РЫБА, МОРСКИЕ МЛЕКОПИТАЮЩИЕ, МОРСКИЕ БЕСПОЗВОНОЧНЫЕ И ПРОДУКТЫ ИХ ПЕРЕРАБОТКИ

Методика измерения массовой доли аммиака в рыбе

Издание официальное

FOCT P 50846-96

Предисловие

1 РАЗРАБОТАН Всероссийским научно-исследовательским институтом прудового рыбного хозяйства (ВНИИПРХ)

ВНЕСЕН Техническим комитетом по стандартизации ТК 300 «Рыбные продукты пищевые, кормовые, технические и упаковка»

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 10 января 1996 г. № 12

3 ВВЕДЕН ВПЕРВЫЕ

4 ПЕРЕИЗДАНИЕ, Июнь 2010 г.

© ИПК Издательство стандартов, 1996 © СТАНДАРТИНФОРМ, 2010

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

РЫБА, МОРСКИЕ МЛЕКОПИТАЮЩИЕ, МОРСКИЕ БЕСПОЗВОНОЧНЫЕ И ПРОДУКТЫ ИХ ПЕРЕРАБОТКИ

Методика измерения массовой доли аммиака в рыбе

Fish, sea mammals, sea invertebrates and products of their treatment. Methods of measuring ammonia mass fraction in fish

Дата введения 1997-01-01

1 Область применения

Настоящий стандарт распространяется на рыбное сырье и рыбную продукцию (рыба холодного копчения и соленая) и устанавливает методы измерения массовой доли аммиака: фотометрический и обратного титрования избытка трихлоруксусной кислоты.

Данная методика предназначена для производственных лабораторий и лабораторий Службы лабораторного контроля Комитета Российской Федерации по рыболовству.

2 Нормативные ссылки

В настоящем стандарте использованы есылки на следующие стандарты:

ГОСТ 1770—74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 3769-78 Реактивы. Аммоний сернокислый. Технические условия

ГОСТ 4108 - 72 Реактивы, Барий хлорид 2-водный. Технические условия

ГОСТ 4204-77 Реактивы, Кислота серная. Технические условия

ГОСТ 4328-77 Реактивы. Натрия гидроокись. Технические условия

ГОСТ 4517—87 Реактивы. Методы приготовления вспомогательных реактивов и растворов, применяемых при анализе

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 7631—2008 Рыба, нерыбные объекты и продукция из них. Методы определения органолептических и физических показателей.

ГОСТ 7636—85 Рыба, морские млекопитающие, морские беспозвоночные и продукты их переработки. Методы анализа

ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 21239—93 Инструменты хирургические. Ножницы. Общие технические требования и методы испытаний

ГОСТ 21240—89 Скальпели и ножи медицинские. Общие технические требования и методы испытаний

ГОСТ 21241—89 Пинцеты медицинские. Общие технические требования и методы испытаний

ГОСТ 21400—75 Стекло химико-лабораторное. Технические требования. Методы испытаний

ГОСТ 22180-76 Кислота шавелевая. Технические условия

ГОСТ 24104—88* Весы лабораторные общего назначения и образцовые. Общие технические условия

ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

 С Гиюля 2002 г. введен в действие ГОСТ 24104—2001 (На территории Российской Федерации действует ГОСТ Р 53228—2008).

FOCT P 50846-96

ГОСТ 29227—91 (ИСО 835-1—81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 31339—2006 Рыба, нерыбные объекты и продукция из них. Правила приемки и методы отбора проб

3 Отбор проб

- Отбор проб на анализ проводится по ГОСТ 7631, ГОСТ 31339.
- 3.2 Пробы рыб отбирают в разных местах холодильной камеры, включая участки, близко расположенные к месту утечки аммиака. В местах складирования пробы отбирают с внешних поверхностей блока, бурта, штабеля. В месте взятия пробы отбирают несколько рыб общей массой 300 г.
 - Отбор проб проводят с помощью ножей, пинцетов и другого инвентаря.
 - 3.4 Подготовка к анализу средней пробы проводится по ГОСТ 7636.
- 3.5 Пробы помещают в герметично закрываемые стеклянные банки, снабженные этикеткой с указанием:
 - даты отбора пробы;
 - номера холодильной камеры или места взятия пробы;
 - наименования рыбного сырья или продукции;
 - количества проб;
 - предназначения проб;
 - должности, фамилии, имени и отчества лиц, отбиравших пробы на анализ.
- Этикетки пишут на пергаментной бумаге простым карандашом и дублируют в журнале отбора проб.
- 3.7 Контрольную (не подвергшуюся воздействию паров аммиака) пробу отбирают массой 300 г по 3.3—3.6.
- 3.8 Пробы рыбного сырья и рыбной продукции, если они не могут быть проанализированы сразу, хранят при температуре от 0 до 4 °C. Срок хранения не более двух суток.

