ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 72011— 2025

АППАРАТЫ ВОЗДУШНОГО ОХЛАЖДЕНИЯ

Требования к проведению теплового, гидравлического и аэродинамического расчетов

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Акционерным обществом «Научно-исследовательский и проектно-конструкторский институт нефтяного машиностроения «ВНИИНЕФТЕМАШ» (АО «ВНИИНЕФТЕМАШ»), Автономной некоммерческой организацией «Институт нефтегазовых технологических инициатив» (АНО «ИНТИ»), Федеральным государственным бюджетным учреждением «Российский институт стандартизации» (ФГБУ «Институт стандартизации»)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 270 «Сосуды и аппараты, работающие под давлением»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 3 апреля 2025 г. № 250-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячно издаваемом информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.rst.gov.ru)

Содержание

1 Область применения	1
2 Нормативные ссылки	
3 Термины и определения	1
4 Общие требования к проведению расчетов	
5 Критерии предварительного выбора конструкции аппарата	5
6 Тепловой расчет	7
7 Аэродинамический расчет	11
8 Гидравлический расчет	15
Приложение А (справочное) Термические сопротивления загрязнений теплообменных	
труб аппарата	18
Приложение Б (рекомендуемое) Алгоритм расчета эффективного температурного	
напора методом разбиения поверхности аппарата на массив	
конечных элементов	. 21
Приложение В (справочное) Расчет критериев подобия	23
Приложение Г (рекомендуемое) Расчет коэффициентов теплоотдачи и термического	
сопротивления для оребренной трубы	25
Приложение Д (рекомендуемое) СFD-тепловой расчет аппарата	30

АППАРАТЫ ВОЗДУШНОГО ОХЛАЖДЕНИЯ

Требования к проведению теплового, гидравлического и аэродинамического расчетов

Air-Cooled Heat Exchanger. Requirements for thermal, hydraulic and aerodynamic calculations

Дата введения — 2025—09—01

1 Область применения

Настоящий стандарт устанавливает требования к проведению теплового, гидравлического и аэродинамического расчетов при проектировании аппаратов воздушного охлаждения (далее — аппараты) в соответствии с ГОСТ ISO 13706, ГОСТ Р 51364 в зависимости от происходящих в них процессов теплообмена.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие документы: ГОСТ ISO 13706—2011 Аппараты с воздушным охлаждением. Общие технические требования ГОСТ Р 51364 (ИСО 6758—80) Аппараты воздушного охлаждения. Общие технические условия СП 131.13330 Свод правил «СНиП 23-01—99* Строительная климатология»

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов (сводов правил) в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 3.1 **гидравлическое сопротивление аппарата:** Разность рабочих давлений потока горячего теплоносителя в трубном пространстве аппарата от штуцеров входа до штуцеров выхода.
- 3.2 конвекция: Процесс переноса теплоты посредством перемещения частиц жидкости или газа в потоке теплоносителя из одной точки в другую.
- 3.3 **конденсация:** Процесс теплообмена с частичным или полным фазовым переходом паровой фазы продукта в жидкую фазу.

- 3.4 **продукт**; рабочая среда: Теплоноситель, который охлаждается или конденсируется в трубном пространстве аппарата.
- 3.5 **тепловой поток:** Количество теплоты, которое проходит через поверхность аппарата в единицу времени.
- 3.6 **теплоноситель:** Однофазная (газ или жидкость) или многофазная среда, которая участвует в теплопередаче, выступая в качестве посредника при охлаждении на одной стороне процесса, транспортировании и хранении тепловой энергии, нагреве на другой стороне процесса.
- 3.7 теплообмен: Самопроизвольный необратимый процесс переноса теплоты в области с неоднородным полем температуры от более нагретого участка к менее нагретому.
- 3.8 теплоотдача: Процесс переноса теплоты посредством конвекции между движущейся средой и омываемой ею поверхностью твердого тела.
- 3.9 теплопередача: Процесс переноса теплоты от горячего теплоносителя к охлаждающему воздуху через разделяющие их стенки теплообменных труб аппарата.
- 3.10 **теплопроводность:** Процесс переноса теплоты посредством хаотического движения и взаимодействия микрочастиц (молекул, атомов, электронов, ионов), обусловленный разностью температур между различными частями тела.

4 Общие требования к проведению расчетов

- 4.1 В трубном пространстве аппаратов могут происходить следующие процессы теплообмена:
- охлаждение газов;
- охлаждение невязких жидкостей со среднемассовой кинематической вязкостью потока до $2.5 \cdot 10^{-5} \, \text{m}^2/\text{c}$ (25 cCt);
- охлаждение вязких жидкостей со среднемассовой кинематической вязкостью потока до $1\cdot 10^{-4}$ м²/с (100 сСт);
- охлаждение высоковязких жидкостей со среднемассовой кинематической вязкостью потока свыше $1 \cdot 10^{-4} \, \text{m}^2/\text{c}$ (100 cCt);
 - частичная конденсация чистых веществ и парогазовых смесей;
 - полная конденсация.
- 4.2 В зависимости от процесса теплообмена к конструкции аппарата предъявляют следующие требования:
 - а) при охлаждении газов:
- 1) значение скорости продукта в теплообменных трубах и патрубках штуцеров должно быть не более 20 м/с;
- 2) уклон теплообменных труб в направлении движения потока продукта, как правило, не требуется;
 - б) при охлаждении невязких жидкостей:
- 1) значение скорости продукта в теплообменных трубах и патрубках штуцеров должно быть не более 3 м/с;
- 2) рекомендуется применение подогревателя воздуха для проведения пуска и остановки аппарата в холодный период года;
- 3) уклон теплообменных труб в направлении движения потока продукта, как правило, не требуется;
 - в) при охлаждении вязких и высоковязких жидкостей:
- 1) значение скорости продукта в теплообменных трубах и патрубках штуцеров должно быть не более 1 м/с;
- 2) необходимо применение подогревателя воздуха для проведения пуска и остановки аппарата в холодный период года;
- 3) рекомендуется применение внутреннего подогревателя (змеевика) для вязких жидкостей со среднемассовой кинематической вязкостью потока свыше $5 \cdot 10^{-5} \, \text{м}^2/\text{c}$ (50 сСт);
- 4) рекомендуется применение гладких теплообменных труб при коэффициенте теплоотдачи в них не выше 30 Вт/м².°С;
- 5) для вязких жидкостей распределение теплообменных труб по ходам в теплообменной секции должно быть таким, чтобы один ход занимал не более одного ряда труб, для высоковязких жидкостей чтобы в одном ходу было не более трех труб (все трубы в одном ряду);
- г) при охлаждении жидкостей с наличием твердых примесей (с массовой долей свыше 5 %) необходимо обеспечить оптимальную скорость среды в трубах, обеспечивающую минимальную скорость

образования осадка на внутренней поверхности труб, при этом исключающую абразивный износ стенки труб, причем данное значение зависит от реологических свойств жидкости и требует специального рассмотрения;

- д) при конденсации:
- 1) оптимальное количество ходов по трубному пространству один ход, рекомендуемое количество ходов два хода, максимальное количество ходов в теплообменной секции должно быть не более четырех;
- 2) уклон теплообменных труб каждого хода в направлении движения потока продукта требуется не менее 1:100 (в случае встречного рефлюксного движения фаз в теплообменных трубах требуется отдельное рассмотрение);
- 3) при полной конденсации необходимо обеспечить гарантированный дренаж конденсата в выходной камере за счет подбора соответствующего диаметра выходных штуцеров во избежание затопления конденсатом нижних рядов теплообменных труб теплообменной секции;
- 4) при полной конденсации и наличии неконденсируемых газов в основном потоке продукта необходимо обеспечить гарантированное удаление неконденсируемых газов.
- 4.3 При задании критических температур процессов (таких, как температура замерзания или застывания продукта, образования гидратов, выпадения твердого осадка нерастворимой соли, конденсации жидкой фазы) необходимо ограничивать предельное значение температуры стенки теплообменных труб, которое рассчитывают, исходя из этих критических температур процессов и дополнительного запаса надежности согласно ГОСТ ISO 13706—2011 (пункты C.2.5, C.2.6, C.2.7).
- 4.4 Критические температуры процессов также необходимо учитывать при проектировании конструкции аппарата, при этом в конструкции аппарата могут быть предусмотрены жалюзийные устройства, системы внутренней или внешней рециркуляции нагретого воздуха; дополнительными мерами снижения переохлаждения среды могут служить:
 - ограничение по скорости воздуха;
 - снижение коэффициента оребрения (в том числе применение гладких теплообменных труб);
 - применение прямоточной схемы в теплообменной секции при числе ходов больше одного;
 - увеличение скорости потока продукта в трубах.
- 4.5 Для проведения расчетов необходимо задать исходные данные по указанным далее параметрам эксплуатации аппарата.
- 4.6 Предельную допустимую температуру продукта на входе в аппарат, изготовляемый из нелегированной (углеродистой) или легированной марганцовистой, марганцевокремнистой (низколегированной) стали, рекомендуется принимать до 400 °C, изготовляемый из нержавеющей стали до 500 °C.
- 4.7 Предельную допустимую температуру продукта на выходе из аппарата для следующих процессов теплообмена рекомендуется принимать:
- для процессов охлаждения воды и других замерзающих водных растворов (конденсации водяного пара и переохлаждения конденсата), охлаждения парогазовых смесей при наличии в составе воды (свыше 0,01 % мол.) не менее 15 °C;
- для процессов охлаждения углеводородных газов (природного газа, попутного нефтяного газа, сланцевого газа и т.п.) при возможности образования гидратов не менее значения, равного температуре образования гидратов плюс 20 °C;
- для процессов охлаждения вязких жидкостей при среднемассовой кинематической вязкости потока свыше $5\cdot 10^{-5}~\text{m}^2/\text{c}$ (50 сСт) не менее значения, равного температуре застывания вязкой жидкости плюс 25 °C;
- для процессов охлаждения растворов с возможным выпадением нерастворимых солей не менее значения, равного температуре выпадения твердого осадка нерастворимой соли плюс 20 °C.
- 4.8 Для эффективной круглогодичной работы аппарата рекомендуется принимать расчетную температуру поступающего в аппарат воздуха, исходя из условия получения требуемой температуры охлаждаемого продукта:
- в наиболее теплый период года в данной местности, при этом занижение расчетной температуры воздуха может привести к снижению производительности технологических установок, завышение к значительному увеличению мощности приводов вентиляторов, поверхности теплообмена, размеров аппарата и, соответственно, капитальных затрат, особенно в тех случаях, когда по условиям производства допустимо повышение температуры продукта после аппарата или кратковременное снижение производительности технологической установки в наиболее теплый период года;
- в наиболее холодный период года в данной местности, в том числе определять наименьшую возможную температуру.

- 4.9 При выборе значения расчетной температуры поступающего в аппарат воздуха необходимо учитывать следующие факторы:
- допустимость кратковременного повышения температуры продукта на выходе из аппарата для рассматриваемого технологического процесса в наиболее теплый период года;
- допустимость кратковременного снижения производительности аппарата, например, по конденсату, на выходе из аппарата для рассматриваемого технологического процесса в наиболее теплый период года;
- возможность влияния вредной рециркуляции нагретого воздуха, а также внешних источников термического загрязнения окружающего воздуха при расположении аппарата на месте эксплуатации, при этом могут назначать прибавку к значению расчетной температуры воздуха в пределах от 3 °C до 5 °C; необходимая прибавка к значению расчетной температуры воздуха, связанная с термическим загрязнением окружающего воздуха при расположении аппарата на месте эксплуатации, должна быть согласована с заказчиком;
 - возможность круглогодичной или периодической работы аппарата.

Примечание — Вредная рециркуляция — это нерегулируемые потоки выходящего нагретого воздуха, поступающие на вход вентиляторов за счет циркуляции вокруг того же аппарата или от другого оборудования, являющиеся одной из причин снижения охлаждающей способности аппарата вследствие повышения температуры входящего воздуха.

