СОЕДИНЕНИЯ ФЛАНЦЕВЫЕ СУДОВЫХ ВАЛОПРОВОДОВ

КОНСТРУКЦИЯ И РАЗМЕРЫ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СОЕДИНЕНИЯ ФЛАНЦЕВЫЕ СУДОВЫХ ВАЛОПРОВОДОВ

ΓΟCT 19354-74

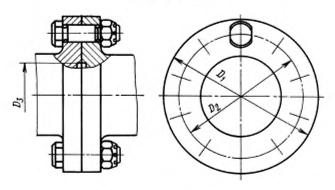
Конструкция и размеры

Shaftline flange joints. Construction and dimensions

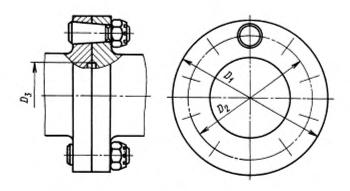
МКС 47.020.20 ЕСКД 36 4410 ОКП 64 4620

Дата введения 01.01.75

Настоящий стандарт распространяется на фланцевые соединения валов, входящих в состав валопроводов судов, кораблей и плавсредств и устанавливает конструкцию и основные размеры фланцевых соединений.

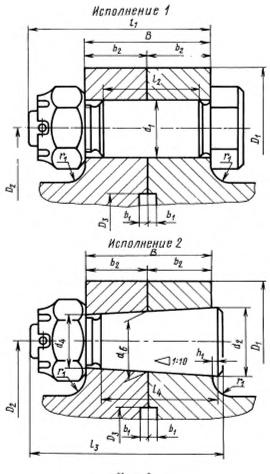

Стандарт полностью соответствует СТ СЭВ 2169-80.

(Измененная редакция, Изм. № 3, 4).


1. КОНСТРУКЦИЯ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ

- 1.1. В зависимости от типа соединительных болтов фланцевые соединения выполняют двух исполнений:
 - I с цилиндрическими болтами,
 - 2 с коническими болтами.
- 1.2. Конструкция фланцевых соединений в судовых валопроводах должна соответствовать приведенной на черт. 1.

Исполнение 1


Исполнение 2

Черт. 1

2. ОСНОВНЫЕ РАЗМЕРЫ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ

 Основные размеры фланцевых соединений должны устанавливаться в соответствии с черт. 1 и 2 по табл. 1 и 2.

Черт. 2

Фланцевые соединения валов

Таблица 1

								Размо	еры,	мм							
CK			Флані	ы				7 7 7			1	ыткой					
meg						0	1	цилиндр	ическа	ie			кон	ически			
Дияметр шейки вала <i>D</i>	$D_{\mathfrak{t}}$	D ₂	D_3	Ď,	b ₂ , не менее	количество отверсти в	d_1	I,	1,	масса, кг	d_2	d ₆	d_4	4,	14	ħį	масса, кг
- H						KO		,	е мен	re					не ме	нее	
90	200	150	70				5			Tea.	Ves			*==.\!			A
95 100	210	160	78		30	6	25	90	45	0,5	32	28,3	25,3	100	56	7	0,45
105	240	180	86	4	35	O	32	105	55	1,0	38	33,8	30,3	115	67]′	0,75
115 120	260	200	94	1	2,2		22		00	.,0	20	55,0	20,3		<i>"</i>		0,75

Размеры, мм

-	I -		Фланц	ы				Разме	. p .m., .		ı	болты	-				
efficie								цилиндр	ически	e			кон	ические	,		
Диаметр шейки вала <i>D</i>	D ₁	D ₂	D ₃	b	b ₂ , не менее	моличество отганителя	d ₁	l _j	12	масса, кт	d ₂	d ₆	d_{A}	<i>l</i> ₃	I ₄	h ₁	масса, кг
E E						KO3 OTB	-1	,	е жене	e	-2	- 6			не ме	нее	
125	260	200	102		35	6	32	105	55	1.0	38	33,8	30,3	115	67	Г	0,75
130	200	200	102		33	0	32	103	33	1,0	20	33,0	20,2	113	07		0,75
135	300	220	110	4	40		38	125	60		45	40.2	27.3	126	75		1.20
150	320	240	120	1	40		38	123	60	1,6	45	40,3	36,3	135	/3	7	1,20
170	340	260	120														
180	360	280	130					1/21	134								
190 200	380	300		6	50	8	44	150	80	2,6	55	49,3	44,3	160	95		2,2
210	410	320	140		55	100	50	170	90	4,0	60	53.8	48,3	180	105	1	3,0
220	430	340	160		22		20	170	90	4,0	00	33.0	40,5	100	105		3,0
230	480	360						1,44									
240	500	380	180		65	701	58	200	100	6,0	70	62,4	55,9	215	125		4,8
260	540	400															
270 280	560	420	200	8													
290	580	440	220	1	75		66	225	120	8,5	80	71,4	63,9	240	145		7,0
300	600	460	220			110						13411	987	5 1			
320	630	500	240													11	
340	660	520	240		80		75	245	130	12,0	90	80,9	72,9	260	155		10,0
360	680	540	270		400	416		- 1.0	1.00	,.	.,,	44,7	1247	200	1.7.7		.0,0
380	730	560		10								1-1	1.1	1, 1			
400	790	(580)	320		90	10	85	275	150	17,0	100	89.9	80,9	290	175		13,0
120	700	620	320											KV.			
420	790 840	620 660															
460	880	700	350		100		95	305	170	24,0	115	103,9	93,9	320	195		20,0
480	940	740								27.47				- 44			
510	980	780	380		115		105	350	200	34,0	125	112,4	100,9	365	225		26,0
540	1030	820	410	1					1966			loc.					
570	1060	840	410	15	125		115	375	220	43,0	140	126,0	113,5	395	250		35,0
600	1100	880	450														
630	1160	920			1.40		120	420	250	00	100	120 5	120.0	440	200		40.0
660	1220	960	500		140		130	420	250	63,0	155	139,3	125,5	440	280		49,0
720	1250	1000	200			12		-								15	
720	1320	1060		-						00.0				45.4			
780	1440	1150	560		155		150	465	280	90,0	175	158,0	142,4	485	300		70,0
820	1460	1180		20													
860	1560	1240	630	~	100		170	525	220	120.0	200	100 5	163.5	566	250	1	105.0
900	1610	1300	700	1	180	er al l	170	535	330	130,0	200		162,5	555	350		105,0
940	1720	1360	700		200		190	600	350	170,0	225	203,5	183,5	620	390		141,0

