МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МАСЛА РАСТИТЕЛЬНЫЕ

Методы определения массовых долей витаминов A и E

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ М н с к

Предисловие

1 РАЗРАБОТАН МТК 238 и Всероссийским научно-исследовательским институтом жиров (ВНИИЖ)

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 10 от 4 октября 1996 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации	
Азербайджанская Республика	Азгосстандарт	
Республика Армения	Армгосстандарт	
Республика Белоруссия	Госстандарт Белоруссии	
Республика Казахстан	Госстандарт Республики Казахстан	
Киргизская Республика	Киргизстандарт	
Республика Молдова	Молдовастандарт	
Республика Таджикистан	Таджикский государственный центр по стандартизации метрологии и сертификации	
Туркменистан	Туркменглавгосинспекция	
Республика Узбекистан	Узгосстандарт	
Украина	Госстандарт Украины	
Российская Федерация	Госстандарт России	

- 3 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 12 мая 1997 г. № 158 межгосударственный стандарт ГОСТ 30417—96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г. с правом досрочного введения
 - 4 ВВЕДЕН ВПЕРВЫЕ
 - 5 ПЕРЕИЗДАНИЕ

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

101

II

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МАСЛА РАСТИТЕЛЬНЫЕ

Методы определения массовых долей витаминов А и Е

Vegetable oils. Methods for determination of vitamins A and E mass fractions

Дата введения 1998-01-01

1 Область применения

Настоящий стандарт распространяется на растительные масла и устанавливает методы определения массовых долей витаминов А и Е.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 1770—74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 4147-74 Железо (III) хлорид 6-водный. Технические условия

ГОСТ 4166-76 Натрий сернокислый. Технические условия

ГОСТ 4919.1—77 Реактивы и особо чистые вещества. Методы приготовления растворов индикаторов

ГОСТ 5471-83 Масла растительные, Правила приемки и методы отбора проб

ГОСТ 5815-77 Ангидрид уксусный. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 14919—83 Электроплиты, электроплитки и жарочные электрошкафы бытовые. Общие технические условия

ГОСТ 18300-87 Спирт этиловый ректификованный технический. Технические условия

ГОСТ 20015-88 Хлороформ, Технические условия

ГОСТ 20490-75 Калий марганцовокислый. Технические условия

ГОСТ 24104—88 Весы лабораторные общего назначения и образцовые. Общие технические условия

ГОСТ 24363-80 Калия гидроокись. Технические условия

ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 29227—91 (ИСО 835-1—81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

3 Отбор проб

Отбор проб растительных масел — по ГОСТ 5471.

4 Определение массовой доли витамина А

4.1 Аппаратура, материалы, реактивы

Весы лабораторные — по ГОСТ 24104 2-го класса точности и наибольшим пределом взвешивания 200 г.

Издание официальное

Спектрофотометр СФ-26 или подобный с такой же разрешающей способностью или спектроколориметр, или фотоколориметр ФЭК-56 или подобный, имеющий светофильтр с эффективной длиной волны 620 нм.

Баня воляная.

Электроплитка — по ГОСТ 14919 закрытого типа.

Колба К-1-250-29/32 по ГОСТ 25336.

Колба мерная 2-100-2-10/19 по ГОСТ 1770.

Пробирки П-4-10-14/23 XC по ГОСТ 25336.

Цилиндры 1-250 или 3-250 по ГОСТ 1770.

Воронка В-25-38 ХС или В-36-50 ХС по ГОСТ 25336.

Колба Ки-2-250-34 ТХС по ГОСТ 25336.

Воронка ДВ-1-500 по ГОСТ 25336.

Пипетка 2-1-1-1 по ГОСТ 29227.

Ретинола пальмитат [1].

Ретинола ацетат [2].

Испаритель ротационный ИР-1М или установка, состоящая из колбы K-1-100-29/32 TC по ГОСТ 25336, холодильника ХЛТ-1-400/600/-14/23 по ГОСТ 25336, алонжа АКП-14/23 TC по ГОСТ 25336, перехода П-10-29/32-14/23 TC по ГОСТ 25336, колбы K-1-250-14/23 TC по ГОСТ 25336, наеоса водоструйного по ГОСТ 25336.

Бумага фильтровальная по ГОСТ 12026.

Спирт этиловый ректификованный технический по ГОСТ 18300.

Калия гидроокись по ГОСТ 24363, ч., ч.д.а.

Кальций хлористый плавленый [3].

Калий марганцовокислый по ГОСТ 20490, ч., ч.д.а.

Кислота аскорбиновая [4].

Натрий сернокислый по ГОСТ 4166, ч., ч.д.а.

Сурьма треххлористая, ч., ч.д.а., по нормативному документу.

Ангидрид уксусный по ГОСТ 5815.

Эфир этиловый очищенный [5] или эфир медицинский [6].

Фенолфталеин [7], спиртовой раствор с массовой долей индикатора 1 %; готовят по ГОСТ 4919.1.

Вода дистиллированная по ГОСТ 6709.

Хлороформ по ГОСТ 20015.

Допускается применение другой аппаратуры или реактивов, по качеству и метрологическим характеристикам не уступающих приведенным выше.

4.2 Условия выполнения измерений

Выполнение измерений оптической плотности продукта колориметрической реакции следует проводить быстро в течение 5-6 с.

4.3 Подготовка к проведению измерения

4.3.1 Подготовка растворов и реактивов

4.3.1.1 Приготовление безводного сернокислого натрия

Сернокислый натрий нагревают в фарфоровой чашке при температуре (100±5) °C до тех пор, пока не образуется рыхлый порошок.

4.3.1.2 Очистка диэтилового эфира

В склянку с корковой пробкой взвешивают $(5,0\pm1,0)$ г марганцовокислого калия и $(10,0\pm1,0)$ г гидроокиси калия, заливают 1 дм³ диэтилового эфира и оставляют на сутки в темноте. Затем эфир перегоняют при температуре 33—35 °C.

4.3.1.3 Приготовление сухого хлороформа

Хлороформ сушат над хлористым кальцием в течение суток, затем перегоняют при температуре 60—61 °C и хранят в склянке из темного стекла с притертой пробкой.

4.3.1.4 Приготовление спиртового раствора гидроокиси калия концентрации c (KOH) = 2 моль/дм³

(120±5) г гидроокиси калия растворяют в 1 дм³ спирта. Спиртовую щелочь хранят в холодильнике не более 1 мес.

4.3,1.5 Приготовление раствора треххлористой сурьмы (реагент Карр-Прайса)

В конической колбе взвешивают (20,0±0,5) г треххлористой сурьмы. Результат взвешивания записывают до второго десятичного знака. Добавляют 100 см³ хлороформа и растворяют, нагревая

103

на водяной бане (температура воды не выше 50 °C), периодически встряхивая. Раствор охлаждают, добавляют 2—3 см³ уксусного ангидрида, колбу плотно закрывают и оставляют на ночь для отстаивания. Затем верхнюю прозрачную часть раствора осторожно сливают через бумажный фильтр в темную склянку с притертой пробкой. Раствор годен для работы через сутки.

4.3.2 Построение градуировочного графика

Перед построением градуировочного графика уточняют концентрацию ретинола ацетата или ретинола пальмитата спектрофотометрическим методом в соответствии с [2] или [1].

В мерной колбе взвешивают (0,10±0,01) г масляного концентрата витамина А (ретинола пальмитата или ретинола ацетата). Результат взвешивания записывают до четвертого десятичного знака. Растворяют концентрат в хлороформе, доводят хлороформом до метки и хорошо перемешивают.

Массовую долю витамина A в растворе X_1 , м.е. в 1 см³, вычисляют по формуле

$$X_1 = \frac{c_1 \cdot m_1}{100}, \qquad (1)$$

где c_1 — концентрация витамина A-ацетата (или A-пальмитата), м.е. в 1 г масляного концентрата;

т — масса масляного концентрата, г;

100 — объем хлороформного раствора концентрата витамина А, см³.

Если концентрация витамина A-ацетата (или A-пальмитата) в масляном концентрате выражена в процентах, то концентрацию витамина A X_2 и X_3 , м.е. в 1 см³ хлороформного раствора, вычисляют по формулам:

(для витамина А-ацетата)

$$X_2 = \frac{c_2 \cdot m_2 \cdot 2907000}{100};$$
(2)

(для витамина А-пальмитата)

$$X_3 = \frac{c_2 \cdot m_2 \cdot 1807000}{100},$$
(3)

где c2 — концентрация витамина A-ацетата (или A-пальмитата) в масляном концентрате, г;

т, — масса масляного концентрата, г;

2907000 — активность 1 г витамина А-ацетата с массовой долей 100 %, м.е.;

1807000 — активность 1 г витамина А-пальмитата с массовой долей 100 %, м.е.