- 4.10 Для поддержания заданных температур стенок теплообменных труб в аппарате регулируют поток воздуха. Регулирование температуры продукта на выходе из аппарата при эксплуатации в холодный период года возможно путем:
- изменения объемного расхода воздуха (изменение угла наклона лопастей вентилятора или частотное регулирование);
 - применения систем рециркуляции воздуха;
 - отключения части вентиляторов;
 - отключения части теплообменных секций или аппаратов.
- 4.11 В общем случае с учетом климатических данных региона, где находится место эксплуатации аппарата, в качестве расчетной температуры поступающего в аппарат воздуха следует принимать температуру окружающего воздуха в теплый период года с обеспеченностью 0,95 согласно СП 131.13330.
- 4.12 Для аппаратов, предназначенных для работы в контурах охлаждения динамического промышленного оборудования (например, приводные двигатели внутреннего сгорания, электродвигатели с жидкостным охлаждением, компрессоры и т. д.), где не допускается недоохлаждение среды, приводящее к перегреву и выходу оборудования из строя, в качестве расчетной температуры поступающего в аппарат воздуха может быть принята абсолютная максимальная температура воздуха.
- 4.13 При назначении расчетной температуры воздуха приемлемые габариты и мощность приводов аппарата обеспечиваются при концевом температурном напоре между значением температуры продукта на выходе из аппарата и расчетной температурой поступающего в аппарат воздуха не менее 15 °C. При необходимости в технически обоснованных случаях концевой температурный напор может быть снижен до 5 °C.
- 4.14 В случае заданного компонентного состава для охлаждаемого потока выполняют расчет необходимого массива данных теплофизических свойств продукта: плотности, удельной теплоемкости, коэффициента теплопроводности, вязкости, а также в случае конденсации приводят график зависимости энтальпии потока и массой доли паровой фазы от температуры продукта в требуемом рабочем диапазоне.
- 4.15 При наличии данных о теплофизических свойствах продукта в техническом задании или опросном листе следует выполнять проверочный расчет теплофизических свойств по компонентному составу (при его наличии). В случае отклонения от расчетных значений более чем на 20 % необходимо при дальнейших расчетах аппарата применить значения свойств, определенных по компонентному составу продукта.
- 4.16 Значения коэффициентов термического сопротивления загрязнений теплообменных труб по продукту приведены в приложении A, согласно которому их рекомендуется принимать. Рекомендуемое значение коэффициента термического сопротивления загрязнений по воздуху для оребренных теплообменных труб составляет $3,44 \cdot 10^{-4} \text{ м}^2 \cdot ^{\circ}\text{C/Bt}$ (при регулярной промывке оребрения, в расчете на оребренную поверхность), если не указано иное.
- 4.17 Значения допустимого гидравлического сопротивления аппаратов для следующих происходящих в них процессов рекомендуется принимать:
- при охлаждении невязких жидкостей со среднемассовой кинематической вязкостью потока до $1 \cdot 10^{-5} \, \text{m}^2/\text{c}$ (10 сСт) не более 0,05 МПа;

- при охлаждении вязких жидкостей со среднемассовой кинематической вязкостью потока до $1 \cdot 10^{-4} \, \text{m}^2/\text{c}$ (100 cCt) не более 0,15 МПа;
 - при охлаждении высоковязких жидкостей до 0,30 МПа;
 - при охлаждении газов не более 0,05 МПа;
 - при конденсации паров при давлении до 0,2 МПа абс. не более 0,01 МПа;
 - при полной и частичной конденсации чистых веществ и парогазовых смесей не более 0,03 МПа.
- 4.18 Значение минимального теплового потока для аппаратов общего промышленного назначения рекомендуется принимать от 5 до 10 кВт. При меньших значениях минимального теплового потока целесообразно рассматривать применение аппаратов специальных конструкций, на которые не распространяются требования ГОСТ ISO 13706 и ГОСТ Р 51364.
- 4.19 После предварительного выбора конструкции аппарата выполняют тепловые, гидравлические и аэродинамические расчеты.

5 Критерии предварительного выбора конструкции аппарата

5.1 Выбор конструкции теплообменной секции

- 5.1.1 Тип и материал оребрения теплообменных труб следует выбирать в зависимости от материала теплообменных труб и параметров охлаждаемого продукта с учетом максимальной рабочей температуры согласно ГОСТ Р 51364 и ГОСТ ISO 13706—2011 (приложение A).
- 5.1.2 Тип и материал распределительной камеры следует выбирать в зависимости от расчетного давления в трубном пространстве с учетом особенностей технологического процесса и требований заказчика.
- 5.1.3 Трубный пучок предпочтительно выбирать с длиной теплообменных труб не более 12 м, по согласованию изготовителя с заказчиком не более 16 м.
- 5.1.4 Несущие теплообменные трубы предпочтительно выбирать с наружными диаметрами: 25; 28; 32; 38 мм, и с толщиной стенки не менее 2,0 мм для нелегированной (углеродистой) или легированной марганцовистой, марганцевокремнистой (низколегированной) стали, не менее 1,6 мм для нержавеющей стали или сплавов на железоникелевой, никелевой основах.
- 5.1.5 Трубный пучок предпочтительно выбирать с количеством рядов теплообменных труб не более восьми во избежание снижения эффективности при увеличении металлоемкости и невозможности промывки оребрения теплообменных труб от загрязнений. В случае полной конденсации и при применении в конструкции аппарата теплообменной секции с одним ходом труб по трубному пространству предпочтительно применять трубный пучок с количеством рядов теплообменных труб не более четырех. При числе ходов труб более одного необходимо предусмотреть уменьшение проходного сечения по ходам вследствие уменьшения объемного расхода продукта в процессе конденсации.
- 5.1.6 При охлаждении вязких продуктов необходимо обеспечить минимальное проходное сечение каждого хода, при этом каждый ход должен располагаться в одном ряду теплообменной секции.
- 5.1.7 При наличии неконденсируемых газов предпочтительно применять конструкцию теплообменной секции с одним ходом по трубному пространству для гарантированного их удаления.
- 5.1.8 При конденсации и применении в конструкции аппарата разъемной распределительной камеры с объемной литой крышкой, у которой отверстия штуцеров соосны теплообменным трубам, необходимо обеспечить гарантированный дренаж конденсата.

5.2 Выбор элементов системы подачи и циркуляции воздуха

- 5.2.1 Нагнетательный или вытяжной тип подачи воздуха вентиляторами следует выбирать согласно ГОСТ ISO 13706—2011 (пункт A.8).
- 5.2.2 Тип привода вентиляторов следует выбирать в зависимости от условий эксплуатации, требуемой мощности вентилятора, расположения аппарата на месте эксплуатации согласно ГОСТ ISO 13706.
- 5.2.3 Вид системы рециркуляции воздуха в аппарате (внешней или внутренней) следует выбирать в зависимости от технологического процесса, требований к работе аппарата в холодный период года, требований к конструкции аппарата и доступных габаритных размеров эксплуатационной площадки для размещения аппарата согласно ГОСТ ISO 13706—2011 (приложение C).

- 5.2.4 Внешнюю систему рециркуляции воздуха в аппарате следует выбирать с учетом следующих факторов:
- для процессов охлаждения и конденсации сред с критическими температурами процесса такими, как температура замерзания, застывания, кристаллизации, выпадения твердого осадка нерастворимых солей;
 - для обеспечения требуемого диапазона температуры продукта на выходе (до 10 °C);
- для обеспечения наибольшей степени защиты аппарата при эксплуатации в холодный период года;
 - при значительных колебаниях расхода продукта и температуры продукта на входе в аппарат.
- 5.2.5 Внутреннюю систему рециркуляции воздуха в аппарате следует выбирать для следующих случаев:
 - для процессов охлаждения газа с возможностью образования гидратов;
- для обеспечения минимальных габаритных размеров при стесненности площадки для размещения аппарата;
 - при отсутствии необратимых процессов при переохлаждении продукта.

5.3 Выбор дополнительных систем аппарата

- 5.3.1 Необходимость установки жалюзийных устройств в аппарате определяет заказчик в техническом задании или опросном листе. Если данное требование не определено заказчиком, то следует учитывать, что наличие жалюзийных устройств в аппарате обеспечивает минимальный уровень защиты от переохлаждения продукта при пуске или остановке аппарата, что особенно важно при охлаждении продуктов, имеющих критические температуры.
- 5.3.2 Вид и конструкцию подогревателя воздуха для обеспечения предварительного подогрева воздуха, поступающего в теплообменные секции с целью предупреждения переохлаждения продукта в аппарате, следует выбирать согласно ГОСТ ISO 13706—2011 (приложение С). Подогреватель воздуха может быть в виде трубного пучка с одним рядом теплообменных труб с греющей средой (например, пар, антифриз, масло) или в виде ряда электрических подогревателей или калорифера перед теплообменными секциями по ходу воздуха.
- 5.3.3 Вид и конструкцию увлажнителя воздуха для обеспечения снижения температуры потока атмосферного воздуха до температуры адиабатного испарения (температуры «мокрого термометра») в наиболее теплый период года (как правило, при температуре окружающего воздуха выше 25 °C) следует выбирать согласно ГОСТ ISO 13706. При применении увлажнителя воздуха в аппарате требуемые параметры охлаждения продукта в аппарате обеспечиваются при температуре атмосферного воздуха выше расчетной температуры.

Примечание — Адиабатное испарение — это процесс испарения капель воды, подаваемой форсунками увлажнителя, в потоке воздуха без подвода или отвода теплового потока к внешнему источнику.

5.3.4 Внутренние вставки в теплообменные трубы — интенсификаторы (такие, как непрерывные ленточные завихрители, проволочные вставки, вставки типа «елочка») для повышения интенсивности теплоотдачи, как правило, применяют для процессов охлаждения вязких сред с коэффициентом теплоотдачи не более 100 Вт/м^{2.}°С и для некоторых процессов конденсации парогазовых смесей — с коэффициентами теплоотдачи не более 1000 Вт/м^{2.}°С. Критерием необходимости установки внутренних вставок в теплообменные трубы является выполнение условия

$$\left[\frac{\left(\frac{Nu_{\text{Tp.BCT}}}{Nu_{\text{Tp.глад}}} \right)}{\left(\frac{\xi_{\text{Tp.BCT}}}{\xi_{\text{Tp.глад}}} \right)} \right] \ge 1,$$
(1)

где $Nu_{\text{тр.вст}}$, $Nu_{\text{тр.глад}}$ — числа Нуссельта (применены как коэффициенты теплоотдачи при равных значениях диаметра теплообменных труб и коэффициентах теплопроводности) для теплообменных труб с внутренними вставками и гладких теплообменных труб соответственно;

 $\xi_{\text{тр.вст}},\,\xi_{\text{тр.глад}}$ — коэффициенты трения для теплообменных труб с внутренними вставками и гладких теплообменных труб соответственно.

6 Тепловой расчет

- 6.1 Поверочный тепловой расчет проводят для того, чтобы на основании сравнения вычисляемых параметров с требуемыми значениями параметров аппарата подтвердить правильность выбранной конструкции и параметров аппарата или выявить необходимость их изменения.
- 6.2 В результате теплового расчета аппарата вычисляют тепловой поток, который способен передать аппарат, и температуру продукта на выходе из аппарата при заданной температуре продукта на входе в аппарат.
 - 6.3 Расчет проводят методом последовательного приближения.
- 6.4 Согласно закону сохранения энергии, при эксплуатации аппарата всегда выполняется условие теплового баланса, которое вычисляют по формуле

$$Q_1 = Q_2 + Q_{\Pi O T}, \tag{2}$$

Q₁ — тепловой поток со стороны продукта в теплообменных трубах, Вт;

Q₂ — тепловой поток со стороны воздуха в межтрубном пространстве, Вт;

 $Q_{\text{пот}}$ — тепловые потери, Вт.

- 6.5 При этом тепловые потери $Q_{\text{пот}}$ как правило, составляют от 1 % до 2 % от значения теплового потока со стороны продукта в теплообменных трубах Q1.
- 6.6 Тепловой поток со стороны продукта в теплообменных трубах Q_1 , Вт, при следующих процессах вычисляют по формулам:
 - при охлаждении однофазного потока

$$Q_1 = G_{np} \overline{C}_{p,np} (t_{BX,np} - t_{BbiX,np}), \tag{3}$$

- при конденсации продукта

$$Q_1 = G_{np}(h_{\text{BX.np}} - h_{\text{BЫX.np}}), \tag{4}$$

где

 $\frac{G_{\sf np}}{C_{\sf p.np}}$ — массовый расход продукта, кг/с; $\frac{1}{C_{\sf p.np}}$ — средняя удельная теплоемкость продукта в интервале расчетных температур,

 $t_{\text{вх.пр}},\,t_{\text{вых.пр}}$ — расчетные температуры продукта на входе и выходе соответственно, °C;

 $h_{\sf BX,\Pi D},\, h_{\sf BBIX,\Pi D}$ — удельная энтальпия продукта на входе и выходе соответственно, Дж/кг.

6.7 Тепловой поток со стороны воздуха в межтрубном пространстве Q_2 , Вт, вычисляют по формуле

$$Q_2 = V_{\text{возд}} \cdot \rho_{\text{возд}} \cdot \overline{C}_{\text{р.возд}} (t_{\text{вых.возд}} - t_{\text{вх.возд}}), \tag{5}$$

где

 $V_{
m BO37}$ — объемный расход воздуха, прокачиваемый вентиляторами через теплообменные

ρ_{возд} — плотность воздуха для параметров, к которым приведен объемный расход воздуха, кг/м³;

 $\overline{C}_{\text{р.возд}}$ — средняя удельная теплоемкость воздуха в интервале расчетных температур, Дж/кг·°С;

 $t_{{\scriptscriptstyle {\sf BX.BO3D}}},\,t_{{\scriptscriptstyle {\sf BЫX.BO3D}}}$ — расчетные температуры воздуха на входе и выходе соответственно, °С.

- 6.8 Требуемую площадь поверхности теплообмена $F_{\rm Tp}$, м², вычисляют одним из двух методов по формулам:
 - а) классическим методом

$$F_{\rm TP} = \frac{Q}{k \cdot \overline{\Delta t}_{\rm adv}},\tag{6}$$

где

Q — тепловой поток в аппарате, Вт;

k — коэффициент теплопередачи в аппарате, $Bт/м^2 \cdot °C;$

 $\overline{\Delta t}_{ extstyle exts$

б) методом разбиения поверхности аппарата на массив конечных элементов (участков, зон), приведенным в приложении Б

$$F_{\mathsf{TP}} = \sum_{i=1}^{N} F_{i,\mathsf{TP}},\tag{7}$$

где $F_{i,\text{тр}}$ — требуемая площадь поверхности теплообмена для отдельного i-элемента.