Размеры, мм

5			Фланц	ы							I	мткой					
meRo			6			08	1	илиндр	ически	e			жон	ические	2		
Днаметр шейки вала <i>D</i>	D	D_2	D ₁	<i>b</i> ₁	<i>b</i> ₂ , не менее	оличеств тверстий	d_1	l _t	12	масса, кг	d_2	d_6	d_4	l ₃	14	h	масса, кг
4.0						KO OT		,	те мене	e					не ме	нее	
980	1780	1420	770		200		190	600	350	170,0	225	203,5	183,5	620	390		141,0
1020	1870	1480	170	20		12	190	000	330	170,0	223	203,3	103,3	020	250	15	141,0
1060	1950	1540	830	1	230		210	680	410	240,0	250	225,5	202.5	700	450	1	200,0
1100	2010	1600	0.50	ı	230		210	uou	410	240,0	2,50	243,3	202.3	700	730		200,0

Примечания:

- 1. Для диаметров вала D ≤ 130 мм допускается применять диаметр окружности расположения осей отверстий D_2 , кратный 10.
- Допускается опорные поверхности головок цилиндрических болгов протачивать до диаметра, равного 0,98 S (S — размер под ключ по табл. 3).
- 3. Для валов судов, поднадзорных Регистру СССР, размер b_2 следует принимать не менее $0.2~d_{\rm np}~(d_{\rm np}$ диаметр промежуточного вала).
 - 4. Наружные диаметры у основания фланцев должны быть кратными 2 или 5.
- Общая толщина соединяемых фланцев В в миллиметрах, включая возможные прокладки между ними, должна соответствовать ряду Ra 20 по ГОСТ 6636.
 - 6. При изменении общей толщины фланцев B в миллиметрах дваметры d_2 и d_6 определяют по формулам:

 - $d_2 = d_4 + 0.1~(B + h_1);$ $d_6 = d_4 + 0.1b_c~(d_4, B, h_1)$ указаны на черт. 1 и в табл. 1, 2; b_c толщина фланца со стороны гайки). Размер d_2 округляют до ближайшего значения натурального ряда чисел за счет изменения размера h_1 .

 - 7. Размер, указанный в скобках, применять не рекомендуется.

Таблица 2

Фланцевые соединения полумуфт

Размеры, мм

								Разм (сры,	nana							
ĕ			Фданц	ы							1	Болты					
une Ro						0 2	1	цилиндр	ическа	ie			кон	ически	c		
Днаметр шейки вала <i>D</i>	D_{i}	D ₂	D _y	bi	<i>b</i> ₂ , не менее	опредения с	d_1	1,	12	масса, кг	d_2	d_{δ}	d_4	l ₃	14	h_1	масса, кг
C1 48						KO,		1	те мен	re					не ме	нее	
30	135	110	46 54		14		13	45	16	0,07	16	14,3	12,9	50	25		0,055
35	155	120	62 70	1	16		15	50	20	0,11	18	16,1	14,5	55	28	1	0,080
40 45 50	170	130	70 78	4	18	6	17	60	25	0,16	22	19,9	18,1	65	32	3	0,130
55	180	140	86 94		20		19	65	30	0,21	25	22,7	20,7	70	36	1	0,170
65	190	150	86 102 110														
70 75			110	1	25		21	75	40	0,30	28	25,2	22,7	80	45		0,270
80	200	160	120									1					

