ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 71004— 2023

Горное дело ГЕОТЕХНОЛОГИЧЕСКИЕ РИСКИ

Общие принципы оценки геотехнологических рисков при подземной угледобыче

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Федеральным государственным бюджетным учреждением «Российский институт стандартизации» (ФГБУ «Институт стандартизации»), Федеральным государственным бюджетным учреждением науки Институтом проблем комплексного освоения недр им. академика Н.В. Мельникова Российской академии наук (ИПКОН РАН)
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 269 «Горное дело»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 11 октября 2023 г. № 1117-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.rst.gov.ru)

Содержание

1	Область применения
2	Термины и определения
3	Общие принципы оценки геотехнологических рисков
Б	иблиография

Введение

Настоящий стандарт был разработан с целью повышения объективности оценки рисков при подземной угледобыче. В стандарте предусматривается, что определение рисков на вновь запускаемом участке производят на основе априорных методов с последующим переходом на апостериорные методы (которые на практике практически не применялись). Только апостериорные оценки, получаемые в ходе эксплуатации производственного участка шахты, дают объективную оценку состояния промышленной безопасности.

Общие принципы оценки геотехнологических рисков будут способствовать гармонизации национальных и международных нормативных документов.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Горное дело

ГЕОТЕХНОЛОГИЧЕСКИЕ РИСКИ

Общие принципы оценки геотехнологических рисков при подземной угледобыче

Mining. Geotechnological risks.

General principles for rating geotechnological risks in coal mining

Дата введения — 2023—12—01

1 Область применения

Настоящий стандарт устанавливает общие принципы оценки геотехнологических рисков при подземной угледобыче, использование которых направлено на повышение объективности оценки рисков при подземной угледобыче.

Настоящий стандарт применим в качестве руководства по оценке стоимостной меры риска и дифференциальной оценке геотехнологических рисков.

Настоящий стандарт предназначен для использования организациями, занимающимися оценкой геотехнологических рисков, включая организации, занимающиеся проектированием, строительством, реконструкцией и техническим перевооружением угольных шахт, а также ответственными заинтересованными сторонами, осуществляющими контроль и государственный надзор в сфере промышленной безопасности.

2 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями: 2 1

горно-техническая система: Совокупность горных конструкций, оборудования, технологических процессов горного производства во взаимодействии с вмещающим их участком недр.

[1]

2.2

промышленная безопасность опасных производственных объектов: Состояние защищенности жизненно важных интересов личности и общества от аварий на опасных производственных объектах и последствий указанных аварий.

[ГОСТ Р 54977—2019, статья 31]

Примечание — См. также [1].

2.3

безопасность угольной шахты: Состояние защищенности угольной шахты от аварий и последствий этих аварий.

[ГОСТ Р 54977—2019, статья 3]

FOCT P 71004—2023

2.4

вред: Травмирование или заболевание, или иное поврежденье здоровья, включая смерть, работающего или работавшего ранее человека, или поврежденье здоровья его потомков, а также причинение ему материального ущерба и/или нарушение его благополучия.

Примечания

- 1 Определение термина приведено с позиции обеспечения безопасности труда.
- 2 Наибольшим вредом для человека является смерть (утрата жизни) и/или потеря им (или его иждивенцами) источника существования.
- 3 Понятие вреда носит во многом социально-экономический и юридический характер и подразумевает возмещение вреда виновником причинения вреда.

[ГОСТ 12.0.002—2014, статья 2.2.1]

2.5

риск: Следствие влияния неопределенности на достижение поставленных целей.

Примечание 1 — Под следствием влияния неопределенности необходимо понимать отклонение от ожидаемого результата или события (позитивное и/или негативное).

П р и м е ч а н и е 2 — Цели могут быть различными по содержанию (в области экономики, здоровья, экологии и т. п.) и назначению (стратегические, общеорганизационные, относящиеся к разработке проекта, конкретной продукции и процессу).

Примечания 3— Риск часто характеризуют путем описания возможного события и его последствий или их сочетания.

П р и м е ч а н и е 4 — Риск часто представляют в виде последствий возможного события (включая изменения обстоятельств) и соответствующей вероятности.

