этот метол пригоден для проверки качества продукции. В процессе испытания шарик вдавливают в поверхность испытуемого образца за два приема, затем измеряют постоянное увеличение глубины вдавливания данного шарика в специфических условиях (рисунок 4).

Твердость измеряют непосредственно на готовых шетках, если:

 Щетка не омеднена и размеры t, a и r (в соответствии с ГОСТ 12232) равны и более 10 мм, или

 Щетка омеднена и размеры а и t равны и более 10 мм и одновременно часть r, которая не омеднена, равна и более 10 мм.

Результаты, полученные на меньшем образце, могут быть ошибочными вследствие образования трешин, разрушений и деформаций.

Для щеток других размеров измерение твердости следует проводить на блоке щеточного материала до разрезания его на щетки по размерам.

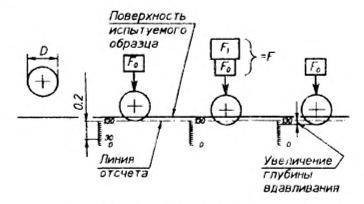


Рисунок 4 — Испытание на твердость методом вдавливания

Вариант А

5.2.1 Оборудование и испытуемый образец:

- прибор для измерения твердости по Роквеллу (пенегрометр) с приспособлением, обеспечивающим различные нагрузки $F_{\rm o}, F_{\rm I}$ и I. Амортизирующее приспособление устанавливают для предотвращения резкого приложения нагрузки: его настраивают так, чтобы во время испытания нагрузка увеличивалась от значения $F_{\rm o}$ до $F=F_{\rm o}+F_{\rm I}$ в гечение от 2 до 8 с;
- шарик для вдавливания, изготовленный из полированного материала, имеет диаметр D. Предельные отклонения диаметра шарика от номинального размера не должны превышать значений, соответствующих степени is по ГОСТ 25347. Твердость шарика по Виккерсу должна быть не менее 850 (учитывая кривизну шарика при испытании); он должен быть отполирован и не должен иметь поверхностных дефектов. Любой шарик, предельные отклонения которого превышают вышеуказанные допуски и (или) имеющий какие-либо поверх ностные дефекты, должен быть изъят, а результаты соответствующего испытания не учитывают;
- индикатор (глубиномер) для измерения глубины вдавливания.
 Индикатор должен иметь равномерную дисковую шкалу с делениями от 0 до 130 мм, где расстояние между делениями на шкале от 30 до

130 мм должно соответствовать глубине вдавливания 0,200 мм, т е. цена деления шкалы соответствует 0,002 мм. Точность индикатора ±0.001 мм:

 жесткое крепление для испытуемого образца. Образец по размерам должен быть в соответствии с разделом 3 или образцом любого подходящего размера с двумя параллельными поверхностями. Перед испытанием на твердость образец надо проверить и убедиться, что в нем нет трещин или любых других дефектов поверхности. Поверхность, контактирующая с креплением, и испытываемая поверхность должны быть чистыми и свободными от инородных включений.

Если испытание на твердость проводят на блоке щеточного материала, то необходимо проверить, чтобы две параллельные поверхности были тщательно обработаны до состояния, которое обычно имеет поверхность щетки.

П р и м е т а н и е — После очередной смены, износа и замены шарика или крепления следует убедиться, что новый шарик (или новое крепление) правильно установлены в своей обойме. В процессе испытания прибор должен быть зашищен от ударов или вибрации.

5.2.2 Проведение испытания

Испытание проводят при температуре окружающей среды.

Важно, чтобы образец находился в устойчивом положении, чтобы не произошло смещения во время испытания. Если нет иной договоренности, то образец должен быть помещен таким образом, чтобы направление нагрузки во время испытания на твердость было в направлении усилия прессования для щеточных блоков и перпендикулярно к оси выдавливания для материалов, полученных методом выдавливания

Место для любого вдавливания следует выбирать таким образом, чтобы расстояние между двумя соседними отпечатками или расстояние от центра любого отпечатка до ребер образца и (или) краев имеющихся в нем отверстий равнялось одному диаметру шарика или 2,5-кратному диаметру отпечатка, если не отоворены другие условия.

Комбинацию диаметра шарика D предварительной нагрузки F_0 и дополнительной нагрузки F_1 выбирают следующим образом:

- комбинация 1: для материалов из природного графита
- комбинация 2: для металлографитных материалов
- комбинации 3, 4 и 5: для металлографитных, электрографитных и твердоуглеродных магериалов

Таблица 2

Номер комбиз ции	а- Диаметр шарика <i>D</i> , мм	Предварительная нагрузка, F ₀ , кгс	Дополнительная нагрузка F _I , кгс	Общая нагрузка $F = F_{rr} + F_{1r}$ кгс
1	10	10	10	20
(2)*	(10)*	(10)*	(30)*	(40)*
3	10	10	50	60
4	10	10	90	100
5	10	10	140	150
•	CHINA DO BOTHOVAO			

*Эти комбинации по возможности не применять

В соответствии с практикой, принятой Международной организацией по стандартизации (ИСО), нагрузки для всех испытаний на твердость выражены в кгс. Это решение было принято, поскольку считается нецелесообразным менять нагрузки на всех машинах для испытания на твердость на деканьютоны — даН.

Если ни одно из вышеперечисленных сочетаний не дает подходящих показаний, то применяют шарик другого размера и делают соответствующую запись в протоколе. В этом случае рекомендуется применять шарик диаметром 5 мм и комбинации нагрузок, указан ные в таблице 2.

Шарик помещают на поверхность испытуемого образца, затем на него постепенно прикладывают давление перпендикулярно к поверхности без толчков, пока не будет достигнута предварительная нагрузка F_0 , равная (10,0 ± 0,2) кгс.