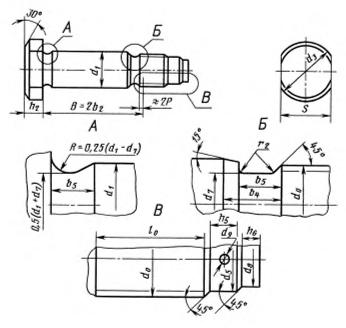
Размеры, мм

ĕ			Фланц	ы							E	олты					
ii di						۰ ۲	ī	пилинд	нчески	re.			кон	ически			
Диаметр шейки кала <i>D</i>	$D_{_3}$	<i>D</i> ₂	D ₃	ь	b ₂ , не менее	количество отверстий г	ď	I,	I ₂	масса, кт	d ₂	<i>d</i> ₆	d_4	<i>I</i> ₃	14	h	масса, кг
	20.					* 0			те мене	e					не ме	нее	
85 90	220	180	130		25		21	75	40	0,30	28	25,2	22,7	80	45	3	0,270
95	260	200	140 150	6		6											
100			150		30		25	90	45	0,50	32	28,3	25,3	100	56		0,450
105	280	220	160					-		3.44			,-				.,
115	300	240	180														
125 130	320	260	200	8													
135	340	280	220		35	8	32	105	55	1,0	38	33,8	30,3	115	67	7	0,750
150	360	300				٥											
160	380	320	240	1								1					
170	410	340	240									1	1.57			1	
180 190	430	360	270		40		38	125	60	1,6	45	40,3	36,3	135	75		1,20
200	460	380	300			1 1							TI			1	
210	480	400	200	10	50		44	150	80	2,6	55	49,3	44.3	160	95		2,20
220	500	420	320													1	
230	540	440												- 7			
240	560	460	350									124					
250	580	480		-	55		50	170	90	4,0	60	53,8	48,3	180	105		3,30
260	600	500	380														
270	630	520 540	-	1												1	
290	680	560	410	15	-				-	-				-	-	\vdash	
300 320	730	620	450		65	10	58	200	100	6,0	70	62,4	55,9	215	125		4,80
340	790	660	720	1							-	200		12.12		1	
360	840	700	500		75		66	225	120	8,5	80	71,4	69,9	240	145		7,0
380	880	740	2/0													11	
400	920	780	560		80		75	245	130	12,0	90	80,9	72,9	260	155		10,00
420	980	840	630	1	957		13	243	130	1,2,0	70	50,7	12,7	200	1,55		10,00
440	1030	880	0.30	20													
460	1060	920	700	1								127			623	1	
480	1100	960	700	1	90	12	85	275	150	17,0	100	89,9	80,9	290	175		13,0
510	1160	1000	770	1													
540	1220	1040	770		100		95	305	170	24,0	115	103,9	93,9	320	195		20,0

Размеры, мм

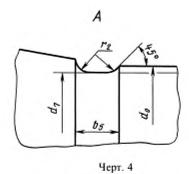
Ħ			Фланц	м							1	Болты					
p mella		T T				2	1	(илиндр	ическа	ie			кон	ически	ė		ΤĒ
Диаметр шейки вала <i>D</i>	Di	D ₂	D_3	<i>b</i> 1	<i>b</i> ₂ , не менее	количество отверстий г	d _i	l _r	1,	масса, кг	d ₂	d ₆	d_4	I ₃	14	h_1	масса, кг
						×o		,	е мен	re					не ме	нее	
570	1280	1080	830	20									475.		12.5		0.57
600	1320	1120	020		115		105	350	200	34,0	125	112,4	100,9	365	225	11	26,0
630	1370	1180	880														
660	1460	1240	000		125		115	375	220	43.0	140	126.0	113,5	395	250		35,0
690	1520	1300	970	1	120	12		2,7		45,0	140	120,0	143,2	3/3	2.50		52,0
720	1610	1360	210													1	
750	1670	1420	1000	25	140		130	420	250	63,0	155	139,5	125,5	440	280		49,0
7.50	10.0	1720	1050													1	
780	1720	1480	1050													15	
820	1820	1540	1150	1						100						1	
860	1870	1600	11.50														
900	1950	1670	1260	1		14			the.	2.7					6		
940	2010	1740	1200		155	14	150	465	280	90,0	175	158,0	142,5	485	300		70,0
980	2090	1810	1370		1	16											
1020	2160	1880	12/0	30		10											
1060	2230	1950	CION	1		10											
1100	2300	2020	1490			18											

Примечания:


- Допускается опорные поверхности головок цилиндрических болтов протачивать до диаметра, равного 0,98 S (S — размер под ключ по табл. 3).
- Общая толщина соединяемых фланцев В в миллиметрах, включая возможные прокладки между ними, должна соответствовать ряду Ra 20 по ГОСТ 6636.
 - 3. При изменении общей толщины фланцев B в миллиметрах диаметры d_2 и d_6 определяют по формулам: $d_2 = d_4 + 0.1$ ($B + h_1$);
 - $d_6 = d_4 + 0.1b_t$ (d_4 , B, h_1 указаны на черт. 1 и в табл. 1, 2; b_t толщина фланца со стороны гайки).
 - Размер d₂ округляют до ближайшего значения натурального ряда чисел за счет изменения размера h₁.
- Для валов судов, поднадзорных Регистру СССР, размер b₂ следует принимать не менее 0,2 d_{пр} (d_{пр} диаметр промежуточного вала).

(Измененная редакция, Изм. № 1, 2, 3, 4).

- 2.2. Минимальный радиус галтели фланца $r_1 = 0.08D$.
- 2.3. В технически обоснованных случаях (например при соединении фланца вала с фланцем полумуфты допускаются любые другие сочетания D, D_2 —z, D_3 — b_1 и соединительных болтов, с последующим выполнением расчета на прочность, с учетом методик приложений 1, 2.


(Измененная редакция, Изм. № 3, 4).

- 2.4. (Исключен, Изм. № 3).
- Детальные размеры соединительных болтов должны устанавливаться в соответствии с черт. 3 и 4 по табл. 3.