FOCT P 72011—2025

6.9 Расчет эффективного температурного напора в аппарате $\overline{\Delta t}_{\rm эф}$ классическим методом с применением поправочного коэффициента выполняют по следующему далее алгоритму.

Примечание — Эффективным температурным напором в аппарате считают среднее интегральное по поверхности аппарата значение разности между температурами горячего продукта и охлаждающего воздуха.

6.9.1 Эффективный температурный напор в аппарате $\overline{\Delta t}_{\rm 9\phi}$, °C, с учетом перекрестного тока теплоносителей вычисляют по формуле

$$\overline{\Delta t}_{\ni \oplus} = \overline{\Delta t}_{\mathsf{\Pi}\mathsf{D}.\mathsf{\Pi}\mathsf{or}} \cdot \varepsilon_{\Delta t},\tag{8}$$

где $\overline{\Delta t}_{\text{пр.лог}}$ — среднелогарифмический температурный напор для противотока, °C; $\epsilon_{\Delta t}$ — поправочный коэффициент для перекрестного тока.

Примечание — Для аппаратов воздушного охлаждения характерна перекрестная схема движения теплоносителей, при которой продукт совершает как однократный, так и многократный ток внутри трубного пучка, при этом воздушный поток совершает в межтрубном пространстве однократный ток.

6.9.2 Среднелогарифмический температурный напор для противотока $\overline{\Delta t}_{\rm пр.лог}$, °C, вычисляют по формуле

$$\overline{\Delta t_{\text{пр. лог}}} = \frac{\left(\Delta t_{\text{G}} - \Delta t_{\text{M}}\right)}{\ln \frac{\Delta t_{\text{G}}}{\Delta t_{\text{M}}}},$$
(9)

где $\Delta t_{\rm 6}$ и $\Delta t_{\rm M}$ — наибольший и наименьший температурный напор, °C, соответственно.

6.9.3 Предельные значения температурного напора $\Delta t_{\rm f}$ и $\Delta t_{\rm m}$ вычисляют по построенному графику функции $\Delta t = f(F)$, как показано на рисунке 1.

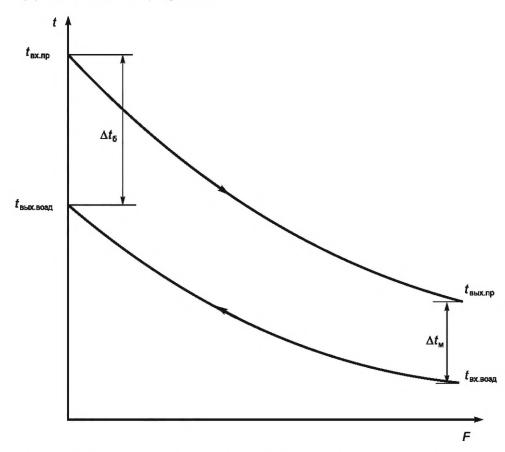


Рисунок 1 — График изменения температур горячего и холодного теплоносителей по поверхности теплообмена при противотоке для однофазного течения

6.9.4 Значение поправочного коэффициента для перекрестного тока $\varepsilon_{\Delta t}$ вычисляют по построенному графику функции $\varepsilon_{\Delta t}$ = (P,R). Вспомогательные параметры P и R вычисляют по формулам:

$$P = \frac{t_{\text{BMX.BO3}, I} - t_{\text{BX.BO3}, I}}{t_{\text{BX.DO}} - t_{\text{BX.BO3}, I}}, \tag{10}$$

$$P = \frac{t_{\text{Bыx.BO3Д}} - t_{\text{Bx.BO3Д}}}{t_{\text{Bx.пр}} - t_{\text{Bx.BO3Д}}},$$

$$R = \frac{t_{\text{Bx.пр}} - t_{\text{Bix.BO3Д}}}{t_{\text{Bix.BO3Д}} - t_{\text{Bx.BO3Д}}},$$

$$(10)$$

где $t_{\text{вых.возд}}$ и $t_{\text{вх.возд}}$ — температуры воздуха на выходе и входе, °C, соответственно;

 $t_{
m Bых.np}$ и $t_{
m Bx.np}$ — температуры продукта на выходе и входе, °C, соответственно.

6.9.5 При одном ходе по трубному пространству поправочный коэффициент для перекрестного тока $\varepsilon_{\Lambda t, n=1}$ вычисляют по диаграмме, представленной на рисунке 2.

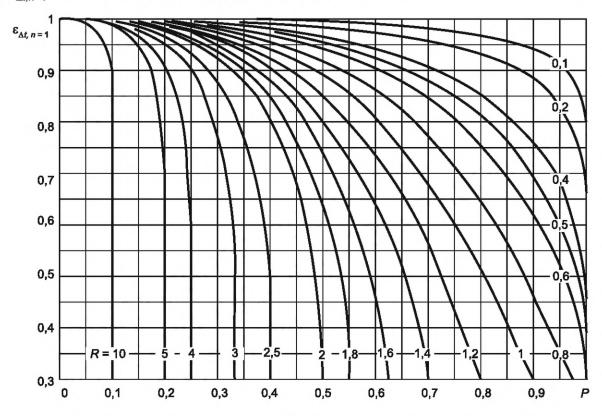
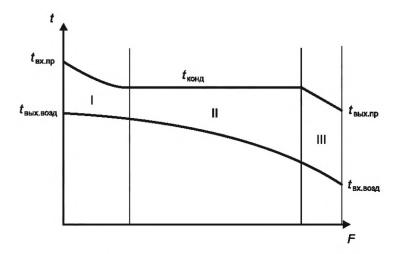



Рисунок 2 — Диаграмма определения поправочного коэффициента для перекрестного тока при одном ходе по трубному пространству в теплообменной секции

 $6.9.6~{
m При}$ количестве ходов по трубному пространству $n_{
m xog}$ от двух до четырех поправочный коэффициент $\varepsilon_{\Lambda t}$ для перекрестного тока вычисляют по формуле

$$\varepsilon_{\Delta t} = \varepsilon_{\Delta t, n=1} + \frac{1 - \varepsilon_{\Delta t, n=1}}{4} (n_{\text{XOД}} - 1). \tag{12}$$

- 6.9.7 При количестве ходов по трубному пространству n_{xod} более четырех поправочный коэффициент для перекрестного тока равен 1.
- 6.9.8 Для аппаратов с количеством ходов по трубному пространству n_{xog} более двух, имеющих перекрестную схему движения продукта и воздуха, поправочный коэффициент для перекрестного тока $\epsilon_{\Delta t}$ равен значению $\epsilon_{\Delta t.n=1}$.
- 6.9.9 При полной конденсации продукта в теплообменных трубах могут возникать три зоны, как показано на рисунке 3. В этом случае необходимо выполнять расчет эффективного температурного напора и определять требуемую поверхность теплообмена отдельно для каждой зоны.

I — зона охлаждения перегретого пара; II — зона конденсации с фазовым переходом; III — зона переохлаждения конденсата

Рисунок 3 — График изменения температур горячего и холодного теплоносителей по поверхности теплообмена при противотоке для процесса полной конденсации

6.10 Коэффициент теплопередачи k, $Bт/м^2 \cdot {}^{\circ}C$, характеризующий интенсивность процесса теплопередачи, вычисляют по формуле

$$k = \frac{1}{\frac{1}{\alpha_{\text{BH}}} \cdot \psi + R_{\text{BH}} \cdot \psi + \left(R_{\text{Tp}} + R_{\text{op}} + R_{\text{KOHT}}\right) \cdot \phi + \frac{1}{\alpha_{\text{H.np}}} + R_{\text{H}}},\tag{13}$$

где $\alpha_{\rm BH}$ — коэффициент теплоотдачи внутри теплообменных труб, Bт/м².°С;

 ψ — коэффициент увеличения поверхности теплообменных труб;

 $R_{\rm BH}$ — коэффициент термического сопротивления загрязнений внутри теплообменных труб, м 2 . °C /Bт;

 $R_{ t TD}$ — коэффициент термического сопротивления стенки теплообменных труб, м $^2 \cdot {}^{\circ}$ С /Вт;

 $R_{
m op}$ — коэффициент термического сопротивления оребрения теплообменных труб, м 2 °C/Bт;

 $R_{\mathrm{конт}}$ — коэффициент термического сопротивления контакта теплообменных труб, м $^2 \cdot {}^{\circ}$ С/Вт;

 $R_{
m H}$ — коэффициент термического сопротивления снаружи теплообменных труб, м $^2\cdot {}^{\circ}$ С/Вт:

ф — коэффициент оребрения теплообменных труб;

α_{н.пр} — коэффициент теплоотдачи снаружи теплообменных труб, приведенный к оребренной поверхности с учетом эффективности ребра.

6.11 Полный коэффициент теплопередачи для оребренной поверхности теплообменных труб \overline{k} , $Bт/м^2 \cdot {}^{\circ}C$, на основании усредненных значений температуры воздуха на выходе, теплофизических свойств продукта и воздуха, вычисленных критериев подобия вычисляют по формуле

$$\overline{k} = \frac{1}{\frac{1}{\alpha_{BH}} \cdot \psi + R_{BH} \cdot \psi + (R_{Tp} + R_{Op} + R_{KOHT}) \cdot \varphi + \frac{1}{\alpha_{H, np}} + R_{H}},$$
(14)

где $\overline{\alpha}_{\rm BH}$ — коэффициент теплоотдачи внутри теплообменных труб, Вт/м $^{2.\circ}$ С;

 $\overline{\alpha}_{\text{н.пр}}^{\text{в.п.}}$ — коэффициент теплоотдачи снаружи теплообменных труб, приведенный к оребренной поверхности с учетом эффективности ребра.

6.12 Коэффициент увеличения поверхности теплообменных труб у вычисляют по формуле

$$\psi = \frac{F_{\text{op}}}{F_{\text{BH}}},\tag{15}$$

где $F_{\rm op}$ — площадь оребренной поверхности теплообменных труб, м²; $F_{\rm BH}$ — площадь внутренней поверхности теплообменных труб, м².

6.13 Коэффициент оребрения теплообменных труб ф вычисляют по формуле

$$\varphi = \frac{F_{\rm op}}{F_{\rm rn}},\tag{16}$$

где F_{rn} — площадь наружной поверхности гладких теплообменных труб у основания ребер, м².

- 6.14 Расчет критериев подобия приведен в приложении В, согласно которому вычисляют критерии подобия для конкретных условий.
- 6.15 Расчет коэффициентов теплоотдачи и термического сопротивления для оребренной трубы приведен в приложении Γ , согласно которому вычисляют коэффициенты теплоотдачи внутри теплообменных труб $\alpha_{\rm BH}$ и снаружи теплообменных труб $\alpha_{\rm H.np}$, коэффициенты термического сопротивления $R_{\rm BH}$, $R_{\rm Tp}$, $R_{\rm Op}$, $R_{\rm KOHT}$, $R_{\rm H}$ с учетом конкретных условий и происходящих процессов теплообмена. 6.16 Для предварительно заданной конструкции аппарата запас поверхности теплообмена z, %,
- 6.16 Для предварительно заданной конструкции аппарата запас поверхности теплообмена z, %, вычисляют по формуле

$$z = \frac{\left(F_{\text{an}} - F_{\text{Tp}}\right)}{F_{\text{Tp}}} \cdot 100,\tag{17}$$

где $F_{\rm an}\,$ — площадь поверхности теплообмена аппарата, м 2 ;

 $F_{\rm TD}$ — требуемая площадь поверхности теплообмена аппарата, м².

- 6.17 По окончании теплового расчета сравнивают площадь поверхности теплообмена аппарата $F_{\rm an}$ с требуемой площадью поверхности теплообмена аппарата $F_{\rm to}$.
- 6.18 Окончанием теплового расчета считается выполнение условия, при котором запас поверхности теплообмена *z* будет больше нуля или больше требуемого по техническому заданию или по опросному листу значения, но не более требуемого значения от 10 % до 20 %.
- 6.19 Если требуемый запас поверхности теплообмена не задан, то рекомендуемое значение запаса поверхности теплообмена z для процесса охлаждения составляет от 5~% до 10~%, для процесса конденсации от 15~% до 20~%.
 - 6.20 Если условие не выполняется, то необходимо внесение изменений в конструкцию аппарата:
 - увеличение или уменьшение площади поверхности теплообмена;
 - изменение мощности электродвигателей вентиляторов.
- 6.21 Для более детального анализа тепловой эффективности как отдельного узла, так и аппарата в целом в некоторых случаях применяют CFD-тепловой расчет, позволяющий смоделировать теплообменные и аэродинамические процессы при требуемых условиях численными методами. Рекомендации по проведению CFD-теплового расчета приведены в приложении Д.

