ПОЛОТНА ТЕКСТИЛЬНЫЕ

МЕТОД ИСПЫТАНИЯ ДОЖДЕВАНИЕМ

Издание официальное

Предисловие

1 РАЗРАБОТАН Научно-исследовательским институтом шелка (НИИШелка)

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации

За принятие стандарта проголосовали:

Наименование государства	Наименование национального органа по стандартизация		
Азербайджанская Республика	Азгосстандарт		
Республика Армения	Армгосстандарт		
Республика Беларусь	Госстандарт Беларуси		
Республика Казахстан	Госстандарт Республики Казахстан		
Киргизская Республика	Киргизстандарт		
Республика Молдова	Молдовастандарт		
Российская Федерация	Госстандарт России		
Республика Таджикистан	Таджикгосстандарт		
Туркменистан	Главная государственная инспекция Туркменистана		
Республика Узбекистан	Узгосстандарт		

- 3 Настоящий стандарт представляет собой полный аутентичный текст международного стандарта ИСО 4920—81 (Е) «Ткани текстильные. Определение стойкости к поверхностному смачиванию (испытание разбрызгиванием)» и содержит дополнительные требования, отражающие потребности экономики страны
- 4 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 23 июня 1998 г. № 259 межгосударственный стандарт ГОСТ 30292—96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 1999 г.
 - 5 ВВЕДЕН ВПЕРВЫЕ

© ИПК Издательство стандартов, 1998

Содержание

1	Область применения
2	Нормативные ссылки
3	Определения
4	Метод отбора проб
5	Аппаратура и материалы
6	Подготовка к испытанию
7	Проведение испытания
8	Обработка результатов
	Гриложение A Схема дождевального аппарата
П	Гриложение Б Протокол испытания определения водоупорности, водопроницаемости
	и намокаемости полотен

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ПОЛОТНА ТЕКСТИЛЬНЫЕ

Метод испытания дождеванием

Textiles, Method of spray test

Дата введения 1999-07-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на текстильные полотна с водоотталкивающей пропиткой или пленочным покрытием и устанавливает метод определения устойчивости текстильных полотен к испытанию дождеванием.

Устойчивость текстильных полотен к испытанию дождеванием характеризуется водоупорностью, водопроницаемостью, намокаемостью, водоотталкиванием.

Стандарт не распространяется на полотна с резиновой пленкой.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 1770—74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Технические условия

ГОСТ 10681—75 Материалы текстильные. Климатические условия для кондиционирования и испытания проб и методы их определения

ГОСТ 20566—75 Ткани и штучные изделия текстильные. Правила приемки и метод отбора проб

ГОСТ 25336—82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

3 ОПРЕДЕЛЕНИЯ

В настоящем стандарте применяют следующие термины:

водоупорность (X_1) : Время промокания испытуемого материала, оно характеризуется временем (в секундах) от начала дождевания до момента промокания обратной дождеванию стороны полотна, отмечаемым по секундомеру по сигналу водоснимателя-фиксатора.

водопроницаемость (X_2): Количество воды, прошедшей через испытуемый материал, характеризуется массой воды, прошедшей сквозь полотно за 10 мин его дождевания, и определяется массой воды, прошедшей за 1 с через квадратный метр полотна.

намокаемость (X_3): Количество воды, поглощенной материалом, характеризуется массой воды, поглощенной полотном за 10 мин его дождевания, и выражается массой воды, поглощенной квадратным метром полотна.

водоотталкивание: Способность скатывать капли воды, попадающие на поверхность испытуемого материала в процессе дождевания, характеризуется состоянием намокшей поверхности полотна в результате 25—30 с дождевания и выражается в условных единицах в зависимости от состояния поверхности.

4 МЕТОЛ ОТБОРА ПРОБ

- 4.1 Отбор проб по ГОСТ 20566 со следующим дополнением: точечную пробу вырезают размером 180×560 см с погрешностью не более 1 мм для определения водоупорности, водопроницаемости и намокаемости и 220×220 см для определения водоотталкивания.
- 4.2 От каждой точечной пробы вырезают три элементарные пробы в виде кружка диаметром 175 мм.
- 4.3 На каждой элементарной пробе проставляют артикул полотна, номер куска и номер элементарной пробы.