Черт. 3

MM

							M	194							
,		4	,		S	<i>l</i> ₀ , не		Прот	очки			Концев	ая част	ь болта	
ď	IIIar ₽	d _T	d ₂	h ₂	2	менее	d_{γ}	<i>b</i> ₄	b5	r ₂	d ₅	H _S	d_8	h ₆	d_{ψ}
8	70.1	9	15	5,5	13	6,5	6.0				5,5	3	3	2,0	2,0
10	1,25	11	19	7	17	8	8,0	4,4	3,2	0,6	7,0	4	4	2,5	2,5
12		13	21	8	19	10	10,0		1		8,5	5	5	3,0	3,2
14		15	25	9	22	11	11,7				10,0	,	6	3,5	3,2
16	1.5	17	27	10	24	13	13,7	5,2	3.8	0.75	12,0		8	4,0	
18		19	30	12	27	15	15,7				13,0	6	10	4,5	4,0
20		21	34	13	30	16	17,7				15,0		10	5,0	
24	2,0	25	40	15	35	19	21,0	7,0	5,0	1,0	18,0	8	12	6,0	5,0
30	2,0	32	51	19	46	24	27,0	7,0	3,0	1,0	23,0	9	16	7,5	6,3
36		38	6.1	23	55	29	31,6	1-25			28,0	,	20	9,0	0,3
42	3,0	44	72	26	65	34	37,6	10,5	7,5	1,5	32,0		23	10,5	8,0
48		50	84	30	75	38	43,6				38,0	12	28	12,0	8,0
56		58	95	35	85	45	50,3				45,0		34	14,0	
64	4.0	66	105	40	95	51	58,3	14,0	10.0	2,0	52,0		40	16,0	10.0
72		75	117	45	105	58	66,3				60,0	15	48	18,0	
80	1 1	85	128	50	115	64	74,3				68,0		56	20,0	1 -
90		95	145	55	130	72	81,7				78,0	100	66	22,5	
100	1 1	105	162	62	145	80	91.7				88,0	20	76	25,0	13,0
110		115	173	67	155	88	101,7		5,54		98,0		86	27,5	
125	6,0	130	202	75	180	100	116,7	21,0	15,0	3,0	113,0		101	31,3	
140		150	224	85	200	112	131,7				128,0	24	116	35,0	16,0
160	1 1	170	252	100	225	128	151,7	1			148,0		136		
180	1 1	190	270	115	250	150	171,7		-		168,0	26	150	40,0	20.0
200	1	210	302	130	280	166	191,7	1	1		188,0	30	165		20,0
						1		1		1	1				I

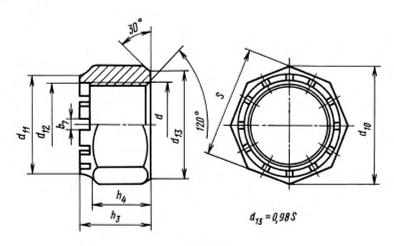
Пример условного обозначения конического болта с резьбой M90 при категории прочности материала КП-28 и общей толщине спариваемых фланцев 200 мм:

Болт М90-200-28К ГОСТ 19354-74

То же, для цилиндрического болта:

Болт М90-200-28Ц ГОСТ 19354-74

(Измененная редакция, Изм. № 2).


- 2.6. Материал соединительных болтов сталь с пределом прочности на растяжение не ниже той же характеристики материала вала. Группа испытаний IV по ГОСТ 8479.
- Соединительные болты центруют с двух сторон. Центровые отверстия форма A по ГОСТ 14034.

(Измененная редакция, Изм. № 1).

 2.8. Гайки — по ГОСТ 5918 и ГОСТ 10606. Для гаек по ГОСТ 5918 допускается проточка резьбы по высоте коронки.

Допускается применение гаек по ГОСТ 5915 и ГОСТ 10605 со стопорением их способом, одобренным Регистром СССР или заказчиком.

 Размеры гаек для болтов с диаметром резьбы d свыше 160 мм должны устанавливаться в соответствии с черт. 5 по табл. 4.

Черт. 5

Таблица 4

P	a 3 y	a e p	ы,	MM
_	_	_		

ď	p	-5	h ₃	h ₄	d ₁₀	d ₁₁	d ₁₂	<i>b</i> ₇	Число прорезей	Размеры шплинта по ГОСТ 397	Macca, kr
180	6	250	170	144	270	235	190	22	12	20 × 250	33
200	0	280	190	160	302	255	210	22	12	20 × 280	47

Пример условного обозначения гайки с резьбой M180 при категории прочности материала КП-28:

Гайка M180-28 ГОСТ 19354-74

- 2.10. Предел прочности на растяжение материала гайки должен быть менее предела прочности на растяжение материала болта на величину, регламентируемую технической документацией, утвержденной в установленном порядке.
 - 2.9, 2.10. (Измененная редакция, Изм. № 4).
 - Резьба болтов и гаек метрическая, допуски по ГОСТ 16093.

(Измененная редакция, Изм. № 2).

- Предельные отклонения размеров и сборка фланцевых соединений по технической документации, утвержденной в установленном порядке.
 - 2.13. Диаметр отверстия d_9 под шплинт следует сверлить при монтаже.

(Введен дополнительно, Изм. № 2).

Соединительные болты должны быть изготовлены по чертежам, представляемым проектантом валопровода.

(Измененная редакция, Изм. № 2, 4).

Таблица 1

ОСНОВНЫЕ ПАРАМЕТРИЧЕСКИЕ ПРОЧНОСТНЫЕ ХАРАКТЕРИСТИКИ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ

Исходные величины:

 $P_{_{3}}$ — упор гребного винта, кH; $P_{_{11}}$ — расчетная перерезывающая сила, кH; $M_{_{22}}$ — расчетный изгибающий момент, кH-м;

 M_{κ} — кругящий момент от главного двигателя, кН-м;

— допускаемое напряжение от монтажных и расцентровочных нагрузок, МПа;

о
 т

 предел текучести материала болта, МПа;

т — степень осевого сверления вала.