7 Аэродинамический расчет

- 7.1 Поверочный аэродинамический расчет проводят для того, чтобы определить полное аэродинамическое сопротивление аппарата и объемный расход воздуха, проходящего через выбранную теплообменную поверхность аппарата, или выявить необходимость изменения параметров.
- 7.2 В результате расчетов устанавливают соответствие между конструкцией теплообменной поверхности и вентиляторами, вычисляют производительность вентилятора, диаметр рабочего колеса вентилятора, количество вентиляторов, коэффициент полезного действия и мощность электродвигателей вентиляторов.
 - 7.3 Расчет проводят методом последовательного приближения.
- 7.4 Производительность вентилятора объемный расход воздуха $V_{\rm возд}$ определяется аэродинамической характеристикой вентилятора и значением полного аэродинамического сопротивления аппарата для предварительно выбранной конструкции аппарата.
- 7.5 Аэродинамическая характеристика вентилятора представляет собой зависимость полного напора (давления) вентилятора от объемного расхода воздуха:

$$P_{V} = f(V_{\text{BO3D}}). \tag{18}$$

- 7.6 Объемный расход воздуха через вентилятор $V_{\rm возд}$ вычисляют одним из двух методов:
- а) графическим методом при наличии графика расходно-напорной характеристики;
- б) методом итераций.

7.7 В случае, когда для вентилятора предоставлен график расходно-напорной характеристики рабочего колеса P_{v} = $f(V_{возд})$ или P_{sv} = $f(V_{возд})$, объемный расход воздуха через вентилятор $V_{возд}$ вычисляют как точку пересечения графиков функции аэродинамического сопротивления аппарата и расходнонапорной характеристики рабочего колеса вентилятора. При этом решение может быть графическим или аналитическим при наличии интерполяционного уравнения для расходно-напорной характеристики. Функцию аэродинамического сопротивления аппарата вычисляют как сумму всех сопротивлений воздушного тракта аппарата для нескольких значений объемного расхода воздуха через вентилятор в области рабочего диапазона выбранного рабочего колеса вентилятора. Для рабочего колеса вентилятора с возможностью изменения угла установки лопастей график расходно-напорной характеристики рабочего колеса вентилятора приобретает вид подмножества графиков зависимостей либо массива данных с дополнительной переменной — углом установки лопастей.

7.8 Определение объемного расхода воздуха через вентилятор методом итераций выполняют по следующему далее алгоритму, при этом задают шаг изменения объемного расхода воздуха, предельное значение с учетом запаса по мощности. Условием выхода из итерационного цикла является превышение предельного значения на N-шаге, при этом значение, полученное на (N-1)-шаге, принимают за расчетное значение.

7.8.1 Первое приближение объемного расхода воздуха через один вентилятор $V_{\rm возд}$, м 3 /с, задают по формуле

$$V_{\text{возд}} = V_{\text{возд.1-итерация}}$$
 (19)

7.8.2 Скорость воздуха в самом узком сечении трубного пучка $w_{\text{vзк.возд.}}$, м/с, вычисляют по формуле

$$w_{\text{узк.возд}} = \frac{n_{\text{BeHT}} \cdot V_{\text{возд}}}{f_{\text{CR}}},\tag{20}$$

где $n_{\rm вент}$ — количество вентиляторов в аппарате;

 $f_{\rm cs}$ — площадь поперечного сечения в самом узком месте трубного пучка, м².

7.8.3 Число Рейнольдса для потока воздуха для характерного размера для трубного пучка Re_i вычисляют по формуле

$$Re_I = \frac{w_{\text{узк.возд}} \cdot I}{V_{\text{возд}}},$$
 (21)

I — характерный размер для трубного пучка из оребренных труб, м, вычисляемый по формуле

$$I = \left(\frac{F_{\text{Tp}}}{F}\right) \cdot d_{K} + \left(\frac{F_{\text{p}}}{F}\right) \cdot \sqrt{\frac{\pi}{4} \cdot \left(d_{\text{op}}^{2} - d_{K}^{2}\right)},\tag{22}$$

F — полная поверхность оребренной трубы, M^2 ;

 $F_{\rm тp}$ — поверхность участков трубы без оребрения, м²;

 $F_{\rm p}$ — поверхность оребренной части трубы, м²; $d_{\rm op}$ — диаметр трубы по оребрению, м; $d_{\rm k}$ — диаметр трубы в корне ребра, м.

7.8.4 Среднюю температуру воздуха в трубном пучке $t_{\rm cp, возд}$, °C, вычисляют по формуле

$$t_{\text{ср.возд}} = t_{\text{вх.возд}} + \left(\frac{Q}{2 \cdot C_{\text{р.возд}} \cdot \rho_{\text{возд}} \cdot n_{\text{вент}} \cdot V_{\text{возд}}}\right),$$
 (23)

где $t_{\mbox{\scriptsize BX.BO3Д}}$ — температура воздуха на входе в трубный пучок, °C;

 $C_{
m p.возд}$ — удельная теплоемкость воздуха, Дж/кг · °С; $ho_{
m Bo3d}$ — плотность воздуха, кг/м 3 ; Q — тепловой поток, Вт.

7.8.5 Полное давление (полный напор) вентилятора P_{v} , Па, вычисляют по формуле

$$P_{v} = P_{sv} + P_{dv}, \tag{24}$$

где P_{sv} и P_{dv} — статическое и динамическое давление (статический и динамический напор) вентилятора, Па.

7.8.6 Статическое давление вентилятора P_{sv} , Па, представляющее суммарное аэродинамическое сопротивление аппарата (потери) в рабочей точке, вычисляют по формуле

$$P_{\text{SV}} = \Delta P_{\text{BX,BO3D}} + \Delta P_{\text{KODI,BO3D}} + \Delta P_{\text{TD,BO3D}} + \Delta P_{\text{жал,BO3D}} + \Delta P_{\text{пп,BO3D}}, \tag{25}$$

где $\Delta P_{\text{вх.возд}}$, $\Delta P_{\text{корп.возд}}$, $\Delta P_{\text{тр.возд}}$, $\Delta P_{\text{тр.возд}}$, $\Delta P_{\text{жал.возд}}$, $\Delta P_{\text{пп.возд}}$ — аэродинамические сопротивления (потери) на входе в аппарат (по периметру аппарата), в корпусе вентилятора, трубного пучка, жалюзийного устройства, парового подогревателя воздуха (при его наличии) соответственно, Па.

7.8.7 Динамическое давление вентилятора P_{dv} , Па, вычисляют по формуле

$$P_{dv} = \frac{\rho_{\text{возд}} \cdot w_{\text{корп.вент.возд}}^2}{2}.$$
 (26)

7.8.8 Скорость воздуха в корпусе вентилятора $w_{\text{корп.вент.возд}}$, м/с, вычисляют по формуле

$$w_{\text{корп.вент.возд}} = \frac{V_{\text{возд}}}{\left(\frac{\pi D_{\text{вент}}^2}{4}\right)},\tag{27}$$

где $D_{\text{вент}}$ — диаметр рабочего колеса вентилятора, м.

7.8.9 Аэродинамическое сопротивление на входе аппарата зависит от высоты аппарата h_{an} и не учитывает возможное размещение жалюзи в проемах по периметру при наличии системы рециркуляции.

7.8.10 Аэродинамическое сопротивление на входе аппарата $\Delta P_{\text{вх.возд}}$, Па, в общем случае вычисляют по формуле

$$\Delta P_{\text{BX.BO3Д}} = K_{\text{BX}} \cdot \frac{\rho_{\text{BX.BO3Д}} \cdot w_{\text{корп.вент.возд}}^2}{2}.$$
 (28)

7.8.11 Относительную высоту аппарата $\overline{h}_{\rm an}$ и коэффициент $K_{\rm BX}$ вычисляют по формулам:

$$\overline{h}_{\mathrm{A\Pi}} = \frac{h_{\mathrm{A\Pi}}}{D_{\mathrm{BeHT}}},\tag{29}$$

$$\begin{cases} \text{если } \overline{h}_{\text{an}} \leq 0,1, \text{ то } K_{\text{BX}} = 19,7; \\ \text{если } 0,1 < \overline{h}_{\text{an}} \leq 2,0, \text{ то } K_{\text{BX}} = 0,1448 - \frac{0,13682}{\overline{h}_{\text{an}}} + \frac{0,209}{\overline{h}_{\text{an}}^2}; \\ \text{если } \overline{h}_{\text{an}} > 2,0, \text{ то } K_{\text{BX}} = 0. \end{cases}$$
(30)

Примечание — Требуемая высота от сплошного основания аппарата до корпуса вентиляторов для аппарата нагнетательного типа и от основания до входа в секции для аппарата вытяжного типа должна обеспечить скорость воздуха в сечениях по периметру аппарата (скорость воздуха на входе в аппарат) не выше 3,6 м/с для аппарата нагнетательного типа и не выше 4,0 м/с для аппарата вытяжного типа.

- 7.8.12 При расчете свободного сечения для подвода воздуха к аппарату необходимо учитывать загораживание проходного сечения размещенным рядом оборудованием или сооружением, наличие сплошного или просечного пола, наличие люков или жалюзи в полу.
- 7.8.13 Аэродинамическое сопротивление в корпусе вентилятора $\Delta P_{\text{кол.возд}}$, Па, вычисляют по формуле

$$\Delta P_{\text{КОЛ.ВОЗД}} = K_{\text{КОЛ}} \cdot \frac{\rho_{\text{ВХ.ВОЗД}} \cdot w_{\text{КОРП.ВЕНТ.ВОЗД}}^2}{2}.$$
 (31)

Значения коэффициента $K_{\text{кол}}$ в зависимости от формы входной кромки корпуса вентилятора представлены на рисунке 4.

7.8.14 Аэродинамическое сопротивление трубного пучка $\Delta P_{\text{тр.возд}}$, Па, вычисляют по формуле

$$\Delta P_{\text{Tp.BO3A}} = \xi_{\text{Tp.BO3A}} \cdot \frac{\rho_{\text{cp.BO3A}} \cdot w_{\text{ysk.BO3A}}^2}{2}.$$
 (32)

Рисунок 4 — Значения коэффициента $K_{\text{кол}}$ в зависимости от формы входной кромки корпуса вентилятора

7.8.15 Коэффициент аэродинамического сопротивления трубного пучка $\xi_{\text{тр.возд}}$ вычисляют по формуле

$$\xi_{\text{TP.BO3D}} = 5.4 \cdot C_{\Psi} \cdot C_{Z} \cdot n_{\text{PRD}} \cdot \left(\frac{I}{d_{3}}\right)^{0.3} \cdot Re_{I}^{-0.25}, \tag{33}$$

где C_{Ψ} — коэффициент поправки на угол атаки;

 $n_{
m psg}$ — количество рядов труб в трубном пучке.

7.8.16 Эквивалентный диаметр сечения d_{9} , м, для движения потока воздуха вычисляют по формуле

$$d_{9} = \frac{2 \cdot \left[t_{\text{pe6p}} \cdot (s_{1} - d_{K}) - 2 \cdot h_{\text{pe6p}} \cdot \Delta_{\text{pe6p}} \right]}{2 \cdot h_{\text{pe6p}} + t_{\text{pe6p}}},$$
(34)

где $t_{
m peбp}\,$ — шаг ребра;

 s_1 — поперечный шаг труб;

 d_{κ} — диаметр трубы в основании ребра, м;

 $h_{\text{ребр}}$ — высота ребра, м;

 Δ_{pefp} — средняя толщина ребра, м.

7.8.17 Аэродинамическое сопротивление жалюзийного устройства $\Delta P_{\text{жал.возд}}$ вычисляют при расчете с учетом того, что жалюзийное устройство может быть расположено как над теплообменными секциями, так и на входе в аппарат, поэтому необходимо скорость и плотность воздуха приводить к соответствующим параметрам.

7.8.18 Аэродинамическое сопротивление парового подогревателя $\Delta P_{\text{пп.возд}}$ вычисляют как аэродинамическое сопротивление трубного пучка $\Delta P_{\text{тр.возд}}$ с одним рядом теплообменных труб.

7.8.19 По значениям аэродинамических сопротивлений, определенным согласно вышеприведенным формулам, вычисляют статическое и динамическое давление, полное давление вентилятора.

7.8.20 Требуемую мощность вентилятора $N_{\text{тр.вент}}$, Вт, вычисляют по формуле

$$N_{\text{Tp.BeHT}} = \frac{\left(P_{\text{SV}} + P_{dv}\right) \cdot V_{\text{BO3Д}}}{\eta_{\text{ПОЛН}}},\tag{35}$$

где $\eta_{\text{полн}}$ — полный коэффициент полезного действия вентилятора.

7.8.21 Потребляемую мощность электродвигателя вентилятора $N_{\text{потр.эд}}$, Вт, для прямого привода вычисляют по формуле

$$N_{\text{потр.эд}} = \frac{N_{\text{тр.вент}}}{\eta_{\text{эд}}},\tag{36}$$

где $\eta_{\text{эд}}$ — коэффициент полезного действия электродвигателя.

 $7.8.22~{
m B}$ случае наличия промежуточной передачи момента от электродвигателя к вентилятору необходимо учитывать дополнительные потери мощности, при этом потребляемую мощность электродвигателя вентилятора $N_{
m noto.эд}$, Вт, вычисляют по формуле

$$N_{\text{потр.эд}} = \frac{\left(P_{\text{SV}} + P_{\text{dV}}\right) \cdot V_{\text{возд}}}{\eta_{\text{полн}} \cdot \eta_{\text{эд}} \cdot \eta_{\text{пр}}},\tag{37}$$

где η_{np} — коэффициент полезного действия передачи.

