Система стандартов безопасности труда

СРЕДСТВА ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ ОРГАНОВ ДЫХАНИЯ. ПОЛУМАСКИ ФИЛЬТРУЮЩИЕ С КЛАПАНАМИ ВДОХА И НЕСЪЕМНЫМИ ПРОТИВОГАЗОВЫМИ И (ИЛИ) КОМБИНИРОВАННЫМИ ФИЛЬТРАМИ

Общие технические условия

Издание официальное

Предисловие

1 РАЗРАБОТАН рабочей группой ПК 2 «Средства индивидуальной защиты органов дыхания» Технического комитета по стандартизации средств индивидуальной защиты ТК 320 «СИЗ»

ВНЕСЕН Техническим комитетом по стандартизации средств индивидуальной защиты ТК 320 «СИЗ»

- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 28 декабря 1999 г. № 732-ст
- 3 Настоящий стандарт представляет собой аутентичный текст регионального стандарта ЕН 405—97 «Средства индивидуальной защиты органов дыхания. Фильтрующие полумаски с клапанами вдоха для защиты от газов или газов и частиц» и содержит дополнительные требования, отражающие потребности экономики страны
 - 4 ВВЕДЕН ВПЕРВЫЕ

Содержание

1	Область применения
2	Нормативные ссылки
3	Определения
	Классификация
	4.1 Марки фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми
	фильтрами
	4.2 Классы фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми
	фильтрами
	4.3 Марки и классы фильтрующих полумасок с клапанами вдоха и комбинированными
	фильтрами
5	Общие технические требования
	5.1 Материалы
	5.2 Эксплуатационные свойства
	5.3 Подсос под фильтрующую полумаску с клапанами вдоха и несъемными противогазо-
	выми и (или) комбинированными фильтрами
	5.4 Проницаемость противоаэрозольного фильтра
	5.5 Клапаны вдоха и выдоха
	5.6 Начальное сопротивление воздушному потоку
	5.7 Устойчивость к запылению
	5.8 Устойчивость к воспламенению
	5.9 Содержание диоксида углерода во вдыхаемом воздухе
	5.10 Ремни крепления и (или) оголовье
	5.11 Площадь поля зрения
	5.12 Съемные элементы
	Требования безопасности
	Правила приемки
8	Методы испытаний
	8.1 Визуальный осмотр
	8.2 Предварительная подготовка образцов
	8.3 Определение эксплуатационных свойств
	8.4 Определение коэффициента подсоса под фильтрующую полумаску с клапанами вдоха
	и несъемными противогазовыми и (или) комбинированными фильтрами
	8.5 Определение времени защитного действия противогазового фильтра
	8.6 Устойчивость к воспламенению
	8.7 Содержание диоксида углерода во вдыхаемом воздухе
	8.8 Начальное сопротивление воздушному потоку
	8.9 Прочность крепления корпуса клапана выдоха
9	Маркировка
	9.1 Требования к маркировке на упаковке
	9.2 Маркировка фильтрующей полумаски с клапанами вдоха и несъемными противогазо-
9.7	выми и (или) комбинированными фильтрами
	Транспортирование и хранение
П	Указания по эксплуатации

к ГОСТ Р 12.4.192—99 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Полумаски фильтрующие с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами. Общие технические условия

В каком месте	Напечатано	Должно быть
Подпункт 8.4.7	$K = C_2 / C_1 [t_{\text{max}} + t_{\text{soci.}} / t_{\text{max}}] 100 \%$	$K = C_2 / C_1 \left[(t_{no} + t_{nuo}) / t_{na} \right] 100 \%$

(ИУС № 10 2000 г.)

к ГОСТ Р 12.4.192—99 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Полумаски фильтрующие с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами. Общие технические условия

В каком месте	Напечатано	Должно быть
Содержание. Для	Подеос под	Коэффициент подсоса
пункта 5.3		под
Пункт 5.1.3	использованные при из-	из которых изготовлены
	готовлении фильтрую-	фильтрующие полумас-
	щих полумасок	ки
Пункт 5.3 (2 раза)	Подсос под	Коэффициент подсоса под
последний абзац	При определении коэф-	При определении коэф-
	фициента подсоса через	фициента подсоса под
Пункт 5.4.3.1. Таб-		
лица 2. Сноска**	10 мл/м ³	10 см ³ /м ³
Раздел 8. Таблица 7		
(2 pa3a)	МВ	УМ
графа «Перечень	Подеос под фильтрую-	Коэффициент подсоса
показателей»	щую полумаску	под фильтрующую по-
		лумаску
Пункт 8.5.1	появления концентра-	появления нормиро-
	ции тест-вещества, рав-	ванной проскоковой
	ной предельно допусти-	концентрации тест-ве-
	мой,	щества
Пункт 8.9.1	Испытаниям подлежат	Испытаниям подлежат
	девять фильтрующих по-	три фильтрующие полу-
	лумасок с клапанами	маски с клапанами вдо-
	вдоха и несъемными	ха и несъемными про-
	противогазовыми и	тивогазовыми и (или)
	(или) комбинирован-	комбинированными
	ными фильтрами: три —	фильтрами: одна — в
	в состоянии после по-	состоянии после по-
	ставки, 3 — после тем-	ставки, две - после
	пературного воздействия	температурного воздей-
	(8.2.2) и три — после	ствия (8.2.2) и одна -
	механического воздей-	после механического
	ствия (8.2.3)	воздействия (8.2.3)
		(Продолжение см. с. 90)
		1. Poodinier in ci 70)

(Продолжение поправки к ГОСТ Р 12.4.192-99)

Продолжение

В каком месте	Должно быть					
Пункт 5.4.3.1. Табли-	Марка и класс	Тест- вещество	тест- ве	трация эщества здухе	Проскоко- вая концентра-	Время защитного действия,
ца 2. Для ма- pok FFB1 и FFE1		% (по объс- му)	мг/дм ³	ция, см³/м³ (PPM)	МИН	
	FFBI	Хлор Cl ₂	0,1	3.0	0,5	20
	FFEI	Серово- дород Н ₂ S	0,1	1,4	10	40

(ИУС № 9 2001 г.)

к ГОСТ Р 12.4.192-99 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Полумаски фильтрующие с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами. Общие технические условия

	н- Время защитного м ³ действия, мин		20 40	25	20
4	Проскоковая кон- центрация, см ³ /м ³	(FPNI)*	0,5 10	**01	5
Должно быть	Концентрация тествещества в воздухе	мг/дм³	3,0	1,1	2,7
		% (по объему)	0,1 0,1	0,1	0,1
	Тест-веще- ство		Хлор СІ ₂ Сероводород	n23 Синильная кислота НСN	Диоксид серы SO ₂
	Марка и класс		FFB1		1344
В каком месте	Пункт 5.4.3.1. Таблица 2. Для ма-	рок ггві и ггеі			

(NYC № 2 2003 г.)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Система стандартов безопасности труда

СРЕДСТВА ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ ОРГАНОВ ДЫХАНИЯ. ПОЛУМАСКИ ФИЛЬТРУЮЩИЕ С КЛАПАНАМИ ВДОХА И НЕСЪЕМНЫМИ ПРОТИВОГАЗОВЫМИ И (ИЛИ) КОМБИНИРОВАННЫМИ ФИЛЬТРАМИ

Общие технические условия

Occupational safety standards system, Respiratory protective devices. Valved filtering half masks to protect against gases and gases and particles. General specifications

Дата введения 2003-01-01

1 Область применения

Настоящий стандарт распространяется на фильтрующие полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами (далее — фильтрующие полумаски), предназначенные для защиты органов дыхания от аэрозолей, газов и паров, и устанавливает общие технические требования, испытания и маркировку.

Стандарт не распространяется на противогазовые фильтрующие полумаски без клапанов или оснащенные только клапанами выдоха. Стандарт также не распространяется на следующие специальные типы СИЗОД:

- пожарные;
- военные;
- медицинские;
- авиационные;
- для подводных работ.