Шкалу индикатора (глубиномера) устанавливают в исходное положение.

Нагрузку увеличивают постепенно в течение от 2 до 8 с на значение дополнительной нагрузки F_1 , в результате чего достигают общую нагрузку $F = F_0 + F_1$. Допуск на F_1 равен ±0.5%.

Когда стрелка индикатора (глубиномера) остановится, на что обычно уходит 10 с (в зависимости от испытуемого материала), снимают дополнительную нагрузку F_1 , чтобы осталась лишь предварительная нагрузка F_0 .

В особых случаях, когда испытуемый щеточный материал в данных условиях имеет большую пластичность во времени, нагрузку F_1 снимают через 20—25 с после начала движения индикатора.

Снимают показания глубины вдавливания при действующей предварительной нагрузке F_0 . Следует, при необходимости, вывести соответствующее число твердости по Роквеллу (у большинства циферблатных шкал непосредственное значение числа твердости по Роквеллу приведено на красной шкале). Если при применении одной

из комбинаций в соответствие с таблицей 2 получают среднее значение твердости более 110 или менее 30, то испытание следует повторить, выбрав более подходящую комбинацию нагрузок.

На каждом образце проводят следующее число измерений тверпости:

на готовых щетках, у которых два размера поверхности, подлежащей испытаниям, менее 16 мм, следует проводить одно испытание на каждой из двух поверхностей;

на готовых щетках, у которых два размера поверхности, подлежащей испытаниям, не менее 16 мм, следует проводить два испытания на каждой из двух поверхностей;

на блоках щеточного материала следует проводить пять испытаний на каждой из двух поверхностей.

Среднее арифметическое значение показаний, снятых на каждом образце, следует считать значением твердости. Однако для щеточного материала в виде блока желательно не учитывать самое низкое значение, полученное на каждой поверхности; среднее арифметическое значение восьми оставшихся результатов принимают за значение твердости.

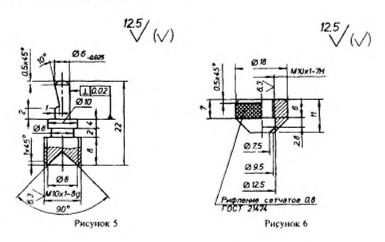
Значение гвердости, полученное при установленной нагрузке, обозначают буквами HR в комбинации с числами, представляющими диаметр шарика D и общую нагрузку F, например HR 10/60.

Вариант Б

5.3 Данный вариант метода измерения твердости вдавливанием применяют для всех видов испытаний, кроме сертификационных.

5.3.1 Оборудование и испытуемый образец: — приборы типа ТР и ТРС по ГОСТ 23677, обеспечивающие предварительные 3 и 10 даН (кгс) и полные 10, 15, 30, 60, 100, 150 даН (кгс) нагрузки).

Допускается применение других приборов с аналогичными метроло-

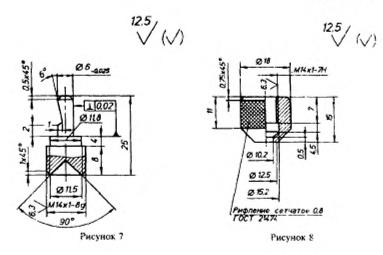

гическими характеристиками.

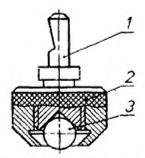
Полную нагрузку 10 даН (кгс) обеспечивают специальной подвеской, не входящей в комплект прибора.

Масса подвески должна обеспечивать требуемую нагрузку с погрешностью ±0.10 даН (кгс);

шарики номинальным диаметром 7,938 мм степени точности 5 (условное обозначение 7,9) и номинальным диаметром 12,303 мм степени точности 5 (условное обозначение 12.3) по ГОСТ 3722. Поверхность шарика должна быть чистой, блестящей, без царапин и следов коррозии;

наконечник для крепления шарика, изготовленного по технической документации, должен быть аттестован по ГОСТ 8.326. Форма и размеры деталей наконечника должны соответствовать указанным на рисунках 5 и 6 для шарика диаметром 7,9 мм и на рисунках 7 и 8 для шарика диаметром 12,3 мм.


Крепление шарика в наконечнике должно соответствовать указанному на рисунке 9. Гайка наконечника должна быть плотно затянута, проворачивание шарика в наконечнике не допускается. Допуск соосности конической поверхности и хвостовика диаметром от 5,975 до 6,00 ...0,02 мм. Материал наконечника — сталь 45 по ГОСТ 1050.


5.3.2 Подготовка к испытанию

Для измерения используют образцы размерами не менее 10×10×5 мм При измерении твердости на образцах других размеров результаты не сопоставляют с результатами, полученными на стандартных образцах.

Допускается измерение твердости на готовых щетках, блоках или заготовках, если их размеры соответствуют указанным.

При использовании в качестве образцов армированных щеток допускается применение твердых прокладок, помещаемых между щеткой и столиком прибора

I — хвостовик наконечника, 2 — гайка наконечника; 3 — щарик

Рисунок 9

Перед измерением поверхность столика прибора тщательно очищают от грязи, пыли, крупинок и следов коррозии.

В зависимости от твердости материала полчую нагрузку и шарик следует выбирать так, чтобы показания индикстора находились в интервале от 10 оо 90 делений измерительной шкалы (против часовой стрелки) и должны указывиться в стандартах или технических условиях на щетки конкретных марок

5 3 3 Проведение испытаний

Измерения проводят при температуре (25+10) С

Образен помещают на столик прибора так, чтобы он находился в устолчивом положении. Нагрузку следует прикладывать в направлении усилия прессования или перпенвикулярно к оси выдавливания.