- 7.8.23 Значение полного коэффициента полезного действия вентилятора вычисляют по характеристике, предоставленной изготовителем рабочего колеса вентилятора.
- 7.8.24 Как правило, значение коэффициента полезного действия электродвигателя $\eta_{\rm эд}$ находится в диапазоне 0,82—0,98, коэффициента полезного действия передачи $\eta_{\rm пр}$ для вентилятора с прямым приводом равно 1, для вентилятора с клиноременной передачей в диапазоне 0,94—0,96, для вентилятора с редукторной передачей: 0,87—0,95.
- 7.9 По окончании аэродинамического расчета сравнивают требуемую (расчетную) мощность электродвигателя вентилятора $N_{\rm дв.тp}$ и номинальную мощность электродвигателя вентилятора $N_{\rm дв.ном}$ с учетом коэффициента запаса мощности электродвигателя вентилятора k. Коэффициент запаса мощности электродвигателя вентилятора k принимают равным 1,1, если заказчиком не указано иное.
 - 7.10 Окончанием аэродинамического расчета считается выполнение условия

$$N_{\text{дв.тр}} \le \frac{N_{\text{дв. HOM}}}{k}.$$
 (38)

- 7.11 Если условие не выполняется, то необходимо внесение изменений в конструкцию аппарата:
- увеличение номинальной мощности электродвигателя;
- увеличение поперечного шага теплообменных труб в теплообменной секции;
- уменьшение числа рядов теплообменных труб в теплообменной секции;
- снижение коэффициента оребрения теплообменных труб;
- снижение дополнительных аэродинамических потерь.

8 Гидравлический расчет

- 8.1 Поверочный гидравлический расчет проводят для того, чтобы на основании сравнения вычисляемых параметров с требуемыми значениями расчетного и допустимого гидравлического сопротивления аппарата подтвердить правильность выбора конструкции аппарата или выявить необходимость ее изменения.
 - 8.2 Расчет проводят методом последовательного приближения.
 - 8.3 Полное гидравлическое сопротивление аппарата $\Delta P_{\text{гидр}}$, Па, вычисляют по формуле

$$\Delta P_{\text{гидр}} = \sum \Delta P_{\text{тр}} + \sum \Delta P_{\text{M}}, \tag{39}$$

где $\sum \!\!\!\! \Delta P_{\mathsf{Tp}}$ — суммарные гидравлические сопротивления трения участков теплообменных труб, Па;

 $\sum_{\Delta P_{\rm M}}$ — суммарные гидравлические местные сопротивления, вызванные сужением и расширением потока продукта, изменением направления его течения, входом и выходом потока продукта в трубное пространство, а также в штуцерах входа и выхода, Па.

8.4 Гидравлическое сопротивление трения заданного участка теплообменных труб $\Delta P_{\rm Tp}$, Па, вычисляют по формуле

$$\Delta P_{\rm Tp} = \xi_{\rm Tp} \cdot \frac{I_{\rm Tp}}{d_{\rm BH}} \cdot \frac{\rho_{\rm np} \cdot w_{\rm np}^2}{2},\tag{40}$$

где $\xi_{\text{тр}}$ — коэффициент сопротивления трения в теплообменных трубах;

 $I_{\rm TD}$ — длина участка теплообменных труб, м;

 ho_{np} — плотность продукта в теплообменных трубах, кг/м³;

 $w_{\rm np}$ — скорость потока в теплообменных трубах, м/с;

 $d_{\rm вн}$ — внутренний диаметр теплообменных труб, м.

8.5 Скорость потока продукта $w_{\rm np}$, м/с, в теплообменных трубах вычисляют по формуле

$$w_{\mathsf{np}} = \frac{G_{\mathsf{np}}}{\rho_{\mathsf{np}} \cdot \mathsf{S}_{\mathsf{xod}}},\tag{41}$$

где $G_{\text{пр}}$ — массовый расход продукта, кг/с;

 S_{xon} — площадь поперечного сечения теплообменных труб в ходу теплообменной секции, м².

8.6 Площадь поперечного сечения теплообменных труб в ходу теплообменной секции $S_{\text{ход}}$, м², вычисляют по формуле

$$S_{XOJI} = N_{TD.XOJI} \cdot \frac{\pi \cdot d_{BH}^2}{4}, \tag{42}$$

где $N_{\rm Tp.xog}$ — количество теплообменных труб в ходу теплообменной секции.

8.7 Число Рейнольдса по продукту внутри теплообменных труб Re_{BH} вычисляют по формуле

$$Re_{\rm BH} = \frac{w_{\rm BH} \cdot d_{\rm BH}}{v_{\rm DD}},\tag{43}$$

где $w_{\rm BH}\,$ — скорость потока продукта внутри теплообменных труб, м/с;

 v_{np} — кинематическая вязкость продукта, м²/с.

8.8 Коэффициент сопротивления трения в теплообменных трубах $\xi_{\text{тр}}$ в зависимости от значения числа Рейнольдса вычисляют по формулам:

- при *Re*_{вн} ≤ 2300

$$\xi_{\mathsf{TP}} = \frac{64}{\mathsf{Re}_{\mathsf{PH}}};\tag{44}$$

- при Re_{вн} > 2300

$$\xi_{\text{Tp}} = \frac{1}{\left[2\lg\left(\frac{2,51}{Re_{\text{BH}}\sqrt{\xi}} + \frac{\overline{\Delta}}{3,7}\right)\right]^2},\tag{45}$$

где $\overline{\Delta}$ — относительная шероховатость внутренней поверхности теплообменных труб.

8.9 Относительную шероховатость внутренней поверхности теплообменных труб $\overline{\Delta}$ вычисляют по формуле

$$\overline{\Delta} = \frac{\Delta}{d_{\rm BH}},\tag{46}$$

где Δ — эквивалентная шероховатость внутренней поверхности теплообменных труб.

8.10 Гидравлическое сопротивление трения потока продукта в штуцерах $\Delta P_{\text{штуц}}$, Па, на входе и на выходе вычисляют по формуле

$$\Delta P_{\text{штуц}} = \xi_{\text{штуц}} \cdot \frac{\rho_{\text{пр.штуц}} \cdot w_{\text{пр.штуц}}^2}{2},\tag{47}$$

где $\rho_{\text{пр.штуц}}$ — плотность продукта в штуцерах, кг/м 3 ;

 $w_{\text{пр.штуц}}$ — скорость продукта в штуцерах, м/с.

8.11 Коэффициент сопротивления трения потока продукта в штуцерах $\xi_{\text{штуц}}$ принимают равным 1,0 на входе и 0,5 на выходе при их расположении параллельно осям труб, 1,1 на входе и 0,7 на выходе — при их расположении перпендикулярно осям труб.

8.12 Определение гидравлического сопротивления для двухфазных газожидкостных потоков (при конденсации) проводят по следующему далее алгоритму.

Примечание — Расчет гидравлического сопротивления основан на применении гомогенной модели потока, при этом используют формулы, представленные в 8.3—8.11, с учетом коррекции значения плотности Рейнольдса и вязкости для двухфазного потока.

8.12.1 Плотность гомогенного потока ρ_{rn} , кг/м³, для заданного участка трубного пучка вычисляют по формуле

$$\rho_{\Gamma\Pi} = \frac{\rho_{\mathcal{K}} \cdot \rho_{\Pi}}{x \rho_{\mathcal{K}} + (1 - x) \cdot \rho_{\Pi}},\tag{48}$$

где $\rho_{\text{ж}},\, \rho_{\text{п}}\,$ — плотности жидкой, паровой фазы потока соответственно, кг/м $^3;$

x — массовая доля паров, %.

Примечание — Значения плотности жидкой фазы $\rho_{\rm m}$ и плотности паровой фазы $\rho_{\rm n}$, массовой доли паров x для уравнения (48) усреднены для рассматриваемого участка трубного пучка.

8.12.2 Динамическую вязкость двухфазного потока $\mu_{\text{дф}}$, Па·с, вычисляют по формуле

$$\mu_{\mathsf{A}\Phi} = \left[\frac{x}{\mu_{\mathsf{\Pi}}} + \frac{(1-x)}{\mu_{\mathsf{K}}}\right]^{-1},\tag{49}$$

где $\mu_{\mathsf{w}}, \mu_{\mathsf{n}}$ — динамические вязкости жидкой, паровой фазы потока соответственно, Па \cdot с.

8.12.3 Число Рейнольдса для двухфазного потока $Re_{n d}$ вычисляют по формуле

$$Re_{\mathsf{A}\Phi} = \frac{G_{\mathsf{np}} \cdot d_{\mathsf{BH}}}{\mu_{\mathsf{A}\Phi} \cdot S_{\mathsf{K}}},\tag{50}$$

где $S_{\rm K}$ — площадь сечения канала для двухфазного потока, м 2 .

- 8.13 По окончании гидравлического расчета сравнивают расчетное гидравлическое сопротивление $\Delta P_{\text{гидр.расч}}$ и допустимое гидравлическое сопротивление $\Delta P_{\text{гидр.расч}}$.
 - 8.14 Окончанием гидравлического расчета считается выполнение условия

$$ΔP_{\text{гидр.pacy}} \le ΔP_{\text{гидр.доп}}.$$
(51)

- 8.15 Если условие не выполняется, то необходимо внесение изменений в конструкцию аппарата:
- уменьшение количества ходов в теплообменной секции;
- увеличение внутреннего диаметра теплообменных труб;
- увеличение ширины теплообменной секции;
- увеличение количества аппаратов при сокращении длины теплообменных труб.

Приложение A (справочное)

Термические сопротивления загрязнений теплообменных труб аппарата

Рекомендуемые значения термических сопротивлений загрязнений, $M^2 \cdot {}^{\circ}$ C/Вт, теплообменных труб аппарата с различными продуктами приведены в таблицах A.1—A.3 при проведении регулярной чистки трубного пространства аппарата.

Таблица А.1

Группа продукта	Наименование продукта	Значение термического сопротивления загрязнения, м ^{2 · °} С/Вт	
Технические масла	Топочные мазуты	8,6 · 10 ⁻⁴	
	Чистые циркулирующие масла	1,7 · 10 ⁻⁴	
	Машинные и трансформаторные масла	1,7 · 10 ⁻⁴	
	Крекинг масла	6,9 · 10 ⁻⁴	
	Растительные масла	6,9 · 10 ⁻⁴	
Технические газы и	Газ коксовых печей и другие фабричные газы	17,2 · 10 ⁻⁴	
пары	Выхлопные газы дизелей	17,2 · 10 ⁻⁴	
	Пары органических веществ	8,6 · 10 ⁻⁴	
	Пары спирта	0 · 10-4	
	Водяной пар (не замасленный)	0 · 10 ⁻⁴	
	Водяной пар (замасленный, отработанный, из поршневых машин)	1,7 · 10 ⁻⁴	
	Холодильные пары (замасленные из поршневого компрессора)	3,4 · 10 ⁻⁴	
	Воздух	3,4 · 10 ⁻⁴	
Технические жид-	Органические	1,7 · 10 ⁻⁴	
кости	Холодильные жидкости, греющие, охлаждающие и испаряющие	1,7 · 10 ⁻⁴	
	Рассол (охлаждающий)	1,7 · 10 ⁻⁴	
Продукты атмо-	Пары верхней фракции	2,5 · 10 ⁻⁴	
сферных установок	Пары верхней фракции, не подвергавшиеся обработке	2,5 · 10 ⁻⁴	
	Пары верхней фракции, подвергавшиеся обработке	5,0 · 10 ⁻⁴	
	Боковые фракции	2,5 · 10 ⁻⁴	
Продукты вакуум-	Пары верхней фракции из ректификационной колонны	1,8 · 10 ⁻⁴	
ных установок	Пары верхней фракции из фляшинг-колонны	7,2 · 10 ⁻⁴	
	Боковые фракции	2,5 · 10 ⁻⁴	
	Боковые фракции в холодильниках	3,6 · 10 ⁻⁴	
	Остаток (гудрон) при d ₄ ²⁰ более 0,93	9,0 · 10 ⁻⁴	
	Дестиллатный остаток при d ₄ ²⁰ менее 0,93	3,6 ⋅ 10 ⁻⁴	
Продукты устано-	Сырье — Газойль с температурой до 238 °C	3,6 · 10 ⁻⁴	
вок крекинга	Сырье — Газойль с температурой 238 °C и выше	5,0 · 10 ⁻⁴	
	Сырье — Лигроин с температурой до 238 °C	3,6 · 10 ⁻⁴	
	Сырье — Лигроин с температурой 238 °C и выше	7,2 · 10 ⁻⁴	
	Пары из сепаратора, фляшинг-колонны, испарителя	10,0 · 10 ⁻⁴	
	Пары из ректификационной колонны	3,6 · 10 ⁻⁴	
	Остаток	1,8 · 10 ⁻⁴	