Дополнительные требования, отражающие потребности экономики страны, выделены курсивом.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ Р 12.4.189—99 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Маски. Общие технические условия

ГОСТ Р 12.4.193—99 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Фильтры противогазовые и комбинированные. Общие технические условия

ГОСТ Р 12.4.194—99 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Фильтры противоаэрозольные. Общие технические условия

ЕН 371—92* Средства индивидуальной защиты органов дыхания — АХ противогазовые и комбинированные фильтры для защиты от органических соединений с низкой температурой кипения. Требования, испытания, маркировка

ЕН 372—92* Средства индивидуальной защиты органов дыхания для защиты от специальных соединений. Требования, испытания, маркировка

3 Определения

В настоящем стандарте применяют следующий термин с соответствующим определением:

фильтрующая полумаска с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами: Полумаска, снабженная клапанами вдоха, состоящая полностью или в основном из фильтрующего материала, при этом противогазовый(е) фильтр(ы) составляет(ют) ее неотъемлемую часть, а противогазовоный фильтр может быть съемным.

Перевод — во ВНИИКИ.

4 Классификация

Фильтрующие полумаски с клапанами вдоха и несъемными противогазовыми фильтрами по назначению и эффективности подразделяют на марки и классы и обозначают FFГазX.

Фильтрующие полумаски с клапанами вдоха и комбинированными фильтрами по назначению и эффективности подразделяют на марки и классы и обозначают FFГазXРX.

4.1 Марки фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми фильтрами

Существуют следующие марки, предназначенные для защиты:

Марка FFA — от органических газов и паров с температурой кипения свыше 65 °C, рекомендованных изготовителем.

Марка FFB — от неорганических газов и паров (за исключением монооксида углерода), рекомендованных изготовителем.

Марка FFE — от диоксида серы и других кислых газов и паров, рекомендованных изготовителем.

Марка FFК — для защиты от аммиака и его органических производных, рекомендованных изготовителем.

Марка FFAX — от органических газов и паров с температурой кипения ниже 65 °C, рекомендованных изготовителем.

Марка FFSX — от специальных газов и паров, рекомендованных изготовителем.

Примечание вышеуказанных марок в одной конструкции.

4.2 Классы фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми фильтрами

Фильтрующие полумаски с клапанами вдоха и несъемными противогазовыми фильтрами могут подразделяться на следующие классы в зависимости от их эффективности:

- класс 1 FFГаз1 низкой эффективности;
- класс 2 FFГаз2 средней эффективности.

Уровень защиты, обеспечиваемый фильтрующей полумаской с клапанами вдоха и несъемными противогазовыми фильтрами класса 2, включает в себя защиту, обеспечиваемую фильтрующей полумаской с клапанами вдоха и несъемными противогазовыми фильтрами класса 1.

4.3 Марки и классы фильтрующих полумасок с клапанами вдоха и комбинированными фильтрами

Фильтрующие полумаски с клапанами вдоха и комбинированными фильтрами могут представлять собой комбинацию любых вышеуказанных марок и классов противогазовых фильтров и классов противогарозольных фильтров. Например, FFA1P1, FFB2P2, FFB1P2.

Существуют фильтрующие полумаски с клапанами вдоха и комбинированными фильтрами, имеющие:

- несъемный(е) противоаэрозольный(е) фильтр(ы);
- 2) съемный(е) противозэрозольный(е) фильтр(ы).

5 Общие технические требования

5.1 Материалы

- 5.1.1 Материалы фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами не должны менять своих свойств в процессе хранения и эксплуатации в течение срока годности.
- 5.1.2 После температурного воздействия в соответствии с требованиями 8.2.2 материалы лицевых частей или ремней крепления/оголовья фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами не должны иметь механических повреждений.
- 5.1.3 Материалы, использованные при изготовлении фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами, не должны менять своих свойств при использовании чистящих или дезинфицирующих средств, рекомендуемых изготовителем.
- 5.1.4 Детали фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами, которые могут соприкасаться с кожей пользователя, не должны иметь острых краев или заусенцев.

5.1.5 При использовании фильтрующих материалов типа ФП изделие не должно подвергаться температурному воздействию (8.2.2) и испытанию устойчивости к воспламенению (8.6). Сведения об этом должны содержаться в маркировке изделия и на упаковке, а в указаниях по эксплуатации должны быть указаны ограничения по применению изделия (при подземных выработках, в условиях повышенных и пониженных температур, повышенной влажности и повышенной пожароопасности).

5.2 Эксплуатационные свойства

- 5.2.1 Эксплуатационные свойства следует определять в условиях моделирования трудовой деятельности в соответствии с методикой испытаний, указанной в настоящем стандарте.
- 5.2.2 Сведения об испытаниях эксплуатационных свойств фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами, проведенных в соответствии с 8.3, должны быть отражены в протоколе испытательной лаборатории. В случае получения отрицательного заключения хотя бы по одному из требований 8.3 заявитель имеет право обратиться в другую аккредитованную испытательную лабораторию для повторных испытаний.

5.3 Подсос под фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами

Подсос под фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами определяют на человеке, при этом учитывают полосу обтюрации и клапан выдоха и исключают проницаемость противогазоаэрозольного фильтра.

Коэффициент подсоса под фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами не должен превышать следующих значений:

коэффициент подсоса 46 из 50 результатов отдельных испытаний (10 человек по 5 упражнений) должен быть не более 5 %.

Решение принимается по среднему арифметическому значению, рассчитанному для каждого из десяти испытателей. При этом для восьми из десяти испытателей коэффициент подсоса под СИЗОД не должен превышать 2 %.

Испытания следует проводить по 8.4.6.

При определении коэффициента подсоса через фильтрующую полумаску с клапанами вдоха несъемные противогазовые и (или) комбинированные фильтры для исключения проницаемости следует модифицировать в соответствии с 8.4.5.

5.4 Проницаемость противоаэрозольного фильтра

5.4.1 Несъемные фильтры

Проницаемость противоаэрозольного фильтра фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами до их кондиционирования в соответствии с требованиями. 8,2 должна соответствовать требованиям, представленным в таблице 1.

Испытания следует проводить по ГОСТ Р 12.4.194.

Таблица I — Проницаемость противоаэрозольных (несьемных) фильтров

Марка/класс	Коэффициент проникания при расходе воздушного потока 95 дм ³ /мин		
A STATE OF THE STA	по хлориду натрия, %	по парафиновому маслу, %	
FFГазР1	20	20	
FFГазР2	6	6	
FFГазР3	1	1	

5.4.2 Съемные фильтры

Съемные противоаэрозольные фильтры (не предфильтры) должны соответствовать требованиям ГОСТ Р 12.4.194.

Испытания следует проводить по ГОСТ Р 12.4.194.

- 5.4.3 Время защитного действия противогазовых фильтров
- 5.4.3.1 Время защитного действия противогазовых фильтров фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами должно соответствовать значениям, представленным в таблице 2 или в ГОСТ Р 12.4.193, ЕН-371, ЕН-372.

Таблица 2 — Время защитного действия противогазовых фильтров

Марка и класс	Тест-вещество	Концентрация тест-вещества в воздухе		Проскоковая концентрация,	Время защитного
и класс		% (по объему)	мг/дм ³	си ³ /и ³ (PPM)*	действия, мин
FFA1	Циклогексан C ₆ H ₁₂	0,1	3,5	10	70
FFBI FFEI	Хлор Cl ₂ Сероводород H ₂ S Синильная кислота HCN Диоксид серы SO ₂	0,1 0,1 0,1 0,1	3.0 1.4 1.1 2.7	0,5 10 10** 5	20 40 25 20
FFK1	Аммиак NH ₃	0,1	0,7	25	50
FFA2	Циклогексан С ₆ Н ₁₂	0,5	17,5	10	35
FFB2	Хлор Cl ₂ Сероводород H ₂ S Синильная кислота HCN	0,5 0,5 0,5	15,0 7,1 5,6	0,5 10 10**	20 40 25
FFE2	Диоксид серы SO ₂	0,5	13,3	5	20
FFK2	Аммиак NН3	0,5	3,5	25	40

Проскоковая концентрация является нормированной и не отражает действующие в России ПДК.

Время защитного действия следует определять в соответствии с требованиями 8.5.

- 5.4.3.2 При использовании комбинации противогазовых фильтров последние должны соответствовать требованиям для каждой марки в отдельности.
 - 5.4.3.3 Требования, представленные в таблице 2, относятся к изделию в целом.