Измерения проводят так, чтобы расстояние между центрами двух соседних отпечатков или расстояние от центра любого отпечатка до ребер образца и имеющихся в нем отверстий было не менее 5 мм

Измерение твердости проводят вдавливанием в образец стального шарика под действием двух последовательно прилагаемых нагрулок. Предварительную нагрузку следует прикладывать без толчков и ударов. Если после приложения предварительной нагрузки большая стренка индикатора прибора отклоняется от вертикального положения более чем на ±5 делений, то испытание проводят в другой точке образца

Определение результатов испытании проводят после снятия полнои нагрузки по фактическому значению отклонелия стрелки индикатора от нуля в иелых делениях шкалы (по шкале С против часовой стрелки)

Предварительная нагручка остается при этом приложенной

Числа измерении должно быть ча блоках не менее шесть (по три отсчета на каждой повсрхности), на готовых щетках и заготовках — не менее двух (по одному отсчету на каждой поверхности)

Гвердэсть II следует определять в зависимости от показаний индикатора α (против часовой стрелки) при полной нагрузке по таблицам 3- 8

Значение твърдости, полученное при установленной нагрузке, следует обозначать буквои И в комбиниции с числами, представляющими диаметр шарика и общую нагрузку Е которая была применена, например II 7.9/60

Погрешность измерения ±5%

5.3.4. Обработка результатов

В протокоге испытаний указывают минимальное и максимальное значения из всех полученных результатов измерений.

Таблица 3 — Твердость (Н 12,3/10) при полной нагрузке 10 даН (кгс) и диаметре шарика 12,3 мм

a	Н	α	Н
10	22	22-23 24-26	10
11	20	24-26	9
12	19	27-29	8
13	17	30-34	7
14	16	35-40	6
15 1	15	41-49	5
16	14	50-64	4
17	13	65-80	3
18-19	12	81-90	2
20-21	11		

Таблица 4 — Твердость (Н 7,9/15) при полной нагрузке 15 даН (кге) и диаметре шарика 7,9 мм

a	H	a	Н
10	43	24	18
11	39	1 25	17
12	36	26-27 28-29 30-32	16
13	33	28-29	15
14	31	30-32	14
15	29	33-34 35-37	13
16	27	35-37	12
17	25	38-41	11
18	24	38-41 42-45 46-51	10
19	23	46-51	9
20	22	52-58	8
21	21	59-66	7
22	20	67-80	6
23	19	81-90	5

Т а б л и ц а 5 — Твердость (Н 7,9/30) при полной нагрузке 30 дан (кгс) и диаметре шарика 7,9 мм

œ i	Н	σ	H
10	02	20	**
19	77	1 50	43
11	44	1 55	73
12	/1	1 22	42
13	67	23	40
14	62	24	38
15	59	25	37
16	56	26	36
17	52	27	34
18	50	28	33
19	48	29	32
		30	31

FOCT 30262-95

Окончание таблицы 5

	Н	α	Н
31	30	4749	20
32-33	29	50-51	19
34	28	52-55	18
35	27	56-58	17
36-37	26	59-62	16
38	25	63-66	15
39-40	24	67-71	14
41-42	23	72-77	13
43-44	22	72-77 78-80	12
43-44 45-46	21	81-84	12
		85-90	11

Таблица 6 — Твердость (Н 7,9/60) при полной нагрузке 60 даН (кгс)

	диаметре шарика 7,	7	
a	Н	a	H
10	100	31	32
11	91	32	31
12	83	33	30
13	77	3435	29
14	91 83 77 71 67 62 59	36	28
15	67	37	27
16	62	38-39	26
17	59	40	26 25
18 19	56	41-42	24
19	53	43-44	23 22
20	50	45-46	22
21	48	47-48	21
22	45	49-51	20
23	43	52-53	19
24	42	54-56	18
25	40	57-60	17
26	38	61-64	16
27	37	65-68	15
28	36	6973	14
29	38 37 36 34 33	7479	13
30	33	80-86	12
		87-90	11

Т а б л и ц а 7 — Твердость (Н 7,9/100) при полной нагрузке 100 даН (кгс) и диаметре шарика 7,9 мм

α	H	α	Н
10	171	15	114
11	155	16	107
12	142	17	100
13	131	18	95
14	122	19	90

Окончание таблицы 7

φ	H	a	H
20	85	43	40
21	81	44	39
22	78	45	38
21 22 23	74	46	37
24	71	47-48	36
25	68	49	35
26	66	50-51	34
27	63	52	33
28	61	53-54	32
29	59	55-56	31
30	57	57	30
31	55	58-59	29
32	53	60-62	28
33	52	63-64	28 27
34	51	65-67	26 25
35	49	68-69	25
36	47	70-72	24
37	46	73-76	24 23
38	45	77-79	22
39	44	80-83	21
40	43	84-87	20
41	42	88-90	19
42	41	1	

Таблица 8— Твердость (Н 7,9/150) при полной нагрузке 150 даН (кгс) и диаметре шарика 7,9 мм

α	II .	a	н
10	253	28	90
11	230	29	87
12	211	30	84
13	195	31	81
14	181	32	79
15	169	33	77
16	153	34	74
17	149	35	72
18	140	36	70
19	138	37	68
20	126	38	67
21	120	39	65
22	115	40	63
23	110	41	62
24	105	42	60
25	101	43	59
26	97	44	57
27	94	45	56

FOCT 30262-95

Окончание таблицы 8

α	R	α	Н
46	55	6162	41
47	54	63	40
48	53	64-65	39
49	52	66-67	38
50	51	63 64–65 66–67 68–69	37
51	50	1 70	36
52	49	71-72	35
53	48	73-74	34
54	47	75-76	33
55	46	71-72 73-74 75-76 77-80	32
56	45	81-83	31
57	44	84-86	30
56 57 58—59 60	43	87-89	29
60	42	90	28

УДЕЛЬНОЕ ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ: ОБІЩЕЕ ПОЛОЖЕНИЕ

Существует несколько различных методов определения удельного электрического сопротивления щеточных материалов. Методы, наиболее часто используемые для контроля качества, следующие:

вольт-амперный метод;

метод моста Кельвина.