Окончание таблицы А.1

Группа продукта	Наименование продукта	Значение термического сопротивления загрязнения, м ² · °C/Вт	
Продукты абсорб- ционных установок	Газ	3,6 · 10 ⁻⁴	
	Жирное масло	1,8 · 10 ⁻⁴	
	Тощее масло	3,6 ⋅ 10 ⁻⁴	
	Пары верхней фракции	0,9 · 10 ⁻⁴	
	Бензин	0,9 · 10 ⁻⁴	
Продукты устано-	Сырье — Нестабильный бензин	0,9 · 10 ⁻⁴	
вок стабилизации бензина	Пары верхней фракции	0,9 · 10 ⁻⁴	
	Продукт холодильников и теплообменников	0,9 · 10 ⁻⁴	
	Продукт рибойлеров	1,8 · 10 ⁻⁴	
Продукты газофрак-	Сырье	1,8 · 10 ⁻⁴	
ционирующих и ал- килирующих уста-	Пары верхней фракции	1,8 · 10 ⁻⁴	
новок	Продукт холодильников	1,8 · 10 ⁻⁴	
	Продукт рибойлеров	3,6 · 10 ⁻⁴	
	Сырье загрузки реактора	3,6 ⋅ 10 ⁻⁴	
Продукты масло-	Сырье — смесь масла с растворителем	3,6 ⋅ 10 ⁻⁴	
очистных установок	Пары верхней фракции	1,8 · 10 ⁻⁴	
	Очищенное масло	1,8 · 10 ⁻⁴	
	Продукт теплообменников очищенного масла, охлаждаемого водой	5,0 · 10 ⁻⁴	
	Смолы в теплообменниках и парогенераторах	0,9 · 10 ⁻⁴	
	Смолы в холодильниках	5,0 · 10 ⁻⁴	
	Растворитель	1,8 · 10 ⁻⁴	
Продукты устано-	Сырье — масло	3,6 · 10 ⁻⁴	
вок деасфальтиза- ции	Растворитель	1,8 · 10 ⁻⁴	
	Асфальт и смолы в теплообменниках и парогенераторах	0,9 · 10 ⁻⁴	
	Асфальт и смолы в холодильниках	5,0 · 10 ⁻⁴	
	Пары растворителя	1,8 · 10 ⁻⁴	
	Очищенное масло	1,8 · 10 ⁻⁴	
	Очищенное масло, охлаждаемое водой	5,0 · 10 ⁻⁴	
Продукты устано-	Смазочное масло	1,8 · 10 ⁻⁴	
вок депарафиниза- ции	Растворитель	1,8 · 10 ⁻⁴	
	Смесь масла с парафином нагреваемая	1,8 · 10 ⁻⁴	
	Смесь масла с парафином охлаждаемая	5,0 · 10 ⁻⁴	
Продукты обессе-	Пары верхней фракции	1,8 · 10 ⁻⁴	
ривающих устано- вок	Продукт холодильников раствора	2,5 · 10 ⁻⁴	
1.0	Продукт холодильников рибойлера	2,5 · 10 ⁻⁴	

Таблица А.2

Наименование продукта		Значение термического сопротивления загрязнения, м² · °C/Вт			
	Температура продукта, °С	при скорости потока, м/с			
		до 0,6 включ.	св. 0,6 до 1,2 включ.	св. 1,2	
Обезвоженная нефть (обессоленная)	От минус 17 до 93 включ.	5,0 · 10 ⁻⁴	3,6 · 10 ⁻⁴	3,6 · 10 ⁻⁴	
	Св. 93 до 149 включ.	5,0 · 10 ⁻⁴	3,6 · 10 ⁻⁴	3,6 · 10-4	
	Св. 149 до 260 включ.	7,2 · 10 ⁻⁴	5,0 · 10 ⁻⁴	3,6 · 10-4	
	Св. 260	0,9 · 10 ⁻⁴	7,2 · 10 ⁻⁴	5,0 · 10 ⁻⁴	
Обводненная нефть (необессоленная)	От минус 17 до 93 включ.	5,0 · 10 ⁻⁴	3,6 · 10 ⁻⁴	3,6 · 10-4	
	Св. 93 до 149 включ.	0,9 · 10 ⁻⁴	7,2 · 10 ⁻⁴	7,2 · 10 ⁻⁴	
	Св. 149 до 260 включ.	10,0 · 10-4	0,9 · 10 ⁻⁴	7,2 · 10-4	
	Св. 260	10,0 · 10 ⁻⁴	10,0 · 10 ⁻⁴	0,9 · 10-4	

Таблица А.3

	Значение термического сопротивления загрязнения, м ² · °C/Вт				
Наименование продукта	при температуре во	оды до 52°C включ.	при температуре воды свыше 52 °C		
	при скорости воды до 0,9 м/с включ.	при скорости воды свыше 0,9 м/с	при скорости воды до 0,9 м/с включ.	при скорости воды свыше 0,9 м/с	
Морская вода	0,9 · 10 ⁻⁴	1,0 · 10-4	1,8 · 10 ⁻⁴	2,0 · 10 ⁻⁴	
Оборотная вода подготовленная	1,8 · 10-4	2,0 · 10-4	3,6 · 10 ⁻⁴	4,0 · 10 ⁻⁴	
Оборотная вода неподготовленная	5,0 · 10 ⁻⁴	6,0 · 10 ⁻⁴	9,0 · 10 ⁻⁴	5,0 · 10 ⁻⁴	
Речная вода чистая	3,6 · 10 ⁻⁴	1,8 · 10 ⁻⁴	5,0 · 10 ⁻⁴	3,6 · 10-4	
Речная вода средней чистоты	5,0 · 10 ⁻⁴	3,6 · 10 ⁻⁴	7,0 · 10 ⁻⁴	5,0 · 10 ⁻⁴	
Речная вода сильно загрязненная	14,0 · 10 ⁻⁴	10,0 · 10 ⁻⁴	18,0 · 10 ⁻⁴	14,0 · 10 ⁻⁴	
Речная вода жесткая	5,0 · 10 ⁻⁴	6,0 · 10 ⁻⁴	9,0 · 10 ⁻⁴	10,0 · 10 ⁻⁴	
Дистиллированная	0,9 · 10 ⁻⁴	1,0 · 10-4	0,9 · 10 ⁻⁴	1,0 · 10-4	
Питательная (для котлов)	1,8 · 10 ⁻⁴	1,0 · 10 ⁻⁴	1,8 · 10 ⁻⁴	2,0 · 10 ⁻⁴	

Приложение Б (рекомендуемое)

Алгоритм расчета эффективного температурного напора методом разбиения поверхности аппарата на массив конечных элементов

- Б.1 Для расчета эффективного температурного напора в аппарате между продуктом и воздухом коэффициент теплопередачи должен быть однородным. Учитывая значительные изменения теплофизических свойств продукта в процессе охлаждения или конденсации и вариативность коэффициента теплопередачи в разных точках теплообменной секции, поверхность аппарата необходимо разбить на массив конечных элементов (участков, зон) i = 1... N по длине трубы для каждого ряда и для разных сечений по ширине трубного пучка, учесть поперечную схему ходов по трубному пространству. При этом должны быть выполнены следующие условия:
 - коэффициент теплопередачи для i-го конечного элемента k_i постоянен;
- эффективный температурный напор для i-го конечного элемента $\overline{\Delta t}_{a \mathbf{b}_i}$ равен среднелогарифмическому температурному напору для $\emph{i-}$ го конечного элемента $\overline{\Delta t}_{\text{cp.nor}\emph{i-}}$
- Б.2 В ходе итерационных циклов расчета каждого конечного элемента вычисляют значения следующих па-
 - температуры воздуха на выходе из аппарата $t_{{\scriptscriptstyle {\sf BO3D.Bыx},}\dot{i}^{\scriptscriptstyle {\rm i}}}$
 - коэффициента теплопередачи для i-го конечного элемента k_i ;
 - эффективного температурного напора для i-го конечного элемента $\overline{\Delta t}_{ads}$;
 - расчетной тепловой нагрузки для i-го конечного элемента $Q_{\mathsf{pacч},i}$

Примечание — Итерационный цикл — это метод решения уравнения и (или) системы уравнений путем последовательного приближения заданной переменной величины в циклическом процессе. Результатом данного метода является достижение необходимой точности или выполнение поставленного условия.

Б.3 Температуру воздуха на выходе из аппарата $t_{\text{возд.вых.}i}$ °С, вычисляют по формуле, при этом в первом приближении $Q_i = Q/N$

$$t_{\text{возд.вых},i} = t_{\text{возд.вх},i} + \frac{Q_i}{C_p \cdot G_{\text{возд.}i}}.$$
(Б.1)

- Б.4 Коэффициент теплопередачи для i-го конечного элемента k_i вычисляют по формуле (13).
- Б.5 Эффективный температурный напор для i-го конечного элемента $\Delta t_{3\varphi_i}$ вычисляют по формуле (9). Б.6 Расчетную тепловую нагрузку для i-го конечного элемента $Q_{\text{расч},i}$, Вт, вычисляют по формуле

$$Q_{\text{pacy},i} = k_i \cdot F_i \cdot \overline{\Delta t}_{\text{adj}}. \tag{6.2}$$

Б.7 Сравнение расчетной тепловой нагрузки проводят для i-го конечного элемента $Q_{\mathsf{pacy},i}$ и заданного приближения Q, При расхождении более 0,2 % итерационный цикл расчета повторяется до выполнения условия, при этом предыдущее расчетное значение принимается как новое приближение.

Б.8 При завершении расчета массива конечных элементов (участков, зон) проводят сравнение заданной общей тепловой нагрузки и суммарной расчетной тепловой нагрузки на аппарат для всех конечных элементов $Q_{\text{сум.р}}$ Вт, которую определяют по формуле

$$Q_{\text{cym.p}} = \sum_{i=1}^{N} Q_i. \tag{5.3}$$

- Б.9 Результатами расчета являются массивы следующих параметров:
- требуемой площади поверхности теплообмена $F_{\mathrm{тр}_i}$
- коэффициентов теплоотдачи внутри и снаружи труб $\alpha_{{\sf BH},i}, \alpha_{{\sf H},{\sf ПD},i}$
- коэффициента теплопередачи k_i;
- эффективного температурного напора $\overline{\Delta t}_{{\sf od}_i}$

Б.10 На основании значений этих параметров проводят определение средних интегральных значений коэффициента теплопередачи к и эффективного температурного напора по поверхности аппарата в целом.

Б.11 Средний интегральный эффективный температурный напор в аппарате $\overline{\Delta t}_{
m 9 f p}$ вычисляют по формуле

$$\overline{\Delta t}_{\ni \Phi} = \frac{1}{\frac{1}{Q} \sum_{i=1}^{N} \left(\frac{Q_i}{\overline{\Delta t}_{\ni \Phi_i}} \right)}.$$
 (5.4)

Б.12 Внутренние итерационные циклы в алгоритме теплового расчета при расчете коэффициента теплопередачи заключаются в определении температуры внутренней поверхности труб, которая корректируется при каждой итерации допускаемой погрешностью при условии сходимости. Допускаемая погрешность в пределах от 5 % до 10 %.

Б.13 Температуру стенки на внутренней поверхности теплообменных труб $\overline{t}_{\text{ст.вн}}$, °C, вычисляют по формуле

$$\bar{t}_{\text{CT.BH}} = t_{\text{Cp.np}} - \frac{\overline{q}}{\overline{\alpha}_{\text{RH}}},$$
 (5.5)

где $t_{\text{ср.пр}}$ — средняя температура продукта в теплообменных трубах, °C;

 \overline{q} — среднеинтегральное значение расчетной плотности теплового потока;

 $\overline{lpha}_{\mathtt{BH}}$ — среднеинтегральное значение коэффициента теплоотдачи внутри труб.

Б.14 Итерационный цикл расчета температуры внутренней поверхности теплообменных труб выполняют по следующему алгоритму:

- а) вычисляют первое приближение $\overline{t}_{\rm CTBH}$;
- б) вычисляют $\overline{\alpha}_{\rm BH}$; в) уточняют температуру $\overline{t}_{\rm CT.BH}$;
- г) выполняют следующую итерацию.

Б.15 Условием выхода из итерационного цикла расчета является отклонение от предыдущей итерации в пределах допускаемой погрешности.

Б.16 В случае наличия в исходных данных критических значений температуры стенки проверяют выполнение условия

$$\overline{t}_{\text{CTBH}} > \overline{t}_{\text{CTBH,KDUT}}.$$
 (5.6)

Б.17 Для расчетного диапазона температуры в холодный период года массив значений температуры стенки на внутренней поверхности теплообменных труб вычисляют по формуле (Б.5), при этом каждое значение должно быть выше предельного значения (при наличии критической температуры процесса) с учетом запаса по

Б.18 Полный коэффициент теплопередачи \overline{k} для оребренной поверхности теплообменных труб вычисляют по формуле

$$\overline{k} = \frac{1}{F_{\text{TD}}} \sum_{i=1}^{N} k_i F_i. \tag{5.7}$$

Б.19 Требуемую поверхность теплообмена $F_{\mathrm{тp}}$ вычисляют по формуле

$$F_{\rm Tp} = \sum_{i=1}^{N} F_{i,{\rm Tp}}.$$
 (5.8)

Приложение В (справочное)

Расчет критериев подобия

В.1 В расчетах процессов конвективного теплообмена используют теорию подобия физических процессов путем объединения размерных физических величин в безразмерные комплексы, так называемые критерии подобия. Равенство всех однотипных критериев подобия для двух физических явлений и систем есть необходимое и достаточное условие их физического подобия.

