ИСПОЛНИТЕЛЬНЫЕ УСТРОЙСТВА И АРМАТУРА ТОРМОЗНОГО ОБОРУДОВАНИЯ ПОДВИЖНОГО СОСТАВА

ОБЩИЕ ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

Издание официальное

Предисловие

1 РАЗРАБОТАН Межгосударственным техническим комитетом по стандартазации МТК 243 «Вагоны»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 12—97 от 21 ноября 1997 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Белоруссия	Госстандарт Белоруссии
Грузия	Грузстандарт
Республика Казахстан	Госстандарт Республики Казахстан
Киргизская Республика	Киргизстандарт
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикгосстандарт
Туркменистан	Главная государственная инспекция Туркменистана
Республика Узбекистан	Узгосстандарт

³ Постановлением Государственного комитета Российской Федерации по стандартиза-ции, метрологии и сертификации от 13 мая 1998 г. № 197 межгосударственный стандарт ГОСТ 30467 —97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1999 г.

4 ВВЕДЕН ВПЕРВЫЕ

© ИПК Издательство стандартов, 1998

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

ИСПОЛНИТЕЛЬНЫЕ УСТРОЙСТВА И АРМАТУРА ТОРМОЗНОГО ОБОРУДОВАНИЯ ПОДВИЖНОГО СОСТАВА

Общие требования безопасности

Design devices and accessories of rolling stock brake equipment. General safety requirement

Дата введения 1999-01-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на цилиндры, клапаны, краны, регуляторы тормозных рычажных передач, рукава соединительные, авторежимы, магнитно-рельсовый тормоз (далее — тормозное оборудование), применяемые на грузовых и пассажирских вагонах, электро- и дизель-поездах, тепловозах, электровозах, троллейбусах, трамваях.

Требования настоящего стандарта являются обязательными,

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 9.301—86 ЕСЗКС. Покрытия металлические и неметаллические неорганические. Общие требования

ГОСТ 12.0.003—74 ССБТ. Опасные и вредные производственные факторы. Классификация

ГОСТ 12.3.001—85 ССБТ. Пневмоприводы. Общие требования безопасности к монтажу, испытаниям и эксплуатации

ГОСТ 9219—88 Аппараты электрические тяговые. Общие технические требования ГОСТ 14254—96 (МЭК 529—89) Степени защиты, обеспечиваемые оболочками (код IP)

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 3.1 Конструкция и расположение элементов тормозного оборудования должны обеспечивать безопасность пассажиров и обслуживающего персонала, защиту от воздействия возникающих вредных и опасных производственных факторов по ГОСТ 12.0.003, нормируемых настоящим стандартом. Условия эксплуатации устанавливаются в нормативных документах на конкретные изделия.
- 3.2 Конструкция элементов тормозного оборудования должна соответствовать требованиям безопасности в течение всего периода эксплуатации при соблюдении требований, установленных настоящим стандартом и эксплуатационной документацией.
- 3.3 Выступающие детали конструкции элементов тормозного оборудования не должны иметь острых углов и ребер, способных травмировать обслуживающий персонал.
- 3.4 Конструкции элементов тормозного оборудования должны обеспечивать герметичность мест соединения, корпусов, крышек, поршней и других деталей, плотность запорных органов в соответствии с технической документацией на конкретную модель.
- 3.5 Металлические и неметаллические неорганические покрытия деталей элементов тормозного оборудования должны соответствовать ГОСТ 9.301.
- Злаки маркировки тормозного оборудования должны быть нанесены в местах, предусмотренных рабочими чертежами

Издание официальное

Четкость надписей должна сохраняться в течение всего срока службы оборудования.