- 6.1 Вольт-амперный метод
- 6.1.1 Оборудование и испытуемый образец:
- источник постоянного тока с выходным напряжением от 0 до 6 В и пределами регулирования от 0 до 40 А (например аккумуляторная батарея и переменное сопротивление);
- источник постоянного тока напряжением не более 12 В с регулирующим устройством, обеспечивающий необходимое значение тока, изменяющееся в процессе измерения не более чем на ±1%;
- милливольтметр постоянного тока с сопротивлением не менее 1000 Ом/В со шкалами:
 - от 0 до 300 мВ; "0 " 150 мв; "0 " 75 мВ; "0 " 30 мВ; "0 " 30 мВ; "0 " 15 мВ; "0 " 7,5 мВ; "0 " 3 мВ;

или потенциометр;

- амперметр постоянного тока со шкалами:

от 0 до 75 А;

" 0 " 30 A;

"0 " 15 A:

"0 " 7,5 A;

"0 " 3 A.

Все приборы должны соответствовать классу 1,5 ГОСТ 8711;

переключатель для замыкания и размыкания цепи;

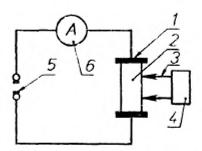
два электроконтакта, входящих в зажимное устройство (например медная сетка), или самоустанавливающиеся контактные поверхности. Две поверхности устанавливают так, чтобы между ними мог держаться стандартный испытуемый образец, размер которого приведен в разлеле 3;

- потенциальные ножи из нержавеющей стэли следует располагать на образце с расстоянием между ними не менее 30% и не более 50% длины образца. Допуск на расстояние должен составлять ±1% номинального значения длины;
- зажимное устройство должно иметь эксплуатационную документацию по ГОСТ 2.601,
 - микрометр гладкий для наружных измерсний по ГОСТ 6507;
- штангенциркуль с двухсторончим расположением губок для наружных и внутренних измерений — по ГОСТ 166.
 - испытуемый образец в соответствии с разделом 3

Примечания

Дорускается применение других приборов и автоманических средств с лиалогичными или более высокими метрологическими характеристиками

2 Результаты, полученные при имерении удельного электрического сопровивающих на обращах других размеров и форм, не сопоставляют с результатамы, полученными на стандартных обращах Размеры обращов должны быть записаны в протоколе испотании и в посторте.


6.1.2 Проведение испытания

Испытание проводят при гемпературе (25 ± 10)°С.

Измеряют и записывают размеры образца с погрешностью не более 0.5%.

Измерительную аппаратуру соединяют согласно схеме, указанной на рисунке 10.

Образец устанавливают между двумя электрическими контактами в направлении наибольшего размера.

1 — токочые электроды 2 — образен, 3 — потенциальные ножи,
 4 милливольтметр или потенциометр, 5 — источник постоянного тока с регучирующим устройством и переключателем, 6 — амперметр

Рисунок 10

Усилие, с которым зажимают образец электрическими контикта ми, должно обеспечивать надежный, безыскровый контакт с образцом

Потенциальные ножи прижимают к одной из поверхностей wxl образца. Контакт потенциальных ножей счигается надежным, если стредка милливольтметра неподвижна.

Проверяют симметричность расположения потенциальных ножей относительно осси поверхности w×l.

Записывают расстояние между потенциальными ножами

П р и м с ч а и и е — Расстояние между потенциальными ножами необходим э периодически поверять сюверку проводят путем приложения ножей к илосьой отштифованной поверхности шеточного материала, на которой получаются четжие, хоронь выраженные стеды Расстояние между центрами этих следов измеряют с помощью микроскопа

Допускается проводить измерение расстояния между потенциальными ножами при поверке устройства по методике, утвержденной в установленном порядке.

Пропускают ток черс: цепь Выбирают соответствующую шкалу на амперметре и милливольтметре и регулируют ток переменным сопротивлением так, чтобы показания на обоих приборах приходились на вторую половину шкалы.

Примечания

Плотность тока должна быть не более 8 А/см2 для углеграфитных, графитных и

Преддагаемые значения тока, расстояние между потенциальными ножами и показания милливольтметра приведены в таблице 9

электрографитных щеток, не более 40 A/cm² — для металлографитных щеток 2. Показания следует записывать быстро, во избежание нагревания образца, которое может повлиять на эначение удельного электрического сопротивления

Таблица 9 — Условия, соответствующие испытанию

Размер образца, мы рхнх/	<i>l</i> ь. мм	мкОм и	1, A	Uman. MB
10×10×64	25	600,00 300,00 150,60 75,00 37,50 15,00 7,50 3,75 1,50 0,75 0,60 0,30	2,60 4,00 8,00 8,00 8,00 8,00 8,00 8,00 20,00 40,00 40,00	300,0 300,0 300,0 150,0 75,0 30,0 15,0 7,5 7,5 7,5 3,0 3,0
4×8×32	16	600,00 300,00 150,00 75,06 37,50 15,00 7,50 3,75 1,50 0,75 0,75 0,60 0,30	1,00 2,00 4,00 4,00 4,00 4,00 4,00 4,00 4	300,0 300,0 300,0 150,0 75,0 30,9 15,0 7,5 7,5 7,5 7,5

Записывают показания амперметра и милливочьтметра и размы какот цепь.