В.2 В настоящем стандарте используют следующие критерии подобия:

- число Галилея, характеризующее соотношение между силами гравитации и силами вязкости в среде;
- число Грасгофа, характеризующее процесс подобия теплообмена при конвекции в поле тяжести (гравитации, ускорения) и являющееся мерой соотношения архимедовой выталкивающей силы, вызванной неравномерным распределением плотности жидкости, газа в неоднородном поле температур, и силами вязкости;
- число Локхарта-Мартинелли, характеризующее жидкую долю в потоке текучей среды, используемое во внутренних расчетах двухфазного потока и в расчетах двухфазного перепада давления и теплопередачи при кипении или конденсации;
- число Нуссельта, характеризующее соотношение между интенсивностью теплообмена за счет конвекции и интенсивностью теплообмена за счет теплопроводности;
- число Пекле, характеризующее соотношение между конвективными и молекулярными процессами переноса тепла (примесей, количества движения, характеристик турбулентности) в потоке жидкости (соотношение конвекции и диффузии), а также процессов конвективного теплообмена;
 - число Прандтля, характеризующее влияние физических свойств теплоносителя на теплоотдачу;
- число Рейнольдса, характеризующее гидродинамический режим движения, мера отношения сил инерции к силам вязкого трения в вязких жидкостях и газах; при малых силах инерции и больших силах вязкого трения движение считают ламинарным, наоборот — турбулентным;
 - число Фруда, характеризующее соотношение между силой инерции и силой тяжести;
- число Эйлера, характеризующее отношение между силами давления на единичный объем жидкости (или газа) и инерционными силами.

В.3 Число Галилея Ga вычисляют по формуле

$$Ga = \frac{g \cdot \rho_{\mathcal{K}} \cdot (\rho_{\mathcal{K}} - \rho_{\Pi}) \cdot d_{\mathsf{BH}}^{3}}{\mu_{\mathcal{K}}^{2}},\tag{B.1}$$

где $\mu_{\rm ж}$ — динамическая вязкость продукта, H · c/м². В.4 Число Грасгофа ${\it Gr}_{q.{\rm BH}}$ вычисляют по формуле

$$Gr_{q,\text{BH}} = \frac{g \cdot \beta \cdot d_{\text{BH}}^4 \cdot q_{\text{BH}}}{v_{\text{np}}^2 \cdot \lambda_{\text{np}}},\tag{B.2}$$

где g — ускорение свободного падения, м/с²;

β — коэффициент объемного расширения продукта;

 $d_{_{\rm BH}}$ — внутренний диаметр теплообменной трубы, м;

 $q_{_{
m BH}}$ — плотность потока продукта по внутренней поверхности труб, кг/м 3 ;

 $v_{\rm np}$ — кинематическая вязкость продукта, Н · с/м²;

 λ_{np} — коэффициент теплопроводности продукта.

В.5 Число Локхарта-Мартинелли X_{tt} вычисляют по формуле

$$X_{tt} = \left(\frac{1-y}{y}\right)^{0.9} \cdot \left(\frac{\rho_{\rm n}}{\rho_{\rm w}}\right)^{0.5} \cdot \left(\frac{\mu_{\rm w}}{\mu_{\rm n}}\right)^{0.1},\tag{B.3}$$

где у — массовая доля паровой фазы.

В.6 Число Нуссельта *Nu* вычисляют по формуле

$$Nu = \frac{\alpha \cdot d}{\lambda},\tag{B.4}$$

где α — коэффициент теплоотдачи;

d — характерный диаметр (размер), м;

FOCT P 72011—2025

В.7 Число Пекле $Pe_{_{\rm BH}}$ вычисляют по формуле

$$Pe_{\rm BH} = \frac{w_{\rm BH} \cdot d_{\rm BH}}{a_{\rm DD}},\tag{B.5}$$

где a_{np} — коэффициент температуропроводности продукта, вычисляемый по формуле

$$a_{\rm np} = \frac{\lambda_{\rm np}}{\rho_{\rm np} C_{\rm p.np}}.$$
 (B.6)

В.8 Число Прандтля Рг вычисляют по формуле

$$Pr = \frac{v}{a},\tag{B.7}$$

где а — коэффициент температуропроводности, вычисляемый по формуле

$$a = \frac{\lambda}{\rho \cdot C_{\rm p}}.\tag{B.8}$$

В.9 Число Рейнольдса *Re* вычисляют по формуле

$$Re = \frac{w \cdot d}{v}, \tag{B.9}$$

где w — скорость потока продукта, м/с;

d — характерный диаметр (размер), м;

и — кинематическая вязкость продукта, м²/с.

В.10 Число Фруда Fr вычисляют по формуле

$$Fr = \frac{\left(\rho_{\mathcal{K}} \cdot W_{O}\right)^{2}}{g \cdot \rho_{\mathcal{K}}^{2} \cdot d_{BH}},\tag{B.10}$$

где $ho_{
m ж}$ — плотность жидкости, кг/м 3 ; g — ускорение свободного падения, равное 9,81 м/с 2 ;

 $d_{\rm BH}$ — внутренний диаметр трубы, м;

 $w_{\rm o}$ — приведенная скорость жидкости (для двухфазного потока), м/с, вычисляемая по формуле

$$w_{o} = \frac{G_{np}}{\rho_{x} \cdot I_{rp} \cdot N_{rp}}, \tag{B.11}$$

где $G_{
m np}$ — массовый расход продукта, кг/с; $f_{
m Tp}$ — площадь сечения теплообменной трубы, м²; $N_{
m Tp}$ — количество труб в ходу теплообменной секции.

В.11 Число Эйлера Еи вычисляют по формуле

$$Eu = \frac{\Delta P}{\rho \cdot w^2},\tag{B.12}$$

где ΔP — гидравлическое сопротивление аппарата, Па;

 ρ — плотность потока продукта, кг/м³.

Приложение Г (рекомендуемое)

Расчет коэффициентов теплоотдачи и термического сопротивления для оребренной трубы

- Г.1 Расчет коэффициента теплоотдачи в теплообменных трубах $\alpha_{_{\rm BH}}$, Вт/м 2 -К, при однофазном течении потока продукта (жидкости или газа) при охлаждении вычисляют по заданным геометрическим размерам трубного пространства теплообменной секции и свойствам охлаждаемого продукта по следующему алгоритму.
 - Г.1.1 Проводят расчет критериев подобия согласно приложению В.
- Г.1.2 По соответствующим значениям критериев подобия вычисляют режим течения потока продукта в теплообменных трубах:

 - ламинарный вязкостный режим при $Re_{\rm BH}$ < 2300, $(Gr_{q.\rm BH}Pr_{\rm np}) \le 3 \cdot 10^5;$ ламинарный вязкостно-гравитационный режим при $Re_{\rm BH}$ < 2300, $(Gr_{q.\rm BH}Pr_{\rm np}) > 3 \cdot 10^5;$
 - переходный режим при 2300 > $Re_{\rm BH}$ > 10000;
 - турбулентный режим при Re_{вн} > 10000.
- Г.1.3 С учетом определенного режима течения потока продукта в теплообменных трубах вычисляют средний коэффициент теплоотдачи по длине теплообменных труб по формулам:
 - для ламинарного вязкостного режима при $L_{\rm TD} < L_{\rm H,T}$

$$\overline{\alpha}_{\rm BH} = 1.5 \cdot \left(\frac{\lambda_{\rm np}}{d_{\rm BH}}\right) \left[4.36 + 1.31 \left(\frac{1}{Pe_{\rm BH}} \cdot \frac{L_{\rm Tp}}{d_{\rm BH}}\right)^{-\frac{1}{3}} \cdot \exp\left(-13\sqrt{\frac{1}{Pe_{\rm BH}} \cdot \frac{L_{\rm Tp}}{d_{\rm BH}}}\right)\right] \left(\frac{\mu_{\rm CT.np}}{\mu_{\rm np}}\right)^{-0.14}; \tag{\Gamma.1}$$

- для ламинарного вязкостного режима при $L_{ extsf{TD}}\gg L_{ extsf{H.T}}$

$$\overline{\alpha}_{\rm BH} = 4,36 \cdot \left(\frac{\lambda_{\rm \Pi p}}{d_{\rm BH}}\right) \cdot \left(\frac{\mu_{\rm CT. \Pi p}}{\mu_{\rm \Pi p}}\right)^{-0,14};\tag{\Gamma.2}$$

- для ламинарного вязкостно-гравитационного режима

$$\begin{cases} \text{при } \left(\frac{1}{Pe_{\text{BH}}} \cdot \frac{L_{\text{тр}}}{d_{\text{BH}}} \right) \leq 1,7 \cdot 10^{-3}; \ B = 5 \cdot 10^{3} \left(\frac{1}{Pe_{\text{BH}}} \cdot \frac{L_{\text{тр}}}{d_{\text{BH}}} \right)^{-1} \\ \text{при } \left(\frac{1}{Pe_{\text{BH}}} \cdot \frac{L_{\text{тр}}}{d_{\text{BH}}} \right) > 1,7 \cdot 10^{-3}; \ B = 1,8 \cdot 10^{4} + 55 \left(\frac{1}{Pe_{\text{BH}}} \cdot \frac{L_{\text{тр}}}{d_{\text{BH}}} \right)^{-1,7}; \\ \overline{\alpha}_{\text{BH}} = \overline{\alpha}_{\text{BH},0} \cdot \left(1 + \left(\frac{Gr_{q,\text{BH}} \cdot Pr_{\text{BH}}}{B} \right)^{4} \right)^{0,045}, \end{cases}$$
(Г.3)

причем $\overline{\alpha}_{\rm BH,0}$ вычисляют по формуле (Г.1);

- для турбулентного режима

$$\overline{\alpha}_{\mathrm{BH}} = 0.021 \cdot \left(\frac{\lambda_{\mathrm{\Pi p}}}{d_{\mathrm{BH}}}\right) \cdot Re_{\mathrm{BH}}^{0.8} \cdot Pr_{\mathrm{BH}}^{0.43} \cdot \left(\frac{Pr_{\mathrm{BH}}}{Pr_{\mathrm{BH,CT}}}\right)^{0.25}; \tag{\Gamma.4}$$

- для переходного режима

$$\alpha_{\rm BH} = \omega \cdot \alpha_{\rm BH}^{\rm Typ6} + (1 - \omega) \cdot \alpha_{\rm BH}^{\rm namunap},\tag{\Gamma.5}$$

причем для переходного режима вычисляют коэффициент перемежаемости.

Г.2 Расчет коэффициента теплоотдачи в теплообменных трубах $\alpha_{_{\mathrm{BH}}}$ при двухфазном течении потока продукта (парожидкостная смесь) при конденсации вычисляют с учетом режимов течения потока, указанных на рисунке Г.1, по следующему алгоритму.

Примечание — При конденсации продукта в теплообменных трубах наблюдаются несколько режимов течения потока продукта: кольцевой, дисперсно-кольцевой, кольцевой с сильной стратификацией, снарядный, эмульсионный, пузырьковый, расслоенный, волновой. Кольцевой, дисперсно-кольцевой режимы течения обусловлены влиянием сил межфазного касательного напряжения, волновой и расслоенный — сил тяжести, а также различной паровой нагрузкой.

- Г.2.1 Проводят расчет критериев подобия согласно приложению В.
- Г.2.2 Паровая нагрузка в трубном пространстве характеризуется массовой приведенной скоростью $\rho_{**} W_{\mathbf{0}}$, $\kappa \Gamma/(M^2 \cdot c)$.

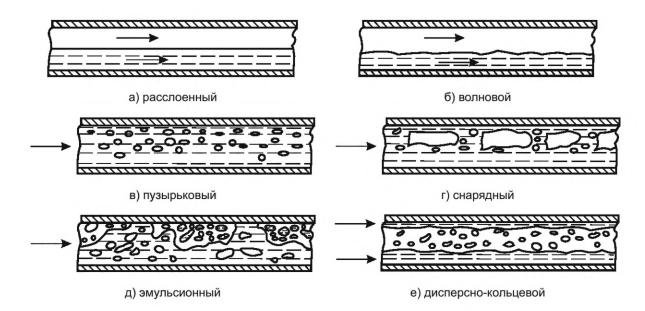


Рисунок Г.1 — Режимы течения потока в теплообменных трубах при конденсации

Г.2.3 В зависимости от значения массовой приведенной скорости и по соответствующим значениям критериев подобия вычисляют режим течения потока продукта в теплообменных трубах и коэффициент теплоотдачи в теплообменных трубах по формулам:

- при $\rho_{\rm w} w_{\rm o} < 500$ кг/(м²·c) (т. е. волновой, расслоенный режим течения)

$$\begin{cases} \text{если } Re_0 \leq 1250 \ \textit{Fr}_{\text{мод}} = \frac{0,025 \cdot Re_0^{1,59}}{Ga^{0.5}} \left(\frac{1 + 1,09 \cdot X_{tt}^{0.039}}{X_{tt}} \right)^{1.5} \\ \text{если } Re_0 > 1250 \ \textit{Fr}_{\text{мод}} = \frac{1,26 \cdot Re_0^{1,04}}{Ga^{0.5}} \left(\frac{1 + 1,09 \cdot X_{tt}^{0.039}}{X_{tt}} \right)^{1.5} \end{cases}$$
 (Г.6)

- при $\rho_{\rm W} w_{\rm o} > 500$ кг/(м $^2 \cdot {\rm c}$) (т. е. кольцевой, дисперсно-кольцевой режим течения)

$$\overline{\alpha_{\text{BH}}} = \frac{1}{2}\alpha_0 \left[\left(\frac{\rho_{\text{ж}}}{\rho_{\text{CM}}} \right)_{\text{BX}}^{1/2} + \left(\frac{\rho_{\text{ж}}}{\rho_{\text{CM}}} \right)_{\text{BMX}}^{1/2} \right], \quad \frac{\rho_{\text{ж}}}{\rho_{\text{CM}}} = 1 + \frac{\rho_{\text{ж}} - \rho_{\text{\Pi}}}{\rho_{\text{\Pi}}} x, \tag{\Gamma.7}$$

где $\rho_{\text{ж}}, \rho_{\text{п}}, \rho_{\text{см}}$ — плотности жидкости (конденсата), пара, парожидкостной смеси соответственно;

 α_0 — коэффициент теплоотдачи для однофазного турбулентного потока жидкости в данной трубе, причем расход этой жидкости равен G_n .