5.5 Клапаны вдоха и выдоха

- 5.5.1 Клапаны вдоха и выдоха должны соответствовать требованиям настоящего стандарта. Испытания следует проводить в соответствии с требованиями 8.4.
- 5.5.2 Клапан выдоха в фильтрующей полумаске с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами должен быть защищен корпусом от попадания грязи и механических повреждений.
- 5.5.3 Клапан выдоха должен сохранять работоспособность после прохождения через него постоянного воздушного потока расходом 300 дм³/мин в течение 30 с.
- 5.5.4 Присоединенный к фильтрующей полумаске с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами корпус клапана выдоха должен выдерживать силу растяжения 10 H, приложенную перпендикулярно к плоскости клапана выдоха в течение 10 с.

Испытания следует проводить в соответствии с 8.9.

5.6 Начальное сопротивление воздушному потоку

- 5.6.1 Начальное сопротивление постоянному воздушному потоку на вдохе
- 5.6.1.1 Сопротивление постоянному воздушному потоку на вдохе фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми фильтрами должно быть минимальным и не должно превышать значений, представленных в таблице 3.

Т а б л и ц а 3 — Начальное сопротивление постоянному воздушному потоку на вдохе фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми фильтрами

Класс	Максимальное сопротивление, Па, при расходе постоянного воздушного потока		
TOTAL CO.	30 дм ³ /мин	95 дм ³ /мин	
FFFa31	100	400	
FFΓa32	140	560	
FFAX	140	560	
FFSX	140	560	

^{**} C_2N_2 иногда может присутствовать в выходящем воздухе. Общая концентрация (C_2N_2 +HCN) не должна превышать 10 мл/м^3 .

5.6.1.2 Начальное сопротивление на вдохе фильтрующих полумасок с клапанами вдоха и комбинированными фильтрами должно быть минимальным и не должно превышать значений, представленных в таблице 4 или 5.

Т а б л и ц а 4 — Начальное сопротивление постоянному воздушному потоку на вдохе фильтрующих полумасок с клапанами вдоха и комбинированными фильтрами, включающими несъемные противоаэрозольные фильтры

Класс/комбяна- ция фильтра	Максимальное сопротивление на вдохе, Па, при расходе постоян ного воздущного потока		
	30 дм ³ /мин	95 дм ³ /мин	
FFΓα31P1	160	610	
FFΓα31P2	170	640	
FFΓα31P3	200	700	
FFΓa32P1	200	770	
FFΓa32P2	210	800	
FFΓa32P3	240	860	
FFAXP1	200	770	
FFAXP2	210	800	
FFAXP3	240	860	
FFSXP1	200	770	
FFSXP2	210	800	
FFSXP3	240	860	

Т а б л и ц а 5 — Начальное сопротивление постоянному воздушному потоку на вдохе фильтрующих полумасок с клапанами вдоха и комбинированными фильтрами, включающими съемные противоаэрозольные фильтры

Класс/комбина- ция фильтра	Максимальное сопротивление на вдохе, Па, при расходе постоян- ного воздушного потока		
	30 дм ³ /мин	95 дм ³ /мян	
FFFa31P1	160	610	
FFFa31P2	170	640	
FFΓa31P3	220	820	
FFΓa32P1	200	770	
FFΓа32P2	210	800	
FFΓа32Р3	260	980	
FFAXP1	200	770	
FFAXP2	210	800	
FFAXP3	260	980	
FFSXP1	200	770	
FFSXP2	210	800	
FFSXP3	260	980	

5.6.1.3 Сопротивление воздушному потоку на выдохе фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами при испытаниях в соответствии с требованиями 8.8.2.1 не должно превышать 300 Па.

5.6.1.4 Для работы в СИЗОД с сопротивлением на вдохе свыше 100 Па при расходе 30 дм³/мин должны быть установлены специальные режимы труда и отдыха.

5.7 Устойчивость к запылению

5.7.1 Фильтрующие полумаски с клапанами вдоха и комбинированными фильтрами, включающими съемные противоаэрозольные фильтры, должны соответствовать требованиям по устойчивости к запылению, представленным в ГОСТ Р 12.4.194.

Испытания следует проводить по ГОСТ Р 12.4.194.

5.7.2 Фильтрующие полумаски с клапанами вдоха и комбинированными фильтрами, включающими несъемные противоаэрозольные фильтры, после испытаний на устойчивость к запылению должны соответствовать требованиям к сопротивлению воздушному потоку на вдохе, представленным в таблице 6.

Испытания следует проводить по ГОСТ Р 12.4.194. Сопротивление воздушному потоку следует измерять по 8.8.

5.7.3 После проведения испытаний на устойчивость к запылению проницаемость фильтра не должна превышать значений, представленных в таблице 1.

5.7.4 Сопротивление постоянному воздушному потоку на выдохе для фильтрующих полумасок с клапанами вдоха и комбинированными фильтрами, включающими как съемные, так и несъемные противоаэрозольные фильтры, не должно превышать 300 Па.

Испытания следует проводить в соответствии с требованиями 8.8,

Таблица 6 — Сопротивление постоянному воздушному потоку на вдохе

Knace	Максимальное сопротивление постоянному воздушному потоху на вдохе, Па, при расходе 95 дм ³ /мин
FFΓα31P1	800
FFΓα31P2	900
FFΓα31P3	980
FFΓa32P1	960
FFΓa32P2	1060
FFΓa32P3	1140
FFAXP1	960
FFSXP1	960
FFAXP2	1060
FFSXP2	1060

5.8 Устойчивость к воспламенению

- 5.8.1 Материал полумаски не должен легко воспламеняться.
- 5.8.2 Фильтрующая полумаска с клапанами вдоха и несьемными противогазовыми и (или) комбинированными фильтрами не должна легко воспламеняться и гореть после ее извлечения из пламени.

Испытания следует проводить в соответствии с требованиями 8.6.

5.8.3 Требования 5.8 не распространяются на изделия из материала ФП (см. 5.1.5).

5.9 Содержание диоксида углерода во вдыхаемом воздухе

Содержание диоксида углерода во вдыхаемом воздухе в фильтрующей полумаске с клапанами вдоха и несъемными противогазовыми/комбинированными фильтрами не должно превышать в среднем 1,0 % по объему.

Испытания следует проводить в соответствии с требованиями 8.7.

5.10 Ремни крепления и (или) оголовье

5.10.1 Ремни крепления и (или) оголовье должны быть сконструированы таким образом, чтобы фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами можно было легко снимать и надевать.

Испытания следует проводить в соответствии с требованиями 8.3.

5.10.2 Ремни крепления и (или) оголовье должны регулироваться (или саморегулироваться) и обеспечивать надежную и комфортную фиксацию фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами в нужном положении.

Испытания следует проводить в соответствии с требованиями 8.3 и 8.4.

5.11 Площадь поля зрения

Площадь поля зрения должна быть признана приемлемой в процессе эксплуатационных испытаний в соответствии с требованиями 8.3.

5.12 Съемные элементы

Все имеющиеся съемные элементы должны легко соединяться и надежно закрепляться без применения специальных инструментов, если это отдельно не оговорено в указаниях по эксплуатации. Испытания следует проводить в соответствии с требованиями 8.1 и 8.3.

6 Требования безопасности

- 6.1 Для изготовления фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами следует применять материалы, разрешенные органами здравоохранения для использования в контакте с кожей и вдыхаемым воздухом.
- 6.2 Для фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами, предназначенных для использования в условиях возможного возникновения пожаро- и взрывоопасных ситуаций, не допускается применение чистого алюминия, магния и титана или сплавов, содержащих эти материалы в пропорциях, которые в процессе эксплуатации могут привести к возникновению искры. Информация об этом должна содержаться в нормативном документе на изделие и указаниях по эксплуатации.

7 Правила приемки

Правила приемки устанавливают в нормативных документах на изделия конкретных видов.

8 Методы испытаний

Перечень показателей, проверяемых при испытаниях фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами, представлен в таблице 7.