Потенциальные ножи снимают с поверхности образца

Снимают давление с двух электроконтактов, переворачивают образец так, чтобы потенциальные ножи касались другой поверхности wxl образца и прикладывают то же давление, что и раньше

Повторяют испытание при том же токе.

Допускается измерять значение падения напряжения одновременно на противоположных поверхностях образи: с помощью двух пар потеницальных ножей.

Среднее арифметноеское значение падения напряжения, измеренного на двух поверхностях w×I, используют для расчета удельного электрического сопротивления.

5.1.3 Расчеты

Удельное электрическое сопротивление щеточного материала (р) в омметрах рассчитывают по формуле

$$\rho = \frac{U \cdot p \cdot w}{I \cdot I_u}, \tag{18}$$

где U — среднее арифметическое значение падения напряжения между потенциальными ножами. В:

р — высота образца, м;
 w — ширина образца, м;
 I — значение тока, пропускаемого через образец, А;

дасстояние между потенциальными ножами, м.

Примечание - Рекомендуется записывать удельное электрическое сопротивление щеточных материалов в микроомметрах (мкОм м). р получают в микроомметрах, если в вышеприведенной формуле И измеряют в милливольтах, 1в амперах, а р, w и 1 в миллиметрах (рисунок 11)

Погрешность измерения ±5%.

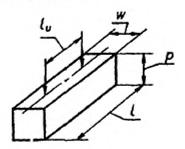


Рисунок 11

Примечание — Для определения удельного электрического сопротивления блоков. можно применять тот же способ, однако при этом потенциальные ножи должны касаться всей плоскости образца,

6.2 Метод моста Кельвина

6.2.1 Оборудование и испытуемый образец

Источник постоянного тока, амперметр, зажимное устройство (например медная сетка) или самоустанавливающиеся электроконтакты и потенциальные ножи в соответствии с 6.1.1.

Мост Кельвина с диапазоном от 10 мкОм до 1 Ом.

Гальванометр с ценой деления і мкА.

Переключатель для прохождения тока через образец.

Испытуемый образец в соответствии с разделом 3.

6.2.2 Проведение испытания

Испытание проводят при температуре (25±10)°С.

Измеряют и записывают размеры образца с погрешностью не более 0.5%.

Образец устанавливают между двумя электроконтактами в направлении наибольшего размера.

Правильно и аккуратно соединяют образец с мостом Кельвина.

Потенциальные ножи прижимают к одной из поверхностей образца w×l. Контакт потенциальных ножей считают надежным, если стрелка милливольтметра неподвижна.

Проверяют симметричность расположения потенциальных ножей относительно осей поверхности w×l.

Записывают расстояние между потенциальными ножами.

П р и м с ч а н и е — Расстояние между потенциальными ножами необходимо периодически поверять. Поверку проводят путем приложения ножей к плоской отшлифованной поверхности щеточного материала, на которой получают четкие, корошо выраженные следы. Расстояние между центрами этих следов измеряют с помощью микроскопа

Допускается проводить измерение расстояния между потенциальными ножами при поверке устройства по методике, утвержденной в установленном порядке.

С помощью переключателя через цепь пропускают ток. При включенном токе необходимо отрегулировать сопротивление моста таким образом, чтобы гальванометр имел нулевое отклонение. Снимают по-казания сопротивления образца *R* между потенциальными ножами

П р и м е ч а н и е — Регулирование сопротивления моста следует проводить быстро, во избежание нагревания образца, которое может повлиять на значение удельного электрического сопротивления

Потенциальные ножи снимают с поверхности образца.

Снимают давление с двух электроконтактов, переворачивают образец так, чтобы потенциальные ножи касались другой поверхности wxl образца и прикладывают то же давление, что и раньше.

Повторяют испытание при том же токе.

Среднее арифметическое значение сопротивления, измеренного на двух поверхностях w×l, используют для расчета удельного электрического сопротивления.

6.2.3 Расчет

Удельное электрическое сопротивление щеточного материала (р) в омметрах рассчитывают по формуле

$$\rho = \frac{R p \cdot w}{l_u}, \quad (19)$$

 где R — сопротивление испытуемого образца между потенциальными ножами. Ом:

р — высота испытуемого образца, м,

и – ширина испытуемого образца, м;

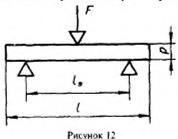
І_н — расстояние между потенциальными ножами, м

 Π р и м е ч а н и е — р получают в микроомметрах (мкОм м), если в вышеприведенной формуле R измеряют в миллиомах, а p, w и l_0 в миллиметрах

Рекомендуется записывать удельное электрическое сопротивление шеточных материалов в микроомметрах (мкОм - м).

7 ПРЕЛЕЛ ПРОЧНОСТИ ПРИ ПОПЕРЕЧНОМ ИЗГИБЕ

7.1 Оборудование и испытуемый образец:


 нажимное устройство с соответствующим манометром или шкалой (например любой гидравлический или механический пресс).
 Устройство должно создавать и измерять давление до 1500 Н с погрешностью ±2%.