П р и м е ч а н и е 5 — Неопределенность – это состояние полного или частичного отсутствия информации, необходимой для понимания события, его последствий и их вероятностей.

[ГОСТ Р ИСО 31000—2019, пункт 3.1]

2.6

событие: Возникновение или изменение специфического набора условий.

Примечание 1 — Событие может быть единичным или многократным и может иметь несколько причин.

Примечание 2 — Событие может быть определенным или неопределенным.

Примечание 3 — Событие может быть названо терминами «инцидент», «опасное событие» или «несчастный случай».

Примечание 4 — Событие без последствий может также быть названо терминами «угроза возникновения опасного события», «угроза инцидента», «угроза поражения» или «угроза возникновения аварийной ситуации».

[ГОСТ Р ИСО 31000—2019, пункт 3.5]

2.7

последствие: Результат воздействия события на объект.

Примечание 1 — Результатом воздействия события может быть одно или несколько последствий.

Примечание 2 — Последствия могут быть определенными или неопределенными, могут быть ранжированы от позитивных до негативных.

Примечание 3 — Последствия могут быть выражены качественно или количественно.

Примечание 4 — Первоначальные последствия могут вызвать эскалацию дальнейших последствий по «принципу домино».

[ГОСТ Р ИСО 31000—2019, пункт 3.6]

риск чрезвычайной ситуации: Мера опасности чрезвычайной ситуации, сочетающая вероятность возникновения чрезвычайной ситуации и ее последствия.

[ГОСТ Р 55059—2012, статья 2]

- 2.9 геотехнологический риск: Риск нанесения вреда здоровью человека или имуществу [в связи с возникновением (возможностью возникновения) аварийной ситуации, изменением исходных параметров окружающей среды и т. д.], в частности горным выработкам и горному имуществу и оборудованию, а также сложившимся горно-геологическим и экологическим ситуациям участка горных работ, под воздействием последствий, обусловленных их возникновением.
- 2.10 геотехнологический риск, связанный с нарушением требований техники безопасности: Риск нанесения вреда здоровью человека или имуществу в связи с возникновением неблагоприятного события вследствие нарушений требований техники безопасности работниками.
- 2.11 геотехнологический риск, связанный с нарушением промышленной безопасности: Риск нанесения вреда здоровью человека или имуществу в связи с возникновением неблагоприятного события вследствие нарушений требований промышленной безопасности.
- 2.12 оценка геотехнологического риска: Интегральная или дифференциальная мера текущей или общей опасности возникновения одного конкретного или разных видов неблагоприятного(ых) события(ий), последствия которого(ых) могут принести вред здоровью человека или имуществу, полученная априори или апостериори с помощью измерений или без них.
- 2.13 реальная [объективная] оценка геотехнологического риска: Оценка геотехнологического риска, полученная на основе измерений величин, влияющих на технологический процесс, промышленную безопасность, безопасность труда.
- 2.14 **мнимая [субъективная] оценка геотехнологического риска:** Оценка геотехнологического риска, полученная на основе измерений величин, напрямую не влияющих на технологический процесс, промышленную безопасность, безопасность труда.
- 2.15 статистическая оценка геотехнологического риска: Оценка геотехнологического риска, полученная на основе статистического анализа.
- 2.16 интегральная оценка геотехнологического риска: Оценка геотехнологического риска, определяющаяся совокупностью вероятности возникновения неблагоприятного(ых) события(ий) и затратами на ликвидацию (устранение) вызванных событием(ями) последствий.
- 2.17 дифференциальная оценка геотехнологического риска: Оценка геотехнологического риска, определяющаяся набором сопоставимых вероятностей возникновения неблагоприятного(ых) события(ий) и набором затрат на ликвидацию (устранение) вызванных событием(ями) последствий.
- 2.18 **стоимостная мера риска** (value at risk): Формализованная мера оценки риска, являющаяся произведением вероятности неблагоприятного(ых) события(ий) и затратами на ликвидацию (устранение) вызванных событием(ями) последствий.
- 2.19 качество горно-технической системы: Совокупность свойств горно-технической системы, обеспечивающих функционирование участка горных работ и размещенного в нем оборудования, а также безопасность работающих людей.
- 2.20 пространство качества горно-технической системы: Многомерное пространство, координатами которого являются свойства системы.
- 2.21 область допустимых состояний горно-технической системы: Часть пространства качества горно-технической системы, в котором обеспечивается нормальное функционирование участка горных работ и размещенного в нем оборудования, а также безопасность работающих людей.
- 2.22 работоспособное состояние: Состояние горно-технической системы, при котором значения всех свойств, характеризующих способность системы выполнять заданные функции, соответствуют требованиям нормативно-технической и конструкторской (проектной) документации.
- 2.23 отказ горно-технической системы: Событие, заключающееся в нарушении работоспособного состояния, т. е. выход системы из области допустимых состояний.
- 2.24 внезапный отказ: Отказ, характеризующийся скачкообразным изменением одного или нескольких свойств горно-технической системы, приводящий к ее выбросу из области допустимых состояний.
- 2.25 постепенный отказ: Отказ, возникающий в результате постепенного изменения одного или нескольких свойств горно-технической системы (например, старения системы).