5 АППАРАТУРА И МАТЕРИАЛЫ

- 5.1 Для определения водоупорности, водопроницаемости и намокаемости применяют:
- дождевальный аппарат марки ДА-1, принципиальная схема приведена в приложении А;
- шкаф сушильный с регулятором температуры;
- секундомер с двумя секундными стрелками;
- стаканчики для взвешивания с крышками по ГОСТ 25336:
- зажимы для подвешивания проб;
- ножницы:
- цилиндры типов 2000, 1-1000, 3-100 по ГОСТ 1770;
- полотенце или отваренная хлопчатобумажная ткань;
- шаблон для проверки угла установки водоснимателя-фиксатора промокания под полотном;
- шпильки-шаблон из нержавеющей стали диаметром 0,96 мм для проверки отверстий в сетке разбрызгивателя и диаметром 0,8 мм — для прочистки отверстий разбрызгивателя от загрязнения;
 - спирт гидролизный технический для очистки от грязи водоснимателя;
 - гексаметафосфат натрия для промывки сетки разбрызгивателя.
- 5.2 Для определения водоотталкивания применяют прибор фирмы «Комтеа» (Италия) или прибор типа ES-3 (Венгрия).

6 ПОДГОТОВКА К ИСПЫТАНИЮ

- 6.1 Элементарные пробы перед испытанием выдерживают в климатических условиях по ГОСТ 10681 не менее 24 ч. В этих же условиях проводят испытания.
- 6.2 Для определения намокаемости из середины каждой испытанной после дождевания элементарной пробы вырезают по шаблону элементарную пробу размером [(100 × 100)±1] мм.
- 6.3 Заготавливают листы перфорированной бумаги для закладывания в них элементарных проб при определении намокаемости. При перфорации бумагу складывают вдвое по длине листа и параллельно сгибу листа делают дыроколом 7—8 отверстий.

7 ПРОВЕДЕНИЕ ИСПЫТАНИЯ

- 7.1 Перед испытанием воду нагревают до температуры (25±1) °C. Элементарную пробу заправляют в рамку без провисания и складок, при этом верхнее зажимное кольцо должно равномерно зажимать испытуемую элементарную пробу.
 - 7.2 Рамка с заправленной пробой должна быть установлена на опорное кольцо под углом 45 °.
- 7.3 Водосниматель-фиксатор промокания должен быть установлен под пробой так, чтобы он слегка касался пробы.

Правильность рабочего положения водоснимателя-фиксатора промокания проверяют по отсутствию зазора между водоснимателем и шаблоном (или металлической линейкой, поставленной на ребро), положенным на верхнюю поверхность нижнего зажимного кольца и на выпуклую контактную часть водоснимателя-фиксатора промокания.

- 7.4 Частота вращения рамки 0.112 с⁻¹ (7 об/мин).
- 7.5 Расстояние от середины испытуемой элементарной пробы до разбрызгивателя 500 мм.
- 7.6 Давление воды при разбрызгивании должно быть:
- 98 кПа (0.1 кгс/см²) для полотен с водоотталкивающей отделкой:
- 49 кПа (0,5 кгс/см2) для полотен с пленочным покрытием.

- 7.7 Определение водоупорности
- 7.7.1 Водоупорность определяют по времени звукового или светового сигнала датчика водоснимателя-фиксатора промокания от начала дождевания до появления промокания с обратной стороны пробы при испытании не более 10 мин.

Время определяют с точностью до 1 с и записывают в протокол испытания (приложение Б).

- 7.7.2 После 10 мин дождевания испытание прекращают, рамку с элементарной пробой быстро снимают и переворачивают лицевой стороной вниз для удаления задержавшихся в рамке капель воды. Пробу освобождают из зажима и встряхивают по пять раз с двух сторон для удаления оставшихся капель воды.
 - 7.8 Определение намокаемости
- 7.8.1 Подготовленные к испытанию элементарные пробы размером [(100 × 100)±1] мм помещают в стаканчики, предварительно доведенные до постоянно сухой массы, и взвешивают с точностью до 0,0001 г. Массу пробы и номер стаканчика записывают в протокол испытания (приложение Б).
- 7.8.2 После взвешивания элементарные пробы помещают между слоями отваренной хлопчатобумажной ткани или полотенца и, поглаживая, удаляют лишнюю влагу. Затем элементарные пробы помещают в стаканчики и выдерживают в сушильном шкафу при температуре (78±2) °С. Высушивание считают законченным, когда разница между двумя последними взвешиваниями каждой пробы с интервалом 1 ч не превышает 0,01 г.

Массу подсушенной элементарной пробы с точностью 0,0001 г записывают в протокол испытания (приложение Б).

- 7.8.3 Элементарные пробы помещают в листы перфорированной бумаги и в подвешенном виде или разложенными на ней выдерживают не менее 24 ч в климатических условиях по ГОСТ 10681. В случае уменьшения массы элементарных проб после выдерживания в климатических условиях высушивание повторяют, вдвое увеличивая ее продолжительность, и вновь элементарные пробы взвешивают и выдерживают в климатических условиях.
- 7.8.4 Выдержанные в климатических условиях элементарные пробы взвешивают в тех же стаканчиках, в которых взвешивали до выдерживания. Массу с точностью до 0,0001 г записывают в протокол испытания (приложение Б). Выпавшие из пробы нити взвешивают вместе с пробой.
 - 7.9 Определение водопроницаемости
- 7.9.1 Для определения водопроницаемости измеряют объем воды, прошедшей через испытуемую пробу за 10 мин дождевания. Объем воды определяют с точностью до 0,1 см³ и записывают в протокол испытания (приложение Б).
 - 7.10 Определение водоотталкивания
- 7.10.1 При определении водоотталкивания элементарную пробу пленочного материала размером [(220 × 220)±1] мм плотно зажимают между двумя кольцами и укрепляют лицевой стороной вверх на подпорке прибора.
 - 7.10.2 Угол наклона поверхности пробы к направлению брызг 45 °.
 - 7.10.3 Расстояние от разбрызгивателя до центра 18 см.
- 7.10.4 Элементарную пробу подвергают воздействию брызг воды в течение 25—30 с. За это время из воронки разбрызгивателя должно истечь 250 см³ воды. Затем элементарную пробу снимают с подпорки прибора и встряхивают лицевой стороной вниз путем удара о твердое тело для удаления с поверхности прилипших капель воды.

8 ОБРАБОТКА РЕЗУЛЬТАТОВ

8.1 Водоупорность полотна X_1 , с, определяют по наименьшему показателю из трех испытанных элементарных проб.

Полотно по водоупорности оценивают по наихудшему (наименьшему) показателю.

8.2 Водопроницаемость X_2 , г/(м² с), определяют по наибольшему (наихудшему) показателю из трех элементарных проб и вычисляют по формуле

$$\chi_2 = \frac{m \cdot 10000}{S_1 \cdot T} = \frac{m \cdot 10000}{180 \cdot 600} = \frac{m \cdot 10}{108}, \qquad (1)$$

где m — масса воды, прошедшей сквозь полотно, r (1 см³ = 1 r);

 S_1 — испытываемая площадь пробы; $S_1 = 180$ см²;

T — продолжительность дождевания T = 10 мин = 600 с.

Вычисления проводят с точностью до второго десятичного знака с последующим округлением до первого десятичного знака.

8.3 Намокаемость X_3 , г/м², определяют по наибольшему (наихудшему) показателю из трех испытанных элементарных проб и вычисляют по формуле

$$X_3 = \frac{M \cdot 10000}{S_5} = \frac{M \cdot 10000}{100} = M \cdot 100$$
, (2)

где M — разность между массой мокрого и воздушно-сухого квадрата, г;

 S_2 — площадь полотна, равная $100~{\rm cm}^2$ (вырезанного из середины элементарной пробы), подвергшегося десятиминутному испытанию.

Вычисление проводят с точностью до второго десятичного знака с последующим округлением до первого десятичного знака.

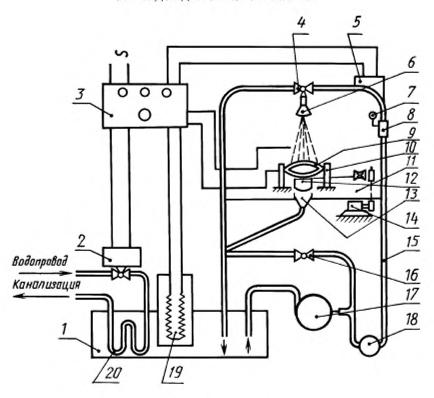

8.4 Степень водоотталкивания оценивают в условных единицах в зависимости от состояния намокшей поверхности по таблице 1.

Таблица 1

Состояние образца	Оценка, условные единицы	
На поверхности пробы не остаются капли	100	
К поверхности пробы прилипли отдельные маленькие капли	90	
Проба смачивается легко, но смоченная поверхность меньше чем ¹ / ₃ часть всей пробы	80	
Намокание пробы превышает 1/3 часть поверхности, но не распространя- ется на всю поверхность	70	
Намокает вся лицевая сторона пробы, но на изнаночной стороне отсут ствуют пятна намокания	60	
Намокает вся лицевая сторона пробы, а на изнаночной стороне показываются лишь небольшие пятна намокания	50	
Намокают обе стороны пробы	0	

ПРИЛОЖЕНИЕ А (обязательное)

СХЕМА ДОЖДЕВАЛЬНОГО АППАРАТА

Условные обозначения:

I — резервуар для воды; 2 — исполнительный механизм терморегулятора для охлаждения воды; 3 — терморегулятор температуры; 4 — кран разбрызгивателя; 5 — датчик температуры; 6 — разбрызгиватель с 5—10 равномерно расположенными отвере тими диаметром 1,0 мм; 7 — манометр; 8 — гермометр; 9 — рамка для заправки образца, состоящая из двух разъемных металлических колец; I0 — капроновый водосниматель фиксатор промования; I1 — поддон для приема воды; I2 — водосборник; I3 — воронка; I4 — электродвигатель; I5 — трубопровод; I6 — регулировочный кран; I7 — насос с электродвигателем, обеспечивающим давление воды до 980 кПа (1,0 кгс/см); I8 — фильтровальный цилиндр для очистки воды от загрязнения; I9 — электронагреватель; 20 — эмесвик для охлаждения воды, подключенный к водопроводу

Рисунок 1 — Принципиальная схема дождевального аппарата

ПРИЛОЖЕНИЕ Б (обязательное)

ПРОТОКОЛ ИСПЫТАНИЯ ОПРЕДЕЛЕНИЯ ВОДОУПОРНОСТИ, ВОДОПРОНИЦАЕМОСТИ И НАМОКАЕМОСТИ ПОЛОТЕН

Номер элемен- тарной пробы	Водоупорность (X_1)	Водопроницае- мость (X_2)	. Намокаемость пробы при десятиминутном дождевании К ₃)				
	Время до появления промоканвя, с	прошенией мас	Номер и масса пустого стаканчика	Масса пробы со стаканчиком, г		Разность масс	
				мокроя (сразу после отжима)	после нысушива- ния	после высу- шивания и выдерживания 24 ч	мокрой и воздушно- сухой пробы

Водоупорность полотна (наименьший показатель) — с

Намокаемость полотна (наибольший показатель) - г/м

Водопроницаемость полотна (наибольший показатель) — г/(м - с)

Условия испытания:

испытываемая площадь полотна — 180 см²;

средняя высота разбрызгивания - 500 мм;

температура воды — (25±1) °С;

температура подсушки проб в сушильном шкафу — (78:2) °C;

продолжительность испытания — 10 мин.

Давление воды в разбрызгивателе:

- для тканей с водоотталкивающей пропиткой 0,1 кгс/см;
- для тканей с пленкой 0,5 кгс/см².

Сопротивление датчика водоснимателя-фиксатора промокания — 47 кОм.

УДК 677.37.064.001.4:006.354	MKC 59.080.10	M99	ОКСТУ 8309
Ключевые слова: полотна текстиль	ные, испытание дождевание	ем	

Редактор Т.П. Шашина Технический редактор Н.С. Гришанова Корректор В.И. Варенцова Компьютерная верстка В.И. Грищенко

Изд. лиц. № 021007 от 10.08,95.

Сдано в набор 16.09.98.

Подписано в печать 10.1289

Усл. печ. л. 1,40.

Уч.-изд. д. 0,70. Тираж 215 экз. С/Д 2134.

Зак. 276.