Вершины призм должны быть закруглены:

радиус нагружающей призмы г должен быть от 4 до 5 мм;

— радиус закругления опорных призм г должен быть (1,0±0,5) мм

Две внешние вершины призм должны находиться в одной плоскости и быть параллельными, а расстояние между их центрами не должно расходиться с номинальным значением более чем на ±0,2 мм Вершина нагружающей призмы должна быть равноудалена от вершин опорных призм и перемещаться в плоскости, перпендикулярной к плоскости, проходящей через две опорные призмы (рисунок 12)

Образец должен быть в соответствии с разделом 3

72 Проведение испытаний

Проверяют, чтобы расстояние l_r между вершинами опорных призм было равно значению, рекомендуемому в таблице 10. Записывают расстояние l_r

Таблица 10

	ндартного и образца, м		Рекоменлуемое мм	значение 4,	Соответству	1 1
P	W					ММ
10	10	64	50 ()	0.075	
4	8	32	25 (5	0 300	

Проверяют размеры испытуемого образца и записывают их Рамеры w и p должны быть измерены с погрешностью не более 0.5%

Образец необходимо расположить симметрично на двух опорных призмах с размером I_s между ними, перпендикулярно к вершинам гризм, а размером $w \sim$ парадлельно им

Прикладывают с помощью нагружающей призмы нагрузку в середине образца, находящегося на двух опорных призмах

Примечания

1. Ниружающая призма должна двитаться в веренкальной плоскоски и респольга параз вельно опорным прызмам, не паванию изжелятельного реда. 19 чень тери. 2 Рапрушьющей и прузка должна, приклативаться разм мерно. 5 - ком так обтрешины покрытись не разыви, чем чене? 5.

Записывают нагрузку F, при которон образец разлушился 7.3 Расчеты

Поедел прочности шеточного матери иза пои поперечном изгибе то) в меганиютонах на квадратным метр расси итызаки по формуле

$$\sigma = \frac{3}{2} - \frac{r_c}{w - p^2} - F_c$$
 (20)

где F — разрушающая нагрузка, H,

I_г - расстояние между опорными призмами мм.

w — ширина испытуемого образца, мм.

р — высота испытуемого образца, мм

В таблице 10 приведены регомендуемые значения для i_3 и соответствующие значения для коэффициента ε для каждого из "вух стандэртных испытуемых обрадов

$$c = \frac{3}{2} - \frac{l_s}{w_s a^2}$$
 (71)

Тогда о в меганьютонах на квадратный метр легко рассчитать по формуле

$$\sigma = c \cdot F$$
. (22)

По мере возможности, следует применять испытуемые образцы размерами 10×10×64 мм. Если по какой-либо причине необходимо использовать образец размерами 4×8×32 мм, то это должно быть записано в протоколе испытаний.

8 МАССОВАЯ ЛОЛЯ ЗОЛЫ: ОБШЕЕ ПОЛОЖЕНИЕ

Материалы, используемые для электрических шеток, могут содержать относительно небольшое количество других химических элементов и соединений. Это могут быть обычно встречающиеся в природном графите различные химические элементы или специально добавляемые вещества, например карбид кремния. Такие материалы обычно называют "золой". Они могут оказывать влияние на работу щегок, способствуя образованию пленки или, наоборот, вызывать "сдирание" поверхности контактных колец или коллектора. Поэтому необходимо определение зольности (массовой доли золы) щеточного материала. Оно, в основном, применяется на заводе-изготовителе при проверке качества продукции.

Метод распространяется на графитные, угольно-графитные и электрографитные щетки.

Memoд не распространяется на щетки, содержащие пропитывающие вещества

Измерение массовой доли золы проводят в полуфабрикате.

При необходимости допускается проводить измерение массовой доли золы в готовых щетках

8.1 Оборудование:

- печь для создания температуры до 1000°С;
- печь муфельная с терморегулятором, обеспечивающая температуру нагрева до 1000°C;
 - прибор для регулирования температуры в печи;
 - прибор для измерения температуры до 1000°C;
- преобразователь термоэлектрический типа ТХА с пределом измерения от 0 до 1300°С по нормативно-технической документации;

сушильный шкаф, обеспечивающий температуру нагрева не менее чем до 110°C:

- термометр для измерения температуры до 110°C;
- сушильный шкаф любого типа с термометром, обеспечивающий температуру нагрева до 120°C;
 - эксикатор по ГОСТ 23932;

В эксикаторе должно быть соответствующее гигроскопическое вещество, например силикагель, которое, по мере необходимости, следует заменять;

кальций хлористый плавленый — по ГОСТ 450.

П р и м е ч а н и е — Нет необходимости в сущильном шкафу, термометре и жсикаторе, если были приняты другие меры предосторожности.

- мелкие контейнеры соответствующего размера и материала.
 Их следует пронумеровать для облегчения их распознавания, а затем нагревать до 1000°С до тех пор, пока их масса не станет постоянной. Когда их не используют, то их следует держать в сущильном шкафу;
 - лодочки фарфоровые прямоугольные по ГОСТ 9147;
 - итапель;
 - щипцы для перемещения контейнеров;
- аналитические весы, для взвешивания контейнера со щеточным материалом массой около 5 г с погрешностью ±0,2 мг;
- весы лабораторные общего назначения 2-го класса с ценой деления 0,0001 г и наибольшим пределом взвешивания 200 г — по ГОСТ 24104;
- инструмент для вырезания образца из щеточного материала (например пила или дрель);
 - допаточка, пестик и ступка;
- сетка проволочная тканая с квадратными ячейками 025 по ГОСТ 6613.

8.2 Испытуемый образец

Следует взять не более 5 г материала от обработанных (готовых) щеток или блока щеточного материала, предназначенных для испытания (для образца от щетки обычно берут 1—2-г материала).

Кусочки взятого для испытания материала необходимо измельчить в ступке до размера частиц не более 0,5 мм.

П р и м е ч а н и е — В процессе приготоления пробы следует собяющить осторожность, чтобы предупредить попадание инородных материалов

Пробу измельчают и проссивают без остатка через сетку 025.

 8.3 Проведение испытаний щеток, не содержащих металлы

Высушивают пробу в сушильном шкафу при температуре (110±10)°C в течение не менее 2 ч до постоянной массы.

Взвешивают сухой, чистый контейнер с погрешностью ±0,2 мг. Записывают данную массу как G_{\parallel}

В данный контейнер помещают сухую пробу массой от 1 до 5 г и взвещивают контейнер с пробой с погрешностью ±0,2 мг.

Записывают эту массу как G_2 .

Помещают контейнер с пробой в печь и медленно повышают температуру не менее чем до 800°C, но не выше 1000°C.

В это время отмечают и регистрируют любые уловимые запахи

(например запахи фенола или серы).

Пробу массой около 5 г, взвешенную с погрешностью не более 0,0005 г, помещают в предварительно прокаленную до постоянной массы при температуре от 800 до 1000°С фарфоровую лодочку.

Лодочку с пробой ставят на 20—30 мин на край открытой печи и прокаливают в течение от 4 до 5 ч до постоянной массы при температуре (850±25)°C.

Лодочку с остатком золы вынимают из печи, охлаждают сначала на воздухе в течение 5 мин, затем в эксикаторе над хлористым кальцием до комнатной температуры и взвешивают с погрешностью не более 0,0005 г.

Продолжают нагревать образец до тех пор, пока не останется никаких следов углерода.

Прокаливание остатка золы повторяют по 15 мин, пока разница в массе при двух последовательных взвешиваниях будет менее 0,001 г. Для расчета массовой доли золы принимают последний результат взвешивания.

П р и м е ч а н и е — Если выполняются все вышеперечисленные требования, то для нагревания достаточно 12 ч, чтобы фактическая массовая доля золы всех испытуемых материалов была доведена до постоянного содержания

Вынимают из печи контейнер с его содержимым. Накрывают контейнер и охлаждают его до температуры 200°С, а затем помещают его в эксикатор. Не взвешивают контейнер до тех пор, пока его температура не достигнет температуры окружающей среды.

Взвешивают контейнер с его содержимым с погрешностью ± 0.2 мг.

Записывают эту массу как G_3 .

8.4 Расчет

Массовую долю золы а в процентах рассчитывают по формуле

$$a = 100 \cdot \frac{\text{масса остатка}}{\text{масса исходной сухой пробы } \% = 100 \cdot \frac{G_3 - G_1}{G_2 - G_1} \%.$$
 (23)

В соответствии с вышеперечисленными условиями между заказчиком и заводом-изготовителем должно быть проведено не менее пяти испытаний, если не было между ними особой договоренности.

Среднее арифметическое значение этих результатов рассматривают как фактическую массовую долю золы; необходимо указать степень зольности.

Допускаемое расхождение между результатами параэлельных определений не должно превышать указанного в таблице 11.

Таблива!!

Массовая доля золы, %	Допускаемое расхождение между результатами параллевыных определении, % отн.
До 1 включ	0.05
CB 1 40 3	0,25
" 3	0,50

За окончательный результат принимают среднее арифметическое двух параллельных определений. При этом не допускается брать для расчета среднего значения результаты параллельных определений, если одно из них не соответствует значениям, указанным в стандартах или технических условиях на щетки конкретных марок.

Погрешность измерения ±5%.

Если ко времени поступления заказа на изделия на заводе-и потовителе было установлено номинальное значение массовой доли золы, то в этом случае фактическую массовую долю золы необходимо сравнить с номинальным значением массовой доли золы. Фактическаз: массовая доля золы должна находиться между пределами, указанными на графике рисунка 13.

П р и м е ч в н и е — В настоящее время пределя, указанные на рисуны, 13 применимы только для сравнения (сверки)

8.5 Проведение испытаний металлосодер жащих шеток

Так как для определения массовой доли золы материала металлографитных щеток требуются различные методы испытания, в зависимости от наличия или отсутствия главных элементов или соединений, таких как серебро, олово, молибден, пластмасса и т.д., в данном стандарте не представлен ни один из методов испытания.

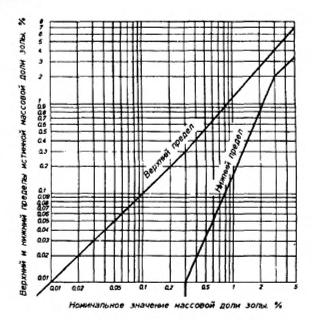


Рисунок 13 — Верхний и нижний пределы массовой доли золы для различных ее номинальных эначений

ПРИЛОЖЕНИЕ А (обязательное)

МЕТОД ОПРЕДЕЛЕНИЯ ПИКНОМЕТРИЧЕСКОЙ ПЛОТНОСТИ

Метод распространяется на щетки, а также на другие электроугольные изделия и электроугольный полуфабрикат

Метод основан на сравнении масс одинаковых объемов испытуемого веществы и жидкости с известной плотностью

- 1 Методы отбора и подготовки проб
- Лабораторную пробу отбирают в соответствии с объемами выборки, установленными в технических условиях или (и) технологической документации на изчелия конкретных марок
- 1.2 Лабораторную пробу измельнают так, чтобы просенть без остатка через сетку. 025 по ГОСТ 6613.

Сетку, ступку и пестик тщательно протирают спиртом

Заварочные порошки просеивают через сетку 025 без дополнительного измельчения

- 2 Аппаратура, материалы, реактивы
- весы лабораторные общего назначения 2-га класса с ценой деления 0,0001 г и наибольшим пределом взвешивания 200 г — по ГОСТ 24104,
- шкиф сушильный вакуумный, обеспечивающий остаточное даклёние 1333 2 Па (10 мм рт ст.),
- термостат видяной, обеспечивающий постоянство температуры в интерыте 20-25°C с погрешностью z0.5°C.
- термометр стек кянный технический с пределами измерений да 100°C -- по нормативно-технический документации;
 - ареометр со шкалой от 0,940 да 1,010 г/см³ ~ по ГОСТ 18481.
 - часы бытовые любого типа.
 - мырля бытовая сзопчатобумажная по ГОСТ 11109,
 - пикнометры стеклянные вчестимостью 25 и 50 мл типе Т1МЖ по ГОСТ 22524
 - цилинар мерный вместимостью 250 мл по ГОСТ 1770,
 - колбы мерные вместимостью 1 л -- по ГОСТ 1770.
 - пипетка вместимостью 1 мл по ГОС Г 29227;
 - воронки стеклячные по ГОСТ 23932,
 - спирт этиховый no FOCT 18300,
 - вода дистиллированная;
 - кислота азотная по ГОСТ 4401 или ГОСТ 11125.
- аммоний азотнок ислый по ГОСТ 22867, пятипроцентный кислый раствор которого готовят следукищим образом. 50 г азотнокислого аммония взвешивают с точностью до 10,01 г, помещают в мерную колбу вместимостью 1 л, растворяют в дистилированной воде, добавляют 20 мл азотной кислоты, доводят объем до метки дистиллированной водой и перемешивают;
- пикнометрическая жидкость, состоящая из 300 мл этилового спирта и 1000 кл пятипроцентного кислого раствора азотнокислого аммония
 - 3 Подготовка к анализу
 - 3.1. Перед проведением анализа проводят калибровку пикнометрон

Чистый, сухой пикнометр, предварительно взяешенный с погрешностью 20.0002 г.

заполняют пикнометрической жидкостью выше метки пикнометра, закрывают пробкой, помещают в термостат и выдерживают в течение от 30 до 40 мин при температуре (20.0 ± 0.5)*C

З'ровень воды в термостате должен быть приблизительно на 5 мм ниже метки пикнометра

3.2 Пикнометр вынимают из термостата, уровень жидкости в нем донодят до метки, закрывают пробкой, тщательно вытирают и взвешивают.

3.3 Массу пикнометрической жидкости в объеме пикнометра определяют как разность массы пикнометра с жидкостью и массы пустого пикнометра.

3 4 Определение плотности пикнометрической жидкости

Пилиндр вместимостью 250 мл наполняют пикнометрической жидкостью, помещают в термостат и выдерживают при температуре калибровки пикнометра в течение от 30 до 40 мин. Измерхют плотность пикнометрической жидкости вреометром с погрешностью ±0.001 г/см².

4 Проведение анализа

- 4 1 Часть аналитической пробы помещают через воронку в чистый, сухой, предварительно казиброванный и озвещенный пикнометр, заполняя 0,20—0,25 часть его объема, и взвещивают. Анализ проводят параллельно не менее чем в двух навесках.
 - 4.2 Все взвенивания проводят с погрешностью ± 0,0002 г.
- 4.3 Пикнометр с анализируемым материалом заполняют пикнометрической жидкостью известной плотности на 0,75 объема пикнометра, тщательно взбалтывают до полного смачивания анализируемого материала и вакуумируют при остаточном давлении 20264.9 Па (0,2 атм) в течение 30 мин.
- 4.4 По истечении времени вакуумирования пикнометр вынимают из вакуумного сучильного икафа, закрывают пробкой, тицательно взбалтивают содержимое пикнометра, затем добавляют пикнометрическую жидкость выше метки, снова закрывают пробкой и помещают в термостат на (35»5) мин при температуре (20.0±0.5)°C.
 - 4.5 Дальнейшие операции проводят в соответствии с п.3.2 настоящего приложения
 - 5 Расчет
- Пикнометрическую плотность (в) в граммах на кубические сантиметры рассчитывают по формуле

$$\sigma = \frac{(m_2 - m_1) \ \sigma_{\infty}}{m - (m_2 - m_2)}, \quad (A \ 1)$$

где т — масса пикнометрической жидкости в объеме пикнометра, г;

т) - масса пустого пикнометра, г:

т2 — масса пикнометра с навеской анализируемого материала, г,

 т.; — масса пикнометра с пикнометрической жидкостью и навеской анализируемого материала, е;

таотность пикнометрической жидкости, г/см³

5.2 За результот определения принимают среднее арифметическое значение двух парамельных определений.

 Допустимое расхождение между результатами параллельных определений не должно превышать 0,03 г/см³

ПРИЛОЖЕНИЕ Б (справочное)

ВИФАЧТОИГЛАИЗ

ФЭО:001.064 Паспорт. Весы технические с приспособлением для гидростатического взвешивания

УДК 621.3.047.4.006 354 ОКС 29 160 10 ЕЗ9 ОКП 349500 — 349600

Ключевые слова: физико-химические свойства материала для щеток электрических машин, электроугольный полуфабрикат, кажущаяся плотность, кажущаяся пористость, общая пористость, твердость по Шору, твердость по Роквеллу, удельное электрическое сопротивление, предел прочности при поперечном изгибе, массовая доля золы, испытуемый образец, оборудование, подготовка к испытанию, испытание, расчет, погрешность измерения

Редактор Р. Г. Говердовская
Технический редактор О. Н. Выссова
Корректор В. С. Червыя
Компьютерная верстка Е. Н. Мартичыкаюма

Сдано в набор 69 01 96. Подинсано в вечать 21 03 96. Усл. веч. и. 2 56. Усл. кр.-отт. 2,68. Уч.-игд. л. 2 50. Тираж 200 экл. С3306. Зак. 160

ИПК И дательство стандартов, 107076 Москва. Кололечный пер 14

> ЛР № 021007 от 10 08 95 Набрано в Издательстве на ПЭВМ

Филиал ИПК Издательство стандартов тип: Московский печатник Москов Лялин пер , 6