Из хлороформного раствора витамина A готовят в пробирках растворы концентрацией витамина A от (5±2) до (40±2) м.е. в 1 см³ с интервалом 5 м.е. Из каждой пробирки отбирают пипеткой по 0,4 см³ раствора в кювету толщиной 1 см, помещают кювету в кюветодержатель фотоэлектроколориметра или спектрофотометра, добавляют 4 см³ раствора треххлористой сурьмы, приготовленного по 4.3.1.5, и быстро измеряют оптическую плотность раствора при длине волны 620 нм. В качестве контроля служит раствор, состоящий из 0,4 см³ хлороформа и 4 см³ раствора треххлористой сурьмы. Для построения градуировочного графика по оси ординат откладывают полученные значения оптической плотности, а по оси абсцисе соответствующую им концентрацию витамина A, м.е. в 1 см³.

Примечания

1 Градуировочный график строится для каждого спектрофотометра или фотоэлектроколориметра и проверяется при смене партий реактивов и приборов путем измерения оптической плотности стандартных растворов двух разных концентраций.

2 В случае длительного хранения масляного концентрата витамина А необходимо один раз в полгода проверять его концентрацию по соответствующему градуировочному графику.

4.4 Проведение измерения

(3±1) г растительного масла взвешивают в колбе. Результат записывают до четвертого десятичного знака. Добавляют (0,1±0,01) г аскорбиновой кислоты и 50 см³ спиртового раствора гидроокиси калия концентрации с (КОН) = 2 моль/дм³.

Колбу соединяют с обратным воздушным холодильником и смесь кипятят на водяной бане в течение 30 мин. После этого содержимое колбы охлаждают и количественно переносят в делительную воронку, дважды ополаскивая колбу порциями дистиллированной воды по 50 см³. Неомыляемые вещества экстрагируют тремя порциями этилового эфира по 50 см³.

Объединенный эфирный экстракт переносят в делительную воронку и промывают дистиллированной водой порциями 50—100 см³ до нейтральной реакции по фенолфталеину.

Промытую эфирную вытяжку сливают в сухую колбу, добавляют (10±1) г сернокислого натрия

и оставляют на 30 мин в темном месте, периодически взбалтывая. Затем содержимое колбы фильтруют через бумажный фильтр. Сернокислый натрий в колбе и фильтр промывают этиловым эфиром. Эфир собирают в колбе и отгоняют при температуре не выше 30 °C. Остаток в колбе, представляющий неомыляемые вещества, после отгонки растворителя должен быть сухим. Если остаток влажный, его растворяют в 20 см³ этилового эфира, добавляют (2,0±0,5) г сернокислого натрия, оставляют на 30 мин в темном месте. Затем содержимое колбы фильтруют через бумажный фильтр, тщательно промывая фильтр и сернокислый натрий этиловым эфиром. Эфир отгоняют в вакууме при температуре не выше 30 °C. Остаток неомыляемых веществ растворяют в 10 см³ хлороформа.

Колориметрическую реакцию и измерение проводят, как указано в 4.3.2.

4.5 Обработка результатов

Массовую долю витамина А Х4, м.е. в 1 г продукции, вычисляют по формуле

$$X_4 = \frac{c_1 \cdot 10}{m_1}$$
, (4)

где c_3 — концентрация витамина A в хлороформном растворе, определенная по градуировочному графику, м.е. в см³ 3

10 — объем раствора неомыляемых веществ в хлороформе, см³;

т₃ — масса пробы, г.

Вычисления проводят до первого десятичного знака с последующим округлением результата до целого числа.

За окончательный результат измерения принимают среднее арифметическое результатов двух параллельных измерений.

Метрологические характеристики метода при доверительной вероятности 0,95 приведены в таблице 1.