(Измененная редакция, Изм. № 4).

1. Изгибающий момент во фланцевом соединении M_{ϕ} , кН-м, вычисляют по формуле

$$M_{\Phi} = 0.1\sigma_{\rho} (0.01D)^3 (1 - m^4) + M_{\rho}.$$

Осевую растягивающую силу во фланцевом соединении P₀, кH, вычисляют по формуле

$$P_o = A_o P_v + A_u M_{do},$$

где $A_p = \frac{1}{7}$ и $A_{st} = \frac{4}{7D_s}$ 1/м — коэффициенты, числовые значения которых определяют по табл. 1 и 2.

3. Касательную срезающую силу во фланцевом соединении Р, кН, вычисляют по формуле

$$P_{\kappa} = A_{\rm p} \cdot P_{\rm D} + 0.5 A_{\rm M} \cdot M_{\kappa}.$$

 Нижний предел усилия затяжки болтов, обеспечивающий нераскрытие стыка фланцев, Р_и, кН, равен: $P_{\rm H} = P_{\rm o}$ — для фланцев исполнения I,

$$P_{\rm w} = \frac{P_{\rm o}}{A_{\rm e}}$$
 — для фланцев исполнения 2,

где $A_{\mathbf{k}} = 1 - \frac{(b_2 - b_3 - 2p)[d_4 + 0.05(b_2 + b_5 + 2p)]}{(2b_2 - b_4 - 2p)[d_1 + 0.05(2b_3 + b_4 + 2p)]}$ — коэффициент, числовое значение которого определяют по табл. 1 и 2.

(Измененная редакция, Изм. № 1, 4).

 Верхний предел усилия затяжки болгов, обеспечивающий отсутствие остаточных деформаций в болтах при условии $P_n \ge 2P_n$, P_n , кH, вычисляют по формуле

$$P_{\rm o} = 0.75(\sqrt{(\sigma_{\rm r} f_{\rm o})^2 - 3P_{\rm K}^2} - P_{\rm o}),$$

где $f_{\rm n}=0.0785 d^{\,2}_{\,7}~{\rm cm}^2$ — одна десятая площади поперечного сечения болта (см. табл. 1 и 2).

Коэффициенты для фланцевых соединений валов

D, мм	$A_{\rm p}$	A _{м*} 1/м	$A_{\mathbf{x}}$	f_n , cm ²	R_{t^*} дм
90		4,45			0,072
95 100		4,17	0,595	0,347	0,077
105 110	$\frac{1}{6}$	3,70			0,087
115 120		3,34	0,580	0,573	0,095
125 130		3,34			0,096

Продолжение табл. 1

D, MM	$A_{\rm p}$	А _м , 1/м	$A_{\rm K}$	f_a , cm^2	R _τ , дм
135 140		2,27			0,108
150		2,08	0,608	0,777	0,114
160		2,06			0,116
170		1,92			0,123
180		1,78	0.400	0.046	0,125
190 200	1/8	1,67	0,580	0,816	0,136
210		1,56	0,575	1,48	0,143
220		1,47	3,5.5	.,,,,	0,154
230		1,39			0,170
240 250		1,31	0,585	1,96	0,174 0,179
260		1,25			0,183
270 280		1,19	T - H		0,193 0,200
290 300		1,13 1,08	0,575	3,01	0,210 0,215
320		0,80	(200-00)		0,226
340 360		0,77 0,74	0,570	3,42	0,230 0,245
380	7.	0,72			0.256
400 420	10	0,65	0,565	4,30	0,272 0,283
440 460		0,61 0,57	0,558	5,54	0,298 0,314
480 510		0,54 0,51	0,555	6,91	0,332 0,349
540 570 600		0,49 0,40 0,38		8,50	0,357 0,365 0,392
630 660 690		0,36 0,35 0,33	0,550	11,15	0,398 0,432 0,445 0,455
720 750 780 820	$\frac{1}{12}$	0,32 0,31 0,30 0,28		14,10	0,486 0,495 0,524
860 900		0,27 0,26	- 17	18,60	0,552 0,578
940 980 1020		0,24 0,23 0,22	0,555	23,0	0,600 0,638 0,666
1060 1100		0,22 0,21	0,550	28,6	0,690 0,710

П р и м е ч а н и е. Значения $R_{\rm r}$ рассчитаны для фланцевых соединений исполнения 2.

Коэффициенты для фланцевых соединений полумуфт

Таблица 2

D, мм	$A_{\rm p}$	А _м , 1/м	$A_{\mathbf{k}}$	f _n , см ²	$R_{q\gamma}$ дм
30		6,06	0,660	0,082	0,051
35 40		5,55	0,635	0,110	0,060
45 50		5,13	0,620	0,150	0,066
55 60	1	4,76	0,605	0,196	0,070
65	<u>1</u>	4,45	-		0,076
70 75		4,17	0,590	0,250	0,081
80 85		3,70			0.092
90 95		3,34			0,107
100			0,595	0,347	17.3
110		2,27	0,575	0,247	0,113
120		2,08			0,124
125 130		1,92		1 707	0,132
135 140		1,78	0,580	0,573	0,140
150 160	1/8	1,67 1,56			0,149 0,159
170		1,47	0.700	0.777	0,167
180 190		1,39	0,608	0,777	0,177
200 210 220		1,31 1,25 1,19	0,580	0,816	0,190 0,198 0,207
230 240 250		1,13 1,08 1,04		7.2	0,220 0,233 0,239
260 270 280		0,80 0,77 0,74	0,575	1,48	0,248 0,259 0,262
290		0,72	0,585	1,96	0.289
300 320	$\frac{1}{10}$	0,65	0,303	1,70	0,290 0,300
340 360		0,61 0,57	0,575	3,01	0,329 0,350
380 400 420	1 - 1	0,54 0,51 0,47	0,570	3,42	0,361 0,377 0,394
440		0,38			0,427
460 480 510		0,36 0,35 0,33	0,565	4,30	0,445 0,455 0,486
540	1 12	0,32	0,558	5,54	0,499
570 600 630	12	0,31 0,30 0,28	0,555	6,91	0,530 0,535 0,566
660 690		0,27 0,26	0,550	8,50	0,590 0,625

D, MM	$A_{\rm p}$	$A_{\rm M}$, $1/{\rm M}$	A_k	f _п , см ²	$R_{_{\Upsilon}}$, дм
720 750	1/12	0,24 0,23	0,550	11,15	0,646 0,680 0,703 0,740 0,750
780 820		0,22		14,10	
860		0,21			0,730
900 940	1/14	0,17 0,16			0,793 0,815
980 1020	1/16	0,14 0,13		18,16	0,850 0,865
1060 1100	1 18	0,11 0,11			0,908 0,953

Примечание. Значения R, рассчитаны для фланцевых соединений исполнения 2.

(Измененная редакция, Изм. № 2, 4).

Рекомендуемое усилие затяжки болтов P₂, кH, вычисляют по формуле

$$P_a = 0.5 (P_u + P_o).$$

7. Степень передачи крутящего момента трением между фланцами п вычисляют по формуле

$$n = \frac{1,45A_{\kappa}P_{i}z \pm P_{y}}{10M_{\kappa}}R_{i},$$

где $+P_y$ — для переднего хода; $-P_y'$ — для заднего хода; $A_y = 1$ — для цилиндрических болтов;

$$R_{\rm g} = 0.035 \, {D_{1}^{\,3} - D_{3}^{\,3} - 2z d_{\,(1,0)}^{\,2} D_{2} \over D_{1}^{\,2} - D_{3}^{\,2} - z d_{\,(1,0)}^{\,2}} \,$$
дм — по табл. 1 и 2.

Пример. Определить рекомендуемое усилие затяжки Р₃ и соответствующую ему степень передачи крутящего момента трением n на переднем ходу для фланцевого соединения валов при D = 340 мм, $P_v = 600$ кH, $P_n = 50 \text{ kH}, M_p = 20 \text{ kH·m}, M_k = 300 \text{ kH·m}, \sigma_p = 30 \text{ MHa}, \sigma_q = 280 \text{ MHa}, m = 0.6.$

$$\begin{split} M_{\Phi} &= 0.1\sigma_{\rm p} \; (0.01D)^3 (1-m^4) + M_{\rm p} = 0.1\cdot30(0.01\cdot340)^3 (1-0.6^4) + 20 = 120 \; \rm kH\cdot m \; (12 \; \rm tc\cdot m); \\ P_{\rm o} &= A_{\rm p}P_{\rm p} + A_{\rm m}M_{\Phi} = 0.1\cdot600 + 0.77\cdot120 = 150 \; \rm kH \; (15 \; \rm tc); \\ P_{\rm k} &= A_{\rm p}P_{\rm n} + 0.5A_{\rm m}M_{\rm k} = 0.1\cdot50 + 0.5\cdot0.77\cdot300 = 120 \; \rm kH \; (12 \; \rm tc). \\ P_{\rm h} &= P_{\rm o} = 150 \; \rm kH \; (15 \; \rm tc) - \, \rm для \; цилиндрических \; болтов; \\ P_{\rm h} &= \frac{P_{\rm o}}{A_{\rm k}} = \frac{150}{0.57} = 260 \; \rm kH \; (26 \; \rm tc) - \, \rm для \; конических \; болтов; \\ P_{\rm a} &= 0.75 \left(\sqrt{(\sigma_{\rm T}f_{\rm h})^2 - 3P_{\rm k}^2} \; - \; P_{\rm o} \; \right) = 0.75 \left(\sqrt{(280 \cdot 3.42)^2 - 3 \cdot 120^2} \; - \; 150 \right) = 580 \; \rm kH \; (58 \; \rm tc). \\ V_{\rm CЛОВИЕ} &= \frac{P_{\rm h}}{P_{\rm h}} \geq 2 \; \rm выполнено, \\ &= 0.5 (P_{\rm h} + P_{\rm h}) = 0.5 (150 + 580) = 365 \; \rm kH \; (36.5 \; tc) - \, \, для \; цилиндрических \; болтов; \end{split}$$

$$\begin{array}{l} P_{_{3}}=0.5(P_{_{11}}+P_{_{1}})=0.5(150+580)=365\ \text{кH}\ (36,5\ \text{тc})-\text{для цилиндрических болтов;}\\ P_{_{3}}=0.5(P_{_{11}}+P_{_{10}})=0.5(260+580)=420\ \text{кH}\ (42\ \text{тc})-\text{для конических болтов;}\\ n=\frac{1.45A_{_{2}}P_{_{3}}z+P_{_{3}}}{10M_{_{10}}}\,R_{_{1}}=\frac{1.45\cdot1\cdot365\cdot10+600}{10\cdot300}\cdot0.23=0.45-\text{для фланцевого соединения исполнения}\ I; \end{array}$$

$$n = \frac{1,45A_{\rm K}P_{\rm S}z + P_{\rm y}}{10 \cdot M_{\rm K}} R_{\rm r} = \frac{1,45 \cdot 0,57 \cdot 420 \cdot 10 + 600}{10 \cdot 300} \cdot 0,23 = 0,31 -$$
для фланцевого соединения исполнения 2.

(Измененная редакция, Изм. № 4

ОПТИМАЛЬНЫЕ ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ФЛАНЦЕВЫХ СОЕДИНЕНИЙ

Условные обозначения

Е — расстояние между центром болта и началом гадтели фланца;

 $d_{_{\rm D}}$ — диаметр болта в разъеме фланцев;

 D_{κ}^{r} — наружный диаметр вала или корпуса полумуфты у основания фланца;

 D_n — рабочий диаметр вала (по обнижениям);

r — радиус галтели;

в — угол подрезки галтели относительно центра ее кривизны;

т_{в.} — расчетное напряжение кручения в валу;

т_с — напряжение среза болтов;

 $D_{\rm p}$ — расчетный диаметр вала;

т — степень внутренней осевой расточки полого вала;

z — число болтов;

 $D_{\Phi}^{}$ — наружный диаметр фланца (расчетный); $D_{o}^{}$ — диаметр окружности расположения болтов.

1. Условные расчетные соотношения:

$$\varphi_1 = \frac{E}{d_0} \ge (0.7 + 1.0);$$
(1)

$$\varphi_2 = \frac{D_n}{D_n} + 2\frac{r}{D_n}(1 - \sin \beta);$$
(2)

$$\varphi_3 = \frac{\tau_{\kappa}}{\tau_c} \left(\frac{D_p}{D_n} \right)^3 (1 - m^4), \qquad (3)$$

где $\frac{\tau_{K}}{T} \ge 1,15$ — для судов, поднадзорных Регистру СССР и Речному Регистру РСФСР.

$$z_y = 13.5 \frac{\varphi_1^2 \varphi_3}{\varphi_2^3}$$
, (4)

$$\omega = 2z \frac{\varphi_1}{\varphi_1}.$$
 (5)

2. Соотношение между диаметром вала $D_{\rm n}$ и диаметром болта в разъеме $d_{\rm p}$ вычисляют по формуле

$$\varphi_{p} = \frac{D_{u}}{d_{p}} = 2 \cos \frac{\alpha}{3} \sqrt[3]{\frac{\omega}{\cos \alpha}},$$
(6)

где $\cos \alpha = \sqrt{\frac{z_y}{z}}$;

$$\varphi_p = \frac{D_{ii}}{d_p} = \varphi_x + \varphi_y, \qquad (7)$$

где
$$\phi_{x,y} = \sqrt[3]{\omega \left(1 \pm \sqrt{1 - \frac{z}{z_y}}\right)}$$
.

3. Соотношение между диаметром окружности расположения болтов $D_{\rm o}$ и рабочим диаметром вала $D_{\rm n}$ вычисляют по формуле

$$\varphi_o = \frac{D_o}{D_b} = \varphi_2 + 2 \frac{\varphi_1}{\varphi_p}. \qquad (8)$$

C. 16 FOCT 19354-74

4. Контрольные величины $\phi_{\rho}{}'$ и ϕ_{δ} вычисляют по формулам:

- по прочности
$$\phi_{\rho}' = \sqrt{2z \frac{\phi_0}{\phi_3}}$$
, (9)

 ϕ_{p} должно быть равно ϕ_{p} ;

по расстоянию между осями болгов

$$\varphi_0 = \varphi_p \varphi_0 \sin \frac{180^o}{z},$$

 $\varphi_0 \ge (1.85+2.00).$
(10)

5. Соотношение между наружным диаметром фланца D_{ϕ} и рабочим диаметром вала D_{a} вычисляют по формуле

$$\varphi_{\Phi} = \frac{D_{\Phi}}{D_o} = \varphi_o + \frac{2}{\varphi_p}. \qquad (11)$$

Пример. Определить оптимальные геометрические характеристики для фланцевого соединения при следующих заданных значениях:

$$z = 16$$
; $\phi_1 = 1.5$; $D_n = 300$ mm; $\frac{D_n}{D_n} = 1.0$; $\frac{r}{D_n} = 0.5$;
 $\beta = 0$; $\frac{\tau_n}{\tau_0} = 1.0$; $\frac{D_p}{D_n} = 0.95$; $m = 0.6$.

Определение характеристик

$$\begin{split} \phi_2 &= \frac{D_K}{D_B} + 2\frac{r}{D_B} (1 - \sin \beta) = 1 + 2 \cdot 0.5(1 - \sin \beta) = 2; \\ \phi_3 &= \frac{\tau_K}{\tau_C} (\frac{D_p}{D_B})^3 (1 + m^4) = 1 \cdot 0.95^3 (1 - 0.6^4) = 0.74; \\ z_V &= 13.5 \frac{\phi_1^2 \phi_3}{\phi_2^3} = 13.5 \frac{1.5^2 \cdot 0.74}{2^3} = 2.8; \\ \omega &= 2z \frac{\phi_1}{\phi_3} = 2 \cdot 16 \cdot \frac{1.5}{0.74} = 65. \end{split}$$

Так как $z_v \le z$, расчет ведут по формуле (6).

$$\phi_p \; = \; 2\; cos \, \frac{\alpha}{3} \, \sqrt[3]{\, \frac{\omega}{\cos\alpha}} \; ; \label{eq:phip}$$

$$\cos \alpha = \sqrt{\frac{z_y}{z}} = \sqrt{\frac{2.8}{16}} = 0.42;$$

$$\phi_p = 2 \cos \frac{\alpha}{3} \sqrt[3]{\frac{65}{\cos \alpha}} = 10;$$

$$\phi_o = \phi_2 + 2 \frac{\phi_1}{\phi_o} = 2 + 2 \frac{1.5}{10} = 2.3.$$

Проверку проводят по контрольным величинам

$$\phi_{p}' = \sqrt{2z \frac{\phi_{o}}{\phi_{3}}} = \sqrt{2 \cdot 16 \frac{2,3}{0.74}} = 10.$$

Условие $\phi_{p}' = \phi_{p}$ выполнено.

$$\phi_6 = \phi_p \phi_o \sin \frac{180^\circ}{z} = 10 \cdot 2.3 \sin \frac{180^\circ}{16} = 4.5.$$

Условие ϕ_6 ≥ (1,85 + 2,00) выполнено.

$$\phi_{\varphi} = \phi_{o} + \frac{2}{\phi_{o}} = 2.3 + \frac{2}{10} = 2.5.$$

Значения $\phi_p=10; \; \phi_o=2,3; \; \phi_6=4,5 \;$ и $\; \phi_{\varphi}=2,5 \;$ являются оптимальными геометрическими фланцевыми характеристиками для любых диаметров вала $\; D_a \;$ с обеспечением принятых в данном примере условий.

По полученным ϕ_0 , ϕ_0 и ϕ_{Φ} определяют расчетные звачения D_0 , d_0 и D_{Φ} :

$$\begin{split} D_{\rm o} &= \varphi_{\rm o} D_{\rm n} = 2,3\text{-}300 = 690 \text{ mm}; \\ d_{\rm p} &= \frac{D_{\rm n}}{\varphi_{\rm p}} = \frac{300}{10} = 30 \text{ mm}; \\ D_{\rm \varphi} &= \varphi_{\rm \varphi} D_{\rm n} = 2,5\text{-}300 = 750 \text{ mm}. \end{split}$$

Номинальные размеры D_{α} , $d_{\rm p}$ и D_{Φ} принимают по табл. 1 и 2 настоящего стандарта, округляя расчетные значения в сторону увеличения.

Для данного примера:

$$\begin{array}{l} D_{\rm o} = D_2 = 700 \ {\rm mm}; \\ d_{\rm p} = d_1 = 32 \ {\rm mm}; \\ D_{\Phi} = D_1 = 750 \ {\rm mm}. \end{array}$$

Число болтов z принимают кратным половине его значения, соответствующего табличному D_2 . Для данного примера z=15.

Толщину фланца b_2 и размеры центрирующей выточки D_3 — b_1 рекомендуется принимать любыми из числа установленных в табл. 1 и 2 настоящего стандарта.

ПРИЛОЖЕНИЕ 3 Справочное

Соответствие требований ГОСТ 19354-74 требованиям СТ СЭВ 2169-80

FOCT 19354-74			CT COB 2169-80	
Пункт	Содержание требований	Пункт	Содержание требований	
2.I	Регламентируются размеры фланцевых соединений в сборе	2, 3, 5	Регламентируются наружные размеры фланцев, диаметр окружности располо- жения отверстий под болты, число отверстий	
2.5	Включены конструкция и размеры цилиндрических и конических болтов	9—11	Регламентируются размеры цилиндри- ческих болтов	
Прило- ения 1 и 2	Включены расчеты фланцевых соеди-	-	-	

(Введено дополнительно, Изм. № 4).

С. 18 ГОСТ 19354-74

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госкомитета СССР по качеству и стандартам от 07.01.74 № 28
- 2. СОГЛАСОВАН с ММФ, МРХ, МРФ, Регистром СССР и Речным Регистром РСФСР
- 3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта		
ГОСТ 397—79	2.9		
ГОСТ 5915—70	2.8		
ΓΟCT 5918—73	2.8		
ГОСТ 6636—69	2.1		
ΓΟCT 8479—70	2.6		
ΓΟCT 1060594	2.8		
ΓΟCT 10606—72	2.8		
ΓΟCT 14034—74	2.7		
ΓΟCT 1609381	2.11		

- 4. Ограничение срока действия сиято Постановлением Госстандарта СССР от 12.11.90 № 2811
- ИЗДАНИЕ (март 2004 г.) с Изменениями № 1, 2, 3, 4, утвержденными в мае 1980 г., декабре 1981 г., июне 1986 г., ноябре 1990 г. (ИУС 8-80, 3-82, 9-86, 1-90)

Редактор В.Н. Кописов
Технический редактор В.Н. Прусакова
Корректор В.Н. Капуркина
Компьютерная верстка Л.А. Круговой

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 16.03.2004. Подписано в печать 12.04.2004. Усл. печ. л. 2,32. Уч.-изд. л. 1,80. Тираж 130 экз. С 1724. Зак. 402.