- 2.26 цена риска: Математическое ожидание экономических потерь из-за отказов системы.
- 2.27 ущерб: Негативное последствие нежелательного события или ситуации.
- 2.28 степень ущерба: Показатель, количественно оцениваемый увеличением стоимости и сроков проведения горных работ.
- 2.29 анализ риска: Процесс изучения процессов и характера рисков и определение уровня риска.

3 Общие принципы оценки геотехнологических рисков

3.1 Общие положения

- 3.1.1 Оценка геотехнологического риска включает установление вида риска (по наступлению или возможному наступлению) конкретного события, определение вероятности наступления установленного неблагоприятного события, оценку величины возможного ущерба (выход из строя оборудования и механизмов, упущенная выгода, стоимость ремонта и т. д.) и выполнение операции сопоставления вероятности наступления установленного неблагоприятного события и величины возможного ущерба.
- 3.1.2 Стоимостная мера риска предназначена для обезличенной оценки возможных убытков как от отдельного вида неблагоприятного события, так и от всех видов неблагоприятных событий.

Примечание — Возможны два неблагоприятных события. Первое с вероятностью 0,5, второе с вероятностью 0,000001. Убытки от этих событий составят соответственно 2 рубля и 1 000 000 рублей. Стоимостная мера риска для них будет одинаковая. Для первого $0,5 \cdot 2 = 1$ рубль, для второго $0,000001 \cdot 1$ 000 000 = 1 рубль.

3.2 Дифференциальная оценка геотехнологических рисков

Оценка геотехнологического риска складывается из следующих оценок: дифференциальная, обобщенная, агрегатная.

- 3.2.1 Дифференциальная оценка геотехнологического риска оценка, в которой происходит сопоставление (без перемножения) набора вероятности возникновения неблагоприятного(ых) события(ий) и набора затрат на ликвидацию (устранение) вызванных событием(ями) последствий.
- 3.2.2 Обобщенная оценка риска складывается из построенной для всего распределения вероятности наступления неблагоприятного события стоимостной меры риска.
- 3.2.3 Агрегатная оценка риска производится на основе анализа обобщенных оценок риска для всех видов неблагоприятных событий.
- 3.2.4 Предварительно определение рисков на вновь запускаемом производственном участке (шахты в целом) должно производиться на основе априорных методов. После накопления статистических данных оценку риска следует производить с помощью апостериорных методов.

Методы должны включать анализ произошедших событий на производственном участке, определение их статистических характеристик, выявление требуемых затрат на ликвидацию возникших последствий от произошедших событий с учетом упущенной выгоды, если указанное событие произошло.

3.2.5 Оперативную объективную оценку риска на производственном участке необходимо производить по данным автоматизированных систем мониторинга техногенной среды и автоматизированных систем управления технологическими процессами.

Пример — Доступным на текущий момент развития автоматизации добычи угля подземным способом и мониторинга техногенной среды является неблагоприятное событие в виде загазирования производственного участка или принудительной остановки технологического процесса выемки угля при приближении концентрации метана к нормативному значению, осуществляемая бригадиром или машинистом комбайна для проветривания.