Таблипа 1

Значение измеряемой величины, м.с.	Предел возможных значения относительной погрешности измерений, %	Относительное расхождение между результатами двух параллельных определений (от их среднего значения), %
От 10 до 20 включ.	12	17
 20 » 40 включ. 	9	13
 40 » 70 включ. 	7	9

Если расхождение между двумя параллельными измерениями превышает указанное в таблице, измерение следует повторить.

5 Определение массовой доли витамина Е методом тонкослойной хроматографии

5.1 Аппаратура, реактивы, материалы

Спектрофотометр или фотоэлектроколориметр, позволяющий производить измерения при длине волны $\lambda = 520$ нм.

Весы лабораторные по ГОСТ 24104 2-го класса точности с наибольшим пределом взвешивания 200 г или другие весы с таким же классом точности.

Шкаф сушильный лабораторный СЭШ-3М.

Баня водяная.

Колба Кн-1-250-29/32 ТС ГОСТ 25336.

Колба К-1-250-29/32 ТС ГОСТ 25336.

Воронка В-25-38 ХС или В-56-80 ХС ГОСТ 25336.

Воронка ВД-1-250 ХС ГОСТ 25336.

Пробирка П4-25-14/25 ХС ГОСТ 25336.

Холодильник воздушный.

Пипетки 2-1-1-0,5; 1-1-1-1 и 2-1-1-5 ГОСТ 29227.

Цилиндр 1-25 ГОСТ 1770.

Калия гидроокись по ГОСТ 24363, х.ч. или ч.д.а.

Спирт этиловый ректификованный технический по ГОСТ 18300.

ГОСТ 30417-96

Натрий сернокислый по ГОСТ 4166.

Кальций хлористый обезвоженный чистый [3].

Эфир этиловый очищенный [5] или эфир медицинский [6].

Кислота аскорбиновая [4].

Хлороформ по ГОСТ 20015, х.ч.

Калий марганцовокислый по ГОСТ 20490.

Пластинки «Силуфол».

Фенолфталеин [7], спиртовой раствор с массовой долей 1 %; готовят по ГОСТ 4919.1.

Бумага фильтровальная по ГОСТ 12026.

Вода дистиллированная по ГОСТ 6709.

Железо хлористое по ГОСТ 4147, спиртовой раствор с массовой долей 0,25 %.

α, α'-дипиридил или О-фенантролин, спиртовой раствор с массовой долей 0,1 %.

α-токоферола ацетат [8] и [9].

Допускается применение другой аппаратуры или реактивов, по качеству и метрологическим характеристикам не уступающих приведенным выше.

5.2 Подготовка к проведению измерения

5.2.1 Подготовка реактивов

Натрий сернокислый сущат в течение 3-4 ч при температуре (110±3) °C.

Этиловый эфир обрабатывают марганцовокислым калием (5 г на 1 дм³) и гидроокисью калия (10 г на 1 дм³) в течение суток, а затем перегоняют.

Хлороформ сушат в течение суток над хлористым кальцием и перегоняют.

Для работы используют только свежеперегнанные растворители.

Реактив Эммери-Энгеля готовят, смешивая равные объемы растворов хлорного железа и α , α' -дипиридила (О-фенантролина).

Все этапы измерения следует проводить по возможности быстро, предохраняя пробы от попадания на них прямого солнечного света.

5.2.2 Подготовка камеры для хроматографирования

Не менее чем за 30 мин до начала хроматографирования в камеру наливают смесь этилового эфира и гексана (1:1) на высоту 0,5 см.

5.3. Построение градуировочного графика

Градуировочный график строят на основании результатов измерения проб с известным содержанием α-токоферола.

α-токоферол выделяют из препарата α-токоферола ацетата.

Для этого отвешивают в колбу (0.05 ± 0.01) г α -токоферола ацетата с точностью записи результата до четвертого десятичного знака, проводят омыление и выделяют неомыляемые вещества, как указано в 5.4.1.

Эфир из объединенного фильтрата отгоняют на кипящей водяной бане до объема 1—2 см³. Остаток эфира отгоняют под вакуумом при температуре не выше 30 °C. Остаток немедленно растворяют в этиловом спирте.

Количество а-токоферола в выделенном остатке М, г, рассчитывают по формуле

$$M = 0.892m,$$
 (5)

где m — масса α-токоферола ацетата, взятая для анализа, г;

0,892 — содержание α-токоферола в 1 г α-токоферола ацетата.