Т а б л и ц а 7 — Перечень показателей, проверяемых при испытаниях фильтрующих полумасок с клапанами вдоха и несъемными противотазовыми и/или комбинированными фильтрами

Перечень показателей	Число образцов	Предварительная подготовка образцов	Пункт испытания
Визуальный осмотр	Bce	пп	8.1
Чистка и дезинфекция (если это предус- мотрено указанием по эксплуатации)	5	ПП (5)	В соответствии с указанием по эксплуатации

Окончание таблицы 7

Перечень показателей	Число образцов	Предварительная подготовка образцов	Пункт испытания	
Устойчивость к воспламенению	4	ПП (2), ТВ (2)	8.6	
Содержание диоксида углерода	3	ПП (3)	8.7	
Клапан выдоха (испытание на растяжение)	3	ΠΠ (1), TB (2)	8.9	
Клапан выдоха (испытание воздушным по- током)	3	ПП (1), ТВ (2)	8.8, 8,9	
Сопротивление воздушному потоку	9	ПП (3), МВ (3), ТВ (3)	8.8	
Проницаемость противоаэрозодьного фильтра	9 ГОСТ Р 12.4.194	ПП (3), МВ (3), ТВ (3)	ΓΟCT P 12.4.194 5.7	
Определение времени защитного действия	3	УМ (3)	8.5 FOCT P 12.4.193 EH-371 EH-372	
Подсос под фильтрующую полумаску с кла- панами вдоха и несъемными противогазовы- ми/комбинированными фильтрами	10	ПП (5)+РН ТВ (5)+РН	8.4	
Устойчивость к запылению (требование не- обязательно для полумаски с несъемными про- тивоаэрозольными фильтрами)	3	ПП (1), ТВ (2)	Приложение А ГОСТ Р 12,4.194	
Эксплуатационные свойства	2	пп	8.3	

Сокращения: $\Pi\Pi$ — состояние после поставки; YM — устойчивость к механическому воздействию в соответствии с 8.2.3; PH — моделирование режима носки в соответствии с 8.2.1; TB — температурное воздействие в соответствии с 8.2.2.

8.1 Визуальный осмотр

Визуальный осмотр проводят перед проведением испытаний. При визуальном осмотре проверяют также маркировку и наличие соответствующих указаний по эксплуатации.

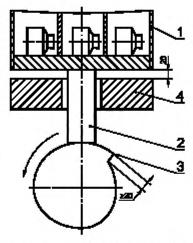
8.2 Предварительная подготовка образнов

Предварительную подготовку образцов следует проводить в соответствии с указаниями таблицы 7. 8.2.1 Моделирование режима носки

Испытатель должен надеть фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами в соответствии с указанием по эксплуатации, а затем снять ее. Процедуру следует повторить девять раз.

8.2.2 Температурное воздействие

Фильтрующие полумаски с клапанами вдоха и несъемными противогазовыми и/или комбинированными фильтрами должны проходить следующий термический цикл:


- а) нагревание до (70±3) °С в течение 24 ч;
- б) охлаждение до (минус 30±3) °С в течение 24 ч.

Перед проведением последующих испытаний фильтрующие полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами выдерживают при комнатной температуре в течение не менее 4 ч.

8.2.3 Устойчивость к механическому воздействию

8.2.3.1 Оборудование

Установка, представленная на рисунке 1, включает стальную коробку 1, закрепленную на перемещающемся вертикально поршне 2, который может подниматься на 20 мм с помощью вращающегося кулачка 3 и опускаться на стальную пластину 4 под действием собственной массы по мере вращения кулачка. Масса стальной коробки должна составлять не менее 10 кг.

I — стальная коробка; 2 — поршень; 3 кулачок, 4 — стальная пластина

Рисунок 1 — Установка для механического воздействия

8.2.3.2 Методика

Фильтрующие полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами испытывают в состоянии после поставки (8.2.2). Далее их помещают вертикально в стальную коробку I так, чтобы они не касались друг друга во время испытания и обеспечивали возможность движения по горизонтали на 6 мм и свободного движения по вертикали. После окончания данного испытания фильтрующую полумаску следует встряхнуть для удаления из нее материала, высыпавшегося из фильтра в процессе механического воздействия.

Установка должна работать в следующем режиме: скорость — 100 об/мин, время работы — 20 мин.

8.3 Определение эксплуатационных свойств

8.3.1 Общие положения

Испытаниям подлежат две фильтрующие полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами в состоянии после поставки.

Все испытания следует проводить двум испытателям при комнатной температуре. Температуру и влажность следует регистрировать.

Перед испытаниями следует провести визуальный осмотр фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и/или комбинированными фильтрами в соответствии с требованиями настоящего стандарта.

Для проведения испытаний следует привлекать обученных лиц, знакомых с данными или подобными фильтрующими полумасками с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами.

При испытаниях фильгрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами необходимо учесть следующие параметры субъективной оценки ее эксплуатационных свойств:

- а) комфортность ремней крепления и (или) оголовья;
- б) надежность креплений;
- в) поле зрения;
- г) другие комментарии испытателя (по его желанию).
- 8.3.2 Испытания при ходьбе

Испытатели в фильтрующей полумаске с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами, одетые в обычную рабочую одежду, должны идти со скоростью 6 км/ч по тредбану в течение 10 мин.

8.3.3 Испытания, моделирующие трудовую деятельность

Продолжительность испытания — 20 мин.

Должны быть выполнены следующие действия:

- а) ходьба в течение 5 мин в помещении, высота которого составляет (1,3±0,2) м;
 - б) продвижение в течение 5 мин ползком в помещении, высота которого (0,7±0,05) м;
 - в) заполнение небольшой емкости (приблизительно емкостью 8 дм³, см. рисунок 2) стружкой или другим подходящим материалом из контейнера высотой 1,5 м с отверстием у дна, позволяющим выгребать его содержимое, и открытым верхом для высыпания содержимого уже заполненной емкости.

Заполняя емкость стружкой, испытатель должен наклоняться или, по желанию, становиться на колени. Затем он должен поднять ведро и высыпать его содержимое обратно в контейнер. Данная операция должна быть повторена 20 раз в течение 10 мин.

П р и м е ч а н и е — Последовательность проводимых действий определяет испытательная даборатория.

8.4 Определение коэффициента подсоса под фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами

8.4.1 Сущность метода

Сущность метода определения коэффициента подсоса под фильтруюшую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами, исключающего проницаемость противогазоаэрозольного фильтра, заключается в определении отношения кон-

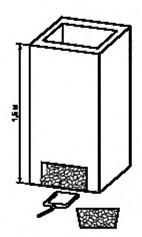


Рисунок 2 — Корзина и контейнер, резиновая стружка

центрации аэрозоля хлорида натрия в подмасочном пространстве фильтрующей полумаски, надетой на испытателя, к концентрации аэрозоля хлорида натрия в атмосфере камеры.

Концентрацию аэрозоля хлорида натрия определяют с помощью пламенного фотометра.

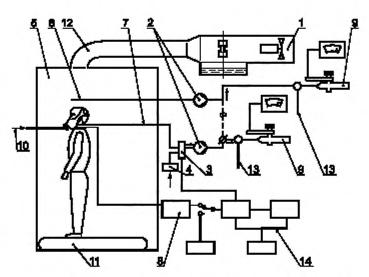
Вследствие многообразия конструкций фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами возможно использование различных приспособлений для определения коэффициента подсоса. При этом фильтрующая полумаска с клапанами должна быть модифицирована в соответствие с требованиями 8.4.5 таким образом, чтобы исключить проникание аэрозоля через противогазоаэрозольный фильтр.

Схема установки для определения коэффициента подсоса под фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами, представлена на рисунке 3.

8.4.2 Описание установки

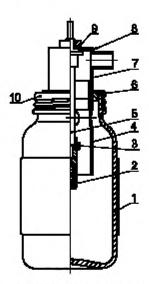
8.4.2.1 Тредбан

Тредбан, расположенный внутри испытательной камеры, должен обеспечивать движение по нему испытателя со скоростью 6 км/ч.


8.4.2.2 Колпак камеры

Колпак камеры обеспечивает подачу аэрозоля хлорида натрия к испытателю.

8.4.2.3 Генератор аэрозоля


Аэрозоль NaCl генерируется из 2 % раствора NaCl (х. ч.) в дистиллированной воде при использовании распылителя Коллисона, представленного на рисунке 4.

Сопла генератора не должны быть направлены к выходным отверстиям резервуара. При этом требуется расход воздуха 100 дм^3 /мин под давлением $7 \times 10^5 \text{ Па}$.

I — генератор аэрозоля;
 2 — насос;
 3 — клапан переключения;
 4 — фяльтр;
 5 — испытательная камера (с колпаком);
 6 — шлант для отбора проб в подмасочном пространстве;
 8 — манометр;
 9 — фотометр;
 10 — фильтрующая полумаска с клапанами вдоха и несъемными противогазовыми и/или комбинированными фильтрами;
 11 — тредбян;
 12 — трубопровод и турбулизатор потока;
 13 — линяя дополнительной подачи воздука;
 14 — система разделения фат вдоха-выдоха при отборе проб

Рисунок 3 — Схема установки для определения коэффициента подсоса под фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и/или комбинированными фильтрами

I — стеклянный сосуд с навинчивающейся крышкой; 2 — сопло; 3 — волокистая прокладка (наружный диаметр — 4,5 мм, внутренний диаметр — 2 мм, голщина прокладки — 0,8 мм); d — втулка; 5 — стержень; d — резиновая прокладка; 7 — головка втулки; d — резиновая прокладка (наружный диаметр — 25 мм, внутренний диаметр — 10 мм, толщина — 1,5 мм, уплотиитель для герметизации); d — гайка; d — завинчивающаяся крышка d — гайка; d — завинчивающаяся крышка

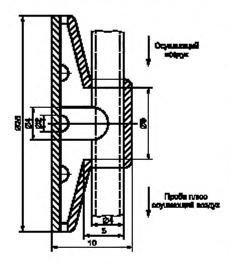
Рисунок 4 — Распылитель

Распылитель и его корпус помещаются в воздуховод, через который поддерживают расход постоянного воздушного потока.

Для получения сухого аэрозоля хлорида натрия, при необходимости, следует нагревать воздух или осущать его каким-либо другим способом.

8.4.2.4 Пламенный фотометр

Для измерения концентрации NaCl в подмасочном пространстве фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами следует применять пламенный фотометр со следующими основными характеристиками:


- а) фотометр должен быть предназначен для анализа частиц аэрозоля NaCl с диапазоном измерения концентрации NaCl от 15 мг/м³ до 5 нг/м³;
- б) расход постоянного потока в пробе, отбираемой из камеры на фотометр, не должен превышать 15 дм³/мин;
 - в) время отклика фотометра без системы отбора проб не должно превышать 500 мс;
- г) необходимо снизить чувствительность фотометра по отношению к другим химическим элементам, в частности, к углероду, концентрация которого меняется в процессе дыхательного цикла. Это достигается обеспечением ширины полосы пропускания интерференционного фильтра не более чем 3 нм и при наличии всех необходимых фильтров для других побочных полос.

Допускается использование других пламенных фотометров, обеспечивающих требуемую чувствительность, а также проведение испытаний в условиях, указанных в 8.4.

8.4.2.5 Устройство для отбора проб

Необходимо применять систему, подающую пробу в фотометр только на фазе вдоха. Во время выдоха в фотометр должен подаваться чистый воздух. Основные элементы такой системы следуюпие:

- а) электрический клапан с временем отклика порядка 100 мс. Клапан должен иметь минимально возможное «мертвое пространство» и возможность прохождения прямого неограниченного потока пробы при открытом клапане;
- б) датчик давления, который способен фиксировать изменения давления около 5 Па и который подключен к пробоотборнику, вставленному в фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами. Датчик должен иметь контролируемый порог чувствительности и сигнализировать о его прохождении в том или обратном направлении. Датчик должен надежно работать при ускорении, вызываемом движениями головы испытателя:
- в) систему раздела фаз вдоха-выдоха, приводящую в действие клапан в ответ на сигнал, получаемый от датчика давления;

Материал: чистый ПВХ. Рисунок 5 — Пробоотборник

 г) таймер для регистрации пропорциональности общего дыхательного цикла, во время которого происходит отбор проб.

8.4.2.6 Пробоотборник

Пробоотборник должен быть надежно и герметично прикреплен к фильтрующей полумаске с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами, как можно ближе к ее центральной оси. Рекомендуется использовать пробоотборник со множеством отверстий.

Для исключения влияния конденсации в пробоотборнике на результат измерений подается сухой воздух в соответствии со схемой, приведенной на рисунке 5. Пробоотборник прикрепляют таким образом, чтобы он лишь касался губ пользователя.

8.4.2.7 Насос для отбора проб

Если в состав фотометра не входит насос, то используют насос непрерывного действия для отбора проб воздуха из подмасочного пространства во время испытания. Этот насос регулируют так, чтобы обеспечить отбор постоянного воздушного потока со скоростью 1 дм³/мин из пробоотборника. Необходимость разбавления пробы чистым воздухом определяется техническими характеристиками фотометра.

8.4.2.8 Отбор проб из испытательной камеры

Концентрацию аэрозоля в испытательной камере контролируют во время испытания с помощью отдельной системы отбора проб для предотвращения загрязнения линии отбора проб из подмасочного пространства. Для этой цели желательно использовать отдельный пламенный фотометр.

При отсутствии второго фотометра для определения концентрации аэрозоля NaCl в испытательной камере допускается использовать тот же фотометр, что и для определения концентрации аэрозоля NaCl в подмасочном пространстве. При этом необходимо дождаться сброса предыдущих показаний фотометра.

8.4.2.9 Пробоотборник для регистрации давления

Второй пробоотборник прикрепляют вблизи первого и подсоединяют к датчику давления. Его используют для обеспечения отбора проб только на вдохе.

8.4.3 Подготовка к испытаниям

8.4.3.1 Атмосфера в испытательной камере

Воздух, содержащий аэрозоль хлорида натрия, должен поступать через распределитель потока предпочтительно в верхнюю часть камеры и направляться вниз к голове испытателя со скоростью потока 0,12 м/с. Скорость потока измеряют вблизи головы испытателя. Следует проверить равномерность распределения концентрации аэрозоля внутри эффективного рабочего объема.

Средняя концентрация NaCl в испытательной камере должна составлять (8±4) мг/м³. Допускается отклонение средней концентрации NaCl по всему эффективному рабочему объему испытательной камеры, не превышающее 10 %. Распределение частиц по размеру должно быть от 0,02 мкм до 2 мкм (аэродинамический диаметр), что эквивалентно среднемассовому диаметру 0,6 мкм.

8.4.3.2 Предварительная подготовка образцов фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами.

Испытаниям подлежат десять образцов: пять — в состоянии после поставки и пять после температурного воздействия (8.2.2).

Каждый испытатель должен надеть и снять фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами десять раз в соответствии с требованиями 8.2.1.

8.4.4 Испытатели

Испытатели должны быть ознакомлены с указаниями по эксплуатации и при наличии фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами разных размеров должны подобрать себе наиболее подходящие. В случае необходимости испытателю должна быть оказана помощь в правильном надевании фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами в соответствии с указаниями по эксплуатации.

Не следует привлекать к испытаниям людей, для которых невозможно добиться удовлетворительного прилегания фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами.

Протокол испытаний должен содержать описание четырех основных параметров лица (в миллиметрах) (для информации), показанных на рисунке 6.

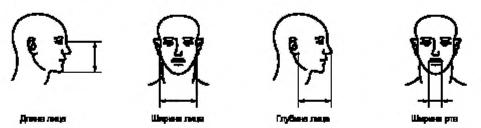


Рисунок 6 — Параметры лица

8.4.5 Подготовка образцов фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами

8.4.5.1 Общие положения

Расположение приспособлений или материалов, герметично закрывающих фильтрующую поверхность, во время определения коэффициента подсоса под фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами должно быть таким, чтобы не исключать влияния клапана выдоха на коэффициент подсоса в том случае, когда клапан выдоха прикреплен непосредственно к противогазоаэрозольному фильтру.

При испытаниях времени защитного действия клапан выдоха должен быть загерметизирован. При использовании различных противогазовых и (или) комбинированных фильтров проверяют фильтры с наибольшим сопротивлением воздушному потоку.

8.4.5.2 Методы подачи воздуха и модификации фильтров

8.4.5.2.1 Общие положения

Подготовку фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами для проверки коэффициента подсоса проводят либо с использованием одного из способов, описанных в 8.4.5.2.2 и 8.4.5.2.3, либо по согласованной с производителем и испытательной лабораторией методике для получения объективных результатов.

8.4.5.2.2 Методы подачи воздуха

8.4.5.2.2.1 Подсоединение шланга и крышки с канюлей для подачи воздуха

Легкий(е) шланг(и) и крышки с канюлей (для герметизации поверхности фильтра) должны быть подсоединены к фильтрующему элементу(ам) фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами. Сопротивление устройства для подачи воздуха должно соответствовать сопротивлению неизменной фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами.

Необходимо убедиться в том, что выдыхаемый воздух не попадает в систему подачи чистого воздуха, а также в том, что крышка с канюлей не пережимает шланг для подачи воздуха.

8.4.5.2.2.2 Закрытие активной сорбирующей поверхности

Фильтрующая противогазоаэрозольная поверхность должна быть загерметизирована с помощью эластичного материала. В загерметизированной фильтрующей поверхности необходимо проделать отверстие для линии подачи воздуха, описанной в 8.4.5.2.1. Массу снятого съемного противоаэрозольного фильтра должно компенсировать, если она составляет более 5 % массы самой фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и/или комбинированными фильтрами.

Герметизатор должен быть достаточно «эластичным», чтобы не вызывать неприятных ощущений и дискомфорта у пользователя при надетой полумаске с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами.

Этот метод следует использовать вместо описанного в 8.4.5.2.2.1 в том случае, когда противогазоаэрозольные фильтры расположены в непосредственной близости от полосы обтюрации.

8.4.5.2.3 Модификация фильтров

8.4.5.2.3.1 Присоединение высокоэффективных противоаэрозольных фильтров

В случае возможности использования фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами непосредственно с фильтрами РЗ такая конструкция может быть использована для определения коэффициента подсоса без последующей модификации в соответствии с 8.4.5.2.2.1 и 8.4.5.2.2.2.

Возможно также подсоединение вместо линии подачи воздуха (8.4.5.2.2.1) фильтра высокой эффективности непосредственно к крышке.

Сопротивление вышеописанного устройства должно соответствовать сопротивлению немодифицированной фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами.

8.4.5.2.3.2 Замена элементов фильтра противоаэрозольными фильтрами

Для некоторых конструкций допускается простая замена противогазовых/комбинированных фильтров на высокоэффективные противоаэрозольные фильтры. В этом случае возможно определение коэффициента подсоса под фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами при условии, что такие модифицированные СИЗОД имеют ту же массу и то же сопротивление воздушному потоку, что и немодифицированные.

8.4.6 Подготовка испытаний

Испытатели должны быть ознакомлены с указаниями по эксплуатации, и при наличии фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами разных размеров подобрать себе наиболее подходящие. В случае необходимости, испытателю должна быть оказана помощь в правильном надевании фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами в соответствии с указаниями по эксплуатации.

Следует проинформировать испытателей о том, что они, при желании, могут регулировать фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами во время испытания. При этом следует повторить ту часть испытаний, во время которых была проведена подгонка.

До окончания испытаний испытателям не следует сообщать никаких результатов.

После надевания фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами необходимо спросить у каждого испытателя, хорошо ли прилегла полумаска. Если ответ положительный, следует начать испытание, если отрицательный, то испытателя нужно заменить другим.

8.4.6.1 Порядок проведения испытаний

Порядок проведения испытания должен быть следующим:

- убедиться в том, что доступ воздуха, содержащего тест-аэрозоль, в камеру перекрыт;
- б) поместить испытателя в камеру. Подсоединить пробоотборник к лицевой части. Попросить испытателя двигаться со скоростью 6 км/ч в течение 2 мин. Измерить концентрацию аэрозоля в подмасочном пространстве для определения фонового уровня;
 - в) получить воспроизводимые показания:
 - г) включить подачу воздуха, содержащего тест-аэрозоль, в испытательную камеру;
- д) испытатель должен продолжать ходьбу в течение следующих 2 мин или до достижения заданных параметров концентрации тест-аэрозоля в испытательной камере;
 - е) во время ходьбы испытатель должен проводить следующие действия:
 - выполнять ходьбу в течение 2 мин без поворотов головы и разговоров,
- 2) поворачивать голову из стороны в сторону (приблизительно 15 раз) в течение 2 мин, как бы осматривая стенки камеры,
- 3) поднимать и опускать голову (приблизительно 15 раз) в течение 2 мин, как бы осматривая пол и полоток,
- 4) произносить вслух алфавит или предусмотренный текст, как бы общаясь со своим коллегой в течение 2 мин,
 - 5) выполнять ходьбу в течение 2 мин без поворотов головы и разговоров;
 - ж) при этом регистрируют:
 - 1) концентрацию тест-аэрозоля под колпаком камеры,
- 2) концентрацию тест-аэрозоля в подмасочном пространстве после каждого действия испытателя:
 - и) отключить подачу воздуха, содержащего тест-аэрозоль, в испытательную камеру;
 - к) после очищения колпака трубопровода камеры от аэрозоля, вывести из нее испытателя;
- л) повторить испытание с привлечением другого испытателя и другого образца фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и/или комбинированными фильтрами.
 - 8.4.7 Обработка результатов

Коэффициент подсоса под фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами К, %, рассчитывают по результатам измерений только за последние 100 с каждого упражнения для разделения результатов последовательных упражнений:

$$K = C_2/C_1[t_{n,x} + t_{nid,x}/t_{n,x}]100 \%,$$
 (1)

где C_1 — концентрация тест-аэрозоля в камере, мг/м³;

С₂ — усредненная концентрация тест-аэрозоля в подмасочном пространстве, мг/м³;

 $t_{\text{ва.}}$ — суммарная продолжительность фаз вдоха за 100 с измерений, с;

 $t_{\text{пыл}}$ — суммарная продолжительность фаз выдоха за 100 с измерений, с. При измерении C_2 может быть использован интегрирующий самописец.

8.5 Определение времени защитного действия противогазового фильтра

8.5.1 Сущность метода

Сущность метода заключается в определении времени появления концентрации тест-вещества, равной предельно допустимой, после прохождения через противогазовый фильтр газо- или паровоздушной смеси, содержащей тест-вещество.

8.5.2 Подготовка и проведение испытаний

Испытания следует проводить так, чтобы газо- или паровоздушная смесь или воздух проходили через фильтр в горизонтальном направлении.

Испытания по каждому тест-веществу проводят с использованием трех образцов, предварительно подвергнутых температурному воздействию в соответствии с 8.2.2.

Образцы зажимают и фиксируют в соответствующем переходнике так, чтобы не повредить их эффективную поверхность. Клапан выдоха должен быть загерметизирован.

Для получения заданной входной концентрации тест-вещества и измерения выходной концентрации могут быть использованы любые аналитические методы, обеспечивающие следующие условия:

- на входе: ±10 % заданного значения:
- на выходе: ±20 % измеренного значения.

Регистрируемое время защитного действия, при необходимости, следует скорректировать с помощью простой пропорции, чтобы согласовать его с фактической концентрацией тест-вещества на входе.

Время защитного действия следует измерять при скорости потока (30 ± 0.5) дм³/мин при использовании одного фильтра и $(15,0\pm0.5)$ дм³/мин при использовании двух фильтров при относительной влажности воздуха (70 ± 2) % и температуре (20 ± 1) °C.

8.6 Устойчивость к воспламенению

8.6.1 Подготовка образцов к испытаниям

Испытаниям подлежат четыре фильтрующие полумаски с клапанами вдоха и несъемными противогазовыми и/или комбинированными фильтрами: две — в состоянии после поставки и две — после температурного воздействия, проведенного (8.2.2).

8.6.2 Оборудование

Испытания на воспламеняемость фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами следует проводить на испытательной установке, описанной в ГОСТ Р 12.4.189, но с использованием одной горелки и нижеописанными изменениями.

8.6.3 Подготовка и проведение испытаний

Во время испытания фильтрующую полумаску с клапанами вдоха и противогазовыми и (или) комбинированными фильтрами необходимо надеть на голову металлического манекена, приводимого в движение двигателем таким образом, чтобы полумаска описывала горизонтальный круг с заданной скоростью. Голова манекена должна проходить над бунзеновской пропановой горелкой, положение которой может регулироваться. С помощью регулятора давления высоту пламени устанавливают равной 40 мм, а расстояние между верхом горелки и нижней частью фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами, проходящей непосредственно над пламенем, — 20 мм.

Регистрируют влияние пламени на фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами после прохождения ее через пламя.

Температура пламени на высоте 20 мм над верхом горелки должна составлять (800±50) °C. Температуру контролируют соответствующим измерительным прибором.

В ходе испытания фильтрующую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами проносят через пламя горелки со скоростью (6±0,5) см/с один раз. В случае, когда составные части, например клапан(ы), располагаются в нетрадиционном месте фильтрующей полумаски, следует повторить данное испытание на других образцах фильтрующей полумаски с клапанами и несъемными противогазовыми и (или) комбинированными фильтрами при ее закреплении в соответствующей позиции.

8.7 Содержание диоксида углерода во вдыхаемом воздухе

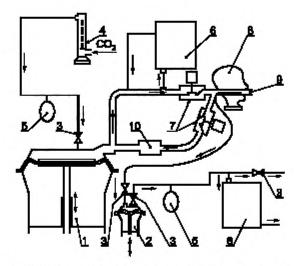
8.7.1 Подготовка образцов фильтрующей полумаски с клапанами

Испытаниям подлежат три фильтрующие полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами в состоянии после поставки.

8.7.2 Оборудование

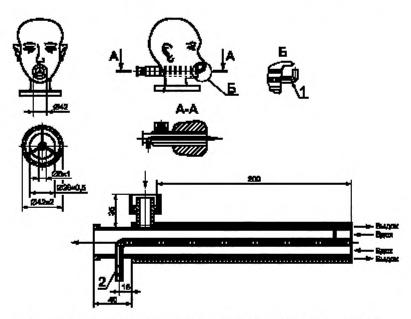
Схема установки для определения содержания диоксида углерода во вдыхаемом воздухе представлена на рисунке 7.

8.7.3 Условия проведения испытаний


Температуру и влажность на месте испытания следует регистрировать.

Скорость потока воздуха в трубопроводе, направленного на фильтрузошую полумаску с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами, должна составлять 0,5 м/с.

8.7.4 Описание проведения испытаний


Образец фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами, подсоединенный к данной установке, включается в дыхательный цикл, обеспечиваемый дыхательной машиной.

Фильтрующая полумаска с клапанами и несъемными противогазовыми и (или) комбинированными фильтрами должна надежно, герметично и без деформации надеваться на голову манекена (рисунок 8).

1 — дыхательная машина; 2 — вспомогательное «легкое»; 3 — обратими клапан; 4 — расходомер; 5 — компенсатор; 6 — анализатор диоксида углерода; 7 — соленоидные клапаны; 8 — голова манекена; 9 — трубка для отбора проб из вдыхаемого воздуха; 10 поглотитель диоксида углерода

Рисунок 7 — Схема испытательной установки для определения содержания диоксида углерода во вдыхаемом возлухе

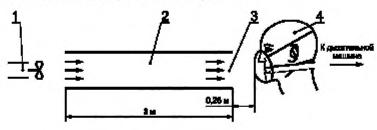
I- втудка для измерения сопротивления воздушному потоку; 2- измерение ${\rm CO_2}$

Рисунок 8 — Шеффилдская голова манекена для испытания по определению содержания диоксида углерода во вдыхаемом воздухе для фильтрующей полумаски с клапанами и несъемными противогазовыми и (или) комбинированными фильтрами

Воздух подается от дыхательной машины, отрегулированной на 25 циклов/мин и 2,0 дм 3 /ход, при этом содержание диоксида углерода в выдыхаемом воздухе должно составлять 5 объемных %. При увеличении концентрации CO_2 при работе установки следует поместить абсорбер CO_2 в цикл вдоха между соленоидным клапаном и дыхательной машиной.

 ${
m CO}_2$ подается в дыхательную машину через контрольный клапан, расходомер, компенсационный резервуар и два односторонних клапана.

Непосредственно перед соленоидным клапаном проводят постоянный отбор небольшого количества выдыхаемого воздуха через линию отбора проб, которое потом вновь возвращается в выдыхаемый воздух через анализатор CO₂.


Для измерения содержания CO₂ во вдыхаемом воздухе, 5 % объема «вдоха» дыхательной машины отбирается в определенном месте с помощью вспомогательного «легкого» и затем подается в анализатор CO₂. Общий объем «мертвого пространства» воздушной линии (за исключением дыхательной машины) испытательной установки не должен превышать 2 дм³.

Испытания проводят до установления стабильного содержания диоксида углерода во вдыхаемом воздухе.

Из измеренного значения вычитают уровень содержания диоксида углерода в окружающей атмосфере. При уровне содержания диоксида углерода в окружающей атмосфере, не превышающем 0,1 %, результаты считаются действительными.

Образец трижды закрепляется на голове манекена с каждым последующим измерением содержания CO_2 . На основании усреднения полученных результатов трех опытов определяют содержание диоксида углерода во вдыхаемом воздухе.

Схема проведения испытания представлена на рисунке 9.

I — вентилятор; 2 — трубопровод; 3 — датчик скорости воздушного потока; 4 — голова манекена

Рисунок 9 — Схема испытания и подачи воздуха для определения содержания диоксида углерода

8.8 Начальное сопротивление воздушному потоку

8.8.1 Подготовка образцов и их фиксация

Испытаниям подлежат девять фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами: три — в состоянии после поставки, три — после температурного воздействия (8.2.2) и три — после механического воздействия (8.2.3).

Фильтрующая полумаска с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами должна быть надежно и герметично надета на голову манекена.

8.8.2 Проведение испытаний

8.8.2.1 Сопротивление воздушному потоку на выдохе

Фильтрующую полумаску с клапанами плотно надевают на голову манекена. Сопротивление воздушному потоку на выдохе измеряют у ротового отверстия головы манекена с использованием адаптера, как показано на рисунке 8, и дыхательной машины с установленным режимом работы 25 циклов/мин и 2,0 дм³/ход или постоянного воздушного потока расходом 160 дм³/мин. При этом следует использовать подходящий преобразователь давления.

8.8.2.2 Сопротивление воздушному потоку на вдохе

Испытания сопротивления воздушному потоку на вдохе проводят при постоянном воздушном потоке расходом 30 и 95 дм³/мин.

8.8.2.3 Корректировка

Сопротивление воздушному потоку приводят к нормальным условиям: температуре 20 °C и давлению 1 атм.

8.9 Прочность крепления корпуса клапана выдоха

8.9.1 Подготовка образцов

Испытаниям подлежат девять фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами: три — в состоянии после поставки, 3 — после температурного воздействия (8.2.2) и три — после механического воздействия (8.2.3).

8.9.2 Проведение испытаний

Фильтрующие полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами надежно закрепляют в зажимном устройстве, как показано на рисунке 10. К корпусу клапана выдоха прикладывают силу растяжения 10 Н перпендикулярно к плоскости клапана выдоха в течение 10 с. Результаты регистрируют.

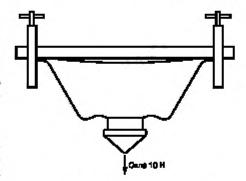


Рисунок 10 — Зажимное устройство для лицевой части

9 Маркировка

9.1 Требования к маркировке на упаковке

Упаковка фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами должна быть четко маркирована устойчивой краской с указанием:

- 9.1.1 фирменного наименования торговой марки или другой идентификации изготовителя или поставшика;
 - 9.1.2 маркировки, обозначающей тип СИЗОД;
 - 9.1.3 марки и класса;
 - 9.1.4 номера настоящего стандарта;
- 9.1.5 года изготовления, срока годности или даты истечения срока годности (в случае, если с течением времени изменяются эксплуатационные свойства) или эквивалентной пиктограммы, как показано на рисунке 11;

Рисунок 11 — Пиктограммы

- 9.1.6 надписи «Смотрите указания по эксплуатации», по крайней мере, на основном(ых) языке(ах) страны назначения или эквивалентной пиктограммы, как показано на рисунке 11:
- 9.1.7 соответствующего обозначения на упаковке, если фильтрующая полумаска с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами удовлетворяет требованиям по устойчивости к запылению. Для несъемных фильтров требование необязательно;
- 9.1.8 условий хранения, рекомендуемых изготовителем (температуры и влажности) или эквивалентной пиктограммы, как показано на рисунке 11;
- 9.1.9 букв ФН после символов, соответствующих 9.1.3, если противоаэрозольный фильтр фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами изготовлен из материала типа ФП.

9.2 Маркировка фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами

Маркировка фильтрующих полумасок с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами должна быть четко различимой и стойкой и содержать следующее:

- 9.2.1 фирменное наименование, торговую марку или другую идентификацию изготовителя или поставшика;
- 9.2.2 символы, соответствующие классу и марке фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и/или комбинированными фильтрами, например FFA1;
 - 9.2.3 номер настоящего стандарта;
 - 9.2.4 символы с указанием класса противоаэрозольного фильтра (FFГазР2, FFГазР3);
- 9.2.5 буква D указывается после обозначения марки и класса (см. 9.2.2), если фильтрующие полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами прошли испытание на устойчивость к запылению;
- 9.2.6 запасные части и дополнительные комплекты, существенно влияющие на безопасность, должны быть маркированы так, чтобы их можно было идентифицировать;
- 9.2.7 использование маркировки цветом на фильтрующей полумаске с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами является необязательным. При нанесении маркировки цветом следует придерживаться требований ГОСТ Р 12.4.193 или ГОСТ Р 12.4.194.

10 Транспортирование и хранение

Правила транспортирования и хранения устанавливают в пормативных документах на конкретные виды изделий.

11 Указания по эксплуатации

- 11.1 Любая наименьшая фабричная упаковка должна быть снабжена указаниями по эксплуатации.
- 11.2 Указания по эксплуатации должны быть составлены на официальном(ых) языке(ах) страны назначения.
 - 11.3 Указания по эксплуатации должны содержать следующее:
 - область применения (ограничения);
 - информацию о разовом характере использования изделия при необходимости;
- информацию о том, отвечает или нет фильтрующая полумаска с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами требованиям по устойчивости к запылению;
 - метод проверки перед использованием;
- метод проверки плотности прилегания фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами;
 - правила использования;
 - правила ухода;
 - условия хранения;
- информацию о том, что реальное время защиты может отличаться от времени достижения проскоковой концентрации, определенного в соответствии с настоящим стандартом как в большую, так и меньшую сторону в зависимости от условий эксплуатации;
 - требования по утилизации.
- 11.4 Указания по эксплуатации не должны содержать разночтений. В них допускается приводить рисунки, нумерацию отдельных частей и их маркировку.
- 11.5 В указаниях по эксплуатации должны содержаться сведения о возможных осложнениях, возникающих в процессе эксплуатации фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми или комбинированными фильтрами пользователем, например:
- нарушение плотности прилегания фильтрующей полумаски с клапанами вдоха и несъемными противогазовыми или комбинированными фильтрами;
 - влияние растительности на лице пользователя;
 - влияние состава воздуха, содержащего загрязняющие вещества, дефицита кислорода;
 - ограничения по применению во взрывоопасной атмосфере;
 - используется ли цветовая маркировка для обозначения марки(ок) фильтра.
- 11.6 В указаниях по эксплуатации должно быть указано, что фильтрующие полумаски с клапанами вдоха без сменных элементов необходимо выбрасывать после использования.
 - 11.7 Необходимо дать объяснение используемым символам.

УДК 614.894.3/4:006.354

OKC 13.340.30

Л07

OKII 25 6820

Ключевые слова: средства индивидуальной защиты органов дыхания, фильтрующие полумаски, противогазовые и комбинированные фильтры, клапаны вдоха, технические требования, испытания, маркировка

Редактор Р.Г. Говердовская
Технический редактор В.Н. Прусакова
Корректор В.И. Кануркина
Компьютерная верстка В.Н. Грищенко

Изд. лиц. № 021007 от 10.08.95. — Сдано в набор 11.05.2000. — Подписано в печать 22.06.2000. — Усл. печ. л. 2,79. Уч.-изд. л. 2,45. — Тираж 491 экз. — С 5438. — Зак. 597.

к ГОСТ Р 12.4.192-99 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Полумаски фильтрующие с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами. Общие технические условия

Должно быть	н- Время защитного м ³ действия, мин		20 40	25	20
	Проскоковая кон- центрация, см ³ /м ³ (PPM)*		0,5 10	**01	5
	Концентрация тествещества в воздухе	мг/дм³	3,0	1,1	2,7
		% (по объему)	0,1 0,1	0,1	0,1
	Тест-веще-		Хлор СІ ₂ Сероводород	n ₂ 3 Синильная кислота НСN	Диоксид серы SO ₂
	Марка и класс		FFB1		1344
В каком месте	Пункт 5.4.3.1. Таблица 2. Для ма-	рок ггві и ггеі			

(NYC № 2 2003 г.)

к ГОСТ Р 12.4.192—99 Система стандартов безопасности труда. Средства индивидуальной защиты органов дыхания. Полумаски фильтрующие с клапанами вдоха и несъемными противогазовыми и (или) комбинированными фильтрами. Общие технические условия

В каком месте	Напечатано	Должно быть	
Содержание. Для	Подеос под	Коэффициент подсоса	
пункта 5.3		под	
Пункт 5.1.3	использованные при из-	из которых изготовлены	
	готовлении фильтрую-	фильтрующие полумас-	
	щих полумасок	ки	
Пункт 5.3 (2 раза)	Подсос под	Коэффициент подсоса под	
последний абзац	При определении коэф-	При определении коэф-	
	фициента подсоса через	фициента подсоса под	
Пункт 5.4.3.1. Таб-			
лица 2. Сноска**	10 мл/м ³	10 см ³ /м ³	
Раздел 8. Таблица 7			
(2 pa3a)	МВ	УМ	
графа «Перечень	Подеос под фильтрую-	Коэффициент подсоса	
показателей»	щую полумаску	под фильтрующую по-	
		лумаску	
Пункт 8.5.1	появления концентра-	появления нормиро-	
	ции тест-вещества, рав-	ванной проскоковой	
	ной предельно допусти-	концентрации тест-ве-	
	мой,	щества	
Пункт 8.9.1	Испытаниям подлежат	Испытаниям подлежат	
	девять фильтрующих по-	три фильтрующие полу-	
	лумасок с клапанами	маски с клапанами вдо-	
	вдоха и несъемными	ха и несъемными про-	
	противогазовыми и	тивогазовыми и (или)	
	(или) комбинирован-	комбинированными	
	ными фильтрами: три —	фильтрами: одна — в	
	в состоянии после по-	состоянии после по-	
	ставки, 3 — после тем-	ставки, две - после	
	пературного воздействия	температурного воздей-	
	(8.2.2) и три — после	ствия (8.2.2) и одна —	
	механического воздей-	после механического	
	ствия (8.2.3)	воздействия (8.2.3)	
		(Продолжение см. с. 90)	
		(1. poodine cine cine or 70)	

(Продолжение поправки к ГОСТ Р 12.4.192—99)

Продолжение

В каком месте	Должно быть					
Пункт 5.4.3.1. Табли- ца 2. Для ма- рок FFB1 и FFE1	Марка Тест- и класс вещество		Концентрация тест- вещества в воздухе		Проскоко- вая концентра- ция, см ³ /м ³ (PPM)	Время защитного действия, мин
		% (по объс- му)	мг/дм ³			
	FFBI	Хлор Cl ₂	0,1	3.0	0,5	20
	FFEI	Серово- дород Н ₂ S	0,1	1,4	10	40

(ИУС № 9 2001 г.)