4 Фотометрический метод

4.1 Аппаратура, материалы, реактивы

Бюксы стеклянные с притертой пробкой вместимостью 50 см3 по ГОСТ 25336.

Банки стеклянные широкогордые с крышкой вместимостью 1000 см³ по ГОСТ 25336.

Весы аналитические 2-го класса точности с наибольшим пределом взвешивания 200 г по ГОСТ 24104.

Воронки химические диаметром 3, 5, 7 см по ГОСТ 25336.

Колбы мерные вместимостью 50, 100, 1000 см3 с шлифом по ГОСТ 1770.

Пробирки градуированные вместимостью 10 см3 по ГОСТ 25336.

Пипетки вместимостью 1, 2, 5, 10 см3 по ГОСТ 29227.

Палочки стеклянные диаметром 2-4 мм разной длины по ГОСТ 21400.

Бумага фильтровальная по ГОСТ 12026.

Ножницы по ГОСТ 21239.

Пинцеты по ГОСТ 21241.

Скальпели по ГОСТ 21240.

Микроизмельчитель тканей РТ-2.

Фотоэлектроколориметр любой марки.

Вода дистиллированная по ГОСТ 6709.

Кислота серная по ГОСТ 4204.

Аммоний сернокислый по ГОСТ 3769.

Реактив Несслера по ГОСТ 4517.

Все реактивы должны быть х.ч. или ч.д.а. Допускается использование других средств измерений, материалов и реактивов, по своим характеристикам не уступающих указанным выше.

4.2 Сущность метода

Метод основан на способности аммиака образовывать окрашенное в желто-коричневый цвет соединение с реактивом Несслера 1. Интенсивность окраски раствора, пропорциональная массовой доле аммиака, измеряют на фотоэлектрическом колориметре при длине волны 400—440 нм.

Минимально определяемое значение массовой доли аммиака в рыбе составляет 0.05 %.

4.3 Подготовка к измерениям

4.3.1 Приготовление безаммиачной дистиллированной воды

Дистиллированную воду проверяют на содержание аммиака. Для этого к 5 см³ воды прибавляют 0,1 см³ реактива Несслера. При обнаружении аммиака (появляется желтоватое окрашивание) дистиллированную воду пропускают через колонку с активированным углем марки БАУ, катионитом в Н*-форме или кипятят в колбе до уменьшения объема на ³/₃ и снова проверяют на отсутствие аммиака.

Эту воду используют для приготовления реактивов и разбавления пробы.

4.3.2 Применяют готовый реактив Несслера или готовят его по ГОСТ 4517 с помощью безаммиачной воды.

4.3.3 Приготовление основного стандартного раствора

0,236 г сернокислого аммония (NH₄)₂SO₄, предварительно высущенного до постоянной массы при температуре 105 °C, растворяют в мерной колбе вместимостью 500 см³ в небольшом количестве безаммиачной дистиллированной воды и доволят водой до метки. В 1 см³ этого раствора содержится 0,1 мг азота. Раствор хранят в склянке из темного стекла в течение полутода, если нет помутнения, хлопьев, осадка.

4.4 Построение градуировочного графика

В шесть мерных колб вместимостью 50 см³ каждая вносят: 0; 0,25; 0,5; 1,0; 1,5; 2,0 см³ стандартного раствора, добавляют 25—30 см³ дистиллированной воды и 4 см³ реактива Несслера, доводят объем дистиллированной водой до метки, тщательно перемешивают и через 10 мин колориметрируют на фотоэлектроколориметре в кюветах с толщиной поглощающего слоя 20 мм при длине волны 440 нм. Полученные растворы содержат 0; 0,025; 0,05; 0,1; 0,15; 0,20 мг азота в 1 см³. По полученным результатам строят градуировочный график, откладывая по оси абсцисс массовые доли аммиака, мг/см³, а по оси ординат — соответствующие им значения оптической плотности. График должен иметь прямолинейный характер.

4.5 Проведение измерений

Из каждой отобранной пробы взвешивают три навески костно-кожно-мышечного препарата массой 1,0 г, округляя с точностью до 0,0001 г. Навески заливают 10 см³ 0,1 н. раствора серной кислоты
и гомогенизируют на микроизмельчителе РТ-2 в течение 30 с. Полученные гомогенаты фильтруют
через бумажные фильтры в градуированные пробирки. Количество фильтрата в каждой пробирке
доводят 0,1 н. раствором серной кислоты до 10 см³. Затем из каждой пробирки берут 1 см³ фильтрата
и переносят в соответствующие мерные колбы объемом 50 см³. В каждую мерную колбу добавляют по
20 — 30 см³ дистиллированной воды и 4 см³ реактива Несслера. После чего объем содержимого колб
доводят дистиллированной водой до метки. Раствор тщательно перемешивают и через 10 мин колориметрируют на фотоэлектроколориметре в кюветах с толщиной оптического слоя 20 мм при длине
волны 440 нм.

Раствором сравнения служит смесь из 4 см³ реактива Несслера и дистиллированной воды, приготовленная в мерной колбе объемом 50 см³.

Аналогично проводят измерение массовой доли аммиака в контрольных (не подвергшихся воздействию паров аммиака) пробах.

4.6 Обработка результатов

Сначала рассчитывают массовые доли азота N_1 и N_2 , %, в контрольной (не подвергшейся воздействию паров аммиака) и опытной (подвергшейся воздействию паров аммиака) пробах по формулам:

$$N_1 = \frac{n_i - Y - K_p - 100}{M_1 - 1000};$$
(1)

$$N_2 = \frac{n_2 \cdot Y \cdot K_p \cdot 100}{M_2 \cdot 1000},$$
 (2)

где n₁ и n₂ — концентрации азота в опытной и контрольной пробах, найденные по градуировочному графику, мг/см³;

У — объем фильтрата, см³;

 K_a — коэффициент разведения;

 M_1 и M_2 — массы опытной и контрольной проб, г;

1000 — коэффициент пересчета миллиграммов в граммы.

209

ГОСТ P 50846-96

По разности массовых долей азота в опытной и контрольной пробах рассчитывают массовую долю аммиака, поглощенного мясом рыбы, A, %, по формуле

$$A = (N_1 - N_2) \cdot 1,21 \tag{3}$$

где N, и N, — см. формулы 1 и 2;

1,21 — коэффициент пересчета массовой доли азота на массовую долю аммиака.

За результат измерений принимают среднеарифметическое значение трех измерений, допускаемые расхождения между которыми не должны превышать 10 %. Вычисления проводят с точностью до второго десятичного знака.

Границы интервала абсолютной погрешности измерений массовой доли аммиака при доверительной вероятности P = 0.95 рассчитывают по формуле

$$\Delta = \pm (0.018 + 0.077 A), \tag{4}$$

где A — результат измерений массовой доли аммиака.

5 Метод обратного титрования избытка трихлоруксусной кислоты

5.1 Анпаратура, материалы, реактивы

Бюксы стеклянные с притертой пробкой вместимостью 50 см³ по ГОСТ 25336.

Бюретки вместимостью 50 см³ по ГОСТ 25336.

Весы аналитические 2-го класса точности с наибольшим пределом взвешивания 200 г по ГОСТ 24104.

Воронки химические по ГОСТ 25336.

Колбы мерные вместимостью 50, 100 и 1000 см1 по ГОСТ 1770.

Цилиндры мерные вместимостью 25 и 50 см3 по ГОСТ 1770.

Пробирки градуированные вместимостью 10 см3 по ГОСТ 25336.

Микроизмельчитель тканей РТ-2.

Ножницы по ГОСТ 21239.

Пинцеты по ГОСТ 21241.

Скальпели по ГОСТ 21240.

Фильтры бумажные по ГОСТ 12026.

Бария хлорид по ГОСТ 4108.

Кислота серная по ГОСТ 4204.

Кислота трихлоруксусная [2].

Кислота шавелевая 0,1 н. по ГОСТ 22180.

Натрия гидроксид по ГОСТ 4328.

Фенолфталеин [3].

Вода дистиллированная по ГОСТ 6709.

Кальция хлорид [1].

Все реактивы должны быть х.ч. или ч.д.а. Допускается использование других средств измерений, материалов и реактивов, по своим характеристикам не уступающих указанным выше.

5.2 Сущность метода

Метод основан на способности трихлоруксусной кислоты (ТХУК) связывать свободный аммиак. Избыток ТХУК оттитровывают 0,1 н. раствором гидроксида натрия в присутствии индикатора фенолфталеина.

Минимально измеряемое значение массовой доли аммиака в рыбе составляет 0,6 %.

5.3 Подготовка к измерениям

5.3.1 Приготовление безаммиачной дистиллированной воды

Cm. 4.3.1.

4

- 5.3.2 Приготовление 5 %-ного раствора трихлоруксусной кислоты (ТХУК)
- 5,0 г трихлоруксусной кислоты растворяют в мерной колбе вместимостью 100 см³ в небольшом количестве безаммиачной дистиллированной воды и доводят объем водой до метки.

5.3.3 Приготовление 0,1 н. раствора гидроксида натрия

Гранулы гидроксида натрия помещают в стакан и обмывают 2—3 раза небольшими порциями дистиллированной воды, каждый раз сливая ее и заменяя свежей. При этом большая часть соды, содержащейся на поверхности гранул, растворится. После этого быстро взвешивают на технических весах требуемое количество гранул. Во избежание порчи весов при взвешивании гранулы помещают на кусок полиэтиленовой пленки. Навеску гранул помещают в мерную колбу вместимостью 1 дм³.

Для приготовления 1 дм³ 0,1 н. раствора гидроксида натрия нужно 4 г гранул, но с учетом содержащейся в них воды необходимо взять 4,5 г. Гранулы помещают в мерную колбу, растворяют дистиллированной водой и доводят объем водой до метки.

К полученному раствору добавляют 10-15 см³ 2 н. раствора хлорида бария до появления осадка, который отстаивают в течение суток. После этого проверяют полноту осаждения ионов CO^{-2}_{-3} , мешающих титрованию. Для этого к 1-2 см³ прозрачного раствора гидроксида натрия приливают 1-2 см³ раствора серной кислоты. Образование мути свидетельствует о том, что ионы CO^{-2}_{-3} осаждены полностью.

Полученный раствор гидроокиси натрия защищают от поглощения ${\rm CO}_2$ из воздуха с помощью прокаленного хлорида кальция, помещенного в хлоркальциевую трубку.

5.3.4 Определение поправочного коэффициента раствора гидроксида натрия по щавелевой кислоте.

В три колбы вместимостью 100 см³ каждая помещают по 25 см³ 0,1 н. раствора щавелевой кислоты, приготовленного из фиксанала, прибавляют 8—10 капель фенолфталениа и оттитровывают раствором гидроксида натрия. Появляющаяся при этом розовая окраска раствора должна быть устойчивой в течение 30 с.

Поправочный коэффициент К 0,1 н. раствора гидроксида натрия рассчитывают по формуле

$$K = \frac{25}{V},\tag{5}$$

где V — объем раствора гидроксида натрия, израсходованный на титрование 25 см³ 0,1 н. раствора шавелевой кислоты, см³.

Результат рассчитывают как среднеарифметическое значение трех определений. Вычисления произволят с точностью до второго десятичного знака.

5.4 Проведение измерений

Из каждой отобранной пробы взвешивают три навески костно-кожно-мышечного препарата массой 1,0 г, округляя с точностью до 0,0001 г. Навески заливают 10 см³ 5 %-ного раствора трихлоруксусной кислоты и гомогенезируют на микроизмельчителе РТ-2 в течение 30 с. Полученные гомогенаты фильтруют через бумажные фильтры в градуированные пробирки. Объем фильтрата в каждой пробирке доводят 5 %-ным раствором трихлоруксусной кислоты до 10 см³.

В коническую колбу вместимостью 100 см³ отбирают по 2 см³ фильтрата каждой из анализируемых проб, добавляют 2 капли 1 %-ного раствора фенолфталенна и титруют 0,1 н. раствором гидроксида натрия до появления неисчезающей розовой окраски.

Аналогично проводят определение массовой доли аммиака в контрольных (не подвергшихся воздействию паров аммиака) пробах.

5.5 Обработка результатов

Сначала рассчитывают массовые доли аммиака A_1 и A_2 , %, в опытной (подвергшейся воздействию паров аммиака) и контрольной (не подвергшейся воздействию паров аммиака) пробах по формулам:

$$A_{\rm I} = \frac{(V_0 - V_1) \cdot K \cdot 0,0017 \cdot V \cdot 100}{2 M_1}; \tag{6}$$

$$A_2 = \frac{(V_0 - V_2) \cdot K \cdot 0,0017 \cdot V \cdot 100}{2 M_2}.$$
 (7)

где V_0 — объем 0,1 н. раствора гидроксида натрия, израсходованный на титрование 2 см^3 5 %-ного раствора ТХУК, см³;

211

FOCT P 50846-96

 V_1 и V_2 — объем 0,1 н. раствора гидроокиси натрия, израсходованный на титрование 2 см³ фильтрата опытной и контрольной проб, см³;

К — поправочный коэффициент концентрации гидроксида натрия;

0.0017 - коэффициент пересчета на аммиак;

V – объем фильтрата, см³;

2 — объем фильтрата анализируемых проб, взятый для титрования, см³;

М. и М. — навески опытной и контродьной проб, г.

По разнице массовых долей аммиака в опытной и контрольной пробах рассчитывают массовую долю аммиака, поглощенного мясом рыбы, A, %, по формуле

$$A = A_1 - A_2, \tag{8}$$

где A_1 и A_2 см. формулы 6 и 7.

За результат измерений принимают среднеарифметическое значение результатов трех измерений, допускаемые расхождения между которыми не должны превышать 30%. Вычисления производят с точностью до второго десятичного знака.

Границы интервала абсолютной погрешности измерений массовой доли аммиака при доверительной вероятности P = 0.95 рассчитывают по формуле

$$\Delta = \pm (0.45 + 0.44 A), \tag{9}$$

где A — результат измерений массовой доли аммиака.

Результат расчета погрешности округляют до второго десятичного знака.

6 Меры предосторожности при работе с зараженными пробами

Все работы по определению аммиака в пробах рыбы осуществляют в действующем вытяжном шкафу, скорость тяги воздуха в котором должна быть не менее 1,0 м/с при подъеме половины штор на высоту 35 см.

Работу с зараженными пробами выполняют в халате из плотной ткани, в фартуке из полимерной пленки или прорезиненной ткани, в резиновых перчатках и нарукавниках из полимерной пленки.

После работы перчатки, не снимая с рук, тщательно обмывают водой с мылом, затем снимают и моют руки.

Каждый работник лаборатории должен иметь подогнанный и проверенный личный противогаз, снабженный коробкой марки КД.

Для нейтрализации рыбных отходов, зараженных аммиаком, используют 1-20 %-ные растворы соляной, серной, азотной и других кислот, а также воду.

приложение а (справочное)

Библиография

- [1] ТУ 6—01—20—66—89 Хлорат-хлорид кальция [2] ТУ 6—09—1926 Трихлоруксусная кислота, чистая [3] ТУ 6—09—5360—88 Фенолфталеин. Индикатор

ГОСТ Р 50846-96

УДК 664.951.2:006.354

OKC 67.120.30 71.040.10

H29

ОКСТУ 9209

Ключевые слова: аммиак, фотометрический метод, серная кислота, реактив Несслера, титрование, трихлоруксусная кислота, фенолфталеин

СОДЕРЖАНИЕ

ГОСТ 7630—96	Рыба, морские млекопитающие, морские беспозвоночные, водоросли и про- дукты их переработки. Маркировка и упаковка	3
ΓΟCT 7631-2008	Рыба, нерыбные объекты и продукция из них. Методы определения органолепти-	
	ческих и физических показапелей	21
ГОСТ 7636—85	Рыба, морские млекопитающие, морские беспозвоночные и продукты их пере-	
	работки. Методы анализа	37
ΓΟCT 11771-93	Консервы и пресервы из рыбы и морепродуктов. Упаковка и маркировка	125
ΓΟCT 20221-90	Консервы рыбные. Метод определения отстоя в масле	139
ΓΟCT 20438—75	Водоросли, травы морские и продукты их переработки. Правила приемки. Методы	
	органолептической оценки качества. Методы отбора проб для лабораторных ис-	
	пътаной	143
ΓΟCT 26185-84	Водоросли морские, травы морские и продукты их переработки. Методы анализа	153
ГОСТ 31339—2006	Рыба, нерыбные объекты и продукция из них. Правила приемки и методы отбора	
	проб	189
ΓΟCT P 5084696	Рыба, морские млекопитающие, морские беспозвоночные и продукты их пере-	
	работки. Методика измерения массовой доли аммиака в рыбе	205

Рыба и рыбные продукты

МЕТОДЫ АНАЛИЗА МАРКИРОВКА УПАКОВКА

B3 8-2009

Редактор М. И. Максимова Технический редактор В. Н. Прусакова Корректор С. И. Фирсова Компьютерная верстка З. И. Мартыновой

Сдано в набор 18.05.2010. Подписано в печать 19.07.2010. Формат 60×84½, Бумага офестиая. Гарнитура Таямс. Печать офестиая. Усл. печ. л. 25.11. Уч.-изд. л. 21.80. Тираж 438 экл. Зак. 849. Изд. № 3904/2.

ФГУП «СТАНДАРТИНФОРМ», 123995 Москва, Гранатими пер., 4.
www.gostinfo.ru info@gostinfo.ru
Набрано и отпечатано в Калужской типографии стандартов, 248021 Калуга, ул. Московская, 256.