Г.2.4 Коэффициент теплоотдачи для однофазного турбулентного потока жидкости α_0 вычисляют по формуле

$$\alpha_0 = \left(\frac{\lambda_{x}}{d_{RH}}\right) 0,021 \cdot Re_0^{0.8} \cdot Pr_{x}^{0.43} \cdot \left(\frac{Pr_{x}}{Pr_{x}_{CT}}\right)^{0.25}.$$
 (F.8)

Г.2.5 В зависимости от значения массовой приведенной скорости и по соответствующим значениям числа Фруда вычисляют режим течения потока продукта в теплообменных трубах и коэффициент теплоотдачи в теплообменных трубах по формулам:

- при $\rho_{\rm ж}w_{\rm o}$ < 500 кг/(м² · c) и $Fr_{\rm MOQ}$ > 20 также, как и для кольцевого режима; - при $\rho_{\rm ж}w_{\rm o}$ < 500 кг/(м² · c) и $Fr_{\rm MOQ}$ < 20

$$\overline{\alpha_{\rm BH}} = \left(\frac{\lambda_{\rm m}}{d_{\rm BH}}\right) \left[\left(\frac{0.23}{1+1.11X_{tt}^{0.58}}\right) \left(\frac{\rho_{\rm m}w_{\rm o}d_{\rm BH}}{\mu_{\rm m}}\right)^{0.12} \left(\frac{r_{\rm nap}}{C_{\rm p.m}\left(t_{\rm KOH, L}-t_{\rm ct}\right)}\right)^{0.25} Ga^{0.25}Pr_{\rm m}^{0.25} + A \cdot Nu_{fc}\right]. \tag{\Gamma.9}$$

Г.2.6 Параметр А, зависящий от угла, который занимает жидкость в сечении теплообменной трубы, вычисляют по формуле

$$A = \frac{\arccos\left(2 \cdot v_{\Pi} - 1\right)}{\pi},$$

$$Nu_{fc} = 0,0195 \cdot Re_0^{0.8} \cdot Pr_{\times}^{0.4} \cdot \sqrt{1,376 + \frac{C_1}{X_{tt}^{C_2}}};$$
 (Г.10)
$$\begin{cases} \text{если } Fr > 0,7; \ C_1 = 7,242; \ C_2 = 1,655 \\ \text{если } Fr \leq 0,7; \ C_1 = 4,172 + 5,48 \cdot Fr - 1,564 \cdot Fr^2; \ C_2 = 1,773 - 0,169 \cdot Fr. \end{cases}$$

Г.3 Расчет коэффициента теплоотдачи в межтрубном пространстве $\alpha_{\rm н. np}$, Вт/м². К, вычисляют с учетом аэродинамического расчета аппарата по следующему алгоритму.

Г.3.1 Температуру воздуха на выходе из аппарата $t_{\text{вых.возд}}$, °С, вычисляют по формуле

$$t_{\text{вых.возд}} = t_{\text{вх.возд}} + \frac{Q}{V_{\text{возд}} \cdot \rho_{\text{возд}} \cdot \overline{C}_{\text{р.возд}}}.$$
 (Г.11)

Г.3.2 Среднюю температуру воздуха $t_{\text{ср.возд}}$, °С, вычисляют по формуле

$$t_{\text{Cp.BO3A}} = t_{\text{BX.BO3A}} + \left(\frac{Q}{2 \cdot V_{\text{BO3A}} \cdot \rho_{\text{BO3A}} \cdot \overline{C}_{\text{p.BO3A}}}\right). \tag{\Gamma.12}$$

Г.3.3 Скорость воздуха в узком сечении трубного пучка $w_{_{\text{VЗК.ВОЗД}}}$, м/с, по значению средней температуры воздуха $t_{\rm cp.возд}$ вычисляют по формуле

$$W_{\text{УЗК.ВОЗД}} = \frac{V_{\text{ВОЗД}}}{f_{\text{CR}}},\tag{\Gamma.13}$$

где $f_{\rm cB}$ — площадь проходного сечения для потока воздуха в узком сечении трубного пучка, м².

Г.3.4 Число Рейнольдса для потока воздуха в узком сечении трубного пучка $Re_{
m возд}$ вычисляют по формуле

$$Re_{\text{возд}} = \frac{w_{\text{узк.возд}} \cdot d_{\text{нар}}}{v_{\text{возд}}}.$$
 (Г.14)

 $\overline{\alpha}_{
m Hap}$ для аппарата с теплообменными трубами с навитым, накатным или приварным типом оребрения вычисляют по формуле

$$\overline{\alpha}_{\text{Hap}} = 1.13 \cdot \frac{\lambda_{\text{BO3A}}}{d_{\text{Hap}}} \cdot C_{\text{S}} \cdot C_{\text{Z}} \cdot Re_{\text{BO3A}}^{n} \cdot Pr_{\text{BO3A}}^{0.33}. \tag{\Gamma.15}$$

 Γ .3.6 Поправку на расположение теплообменных труб $C_{\rm S}$ в трубном пучке вычисляют по формуле

$$C_s = (1,36-Y) \cdot \left(\frac{1,1}{\varphi+8} - 0,014\right), Y = th(X), X = \frac{s_1}{s_2} - \frac{1,26}{\varphi} - 2.$$
 (Γ.16)

Г.3.7 Показатель степени n при $Re_{
m BO3D}$ вычисляют по формуле

$$n = 0.7 + 0.08 \cdot Y + 0.005 \cdot \varphi.$$
 (Γ.17)

Г.3.8 Поправку на рядность труб C_z вычисляют по формуле

$$C_z = 3.15 \cdot n_{\text{pgg}}^{0.05} - 2.5.$$
 (Γ.18)

Г.3.9 Приведенный коэффициент теплоотдачи воздушного потока $\alpha_{\rm H, np}$ вычисляют по формуле

$$\alpha_{\mathsf{H.np}} = \left(\frac{F_{\mathsf{p}}}{F} \cdot E_{\mathsf{p}} \cdot \mu \cdot \epsilon + \frac{F_{\mathsf{pp}}}{F}\right) \cdot \overline{\alpha}_{\mathsf{Hap}},\tag{\Gamma.19}$$

где $F_{\rm p}$ — площадь поверхности оребрения теплообменных труб, м 2 ; $F_{\rm Tp}$ — площадь поверхности гладких труб (поверхности, не занятой ребрами), м 2 ;

 \widetilde{F} — полная площадь поверхности аппарата, м 2 .

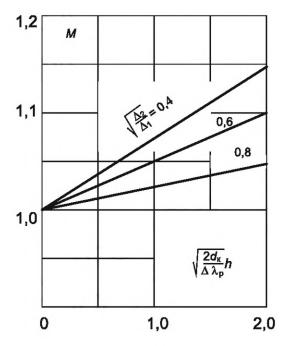
 Γ .3.10 Коэффициент эффективности ребра $E_{\rm D}$ теплообменной трубы вычисляют по формуле

$$E_{\rm p} = \frac{th(m \cdot h_{\rm pe6p})}{m \cdot h_{\rm pe6p}},\tag{\Gamma.20}$$

FOCT P 72011—2025

где $h_{\text{ребр}}$ — высота ребра теплообменной трубы, м;

m — вспомогательный комплексный параметр, вычисляемый по формуле


$$m = \sqrt{\frac{\overline{\alpha}_{\text{Hap}} \cdot \Pi_{\text{pe6p}}}{\lambda_{\text{pe6p}} \cdot f_{\text{pe6p}}}},$$
 (Γ.21)

 $\lambda_{
m pefp}$ — коэффициент теплопроводности материала ребра теплообменной трубы, Вт/м·К;

 $\Pi_{\text{ребр}}^{\cdot}$ — периметр ребра теплообменной трубы, м;

 $\dot{f}_{
m pefp}$ — площадь сечения ребра теплообменной трубы, м 2 .

Г.З.11 Коэффициент µ, учитывающий увеличение толщины ребра к основанию, вычисляют по графику, представленному на рисунке Г.2.

 $\frac{\Delta_2}{\Delta_1}$ — отношение толщин ребра в сечении на конце и в основании

Рисунок Г.2 — График определения коэффициента µ

Г.3.12 Коэффициент эффективности ребра теплообменной трубы ∈ вычисляют по формуле

$$\in = 1 - 0.058 \cdot m \cdot h_{\text{pe6p}}. \tag{\Gamma.22}$$

Г.4 Коэффициенты термического сопротивления стенки $R_{\rm Tp}$, м²·°C/Вт, и оребрения $R_{\rm op}$, м²·°C/Вт, теплообменной трубы соответственно вычисляют по формулам:

$$R_{\rm Tp} = \frac{\phi \cdot d_{\rm K}}{2 \cdot \lambda_{\rm CT}} \cdot \ln \frac{d_{\rm Hap}}{d_{\rm BH}},\tag{\Gamma.23}$$

$$R_{\rm op} = \frac{\phi \cdot d_{\rm K}}{2 \cdot \lambda_{\rm pe6p}} \cdot \ln \frac{d_{\rm K}}{d_{\rm Hap}},\tag{\Gamma.24}$$

где

ф — коэффициент оребрения теплообменной трубы;

 d_{κ} — диаметр теплообменной трубы в основании ребра, м;

 λ_{ct} — коэффициент теплопроводности материала стенки трубы, Вт/м · К;

 $\lambda_{\text{peбp}}$ — коэффициент теплопроводности материала оребрения, Вт/м · К;

 $d_{\sf hap}, d_{\sf BH}$ — наружный, внутренний диаметр теплообменной трубы, м.

Г.5 Коэффициент термического сопротивления контакта $R_{\rm конт}$, м², °С/Вт, оребренных теплообменных труб выбирают в зависимости от материала теплообменных труб:

- для труб из нелегированной (углеродистой) стали 1,83 · 10⁻⁴;
 для труб из легированной стали марки 15X5M 2,5 · 10⁻⁴;
 для труб из нержавеющей стали от 3,2 · 10⁻⁴ до 3,7 · 10⁻⁴;
 для труб из латуни 0,7 · 10⁻⁴;

- для труб с навитым оребрением 0,004185 · $q_{\rm K}^{-1,115}$; для труб с накатным или приварным оребрением 0.

Приложение Д (рекомендуемое)

СFD-тепловой расчет аппарата

Д.1 CFD-тепловой расчет (англ. «computational fluid dynamics») аппарата представляет собой численное моделирование методом конечных элементов физических процессов переноса в аппарате, для которого в пределах каждого N-го элемента решается система дифференциальных уравнений законов сохранения массы, энергии, импульса, момента импульса.

Д.2 Для проведения CFD-теплового расчета устанавливают следующие граничные условия:

- первого рода заданные значения температуры стенки поверхности теплообмена;
- второго рода заданные значения плотности теплового потока на поверхности теплообмена;
- третьего рода заданные значения температуры потока продукта, омывающего поверхность теплообмена, и коэффициента теплоотдачи к данной поверхности.

Д.3 Для проведения СFD-теплового расчета принимают следующие допущения:

- скорость потока на поверхности теплообмена равна нулю;
- симметричное распределение потоков (по возможности);
- SST-модель турбулентности (англ. «shear stress transport model») при турбулентном режиме течения при моделировании локальных характеристик теплоотдачи;
 - тепловой поток от излучения не учитывается.
- Д.4 Результатом CFD-теплового расчета является поле температур и скоростей воздуха и (или) продукта в границах рассматриваемого пространства аппарата.
- Д.5 Для качественной оценки процессов теплообмена могут использовать графики и диаграммы для полей температуры и скорости в заданном сечении расчетной области, векторные диаграммы скорости, для оценки пространственных направлений течений воздуха или продукта могут быть рассмотрены графики 3D-линий тока.
- Д.6 Для количественной оценки могут использовать средние интегральные (по поверхности теплообмена) значения плотности теплового потока, коэффициентов теплоотдачи, температуры стенки, при этом полученные значения необходимо сопоставлять с результатами эмпирических вычислений.

УДК 697.1:006.354 OKC 71.120.01 75.180.20

75.200

Ключевые слова: аппарат воздушного охлаждения, тепловой расчет, аэродинамический расчет, гидравлический расчет, метод конечных элементов

Редактор *Е.Ю. Митрофанова*Технический редактор *В.Н. Прусакова*Корректор *О.В. Лазарева*Компьютерная верстка *Е.О. Асташина*

Сдано в набор 07.04.2025. Подписано в печать 10.04.2025. Формат $60\times84\%$. Гарнитура Ариал. Усл. печ. л. 4,18. Уч.-изд. л. 3,35.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Создано в единичном исполнении в ФГБУ «Институт стандартизации» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru