ТИТАН ГУБЧАТЫЙ

Методы определения хлора

Издание официальное

Предисловие

РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 105,
 Украинским научно-исследовательским и проектным институтом титана

ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертифика-

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 9 от 12 апреля 1996 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации	
Азербайджанская Республика	Азгосстандарт	
Республика Беларусь	Госстандарт Беларуси	
Республика Казахстан	Госстандарт Республики Казахстан	
Российская Федерация	Госстандарт России	
Туркменистан	Главная государственная инспекция Туркменистан	
Украина	Госстандарт Украины	

- 3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 19 октября 1999 г. № 353-ст межгосударственный стандарт ГОСТ 9853,4—96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 2000 г.
 - 4 B3AMEH ΓΟCT 9853.4--79

Содержание

 Область применения	. 1
2 Нормативные ссылки	. 1
3 Общие требования	. 2
4 Турбидиметрический метод	. 2
4.1 Средства измерений и вспомогательные устройства	. 2
4.2 Порядок проведения измерений	. 2
4.3 Обработка результатов измерений	. 3
4.4 Допустимая погрешность измерений	. 3
5 Кулонометрический метод	. 3
5.1 Средства измерений и вспомогательные устройства	. 3
5.2 Порядок подготовки к проведению измерений	. 4
5.3 Порядок проведения измерений	. 4
5.4 Обработка результатов измерений	. 4
5.5 Допустимая погрешность измерений	. 4
6 Меркуриметрический метод	. 5
6.1 Средства измерений и вспомогательные устройства	. 5
6.2 Порядок подготовки к проведению измерений	. 5
6.3 Порядок проведения измерений	. 6
6.4 Обработка результатов измерений	. 6
6.5 Допустимая погрешность измерений	. 6
7 Требования к квалификации	. 6

межгосударственный стандарт

ТИТАН ГУБЧАТЫЙ

Методы определения хлора

Sponge titanium. Methods for determination of chlorine

Лата ввеления 2000-07-01

1 Область применения

Настоящий стандарт устанавливает турбидиметрический (при массовой доле хлора от 0,003 % до 0,12 %), кулонометрический (при массовой доле хлора от 0,01 % до 0,4 %) и меркуриметрический (при массовой доле хлора от 0,05 % до 0,3 %) методы определения хлора в губчатом титане по ГОСТ 17746.

Турбидиметрический метод основан на реакции образования мелкодисперсного клорида серебра в растворе пробы без отделения титана и последующем измерении оптической плотности.

Кулонометрический метод основан на кулонометрическом титровании хлорид-ионов в присутствии титана и образовании хлорида серебра. Для уменьшения адсорбции хлорид-ионов осадком вводят поливиниловый спирт.

Меркуриметрический метод основан на образовании малодиссоциированного соединения двухлористой ртути при титровании раствора, содержащего хлор, раствором азотнокислой ртути с применением в качестве индикатора нитропруссида натрия.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.315—97 Государственная система обеспечения единства измерений. Стандартные образцы. Основные положения, порядок разработки, аттестации, утверждения, регистрации и применения

ГОСТ 1277-75 Серебро азотнокислое. Технические условия

ГОСТ 3765-78 Аммоний молибденовокислый. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4232-74 Калий йодистый. Технические условия

ГОСТ 4233-77 Натрий хлористый. Технические условия

ГОСТ 4461-77 Кислота азотная. Технические условия

ГОСТ 4520—78 Ртуть (II) азотнокислая 1-водная. Технические условия

ГОСТ 9656-75 Кислота борная. Технические условия

ГОСТ 10163-76 Крахмал растворимый. Технические условия

ГОСТ 10484—78 Кислота фтористоводородная. Технические условия

ГОСТ 10779-97 Спирт поливиниловый, Технические условия

ГОСТ 10929-76 Водорода пероксид. Технические условия

ГОСТ 17746-96 Титан губчатый. Технические условия

ГОСТ 23780—96 Титан губчатый. Методы отбора и подготовки проб

ГОСТ 25086-87 Цветные металлы и их сплавы. Общие требования к методам анализа

ГОСТ 27068—86 Натрий серноватистокислый (натрия тиосульфат) 5-водный. Технические условия

3 Общие требования

- Общие требования к методам анализа по ГОСТ 25086.
- 3.2 Отбор и подготовку проб проводят по ГОСТ 23780.
- 3.3 Массовую долю хлора определяют по двум навескам.