- 3.7 На каждом изделии должны быть нанесены:
- товарный знак предприятия-изготовителя;
- месяц и две последние цифры года изготовления.
- 3.8 Требования безопасности к комплектующим изделиям должны быть указаны в стандартах и технических условиях на эти изделия.
- Конструкция элементов тормозного оборудования должна предусматривать возможность их утилизации по истечении срока службы способом, не вызывающим загрезнения окружающей среды.
 - 3.10 Цилиндры
- 3.10.1 Движение поршня на полный ход должно быть плавным, без толчков и остановок при давлении воздуха, установленном нормативным документом на конкретную модель.
- 3.10.2 При увеличении зазоров между колодками и поверхностями катания колесных пар или рабочими поверхностями тормозного диска тормозной цилиндр со встроенным регулятором должен автоматически обеспечивать сборку рычажной передачи после торможения и отпуска. При последующих торможениях он должен обеспечивать постоянный ход поршня и зазор между колодками и бандажами колесных пар.
- 3.10.3 При отсутствии увеличения нормальных зазоров между колодками и поверхностями катания колесных пар или рабочими поверхностями тормозного диска встроенный регулятор (при его наличии) должен работать как жесткий шток тормозного цилиндра.
 - 3.10.4 Корпуса цилиндров и цилиндры в сборе должны быть герметичны.
 - 3.11 Клапаны
- 3.11.1 Конструкция обратных клапанов должна обеспечивать пропуск сжатого воздуха только в одном направлении.
- 3.11.2 Конструкция предохранительных клапанов должна обеспечивать регулирование давления в пределах, установленных в технической документации на конкретную модель, и автоматическое включение при повышении рабочего давления не более чем на 15 % и понижении его на 20 %.
- 3.11.3 Обратные клапаны должны иметь на корпусе стрелку, указывающую направление потока сжатого воздуха.
- 3.11.4 Конструкция выпускного клапана должна обеспечивать выпуск сжатого воздуха из рабочего объема в атмосферу.
- Конструкция переключательного клапана должна обеспечивать автоматическое переключение воздупроводов в зависимости от направления потока сжатого воздуха.
- 3.11.6 Клапаны должны быть прочными при испытании давлением не менее 1,5 рабочего давления, предусмотрейного технической документацией на конкретную модель.
- 3.11.7 На поверхности резьбы клапанов не допускаются рванины и выкрошивания, если они по глубине выходят за пределы среднего диаметра и если общая протяженность рванины и выкрошивания на всей резьбе по длине превышает половину витка.
 - 3.12 Краны
- 3.12.1 Конструкция концевого крана должна обеспечивать: пропуск сжатого воздуха при открытом положении крана в тормозную магистраль вагона, перекрытие крана со стороны штуцера и выпуск сжатого воздуха в атмосферу со стороны отростка при закрытом положении крана.
- 3.12.2 Концевой кран должен иметь атмосферное отверстие диаметром условного прохода не менее 10 мм, для крана № 190 — не менее 6 мм.
- 3.12.3 Конструкция крана должна обеспечивать возможность поворота рукоятки усилием до 245 Н и не допускать ее самопроизвольного поворота.
- 3.12.4 Краны всех типов, кроме водоспускных и концевых, должны иметь ограничители поворота запорного органа и указатель расположения проходного отверстия в запорном органе.
- 3.12.5 Краны должны быть прочными при испытании давлением не менее 1,5 рабочего давления, предусмотренного технической документацией на конкретную модель.
 - Затвор крана в закрытом положении должен обеспечивать герметичность.
 - 3.13 Регулятор тормозных рычажных передач
 - 3.13.1 Регулятор должен обеспечивать выход винта не более 675 мм.
 - З.13.2 Регулятор должен обеспечивать передачу осевого растягивающего усилия 60 кН.

- 3.13.3 Регулятор должен обеспечивать выход штока тормозного цилиндра в пределах, установленных в нормативных документах.
 - 3.14 Магнитно-рельсовый тормоз
- 3.14.1 Изоляция катушки башмака должна выдерживать напряжение 1500 В частотой 50 Гц в течение 3 мин без пробоя и поверхностного разряда.
- З.14.2 Сопротивление изоляции катушки относительно корпуса должно быть в холодном состоянии не менее 1,5 МОм.
- 3.14.3 Время опускания башмака должно составлять не более 1 с. Не допускается перекос башмаков при срабатывании подъемников.
- 3.14.4 Подъемники, работающие на ежатом воздухе, должны обеспечивать герметичность при давлении в подъемнике 0,35 МПа (3,50 кгс/см²). Падение давления в подъемнике не должно превышать 0,01 МПа (0,10 кгс/см²) в течение 1 мин при отключенном источнике питания сжатым воздухом.
- 3.14.5 Элементы электрооборудования должны соответствовать ГОСТ 9219. Степень защиты IP54 по ГОСТ 14254.
- 3.14.6 Сила притяжения одного башмака κ рельсу при рабочем напряжении должна быть (100^{+16}_{-20}) кH.
 - 3.15 Соединительные рукава
- 3.15.1 Рукава должны быть герметичны при давлении воздуха $(1,00\pm0,10)$ МПа $[(10,0\pm1,00)\ \kappa rc/cm^2]$. Соединение деталей с рукавом должно быть прочным при гидравлическом давлении $1,50^{+0.10}\ M\Pi a$ $(15,00^{+1.00}\ \kappa rc/cm^2)$, для рукавов Р17 и 369A $2,00^{+0.10}\ M\Pi a$ $(20,00^{+1.00}\ \kappa rc/cm^2)$.
- 3.15.2 Рукава Р17 должны разъединяться при отсутствии давления сжатого воздуха под воздействием продольного растягивающего усилия не более 800 Н.
- 3.15.3 Резиновый рукав должен быть насажен на хвостовик наконечника до упора и прочно закреплен хомутиками (ушками в одну сторону) на расстоянии 7—16 мм от его торцов. Зазор между ушками хомутиков должен быть в пределах 7—16 мм.
- 3.15.4 Рукав Р40 должен выдерживать в течение 1 мин испытательное напряжение 9900 В частотой 50 Гц.
- 3.15.5 Рукав 369А с электроконтактом в сцепленном состоянии должен обеспечивать надежное соединение воздухопровода и электрический контакт одноименных проводов.
- 3.15.6 Рукав 369 А в расцепленном состоянии должен обеспечивать замыкание концов разноименных проводов в головке.
- 3.15.7 При сцепленном состоянии рукавов 369 А сопротивление изоляции разноименных проводов должно быть не менее 10 МОм.
 - 3.16 Авторежимы
- 3.16.1 Авторежимы должны обеспечивать изменение давления воздуха в тормозном цилиндре в зависимости от режимов загрузки вагона.
- 3.16.2 При расположении упора демпфера авторежима в крайнем нижнем положении и давлении на входе $(0,42^{+0.01}_{-0.02})$ МПа $[(4,20^{+0.01}_{-0.02})$ кгс/см²] на выходе давление должно быть $(0,16^{+0.02}_{-0.02})$ МПа $[(1,60^{+0.02}_{-0.02})$ кгс/см²], а при давлении на входе $(0,32\pm0,02)$ МПа $[(3,20\pm0,20$ кгс/см²] на выходе $(0,14\pm0,02)$ МПа $[(1,40\pm0,20)$ кгс/см²].
- 3.16.3 При поднятии упора демпфера авторежима 265А-І на 27 мм давление на входе и выходе должно быть одинаковым.
- 3.16.4 При изменении загрузки вагона время перемещения упора демпфера авторежима 265A-I из верхнего положения в нижнее должно быть при температуре окружающей среды от минус 20 до плюс 20 °C от 25 до 45 с, а при температуре окружающей среды минус 55 °C от 15 до 50 с.
- 3.16.5 Изменение установившегося выходного давления воздуха в тормозном цилиндре в течение 5 мин при опущенном упоре демпфера авторежима 265A-1 должно быть не более \pm 0,01 МПа (\pm 0,10 кгс/см²).
- 3.16.6 Отклонение установившегося выходного давления авторежима 605 на порожнем режиме в течение 5 мин должно быть не более \pm 0,01 МПа (\pm 0,10 кгс/см²).

4 МЕТОДЫ КОНТРОЛЯ

- 4.1 Контроль за выполнением требований безопасности к конструкции тормозного оборудования должен проводиться в процессе приемо-сдаточных, сертификационных и типовых испытаний по программам, утвержденным в установленном порядке.
- 4.2 При контроле параметров тормозного оборудования должны применяться средства измерений, обеспечивающие точность получаемых результатов.
- 4.3 Внешний вид, расположение узлов и оборудования, размещение контрольно-измерительных приборов, отсутствие (наличие) острых ребер и углов выступающих деталей конструкции тормозного оборудования (3.1; 3.3) проверяют визуальным осмотром.
- 4.4 Проверку наличия и качества нанесения знаков безопасности, цветного оформления (3.6; 3.7) следует проводить визуальным осмотром и сверкой его с чертежами и действующими нормативными документами.
 - 4.5 Цилиндры
- 4.5.1 Проверку герметичности корпусов цилиндров (3.10.4) проводят на 2 % партии, задней крышки 100 % партии гидравлическим давлением (1,00 \pm 0,02) МПа [(10,00 \pm 0,20) кгс/см²], при этом в течение 1 мин появление свищей и просачивания не допускаются.
- 4.5.2 Герметичность каждого поршня цилиндра проверяют пневматическим давлением (0.60 ± 0.02) МПа $[(6.00\pm0.20)$ кгс/см²], при этом не допускается просачивание воздуха.
- 4.5.3 Плавность хода поршня цилиндра проверяют подключением к воздушной магистрали при давлении воздуха $0.02_{-0.08}$ МПа $(0.20_{-0.00}$ кгс/см²), шток поршня должен выходить плав-но, без толчков и остановок. Проверку проводят визуально.
- 4.5.4 Перемещение поршня проводят повышением и понижением давления воздуха в рабочей полости цилиндров и фиксированием этого давления в момент начала и конца перемещения поршня.
- 4.5.5 Герметичность цилиндров в сборе проверяют при давлении воздуха 0,05; 0,40; 0,60 МПа [(0,50; 4,00; 6,00) кгс/см²].

При давлении воздуха в цилиндре (0.60 ± 0.02) МПа $[(6.00\pm0.20)$ кгс/см²] проверяют герметичность в местах установки шпилек и конической пробки путем обмыливания. При этом в течение 15 с не должно быть обнаружено появление мыльных пузырей.

Снижают давление сжатого воздуха в цилиндре до (0.40 ± 0.02) МПа (4.00 ± 0.20) кгс/см², отключают источник питания. За 3 мин давление не должно понижаться более чем на 0.01 МПа (0.10 кгс/см^2) , после чего снижают давление до нуля.

Поднимают давление воздуха в цилиндре до (0.05 ± 0.01) МПа (0.50 ± 0.10) кгс/см², а для цилиндров 203 мм — до (0.07 ± 0.01) МПа (0.70 ± 0.10) кгс/см², отключают источник питания и проверяют падение давления в цилиндре. За 1 мин давление не должно снижаться более чем на 0.01 МПа (0.10 кгс/см²).

Герметичность цилиндра следует проверять через 60—80 с после достижения заданного давления. Ограничение хода поршня обеспечивается технологическим приспособлением.

- 4.6 Клапаны
- 4.6.1 Герметичность материалов и мест соединений проверяют при максимальном рабочем давлении, установленном в технической документации на конкретную модель, обмыливанием.

Клапан считается выдержавшим испытания, если в течение 1 мин не будет обнаружено появление мыльных пузырей.

Допускается проверку проводить погружением клапана в ванну с водой. При этом в течение 1 мин не допускается появление пузырей воздуха в воде.

- 4.6.2 После проведения гидравлических испытаний влага из внутренних полостей должна быть удалена продувкой или просушкой при температуре до 60 °C.
- 4.6.3 Плотность запорных органов следует проверять при максимальном рабочем давлении, установленном в технической документации на конкретную модель, на специальной установке.

Клапан считается выдержавшим испытания, если в контрольном резервуаре емкостью 8 л в течение 2 мин не будет происходить изменение установившегося давления, а у клапанов с притираемой поверхностью изменение установившегося давления в течение 1 мин будет не более 0,01 МПа (0,10 кгс/см²).

Допускается испытание проводить мыльной водой, при этом допускается образование мыльного пузыря, удерживающегося не менее 10 с.

- 4.7. Краны
- 4.7.1 Проверку кранов на герметичность затвора, материалов и мест соединений следует проводить при рабочем давлении (3.12) обмыливанием.

При проверке герметичности материалов и мест соединений кранов сжатый воздух подают в один из патрубков крана, остальные патрубки — заглушают. При этом запорный орган в концевых, комбинированных и разобщительных кранах устанавливают в положение «Открыто», в трехходовых — поочередно во все рабочие положения. В водоспускных кранах запорный орган устанавливают в положение «Закрыто».

Кран считается выдержавшим испытания, если в течение 1 мин не будет обнаружено образование мыльных пузырей.

В разобщительном кране с атмосферным отверстием допускается появление мыльного пузыря из атмосферного отверстия, удерживающегося не менее 10 с.

4.7.2 При проверке герметичности затвора кранов запорный орган устанавливают в положение «Закрыто», сжатый воздух подают в один из патрубков при открытом втором патрубке (в трехходовых — при открытых поочередно двух других патрубках). Концевой кран испытывают на герметичность затвора также в положении «Открыто», при этом второй патрубок должен быть заглушен. Кран считается выдержавшим испытания, если при рабочем давлении на обмыленных поверхностях появившийся мыльный пузырь будет удерживаться не менее 10 с.

В концевых кранах пропуск сжатого воздуха через затвор не допускается.

4.7.3 Испытания кранов на прочность проводят в соответствии с ГОСТ 12.3.001. Время выдержки крана под давлением не менее 2 мин, концевого крана — 5 мин.

Кран считается выдержавшим испытания, если на деталях и сборочных единицах не обнаружено течи, разрывов и видимых деформаций.

- 4.8 Регулятор тормозных рычажных передач
- 4.8.1 Испытания регулятора на передачу осевого растягивающего усилия проводят на специальном стенде нагрузкой 90 кН. Регулятор испытывают в собранном состоянии.
 - 4.8.2 Выход винта (3.13.1) проверяют на стенде измерительными приборами.
 - 4.9 Магнитно-рельсовый тормоз
- 4.9.1 Силу притяжения башмака P_{ep} , H, к рельсу проверяют подачей напряжения (50 \pm 10) В на катушку и определяют по формуле

$$P_{nn} = 8 S B^2,$$

где S — рабочая площадь половины трущейся поверхности башмака, см²;

B — индукция в рабочем зазоре, $B6/м^2$.

Индукцию в зазоре проверяют при помощи рамки и милливеберметра.

4.9.2 Прочность изоляции катушки проверяют пропусканием электрического тока в течение 3 мин напряжением 1500 В частотой 50 Гц.

Результаты испытаний считаются удовлетворительными, если за время испытаний не происходит пробоя изоляции.

- 4.9.3 Герметичность подъемников проверяют давлением (0.35 ± 0.02) МПа $[(3.50\pm0.20)$ кгс/см²]. При отключенном источнике питания за 1 мин давление не должно понижаться более чем на 0.01 МПа (0.10 кгс/см²).
 - 4.9.4 Испытания степени защиты по ГОСТ 14254.
 - 4.9.5 Время опускания башмака должно проверяться по согласованной методике.
- 4.9.6 Проверку сопротивления изолящии катушки относительно корпуса проводят по техническим условиям.
 - 4.10 Соединительные рукава
- 4.10.1 Герметичность рукавов проверяют в водяной ванне давлением сжатого воздуха 1,0 МПа. Один конец рукава заглушают, а другой присоединяют к источнику сжатого воздуха. При этом в течение 1 мин ни в одной части рукава не должны выделяться пузырьки воздуха. Если пузырьки появляются, рукав выдерживают в ванне до 10 мин, считая его годным, если выделение пузырьков прекратится за это время.

ГОСТ 30467-97

4.10.2 Прочность соединений рукавов гидравлическим давлением следует проводить на специальном стенде. Один конец рукава заглушают, а другой присоединяют к магистрали с гидравлическим давлением $2.0^{-0.10}$ МПа $(20.00^{+1.00} \, \mathrm{krc/cm^2})$ для рукавов P17 и 369A. Для остальных рукавов — $1.50^{+0.10}$ МПа $(15.00^{+1.00} \, \mathrm{krc/cm^2})$.

Время выдержки под давлением — 2 мин.

Рукава считаются выдержавшими испытания, если в течение 2 мин не произошло срыва деталей. Остаточный сдвиг деталей с места для рукавов P17 — не более 2,5 мм.

- 4.10.3 Разъединение рукавов (3.15.2) проверяют динамометром.
- 4.10.4 Зазоры закрепления (3.15.3) рукавов проверяют универсальными средствами измерения.
- 4.10.5 Электрический контакт одноименных проводов сцепленных рукавов с электроконтактом проверяют напряжением 36 В по установленной в нормативных документах схеме.
- 4.10.6 Замыкание концов разноименных проводов проверяют по установленной в нормативных документах схеме.
- 4.10.7 Сопротивление изоляции разноименных проводов сцепленных рукавов проверяют по установленной в нормативных документах схеме.
- 4.10.8 При проверке рукава испытательным напряжением наконечник диаметром 6,1 мм одного рукава и наконечник диаметром 8,1 мм другого подключают к клемам источника переменного тока. При достижении испытательного напряжения сцепленные рукава выдерживают в течение 1 мин. Результаты испытаний считают удовлетворительными, если за время испытания не происходит пробоя изоляции.
 - 4.11 Авторежимы
- 4.11.1 Время перефиксации авторежима 265А-І измеряют с момента освобождения упора демпфера, поднятого на 27 мм, до перемещения его в крайнее нижнее положение.

Авторежим считается выдержавшим испытания, если указанное время находится в пределах, установленных 3.16.4.

4.11.2 Испытание на фиксацию режимов загрузки проводят путем подвода давления $(0.80\pm0.20)~\mathrm{M\Pi A}~[(8.00\pm2.00)~\mathrm{krc/cm^2}]~\mathrm{k}$ фиксатору авторежима 605 и последующим снижением его до 0.

Авторежим считается выдержавшим испытание, если упор опустится до соприкосновения с опорной площадкой при установлении давления $(0.80\pm0.20)~\mathrm{MIIA}~[(8.00\pm2.00)~\mathrm{krc/cm^2}]$ и поднимается на 45 ... 50 мм от опорной площадки после снижения давления воздуха до 0.

4.11.3 Изменение и отклонение установившегося выходного давления (3.16.5 и 3.16.6) проверяют универсальным манометром.

УДК 629.4-592:006.354 МКС 45.060 Д56 ОКП 31 8442

Ключевые слова: тормозное оборудование, рукава соединительные, цилиндры, клапаны, регуляторы тормозных рычажных передач, авторежимы, магнитно-рельсовый тормоз, безопасность, экология

Редактор А. Л. Владимиров
Технический редактор Н. С. Гришанова
Корректор С. И. Фирсова
Компьютерная верстка В. Н. Романовой

Изд. лиц. № 021007 от 10.08.95. Сдано в вабор 26.05.98. Подписано в печать 17.06.98. Усл. печ. л. 0,93, Уч.-изд. л. 0,79. Тираж 244 экз. С/Д 5329. Зак. 413.