Необходимый объем этилового спирта должен быть таким, чтобы концентрация α -токоферола в растворе спирта была 1 мг/см³. (Например, если масса α -токоферола 0.053, то объем этилового спирта 53 см³ и т.д.).

Из полученного раствора готовят серию стандартных растворов в соответствии с таблицей 2.

Из каждого раствора в пробирку отбирают пипеткой 1 см³, добавляют 3 см³ этилового спирта, 1 см³ раствора α , α' -дипиридила (или О-фенантролина), взбалтывают, добавляют по каплям 1 см³ раствора хлорного железа, снова взбалтывают. Полученный раствор помещают на 3 мин в темное место, после чего наливают в кювету и измеряют его оптическую плотность на спектрофотометре при λ =500 нм (или фотоэлектроколориметре с зеленым фильтром). В качестве контрольного раствора используют смесь из 4 см³ этилового спирта, 1 см³ раствора α , α' -дипиридила и 1 см³ раствора хлорного железа, приготовленную в тех же условиях.

Таблина 2

Номер раствора	Объем основного раствора, см	Объем добавляемого этилового спирта, см ³	Концентрация полученного раствора α -токоферола (c_i) , mr/cm^3
1	1,0	19,0	0,05
2	0,8	19,2	0,04
3	0.6	19,4	0,03
4	0,4	19,6	0,02
5	0,2	19,8	0.01
6	0,1	19,9	0,005

Градуировочный график строят в координатах: оптическая плотность (Д) — концентрация α -токоферола в анализируемом растворе c_2 , мг/см³, вычисляемая по формуле

$$c_2 = \frac{c_1 \cdot V_1}{6}, \qquad (6)$$

где c_1 — концентрация α -токоферола в соответствующем стандартном растворе, мг/см³;

 V_1 — объем стандартного раствора, взятый для реакции, 1 см³;

6 — объем анализируемого раствора, см³.

Градуировочный график строится для каждого спектрофотометра (фотоэлектроколориметра) и проверяется при смене партий реактивов путем измерения оптической плотности стандартных растворов двух разных концентраций.

5.4 Проведение измерения

5.4.1 Выделение неомыляемых веществ

В конической колбе взвешивают ($3\pm0,2$) г растительного масла. Результат записывают до четвертого десятичного знака. Добавляют ($0,2\pm0,05$) г аскорбиновой кислоты и 30 см^3 свежеприготовленного спиртового раствора КОН концентрацией c (КОН) = 2 моль/дм^3 . Смесь нагревают с обратным холодильником на кипящей водяной бане в течение 15 мин, начиная с момента закипания раствора в колбе.

Содержимое колбы охлаждают и количественно переносят в делительную воронку тремя порциями дистиллированной воды общим объемом 100 см³. Неомыленные вещества экстрагируют этиловым эфиром, тремя порциями по 60 см³. Объединенный эфирный экстракт промывают в делительной воронке дистиллированной водой до нейтральной реакции промывных вод по фенолфталеину.

Промытую эфирную вытяжку помещают в сухую колбу, воронку ополаскивают 20 см³ эфира и сливают в ту же колбу. Засыпают 5—10 г безводного сернокислого натрия и оставляют в темном месте на 30 мин, периодически взбалтывая. Затем содержимое колбы фильтруют через бумажный фильтр. Колбу и фильтр промывают этиловым эфиром, тремя порциями по 10 см³.

Эфир из объединенного фильтрата отгоняют на кипящей водяной бане до объема 1—2 см³. Остаток эфира отгоняют под вакуумом при температуре не выше 30 °C до объема 0,5—0,6 см³.

5.4.2 Выделение витамина Е с помощью тонкослодных хроматографических пластинок

На пластинки «Силуфол» пипеткой наносят количественно (дважды обмывая колбу порциями эфира по 0,5 см³) весь раствор неомыляемых веществ в виде полосы длиной около 10 см, отстоящей на 2 см от нижнего и боковых краев пластинки. После каждого нанесения полосы следует дать эфиру улетучиться.

На одном уровне с пробой на расстоянии 1 см от боковых краев пластинки наносят по капле раствор 1 (см. таблицу 2) концентрацией α-токоферола 0,05 мг/см³ в качестве «свидетеля».

Пластинку «Силуфол» помещают в хроматографическую камеру. В качестве подвижной фазы используют смесь этилового эфира и гексана 1:1. Развитие хроматограммы должно проходить в темноте и заканчиваться при подъеме растворителя до верхнего края пластинки. Пластинку вынимают из камеры, подсушивают на воздухе, затем края пластинки, содержащие «свидетель», опрыскивают реактивом Эммери-Энгеля, предварительно часть пластинки с пробой прикрывая стеклянной пластинкой. Затем пластинку «Силуфол» помещают в темноту на 3 мин, после чего пятна, содержащие α-токоферол, окрашиваются в розовый цвет. Прочерчивают две линии, выше и ниже окрашенных пятен на 2 мм.

Слой силикагеля, заключенный между линиями, соскабливают в бумажный фильтр диаметром

ГОСТ 30417-96

3 см, помещенный в стеклянную воронку, и элюируют токоферолы в градуированную пробирку, промывая силикагель этиловым спиртом 10 раз порциями по 1 см³. Объем элюата доводят этиловым спиртом до 10 см³.

Для определения приблизительной концентрации токоферола отбирают 1 см 3 элюата, добавляют 3 см 3 этилового спирта, по 1 см 3 растворов α , α' -дипиридила (О-фенантролина) и хлорного железа и измеряют оптическую плотность, как указано в 5.3.

Если измеренная оптическая плотность меньше 0,1, то для основного измерения следует увеличить объем элюата и уменьшить объем этилового спирта так, чтобы сумма этих объемов составляла по-прежнему 4 см³ (например, элюата — 1,3 см³, этилового спирта — 2,7 см³). Если оптическая плотность превышает 0,3, то следует уменьшить объем элюата и соответственно увеличить объем этилового спирта исходя из такого же расчета (например, элюата — 0,8 см³, этилового спирта — 3,2 см³).

В полученном таким образом растворе проводят колориметрическую реакцию и измеряют оптическую плотность, как указано в 5.3.

Концентрацию α-токоферола определяют по градуировочному графику.

5.5 Обработка результатов

Массовую долю витамина Е X_5 , мг на 100 г продукта (мг %), вычисляют по формуле

$$X_5 = \frac{c \cdot 6 \cdot 10 \cdot 100}{V_2 \cdot m}, \qquad (7)$$

где c — концентрация α -токоферола в анализируемом растворе, мг/см^3 ;

6 — общий объем раствора, взятого для колориметрической реакции, см³;

V₂ — объем элюата, взятого для колориметрической реакции, см³;

10 — общий объем элюата, см³:

т — масса пробы, г.

Вычисления проводят до второго десятичного знака с последующим округлением результата до первого десятичного знака.

За окончательный результат измерения принимают среднее арифметическое значение результатов двух параллельных измерений.

Метрологические характеристики метода при доверительной вероятности 0,95 приведены в таблине 3.

Таблипа 3

Измеряемая величина, мг %	Предел возможных значений абсолютной погрешности измерений, мт %	Абсолютное допустимое расхождение между результатами двух парадлельных определений (от их среднего значения), мг %
От 10,0 до 30,0 включ. » 30,0 » 100,0 »	2,4 6,8	4.8 13,5
* 100,0 * 200,0 *	10.0	19,5

ПРИЛОЖЕНИЕ А (справочное)

Библиография

- [1] ФС 42-2229-84 Ретинола пальмитат
- [2] Госфармакопея, Х изд., ст. 578 Ретинола ацетат
- [3] ТУ 6-09-4711-81 Кальций хлористый обезвоженный чистый
- [4] ФС 42—2668—89 Кислота аскорбиновая
 [5] ОСТ 84—2006—82 Эфир этиловый очищенный
- [6] Госфармакопея, Х изд., ст. 34 Эфир медицинский
- [7] ТУ 6—09—5360—87 Фенолфталенн
 [8] ФС 42—2495—87 α-токоферола ацетат
- [9] ТУ 64—5—68—88 остокоферола ацетат (витамин Е)

MKC 67.200.10

H69

OKCTY 9141, 9142

Ключевые слова: растительные масла, область применения, ссылки, определение массовых долей витаминов А и Е, метод тонкослойной хроматографии