- 3.2.6 Определение загазирования производственного участка должно выполняться следующим образом.
- 3.2.6.1 Производят фиксацию неблагоприятного события загазирования производственного участка в хронометраже работы (время наступления, продолжительность).
- 3.2.6.2 Строят гистограммы числа остановок выемки угля для проветривания участков и его продолжительности. Оптимальное число диапазонов гистограмм k, округленное до ближайшего целого, следует определять по формуле Стерджесса

$$k = |1 + 3,322\lg(n)|,$$
 (1)

где *n* — общее число наблюдений.

- 3.2.6.3 Определяют параметры теоретическиой функции плотности распределения вероятности случайных событий (числа остановок на проветривания и продолжительности проветривания), наиболее точно описывающих эмпирические распределения случайных величин. Для этого следует использовать метод максимального правдоподобия. Вероятность наступления нежелательного события определяют по шкале от 0 до 1. Выбранные функции плотности распределения вероятности случайных событий следует проверить с помощью критериев согласия Колмогорова и Пирсона.
- 3.2.6.4 Стоимостная мера риска R(n,t) загазирования очистного забоя (число n_z и продолжительность t_z) за смену при различных уровнях доверительной вероятности p^z , для непрерывного вида распределения вероятности рассчитывают по формуле (2), а для дискретного вида распределением вероятности по формуле (3).

Пример — Распределение числа остановок на проветривание наиболее точно описывается непрерывным экспоненциальным распределением ($p(n) = \int\limits_0^{n_z} \lambda e^{-\lambda n} dn$) и дискретным распределением Пуассона ($p(n) = \sum \frac{\Gamma(n+1,\lambda)}{n!}$). Распределение продолжительности проветривания наиболее точно описывается непрерывным распределением Вейбулла ($p(t) = \int\limits_0^{t_z} \frac{k}{\lambda} \left(\frac{t}{\lambda}\right)^{k-1} e^{-\left(\frac{t}{\lambda}\right)^k} dt$). Тогда риск загазирования очистного забоя, с учетом общешахтных расходов в единицу времени q, определяется по формулам

$$R(n = n_z, t = t_z, p = p^z) = \int_0^{n_z} \lambda e^{-\lambda n} dn \cdot \int_0^{t_z} \frac{k}{\lambda} \left(\frac{t}{\lambda}\right)^{k-1} e^{-\left(\frac{t}{\lambda}\right)^k} dt \cdot \int_0^{t_z} q dt$$
 (2)

или

$$R\left(n=n_{z},\,t=t_{z},\,p=p^{z}\right)=\sum\frac{\Gamma\left(n+1,\lambda\right)}{n!}\cdot\int_{0}^{t_{z}}\frac{k}{\lambda}\left(\frac{t}{\lambda}\right)^{k-1}e^{-\left(\frac{t}{\lambda}\right)^{k}}dt\cdot\int_{0}^{t_{z}}qdt,\tag{3}$$

где n_z — число загазирований;

 t_{z} — продолжительность загазирований;

p^z — уровень доверительной вероятности;

 лараметр экспоненциального распределения вероятности (среднее время наступления очередного загазирования очистного забоя после проветривания);

Г — гамма-функция;

к — коэффициент формы распределения Вейбулла;

q — общешахтные расходы в единицу времени.

ГОСТ Р 71004—2023

Библиография

[1] Горное дело: Терминологический словарь — М:. Горная книга, 2016. — 635 с.

УДК 622.7:004:006.354 OKC 73.100.99

Ключевые слова: геотехнологический риск, оценка, информация, модель, горно-техническая система, подземная угледобыча, функция

Редактор М.В. Митрофанова Технический редактор В.Н. Прусакова Корректор Р.А. Ментова Компьютерная верстка И.А. Налейкиной

Сдано в набор 13.10.2023. Подписано в печать 25.10.2023. Формат $60\times84\%$. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 0,75.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Создано в единичном исполнении в ФГБУ «Институт стандартизации» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru