Система стандартов безопасности труда

СРЕДСТВА ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ ОРГАНА СЛУХА. ПРОТИВОШУМЫ

Оценка результирующего значения А-корректированных уровней звукового давления при использовании средств индивидуальной защиты от шума

Издание официальное

ГОСТ Р 12.4.212-99

Предисловие

1 РАЗРАБОТАН Научным центром социально-производственных проблем охраны труда

ВНЕСЕН Техническим комитетом по стандартизации средств индивидуальной защиты ТК 320 яСИЗ»

- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 28 декабря 1999 г. № 767-ст
- 3 Настоящий стандарт представляет собой аутентичный текст международного стандарта ИСО 4869-2—94 «Средства индивидуальной защиты органа слуха. Оценка результирующего значения А-корректированных уровней звукового давления при использовании средств индивидуальной защиты от шума» и содержит дополнительные требования, отражающие потребности экономики страны
 - 4 ВВЕДЕН ВПЕРВЫЕ

ГОСТ Р 12.4.212-99

Содержание

1 Область применения					4				į.	4		-	1		1
2 Нормативные ссылки	-												į,		1
3 Определения															
4 Измерение поглощени															
 Вычисление допустим ством, при выбранной 															2
6 Метод октавной полос															
7 НМL-метод															
8 SNR-метод					_			4							4
Приложение А. Пример															
Приложение Б Пример															
Приложение В Примерь															
Приложение Г Пример				-											

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Система стандартов безопасности труда

СРЕДСТВА ИНДИВИДУАЛЬНОЙ ЗАШИТЫ ОРГАНА СЛУХА. ПРОТИВОШУМЫ

Оценка результирующего значения A-корректированных уровней звукового давления при использовании средств индивидуальной защиты от шума

Occupational safety standards system.

Hearing protectors, Estimation of effective A-weighted sound pressure levels when hearing protectors are worn

Дата введения 2002-01-01

1 Область применения

Настоящий стандарт устанавливает три метода оценки А-корректированного уровня звукового давления, действующих при использовании средств индивидуальной защиты от шума.

Методы устанавливают критерии для отбора или сравнения противошумов, а также определяют требования минимально приемлемого поглощения шума.

Дополнительные требования, отражающие потребности экономики страны выделены курсивом.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на стандарты:

ГОСТ Р 12.4.211—99 (ИСО 4869-1—90) Система стандартов безопасности труда. Средства индивидуальной защиты органа слуха. Противошумы. Субъективный метод измерения поглощения шума МЭК 651—79* Приборы для измерения уровней звука

3 Определения

В настоящем стандарте применяют следующие термины с соответствующими определениями:

3.1 эффективиость защиты: Процент случаев, в которых А-корректированный уровень звукового давления, действующий при использовании средств защиты, не превышает ожидаемого значения.

Это значение устанавливают, добавляя индекс к значению ослабления звука в зависимости от метода, например H_{so} , M_{so} . L_{so} , SNR_{so} .

Примечания

- Эффективность защиты часто выбирают равной 84 % (в соответствии с константой α = 1) согласно разделу 5. Тогда индекс к значению ослабления звука можно не прибавлять.
- 2 Сам случай определяется сочетанием факторов конкретный потребитель, определенное средство защиты, конкретная шумовая обстановка.
- 3.2 результирующий A-корректированный уровень звукового давления $L_{Ax}^{'}$: Для заданной эффективности защиты x и специфической шумовой ситуации это A-корректированный уровень звукового давления, действующий при ношении конкретного средства защиты; вычисляют с помощью одного из трех методов, предлагаемых в настоящем стандарте.

Издание официальное

2-1904

Международный стандарт — во ВНИИКИ Госстандарта России.

ГОСТ Р 12.4.212-99

- 3.3 ожидаемое сиижение уровня звука PNR_s . Для заданной эффективности защиты s и специфической шумовой ситуации это разность между A-корректированным уровнем звукового давления L_s и A-корректированным уровнем звукового давления L_{Ax} , действующим при ноціїнии конкретного средства защиты.
- 3.4 значение поглощения высокочастотного шума H_* : Для заданной эффективности защиты x и конкретного средства защиты это ожидаемое значение снижения уровня шума PHR_x для шумов с $(L_c L_s) = -2$ дБ.
- 3.5 значение поглощения среднечастотного шума M_z : Для заданной эффективности защиты x и конкретного средства защиты это ожидаемое значение снижения уровня шума PNR_z для шумов с $(L_z L_z) = \pm 2$ дБ.
- 3.6 значение поглощения низкочастотного шума L_z : Для заданной эффективности защиты x и конкретного средства защиты это ожидаемое значение снижения уровня шума PNR_x для шумов с $(L_C L_A) = +10$ дБ.
- 3.7 одиночный параметр поглощения шума SNR_z : Для заданной эффективности защиты x и конкретного средства защиты это значение, которое вычитают из измеренного значения C-корректированного уровня звукового давления (L_z), чтобы определить действующий A-корректированный уровень звукового давления (L_{Ax}).
- 3.8 розовый шум: Шум, спектральная плотность мощности которого обратно пропорциональна частоте.

П р и м е ч а н и е — Вследствие этого свойства розового шума некорректированный уровень его звукового давления в октавной полосе одинаков для всех октавных полос частот.

4 Измерение поглощения шума противошумным устройством

Поглощение противошумным устройством шума в третьоктавной полосе частот, которое используют в предлагаемых в этой части методах расчета, измеряют согласно ГОСТ Р 12.4.211.

5 Вычисление допустимого значения защиты $APV_{f_{\lambda}}$, обеспечиваемой противошумным устройством, при выбранной эффективности защиты

Вычисление начинают с выбора желаемой эффективности защиты x и соответствующей ей константы α в таблице 1.

Т а б л и ц а 1 — Значения константы α для разных эффективностей защиты x

Эффективность защиты х, %	Значение о	Эффективность защиты х, %	Значение ох	
75	0,67	85	1,04	
80	0.84	90	1,28	
84	1.00	95	1,64	

Значение защиты APV_{J_1} , дБ, вычисляют для каждой октавной полосы от 63 до 8000 Γ ц по формуле

$$APV_{ts} = M_{t} - \alpha s_{t}, \qquad (1)$$

где M_c — среднее значение ослабления звука, установленное в ГОСТ Р 12.4.211;

стандартное отклонение, установленное в ГОСТ Р 12.4.211;

с – константа (ее значения приведены в таблице 1).

Индекс f соответствует средней частоте в октавной полосе; индекс x — выбранной эффективности защиты.

 Π р и м е ч а н и е — Если какие-либо значения невозможно получить при 63 Γ ц, то следует пользоваться значениями M_r и s_r для 125 Γ ц.

Пример вычисления допустимой защиты АРУ, приведен в приложении А.

6 Метод октавной полосы частот

Требуются уровни звукового давления в октавной полосе частот и значения допускаемой защиты APV. . Поскольку метод специфичен с точки зрения параметров шума, вычисление следует проводить для каждой конкретной ситуации.

А-корректированный уровень звукового давления, действующий при ношении средства индивидуальной защиты L_{Ax}^{+} , вычисляют по формуле

$$L_{A\times} = 10 \lg \sum_{k=1}^{8} 10^{0.1(L_{f(k)} + A_{f(k)} + APV_{f(k)})},$$
 (2)

где индексы f(k) соответствуют среднегеометрической частоте октавной полосы; $f(1) = 63 \, \Gamma \text{u}$; $f(2) = 125 \Gamma \Pi$; $f(3) = 250 \Gamma \Pi$,, $f(8) = 8000 \Gamma \Pi$;

 $L_{r(k)}$ — уровень звукового давления шума в октавной полосе частот; $A_{r(k)}$ — частотно-A-корректированный уровень звукового давления в соответствии с МЭК 651 при среднегеометрических частотах октавной полосы, в соответствии с таблицей Б.1.

Примечание в уравнении (2) начинают с 125 Fu.

Полученное значение $L_{Ax}^{'}$ округляют до ближайшего целого числа.

Пример вычисления А-корректированного звукового давления, действующего при ношении конкретного средства защиты в конкретной шумовой ситуации, приведен в приложении Б.

7 HML-метод

Для применения метода требуются C- и A-корректированные уровни звукового давления шума, а также значения H, M и L.

7.1 Вычисление значений H, M и L

Т а б л и ц а 2-A-корректированные уровни звукового давления в октавной полосе частот (L_{con}) восьми эталонных спектров рекомендованных шумов, нормированных к А-корректированному уровню звукового давления, равному 100 дБ

Значения в децибелах

	A	А-корректированные уровни звукового давления при центральной частоте, Гц								d
63 13	125	125 250 500	500	1000	2000	4000	8000	$(L_c - L_\phi)$	4	
1	51,4	62,6	70,8	81,0	90,4	96,2	94,7	92,3	-1,2	-1,20
2	59,5	68,9	78,3	94,3	92,8	96,3	94,0	90,0	-0,5	-0,49
3	59,8	71,1	80,8	88,0	95,0	94,4	94,1	89,0	0,1	0.14
4	65,4	77,2	84,5	89,8	95,5	94.3	92,5	88,8	1,6	1,56
5	65,3	77.4	86,5	92,5	96,4	93.0	90,4	83,7	2,3	-2,98
6	70,7	82.0	89,3	93,3	95,6	93.0	90,1	83.0	4,3	-1,01
7	75,6	84,2	90,1	93,6	96,2	91.3	87,9	81,9	6,1	0.85
8	77,6	88.0	93,4	93,8	94.2	91.4	87,9	79.9	8,4	3,14

П р и м е ч а н и е — Значение 100 дБ для общего А-корректированного уровня звукового давления L. является произвольным и выбрано с целью упростить вычисления.

Вычисление значений H_z , M_z и L_z основано на восьми эталонных спектрах шума с разными значениями ($L_e - L_s$) по таблице 2, а также основано на обеспечиваемом противошумным устройством значении защиты АРУ, ... Эти значения не зависят от реальной шумовой ситуации. Их вычисляют с помощью следующих уравнений:

$$H_x = 0.25 \sum_{i=1}^{4} PNR_{xi} - 0.48 \sum_{i=1}^{4} d_i PNR_{xi}$$
 (3)

$$M_x = 0.25 \sum_{i=5}^{8} PNR_{xi} - 0.16 \sum_{i=5}^{8} d_i PNR_{xi}$$
, (4)

$$L_x = 0.25 \sum_{i=3}^{8} PNR_{xi} + 0.23 \sum_{i=5}^{8} d_i PNR_{xi}, \qquad (5)$$

где
$$PNR_{xI} = 100 - 10 \lg \sum_{k=1}^{8} 10^{0,k \left(L_{AJ(k)I} - APV_{J(k)x}\right)}$$
 (6)

Значения $L_{a_f(x)}$, и d_f даны в таблице 2.

Индекс / соответствует номеру эталонного спектра шума.

 Π р и м е ч а н и е — В формуле (6) 100 дБ соответствует общему A-корректированному уровню звукового давления для каждого типа шума в таблице 2.

Полученные значения H, M, и L, округляют до ближайщего целого числа.

Примеры вычисления \hat{H} , \hat{M} и \hat{L} приведены в приложении В.

7.2 Применение НМL-метода для оценки результирующего А-корректированного уровня звукового давления

Расчетный A-корректированный уровень звукового давления $L_{Ax}^{'}$ вычисляют в два этапа.

а) Ожидаемое поглощение шума $PNR_{,}$, дБ, вычисляют, зная $H_{,}$, $M_{,}$ и $L_{,}$, а также C- и A-корректированные уровни звукового давления шума:

для шумов с величинами ($L_c - L_4$) ≤ 2 дБ:

$$PRN_x = M_x \frac{H_x + M_x}{4} (L_C - L_A - 2 \pi B);$$
 (7)

для шумов с величинами $(L_c - L_s) \ge 2$ дБ:

$$PRN_x = M_x - \frac{M_x - L_x}{8} (L_C - L_A - 2 \pi B);$$
 (8)

б) L_{4v} , дБ, вычисляют по формуле

$$L_{Ax}' = L_A - PNR_x. (9)$$

Полученное значение $L_{4x}^{'}$ округляют до ближайшего целого числа.

Примечания

- 1 Разность $(L_{\epsilon}-L_{\epsilon})$ можно вычислить, измерив уровни звукового давления, либо взять из специальной таблицы типов шумовых ситуаций.
- 2 Вместо С-корректированного уровня звукового давления можно использовать некорректированный уровень. Тогда для очень низкочастотных шумов получатся завышенные значения L.

Пример вычисления A-корректированного уровня звукового давления при ношении конкретного средства защиты при конкретной шумовой ситуации приведен в приложении C.

8 SNR-метод

Для применения метода требуются С-корректированный уровень звукового давления шума и величина SNR.

8.1 Вычисление SNR

Вычисление SNR основано на спектре розового шума согласно таблице 3 и обеспечиваемого

Т а б π и ц а 3 — A-корректированные уровни звукового давления в октавной полосе частот $L_{A,I(k)}$ розового шума, имеющего С-корректированный уровень звукового давления 100 дБ

Центральная частота октавной полосы f, Гц	63	125	250	500	1000	2000	4000	8000
L _{4f(4)} , дБ	65,3	75,4	82,9	88,3	91,5	92,7	92,5	90,4

Примечание - Приведенные значения получены на основе розового шума с общим С-корректированным уровнем звукового давления 100 дБ. Эта цифра выбрана с целью упростить расчеты, и она не влияет на вычисляемое значение SNR. Частотная коррекция С определяется МЭК 651.

противошумным устройством значения защиты $APV_{(1)13}$. $SNR_{_1}$ не зависит от реального спектра шума и вычисляется по формуле

$$SNR_x \approx 100 \,\mathrm{g}\,\mathrm{E} - 10 \,\mathrm{lg}\,\sum_{k=1}^8 10^{0,\mathrm{l}\left(L_{Af(k)} - APV_{f(k)x}\right)},$$
 (10)

где значения $L_{_{AJ\,(k)}}$ следует брать из таблицы 3 Полученное значение $SNR_{_+}$ округляют до ближайшего целого числа.

Пример вычисления SNR приведен в приложении Γ .

8.2 Применение SNR-метода для оценки результирующего А-корректированного уровня звукового давления

Зная SNR, и C-корректированный уровень звукового давления шума, вычисляют L_{Ax} по формуле

$$L_{Ax} = L_C - SNR_x. (11)$$

Если для конкретной шумовой ситуации известен только общий А-корректированный уровень звукового давдения, SNR можно применять только при условии, что известна разность ($L_c - L_s$).

Тогда L_{Ax} вычисляют по формуле

$$L_{Ax} = L_A + (L_C - L_A) - SNR_x$$
. (12)

Примечания

1 Разность $(L_C - L_A)$ можно вычислить, измерив уровни звукового давления, либо взять из специальной таблины типов шумовых ситуаций.

2 Вместо С-корректированного уровня звукового давления можно использовать некорректированный уровень. Тогда для очень низкочастотных шумов получатся завышенные значения L_{Ax} .

Пример вычисления А-корректированного уровня звукового давления при ношении конкретного средства защиты в специфической шумовой ситуации приведен в приложении Г.

ПРИЛОЖЕНИЕ А (справочное)

Пример расчета обеспечиваемой защиты APV_{f_x}

В этом примере показано вычисление $APV_{_{f80}}$ для средства защиты от шума, т. е. выбрана на эффективность защиты, равная 80 % с соответствующей константой $\alpha=0.84$ из таблицы 1. Полученные значения $APV_{_{f80}}$ впоследствии применяются при вычислениях во всех иллюстративных случаях.

Таблица А.1 — Расчет APV,

Значения в децибелах

0.6	Среднегеометрическая частота октавной полосы f, Гц											
Обозначение	63	125	250	500	1000	2000	4000	8000				
М,	7,4	10,0	14,4	19,6	22,8	29,6	38,8	34,1				
5.	3,3	3,6	3,6	4,6	4,0	6,2	7,4	5,2				
$\alpha s_{c} (\alpha = 0.84)$	2,8	3.0	3.0	3.9	3,4	5,2	6,2	4,4				
$4PV_{_{f}s\alpha} = M_{_{f}} - \alpha s_{_{f}}$	4,6	7,0	11,4	15,7	19,4	24,4	32,6	29,7				

ПРИЛОЖЕНИЕ Б (справочное)

Пример расчета L_{Ax} методом октавной полосы

В этом примере выбрана эффективность защиты, равная 80%. Значения $APV_{_{(10)}}$ взяты из таблицы A.1.

Т а б л и ц а $\,$ Б.1 — Расчет $\,$ $\,$ $\,$ $\,$ с помощью метода октавной полосы

Значения в децибелах

Показатель	Среднегеометрическая частота октавноя полосы f. Гц											
TONUMENT	63	125	250	500	1000	2000	4000	8000				
Измеренный уровень зву- кового давления шума в октавной полосе L_{χ}	75,0	84,0	86,0	88,0	97.0	99,0	97,0	96,0				
Частотная А-коррекция по МЭК 651	- 26,2	- 16,1	-8,6	-3,2	0	+1,2	+1,0	-1,1				
A -корректированный уровень звукового давления шума в октавной полосе $L_{\rm r} + A_{\rm rot}$	48,8	67,9	77,4	84,8	97.0	190,0	98,0	94,9				
APV, 103 таблицы А.1	4,6	7,0	11,4	15,7	19,4	24,4	32,6	29,7				
$L_f + A_{f(1)} - APV_{f(0)}$	42,2	60,9	66,0	69,1	77,6	75,8	65,4	65,2				

 $L_{A80}^{'}$ вычисляют путем подстановки значений из последней строки таблицы Б.1 в формуле (2)

$$L_{450}' = 10 \lg \left(10^{0.1 \times 44.2} + ... + 10^{0.1 \times 65.2}\right) \text{дБ} = 80.6 \text{ дБ}.$$

После округления до ближайшего целого числа получаем $L_{A80} = 81$ дБ.

Итак, можно утверждать, что в конкретной шумовой ситуации результирующий A-корректированный уровень звукового давления не превысит 81 дБ в 80 % случаев при условии правильного ношения потребителями средства защиты.

 Π р и м е ч а н и е — Разность между L_A и L_{A80} — ожидаемое ослабление уровня звукового давления PNR_{ω} в этом примере — равна 23 дБ.

ПРИЛОЖЕНИЕ В (справочное)

Примеры вычислений и применения значений Н, М и L

В.1 Вычисление значений Н, М, L для конкретного средства защиты

Используя значения $APV_{_{f80}}$ из приложения A и A-корректированные уровни звукового давления в октавной полосе частот $L_{_{Af43,1}}$ из таблицы 2, значение ($L_{_{Af163,1}}-APV_{_{f80}}$) вычисляют, как показано ниже.

T а б л и ц а B.1- Вычисление разности между $L_{_{A/(D)}}$, и $APV_{_{/(D)}}$

Значения в децибелах

		Сре	днегеомет	ическая час	стота октав	ной полосі	a f. Fu	
Величина	63	125	250	500	1000	2000	4000	8000
A /edg 1	51,4	62,6	70,8	81,0	90,4	96,2	94,7	92,3
LAf(4) 1	59,5	68,9	78,3	84,3	92,8	96,3	94.0	90,0
Web 1	59,8	71,1	80.8	88,0	95.0	94,4	94,1	89.0
47-k) 4	65,4	77,2	84.5	89,8	95,5	94,3	92,5	88,8
1/403	65,3	77,4	86,5	92,5	96,4	93,0	90,4	83,7
A fako k	70,7	82,0	89.4	93,5	95.6	93,0	90,1	83,0
11.5*	75.6	84,2	90.1	93,6	96,2	91,3	87.9	81,9
A f (k) 1	77,6	88,0	93,4	93,8	94,2	91,4	87,9	79.9
$4PV_{_{f80}}$ из таблицы $A,1$	4,6	7,0	11,4	15,7	19,4	24,4	32,6	27,9
$L_{ACDA} - APV_{CD}$	46,8	55,6	59,4	65,3	71.0	71,8	62,1	62,6
$\frac{1}{A_{f-k+1}} - \frac{APV}{APV_{f-k+1}} - \frac{1}{APV_{f-k+1}}$	54,9	61,9	66.9	68,6	73,4	71,9	61,4	60,3
$\frac{Af \cdot A}{Af \cdot A} = \frac{APV_{f \cdot A0}}{APV_{f \cdot A0}}$	55,2	64,1	69,4	72,3	75,6	70,0	61,5	59.3
APV_{em}	60,8	70,2	73,1	74,1	76,1	69,9	59,9	59,1
$A_{f(k)} = APV_{f(k)}$	60,7	70,4	75,1	76.8	77.0	68,6	57,8	54.0
$L_{i \neq i k_1 i} = APV_{j \neq i k_1}$	66,1	75,0	77.9	77,6	76,2	68,6	57,5	53,3
A_{f-h} - APV_{f-in}	71,0	77,2	78,7	77.9	76,8	66,9	55,3	52,2
$L_{4/4h} = APV_{fm}$	73,0	81,0	78.1	78,1	74.8	67,0	55,3	50,2

Восемь значений РNR, и вычисляют путем подстановки разностей из таблицы В.1 в уравнение (6):

$$\begin{array}{l} PNR_{\frac{(160)}{(160)}} = 100 - 10 \, \lg \, (10^{0.7} \, \frac{48.9}{48.9} + \ldots + 10^{0.1} \, \frac{62.6}{4}) = 24.5 \, \mathrm{д} \, \mathrm{E}; \\ PNR_{\frac{(180)}{(160)}} = 100 - 10 \, \lg \, (10^{0.7} \, \frac{36.9}{46.9} + \ldots + 10^{0.1} \, \frac{60.9}{4}) = 22.7 \, \mathrm{g} \, \mathrm{E}; \\ PNR_{\frac{(160)}{(160)}} = 100 - 10 \, \lg \, (10^{0.1} \, \frac{16.2}{46.8} + \ldots + 10^{0.1} \, \frac{60.9}{4}) = 21.1 \, \mathrm{g} \, \mathrm{E}; \\ PNR_{\frac{(160)}{(160)}} = 100 - 10 \, \lg \, (10^{0.1} \, \frac{16.8}{46.7} + \ldots + 10^{0.1} \, \frac{50.9}{4}) = 18.2 \, \mathrm{g} \, \mathrm{E}; \\ PNR_{\frac{(160)}{(160)}} = 100 - 10 \, \lg \, (10^{0.1} \, \frac{16.1}{46.7} + \ldots + 10^{0.1} \, \frac{50.9}{42.9}) = 15.9 \, \mathrm{g} \, \mathrm{E}; \\ PNR_{\frac{(160)}{(160)}} = 100 - 10 \, \lg \, (10^{0.1} \, \frac{50.9}{41.7} + \ldots + 10^{0.1} \, \frac{50.9}{42.9}) = 15.9 \, \mathrm{g} \, \mathrm{E}; \\ PNR_{\frac{(180)}{(180)}} = 100 - 10 \, \lg \, (10^{0.1} \, \frac{50.9}{41.7} + \ldots + 10^{0.1} \, \frac{50.9}{42.9}) = 13.9 \, \mathrm{g} \, \mathrm{E}. \end{array}$$

Как показано ниже, значения H_{so} , M_{si} и L_{si} вычисляют сотдасно формулам (3), (4) и (5), беря значения PNR_{coo} (см. выше) и константы d_i из таблицы 2, а затем округляют полученные значения до ближайшего целого числа.

$$H_{so} = 0.25 (24.5 + ... + 19.6) = 0.48 (-1.20 \cdot 24.5 + ... + 1.56 \cdot 19.6) \text{ дБ} = 25 \text{ дБ};$$

$$M_{so} = 0.25 (18.2 + ... + 13.9) = 0.16 (-2.98 \cdot 18.2 + ... + 3.14 \cdot 13.9) \text{ дБ} = 18 \text{ дБ};$$

$$L_{so} = 0.25 (18.2 + ... + 13.9) + 0.23 (-2.98 \cdot 18.2 + ... + 3.14 \cdot 13.9) \text{ дБ} = 13 \text{ дБ}.$$

В.2 Использование значений H_{se} , M_{se} и L_{ss} , чтобы определить L_{A80} для конкретного средства защиты в специфической шумовой ситуации

Результирующий A-корректированный уровень звукового давления L_{Ako} для конкретного средства за-

щиты при данных параметрах H_{so} , M_{ss} и L_{so} из В.1 и специфической шумовой ситуации можно определить в два этапа, как показано ниже.

а) вычисляем разность ($L_c - L_s$). Пользуясь спектром шума из приложения Б, получаем ($L_c - L_s$) = -1 дБ. Ожидаемое ослабление звукового уровня $PNR_{\rm ss}$, дБ, вычисляют по формуле (7)

$$PNR_{80} = 18 - \frac{25 - 18}{4} (-1 - 2) = 23,3 \text{ a.b.};$$

б) A-корректированный уровень звукового давления $L_{_4}$ спектра шума из приложения $\mathbb B$ равен 104 д $\mathbb B$. Результирующий уровень звукового давления $L_{_{480}}$, д $\mathbb B$, вычисляют по формуле (9):

$$L_{480} = 104 - 23.3 = 80.7 \, \text{дБ}.$$

Это значение округляют до ближайшего целого числа. Таким образом можно утверждать, что в конкретной шумовой ситуации результирующий A-корректированный уровень звукового давления не превысит 81 дБ в 80 % случаев при условии правильного ношения потребителями средства защиты.

ПРИЛОЖЕНИЕ Г (справочное)

Пример вычисления и использования значений SNR

Г.1 Вычисление значений SNR для конкретного средства индивидуальной защиты от шума

В этом примере выбрана эффективность защиты, равная 80%. Значения SNR из таблицы 3 вычисляют, пользуясь значениями APV_{rso} из приложения A и значениями L_{Artsc} из таблицы 3.

T а б л и ц а Γ .I — Вычисление разности между $L_{_{Af(k)}}$ и $APV_{_{fin}}$

Значения в депибелах

Показатель	Среднегеометрическая частота октавной полосы f_* Гц										
	63	125	250	500	1000	2000	4000	8000			
$L_{_{d,r,t,t}}$ из таблицы 3	65,3	75,4	82,9	88,3	91,5	92,7	92,5	90,4			
APV, из приложения A	4,6	7,0	11,4	15,7	19,4	24,4	32,6	29,7			
$L_{_{Af+k3}}-APV_{_{fk3}}$	60,7	68.4	71,5	72,6	72,1	68,3	59,9	60,7			

SNR₁₀ вычисляют по формуле (10) и округляют до ближайшего целого числа.

$$SNR_{ss} = 100 - 10 \text{ lg } (10^{s.s.} \text{ or } 10^{s.s.} + 10^{s.s.} + 10^{s.s.} + 10^{s.s.}) = 22 \text{ g/s}.$$

Γ .2 Использование значения SNR_{so} , чтобы определить L_{A80} для конкретного средства защиты в специфической шумовой ситуации с известным значением L_{ϵ}

Результирующий A-корректированный уровень звукового давления L_{A80} для средства защиты с данным значением SNR_{ss} из $\Gamma.1$ может быть определен на основе измеренного C-корректированного уровня звукового давления конкретного шума. Применяя слектр щума из приложения B, получаем $L_c = 103$ дБ.

$$L_{coo} = 103 - 22 = 81 \text{ дБ}.$$

Таким образом можно утверждать, что в конкретной шумовой ситуации результирующий A-корректированный уровень звукового давления L_{A80} не превысит 81 дБ в 80 % случаев при условии правильного ношения потребителями средства защиты.

 Γ .З Использование значений SNR_{ss} , чтобы определить L_{A80} для конкретного средства защиты в специфической шумовой ситуации, когда измерен A-корректированный уровень звукового давления и установлено значение ($L_c - L_s$).

Результирующий A-корректированный уровень звуковото давления L_{A80} для ередства защиты с данным значением SNR_{so} , согласно $\Gamma.1$ может быть определен на основе измеренного A-корректированного уровня L_s и вычисленного либо измеренного значения ($L_c - L_s$) для конкретного шума. Пользуясь спектром шума из приложения E_s , получаем $E_s = 104$ дБ и ($E_c - E_s$) = -1.0 дБ.

L 480 вычисляем согласно формуле (12)

$$L_{ABB}^{*} = 104 \text{ gB} + (-1.0) \text{ gB} - 22 \text{ gB} = 81 \text{ gB}.$$

Таким образом можно утверждать, что при конкретном шуме результирующий A-корректированный уровень звукового давления L_{A80}^{-} не превысит 81 дБ в 80 % случаев при условии правильного ношения потребителем средства защиты. УДК 614.892:620.1:006.354

OKC 13.340.20

T58

OKII 25 6800

Ключевые слова: акустика, средства обеспечения безопасности, средства индивидуальной защиты от шума, тесты, тестирование эффективности, акустическое тестирование, измерения, звуковое давление, ослабление звука, правила вычисления

> Редактор Р. Г. Говердовская Технический редактор В. Н. Прусакова Корректор С. И. Фирсова Компьютерная верстка А. П. Финогеновой

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 18.07.2000. Подписано в печать 21.09.2000. Усл. печ. л. 1,86. Уч.-изд. л. 0,97. Тираж. 301 мж. С. 5881. Зак. 1904.