4 Турбидиметрический метод

4.1 Средства измерений и вспомогательные устройства

Спектрофотометр типа СФ-46 или колориметр фотоэлектрический концентрационный типа КФК-2, или аналогичный прибор.

Кислота фтористоводородная по ГОСТ 10484, разбавленная 1:5.

Кислота азотная по ГОСТ 4461 и разбавленная 1:19.

Натрия хлорид (натрий хлористый) по ГОСТ 4233.

Кислота борная по ГОСТ 9656.

Серебра нитрат (серебро азотнокислое) по ГОСТ 1277, раствор массовой концентрации 2 г/дм³. Государственные стандартные образцы по ГОСТ 8.315.

Стандартные растворы хлорида натрия.

Раствор А: 1,649 г хлорида натрия, высушенного при температуре 383 К до постоянной массы, растворяют в воде, переносят в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают.

1 см³ раствора А содержит 0,001 г хлора.

Раствор Б: 2 см³ раствора А помещают в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

1 см3 раствора Б содержит 0,00002 г хлора.

4.2 Порядок проведения измерений

4.2.1 Навеску пробы массой 0,3—1,0 г согласно таблице 1 помещают в полиэтиленовый стакан вместимостью 100 см³, смачивают 1,5—2,0 см³ воды. Стакан с пробой помещают в кристаллизатор с холодной дистиллированной водой при температуре не выше (288 ± 2) К и постепенно небольшими порциями приливают 10 см³ фтористоводородной кислоты (1:5); накрывают стакан крышкой. Пробу растворяют при постоянном перемешивании. После полного растворения навески приливают 3 см³ концентрированной азотной кислоты до обесцвечивания раствора, при этом стакан накрывают до прекращения реакции, добавляют 1,5 г борной кислоты, перемешивают до растворения борной кислоты и раствор переводят в мерную колбу вместимостью 50 см³. Раствор с крышки и стенок полиэтиленового стакана смывают азотной кислотой, разбавленной 1:19, ею же доливают раствор в колбе до метки и перемешивают.

Таблица 1

Массовая додя клора, %	Масса навески, г	Аликвотная часть раствора, см ³
От 0,003 до 0,01 включ.	1,0	25
Св. 0,01 * 0,08 *	0,5	15
* 0,08 * 0,12 *	0,3	5

Аликвотную часть раствора 5—25 см³ согласно таблице 1 помещают в мерную колбу вместимостью 50 см³, приливают азотную кислоту, разбавленную 1:19, до объема примерно 35 см³, перемешивают и добавляют 3 см³ раствора нитрата серебра. Не перемешивая, растворы оставляют в темном месте на 10 мин, далее доливают азотной кислотой, разбавленной 1:19, до метки, перемешивают и измеряют оптическую плотность раствора при длине волны 400 нм толщиной поглощающего слоя 50 мм. Раствором сравнения служит раствор контрольного опыта.

Массовую долю хлора в пробе рассчитывают по градуировочному графику.

4.2.2 Для построения градуировочного графика в семь из восьми мерных колб вместимостью 50 см³ помещают 0,5; 1,0; 2,0; 3,0; 4,0; 5,0; 6,0 см³ стандартного раствора Б, что соответствует 0,00001; 0,00002; 0,00004; 0,00006; 0,00008; 0,00010; 0,00012 г хлора.

Раствор восьмой колбы является раствором контрольного опыта.

Растворы во всех колбах разбавляют азотной кислотой, разбавленной 1:19, до объема примерно

35 см³, перемешивают, добавляют 3 см³ раствора нитрата серебра. На перемешивая, оставляют в темном месте на 10 мин и далее поступают, как указано в 4.2.1.

По полученным значениям оптической плотности и соответствующим им массам хлора строят градуировочный график.

4.3 Обработка результатов измерений

Массовую долю хлора Х, %, вычисляют по формуле

$$X = \frac{m_1 V}{m V_1} \cdot 100, \tag{1}$$

где m₁ — масса хлора в растворе пробы, найденная по градуировочному графику, г;

V — общий объем раствора пробы, см³;

т — масса навески, г;

 V_1 — объем аликвотной части пробы, см³.

4.4 Допустимая погрешность измерений

4.4.1 Расхождение между результатами двух измерений и результатами анализа (при доверительной вероятности P=0.95) не должно превышать значений, указанных в таблице 2.

Таблица 2 В процентах

Массовая доля хлора	Допускаемое расхождение между результатами параллельных измерения	Допускаемое расхождение между результатами анализа	Предел погрешности измерений Δ
От 0,0030 до 0,0100 включ.	0,0015	0,0020	0,0016
Св. 0,010 » 0,030 »	0,007	0,008	0,006
» 0,030 » 0,080 »	0,010	0,015	0,012
» 0,080 » 0,120 »	0,015	0,020	0,016

4.4.2 Контроль точности результатов анализа проводят по стандартному образцу в соответствии с ГОСТ 25086.

Допускается проводить контроль точности результатов анализа по методу добавок в соответствии с ГОСТ 25086.

Добавками является стандартный раствор А.

5 Кулонометрический метод

5.1 Средства измерений и вспомогательные устройства

Титратор лабораторный кулонометрический с серебряными электродами (серебро высокой чистоты СВЧ-10 диаметром 2—3 мм) типа Т-201 или аналогичный прибор.

Кислота фтористоводородная по ГОСТ 10484, разбавленная 1:5.

Пероксид водорода по ГОСТ 10929, 3 %-ный раствор.

Натрия хлорид (натрий хлористый) по ГОСТ 4233.

Спирт поливиниловый по ГОСТ 10779, раствор массовой концентрации 10 г/дм3.

Титан губчатый с массовой долей хлора от 0,02 % до 0,04 %.

Аммония молибдат (аммоний молибденовокислый) по ГОСТ 3765, раствор массовой концентрации 300 г/дм³.

Кислота серная по ГОСТ 4204, раствор молярной концентрации 2 моль/дм3.

Калия йодид (калий йодистый) по ГОСТ 4232.

Натрия тиосульфат (натрий серноватистокислый) (фиксанал) по ГОСТ 27068, раствор молярной концентрации 0.05 моль/дм³.

Крахмал растворимый по ГОСТ 10163, 0,1 %-ный раствор.

Государственные стандартные образны по ГОСТ 8.315.

Стандартные растворы хлорида натрия.

Раствор А: 1,649 г хлорида натрия (предварительно высушенного при температуре 383 K) растворяют в воде, переводят в мерную колбу вместимостью 1000 см³, доводят водой до метки и перемешивают. 1 см3 раствора А содержит 0,001 г хлора.

Раствор Б: 10 см³ раствора А помещают в мерную колбу вместимостью 100 см³, доводят водой до метки и перемешивают.

I см³ раствора Б содержит 0,0001 г хлора.

5.2 Порядок подготовки к проведению измерений

Перед проведением измерений за 40—60 мин включают в электрическую сеть блоки индикации и стабилизатора тока титратора T-201.

Устанавливают генераторный ток, равный 20 мА. Задатчик конечной точки титрования устанавливают на значение 15 мкА. Поверхность электродов должна быть блестящей.

Перед выполнением измерений точно устанавливают концентрацию 3 %-ного раствора пероксида водорода. Для этого 100 см³ концентрированного пероксида водорода помещают в мерную колбу вместимостью 1000 см³, доводят до метки водой и перемешивают. Аликвотную часть раствора 3 см³ помещают в мерную колбу вместимостью 250 см³, доливают водой до метки и перемешивают.

К аликвотной части раствора 25 см³ добавляют 10 см³ раствора серной кислоты, 1 г йодида калия, 3 капли раствора молибдата аммония, 2—3 капли раствора крахмала и титруют раствором тиосульфата натрия до исчезновения синей окраски.

Концентрацию пероксида водорода устанавливают один раз после приготовления.

Массовую долю пероксида водорода X, %, вычисляют по формуле

$$X = \frac{V T}{V_1} \cdot 100, \tag{2}$$

где V— объем раствора тиосульфата натрия, израсходованного на титрование, см³;

T— массовая концентрация тиосульфата натрия по пероксиду водорода, равная 0.00085 г/см^3 ;

 V_1 — общий объем разведения пероксида водорода, см³.

5.3 Порядок проведения измерений

5.3.1 Навеску массой 0,3 г помещают в полиэтиленовый стакан вместимостью 35—40 см³, добавляют 15 см³ фтористоводородной кислоты и закрывают крышкой. После полного растворения пробы раствор с крышки смывают в стакан 2—3 см³ воды. Раствор охлаждают до комнатной температуры. Из бюретки добавляют 5 см³ раствора пероксида водорода и вводят 1 см³ раствора поливинилового спирта. Общий объем раствора в стакане доводят до 30 см³.

Титрование проводят следующим образом: стакан с раствором помещают на титровальный столик и погружают в него электроды с мешалкой. Переключатель рода работ включают в положение «Подготовка», одновременно включают мешалку. Ручкой сброса показаний счетчика устанавливают секундомер на нуль. После того как стрелка микроамперметра установится на делениях 5—7 мкА, ручку переключателя рода работ включают в положение «Титрование». Одновременно включают секундомер. После того как прекратится титрование (индикатором является загорание сигнальной лампы «Конец»), записывают локазания счетчика. Далее показания счетчика сбрасывают, электроды и мешалку промывают водой.

Перед измерением содержания хлорид-иона в растворе пробы проводят градуировку прибора и построение градуировочного графика.

5.3.2 Для построения градуировочного графика в семь полиэтиленовых стаканов помещают навески массой 0,3 г губчатого титана с установленным содержанием хлора менее 0,04 %, растворяют во фтористоводородной кислоте, добавляют растворы пероксида водорода и поливинилового спирта, как указано в 5.3.1. В шесть из семи стаканов вводят 1,0; 2,0; 3,0; 4,0; 5,0; 6,0 см³ стандартного раствора Б, что соответствует 0,0001; 0,0002; 0,0003; 0,0004; 0,0005; 0,0006 г хлора. Раствор седьмого стакана является раствором контрольного опыта. Объем раствора в стаканах доводят водой до 30 см³. Титрование проводят, как указано в 5.3.1.

По полученным значениям счетчика и соответствующим им массам хлора, выраженным в процентах, строят градуировочный график. Не меняя наклона графика, переносят градуировочную прямую параллельно оси ординат на значение массовой доли хлора в процентах в образце губчатого титана, примененного для построения градуировочного графика.

5.4 Обработка результатов измерений

Массовую долю хлора находят по градуировочному графику.

5.5 Допустимая погрешность измерений

5.5.1 Расхождение между результатами двух измерений и результатами анализа (при доверительной вероятности P = 0.95) не должно превышать значений, указанных в таблице 3.

Таблица 3 В процентах

Массоная доля хдора	Допускаемое расхождение между результатами параллельных измерения	Допускаемое расхождение между результатами анализа	Предел погрешности измерения Δ
От 0,010 до 0,030 включ.	0,008	0,010	0,008
CB. 0,030 » 0,060 »	0,010	0,025	0,020
» 0,060 » 0,080 »	0,012	0,030	0,024
» 0,080 » 0,100 »	0,016	0.040	0,032
» 0,100 » 0,120 »	0.018	0.045	0,036
* 0.12 * 0.30 *	0.02	0.05	0,04
* 0,30 * 0,40 *	0,03	0.06	0.05

5.5.2 Контроль точности результатов анализа проводят по стандартному образцу в соответствии с ГОСТ 25086.

Допускается проводить контроль точности результатов анализа по методу добавок в соответствии с ГОСТ 25086.

Добавками является стандартный раствор А.

6 Меркуриметрический метод

6.1 Средства измерений и вспомогательные устройства

Кислота фтористоводородная по ГОСТ 10484, разбавленная 1:5.

Кислота азотная по ГОСТ 4461 концентрированная ($\rho = 1,49 \text{ г/см}^3$) и разбавленная 1:4 и 1:10. Кислота борная по ГОСТ 9656.

Натрия нитропруссид по действующему нормативному документу, раствор массовой концентрации 100 г/дм³.

Ртути нитрат (ртуть азотнокислая) по ГОСТ 4520, раствор молярной концентрации 0.05 моль/дм^3 .

Натрия хлорид (натрий хлористый) по ГОСТ 4233.

Государственные стандартные образцы по ГОСТ 8.315.

Раствор хлорида натрия молярной концентрации 0,1 моль/дм³ готовят из стандарт-титра по действующему нормативному документу.

Стандартные растворы хлорида натрия.

Раствор А: 1,649 г хлорида натрия, высушенного при температуре (383 ± 10) К, растворяют в воде, переносят в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают. 1 см³ раствора А содержит 0,001 г хлора.

Раствор Б: 10 см³ раствора А переносят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

1 см3 раствора Б содержит 0,0001 г хлора.

6.2 Порядок подготовки к проведению измерений

- 6.2.1 Приготовление раствора нитрата ртути: 17,0 г нитрата ртути растворяют в 150 см³ воды с добавлением 20 см³ азотной кислоты (р = 1,49 г/см³). Раствор переносят в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают.
- 6.2.2 Определение коэффициента поправки молярной концентрации раствора нитрата ртути: в коническую колбу вместимостью 250 см³ отбирают 25 см³ хлорида натрия молярной концентрации 0,1 моль/дм³, добавляют 6 см³ раствора азотной кислоты (1:4), 2 см³ раствора нитропруссида натрия и титруют раствором нитрата ртути до появления не исчезающей при перемешивании мути.

Коэффициент поправки молярной концентрации раствора нитрата ртуги вычисляют по формуле

$$K = \frac{25}{V}, \tag{3}$$

где 25 — объем раствора хлорида натрия, взятого для титрования, см³;

V — объем раствора нитрата ртуги, израсходованного на титрование, см³.

Результаты вычисляют с точностью до четвертого десятичного знака. За результат принимают среднее значение трех параллельных определений. Коэффициент поправки молярной концентрации должен быть в пределах 0,9500—1,0500. Коэффициент поправки молярной концентрации проверяют один раз в месяц.

6.3 Порядок проведения измерений

Навеску массой 2 г помещают в полиэтиленовый стакан вместимостью 100—200 см³ и смачивают 2 см³ воды. Стакан ставят в кристаллизатор с холодной дистиллированной водой температурой не выше (288 ± 2) К и постепенно небольшими порциями придивают 40 см³ раствора фтористоводородной кислоты (1:5), накрывают стакан крышкой. Пробу растворяют при постоянном перемешивании. После полного растворения навески приливают 4—5 см³ концентрированной азотной кислоты до обесцвечивания раствора, при этом стакан накрывают до прекращения реакции, раствор охлаждают до комнатной температуры.

Раствор переводят в коническую колбу вместимостью 250 см³, куда предварительно вводят 2 г борной кислоты и 50 см³ воды, раствор перемешивают до полного растворения, приливают 10 см³ раствора азотной кислоты (1: 10), добавляют 1—2 см³ раствора нитропруссида натрия и титруют из микробюретки раствором нитрата ртути до появления не исчезающей при тщательном перемешивании мути.

Одновременно проводят контрольный опыт через все стадии анализа.

6.4 Обработка результатов измерений

Массовую долю хлора Х, %, вычисляют по формуле

$$X = \frac{(V_1 - V_0) K0,00355}{m} \cdot 100, \tag{4}$$

где $V_{\rm t}$ — объем раствора нитрата ртути, израсходованного на титрование, см³;

 V_0 — объем раствора нитрата ртути, израсходованного на титрование контрольного опыта, см 3 :

К — коэффициент поправки молярной концентрации раствора нитрата ртути;

0,00355 — массовая концентрация нитрата ртути, г/см³ хлора;

т — масса навески, г.

6.5 Допустимая погрешность измерений

6.5.1 Расхождение между результатами двух измерений и результатами анализа (при доверительной вероятности P = 0.95) не должно превышать значений, указанных в таблице 4.

Таблица 4 В процентах

Массовая доля хлора	Допускаемое расхождение между результатами парадлельных измерений	Допускаемое расхождение между результатами анализа	Предел погрешности измерений Δ
От 0,050 до 0,150 включ.	0,013	0,020	0,016
Св. 0,150 » 0,300 »	0,028	0,040	0,030

6.5.2 Контроль точности результатов анализа проводят по стандартному образцу в соответствии с ГОСТ 25086.

Допускается проводить контроль точности результатов анализа по методу добавок в соответствии с ГОСТ 25086.

Добавками является стандартный раствор А.

7 Требования к квалификации

К выполнению анализа допускается химик-аналитик квалификации не ниже 4-го разряда.

УДК 669.295: 546.13.06: 006.354

MKC 77.120

B59

OKCTY 1709

Ключевые слова: титан губчатый, определение хлора, турбидиметрический метод, кулонометрический метод, меркуриметрический метод

Редактор Л.И. Нахимова
Технический релактор В.И. Прусакова
Корректор Т.И. Конопенко
Компьютерная верстка С.В. Рябовой

Изд. лиц. № 021007 от 10.08.95, Сдано в набор 18.02.2000, Подписано в печать 23.03.2000. Усл.печ.д. 1,40. Уч.-изд.л. 0,97. Тираж 207 экз. С/Д 5320. Зак. 399.

ИПК Издательство стандартов, 107076, Москва, Колодезный пер., 14. Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. "Московский печатник", 103062, Москва, Лялии пер., 6. Плр № 080102