МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС) INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 32974.4— 2023 (ISO 21360-4:2018)

Вакуумная технология

СТАНДАРТНЫЕ МЕТОДЫ ИЗМЕРЕНИЯ ХАРАКТЕРИСТИК ВАКУУМНЫХ НАСОСОВ

Часть 4

Турбомолекулярные вакуумные насосы

(ISO 21360-4:2018, MOD)

Издание официальное

Москва Российский институт стандартизации 2023

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Акционерным обществом «Вакууммаш» (АО «Вакууммаш») и Федеральным государственным бюджетным учреждением «Российский институт стандартизации» (ФГБУ «Институт стандартизации») на основе официального перевода на русский язык англоязычной версии указанного в пункте 5 стандарта, который выполнен АО «Вакууммаш»
- 2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 249 «Вакуумная техника»
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 28 июля 2023 г. № 163-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации		
Беларусь	BY	Госстандарт Республики Беларусь		
Киргизия	KG	Кыргызстандарт		
Россия	RU	Росстандарт		
Таджикистан	TJ	Таджикстандарт		
Узбекистан	UZ	Узстандарт		

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 29 сентября 2023 г. № 1005-ст межгосударственный стандарт ГОСТ 32974.4—2023 (ISO 21360-4:2018) введен в действие в качестве национального стандарта Российской Федерации с 1 декабря 2023 г.
- 5 Настоящий стандарт является модифицированным по отношению к международному стандарту ISO 21360-4:2018 «Вакуумная технология. Стандартные методы измерения характеристик вакуумных насосов. Часть 4. Турбомолекулярные вакуумные насосы» («Vacuum technology Standard methods for measuring vacuum-pump performance Part 4: Turbomolecular vacuum pumps», MOD) путем включения дополнительного раздела, который выделен в тексте курсивом.

Сведения о соответствии ссылочных межгосударственных стандартов международным стандартам, использованным в качестве ссылочных в примененном международном стандарте, приведены в дополнительном приложении ДА

6 B3AMEH ΓΟCT 33518—2015

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

© ISO, 2018

© Оформление. ФГБУ «Институт стандартизации», 2023

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

Введение

Настоящий стандарт определяет стандартные методы измерения рабочих характеристик турбомолекулярных вакуумных насосов и дополняет положения *ГОСТ 32974.1*, в котором приведены общие описания измерения рабочих характеристик вакуумных насосов.

Приведенные в настоящем стандарте методы широко используются согласно действующим национальным и международным стандартам. Цель настоящего стандарта — представить применяемые на данный момент методы измерения характеристик вакуумных турбомолекулярных насосов. Настоящий стандарт имеет приоритет в случае возникновения противоречий с ГОСТ 32974.1.

Поправка к ГОСТ 32974.4—2023 (ISO 21360-4:2018) Вакуумная технология. Стандартные методы измерения характеристик вакуумных насосов. Часть 4. Турбомолекулярные вакуумные насосы

В каком месте	Напечатано	Должно быть		
Предисловие. Таблица согласования		Армения	АМ	ЗАО «Национальный орган по стандартизации и метрологии» Республики Армения

(ИУС № 2 2024 г.)

Вакуумная технология

СТАНДАРТНЫЕ МЕТОДЫ ИЗМЕРЕНИЯ ХАРАКТЕРИСТИК ВАКУУМНЫХ НАСОСОВ

Часть 4

Турбомолекулярные вакуумные насосы

Vacuum technology. Standard methods for measuring vacuum pump performance.

Part 4. Turbomolecular vacuum pumps

Дата введения — 2023—12—01

1 Область применения

Настоящий стандарт совместно с *ГОСТ 32974.1* устанавливает методы измерения характеристик турбомолекулярных вакуумных насосов, распространяется на все типы и размеры турбомолекулярных вакуумных насосов:

- с механическими или магнитными подшипниками;
- с или без дополнительной(ых) молекулярной(ых) ступени(ей) или других откачных ступеней на валу;
 - одним или несколькими впускными отверстиями.

Турбомолекулярные вакуумные насосы поддерживаются форвакуумными насосами, их производительность не может быть полностью определена кривой быстроты действия. Производительность зависит от привода и выпускного давления турбомолекулярного вакуумного насоса.

Характеристики дополняет следующая информация:

- данные о производительности и выпускном давлении турбомолекулярного вакуумного насоса;
- кривая степени сжатия (степень сжатия в зависимости от выпускного давления турбомолекулярного вакуумного насоса).

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий межгосударственный стандарт:

ГОСТ 32974.1—2023 Вакуумная технология. Стандартные методы измерения характеристик вакуумных насосов. Часть 1. Общие положения

При мечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящего стандарта в ссылочный документ, на который дана ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по *ГОСТ 32974.1*, а также следующие термины с соответствующими определениями:

3.1 наибольшее выпускное давление p_c (critical backing pressure p_c): Максимальное давление p_3 на выходе, которое вакуумный насос и приводное устройство могут выдержать при непрерывной работе без повреждений или перегрузки, при котором насос имеет степень сжатия $p_3/p_1 > 10$, а подача продувочного газа отсутствует.

Примечания

- 1 p_1 наибольшее впускное давление на входе. Частота вращения турбомолекулярного вакуумного насоса может быть меньшей в этой рабочей точке. Значение p_c зависит от частоты вращения и типа газа. Эти данные должны быть указаны вместе со значением p_c .
- 2 Измерение с продувочным газом дает разные результаты (при перекачке легких газов на входе использование тяжелого продувочного газа будет влиять на значение наибольшего выпускного давления p_c). Поэтому поток продувочного газа должен быть равен нулю.
- 3.2 максимальная производительность Q_{\max} (махітит throughput Q_{\max}): Максимальный поток газа, который может откачиваться продолжительное время без повреждения или выхода из строя насоса.

Примечания

- 1 Выражается в Па · л/с, мбар · л/с, м 3 · Па/с, мм рт.ст. · л/с или стандартных см 3 /мин (sccm).
- 2 Ограничивающий параметр зависит от конструкции насоса. В большинстве случаев это максимальная температура на определенном участке. Значение Q_{max} зависит, например, от перекачиваемого газа, используемого форвакуумного насоса, частоты вращения и условий охлаждения. Если Q_{max} выражено в Па · л/с или мбар · л/с, м³ · Па/с или мм рт.ст. · л/с, тогда температура измерительной камеры должна быть зафиксирована, поскольку это значение зависит от температуры газа. Это не распространяется на значение Q_{max} , указанное в sccm.
 - 3.3 быстрота действия q_V (volume flow rate q_V):

$$q_{V} = \frac{dV}{dt},\tag{1}$$

где V — объем;

t — время.

Пример — В ГОСТ 32974.1 быстрота действия — это объем газа в единицу времени, который при стандартных условиях вытекает из измерительной камеры через отверстие впускного фланца насоса.

Примечания

- 1 На практике быстроту действия насоса для данного газа условно принимают равной отношению производительности насоса для данного газа к равновесному давлению в измерительной камере. Единицы измерения, принятые для быстроты действия, м³/ч или л/с.
 - 2 Вместо термина «быстрота действия» часто используют термин «скорость откачки» и символ «S» [1].
- 3.4 предельное остаточное давление (ultimate pressure): Минимальное значение, к которому асимптотически стремится давление в измерительной камере при закрытом натекателе.

Примечания

- 1 Предельное остаточное давление всегда ниже, чем базовое давление p_{b1} .
- 2 Это наиболее низкое давление, создаваемое насосом.
- 3 Рекомендуется не указывать значение предельного остаточного давления в инструкции производителя. В настоящем стандарте не приведен метод определения предельного остаточного давления. Однако если производитель устанавливает предельное остаточное давление, то следует указать условия и временной диапазон измерения
- 3.5 базовое давление турбомолекулярного насоса p_{b1} (base pressure turbomolecular pump p_{b1}): Давление, полученное в измерительной камере через 48 ч после процедуры обезгаживания.

Примечание — Условия работы вакуумного насоса и испытательной системы без использования пробного газа (5.6).

3.6 **эффективная степень сжатия K_{eff}** (effective compression ratio K_{eff}): Отношение выпускного давления p_3 к впускному давлению p_1 турбомолекулярного вакуумного насоса

$$K_{\text{eff}} = \frac{p_3}{p_1}.$$
 (2)

3.7 **степень сжатия** K_0 (compression ratio K_0): Степень сжатия без газовой нагрузки, где p_{b_3} — базовое давление форвакуумного насоса, а p_{b_1} — базовое давление турбомолекулярного вакуумного насоса при нулевой производительности

$$K_0 = \frac{p_3 - p_{b_3}}{p_1 - p_{b_1}}. (3)$$

4 Обозначения

В настоящем стандарте применены следующие обозначения:

 p_{b_0} — базовое давление форвакуумного насоса, Па или мбар;

 p_1 — впускное давление, Па или мбар;

 p_3 — выпускное давление в форвакуумной магистрали, Па или мбар;

 $p_c \ \ -$ наибольшее выпускное давление, Па или мбар;

— производительность вакуумного насоса, Па · л/с, или мбар · л/с, или мм рт.ст. · л/с, или sccm;

 Q_{max} — максимальная производительность, $\Pi a \cdot \pi/c$, или мбар $\cdot \pi/c$, или мм рт.ст. $\cdot \pi/c$, или sccm;

 q_{V0} — быстрота действия при K_{eff} = 1, л/с;

 q_{VB} — быстрота действия форвакуумного насоса, л/с;

 q_{VX} — максимально ожидаемая быстрота действия, л/с.

5 Методы испытаний

5.1 Пробный газ

Все измерения, указанные в этом разделе, следует проводить с использованием пробного газа чистотой не менее 99,9 % (по массе). Пробный газ, такой как азот, водород, гелий и аргон.

5.2 Определение быстроты действия (скорости откачки)

5.2.1 Общие положения

Методы измерения быстроты действия для турбомолекулярного вакуумного насоса приведены в ГОСТ 32974.1—2023 (5.1 и 5.2). При отсутствии других описаний или экспериментальных схем следует использовать описания, приведенные в ГОСТ 32974.1.

5.2.2 Измерение параметров форвакуумного насоса

Эффективная быстрота действия q_V турбомолекулярного вакуумного насоса зависит от быстроты действия q_{V0} при нулевом перепаде давления $p_1 = p_3$, степени сжатия K_0 при нулевой производительности (Q=0) и быстроты действия форвакуумного насоса q_{VB} , ее вычисляют по формуле

$$q_{V} = q_{V0} \left(\frac{K_{0} - q_{V} / q_{VB}}{K_{0} - 1} \right), \tag{4}$$

следовательно,

$$q_V = \frac{q_{V0}}{1 - \frac{1}{K_0} + q_{V0} / (K_0 \cdot q_{VB})}.$$
 (5)

Примечание — См. приложение А, вывод формул (4) и (5).

ГОСТ 32974.4-2023

При небольших значениях K_0 (например, для водорода $K_0 \approx 1000$) на быстроту действия турбомолекулярного вакуумного насоса влияет производительность форвакуумного насоса. Это влияние можно считать небольшим, если форвакуумный насос использован с быстротой действия q_{VB} для всего диапазона давлений, которую вычисляют по условию

$$\frac{q_{VX}}{q_{VB}} < 0.05 \cdot K_0$$
 или $q_{VB} > 20 \cdot \left(\frac{q_{VX}}{K_0}\right)$, (6)

где q_{VX} — ожидаемая максимальная быстрота действия турбомолекулярного вакуумного насоса, л/с.

 \hat{C} учетом условия (6) необходимо выбрать подходящий форвакуумный насос для газа с указанным значением K_0 исходя из характеристик турбомолекулярного вакуумного насоса.

Следует убедиться в том, что форвакуумный насос по-прежнему имеет рассчитанную скорость откачки в рабочей точке Q_{\max} .

5.2.3 Определение быстроты действия (скорости откачки) методом постоянного потока

Метод постоянного потока является наиболее используемым для вакуумных насосов, применяется для всех диапазонов давления и типоразмеров насосов, где определение быстроты действия возможно с высокой точностью.

Полное определение быстроты действия методом постоянного потока приведено в *ГОСТ 32974.1—2023 (5.1)*.

5.2.4 Определение быстроты действия (скорости откачки) методом двух манометров

Метод рекомендован для небольших потоков газа, где не допускается применять подходящие расходомеры. Полное определение быстроты действия методом двух манометров приведено в ГОСТ 32974.1—2023 (5.2).

5.3 Измерение максимальной производительности

5.3.1 Метод измерения

Как минимум у двух типоразмеров форвакуумных насосов измеряют производительность Q в зависимости от выпускного давления p_3 , при работе насоса в условиях, указанных производителем. Следует использовать измерительную камеру, приведенную в Γ OCT 32974.1—2023 (рисунок 1). Должны быть предусмотрены соответствующие датчики для контроля предельных параметров (см. 3.2, примечание 2). При достижении максимальной производительности Q_{max} все контролируемые значения должны стабилизироваться и не превышать установленного предельного значения в течение не менее 4 ч. Предпочтительно, чтобы один из форвакуумных насосов был производительнее другого примерно в 5—10 раз.

Этот метод предназначен для проверки данных, указанных производителем насоса, является неразрушающим и не используется для определения предельного значения давления.

5.3.2 Порядок проведения испытаний

Подсоединяют насос к измерительной камере, которая подходит как для обеспечения постоянного потока газа, так и для измерения впускного давления p_1 . Форвакуумная магистраль должна быть оборудована вакуумметром для измерения выпускного давления p_3 . Постепенно увеличивают поток газа с высоковакуумной стороны. Показания датчиков перед записью должны стабилизироваться. Если показания хотя бы одного из датчиков выходят за пределы неопределенности измерений, то нужно закрыть клапан напуска и признать испытания несостоявшимися. При максимальной производительности Q_{max} испытания необходимо проводить в течение не менее 4 ч, при этом все показания должны находиться в пределах допустимых значений, а отклонение температуры насоса по времени не должно превышать 1 К/ч.

5.4 Измерение наибольшего выпускного давления

Описание метода измерения наибольшего выпускного давления изложено в *ГОСТ* 32974.1—2023 (5.5), определение наибольшего выпускного давления приведено в 3.1.

Измерение наибольшего выпускного давления определяют без учета эффективной быстроты действия турбомолекулярного вакуумного насоса. Это означает, что клапан напуска газа остается закрытым. Следовательно, значение наибольшего выпускного давления допустимо только для использования с «нулевой» производительностью.

Другие значения выпускного давления для других использований с заданными газовыми нагрузками через турбомолекулярный вакуумный насос будут ограничивать его работу.

5.5 Измерение степени сжатия

Метод измерения степени сжатия и экспериментальная установка приведены в ГОСТ 32974.1—2023 (5.5).

Для снижения количества любого другого газа на выходе турбомолекулярного вакуумного насоса настоятельно рекомендуется применять в качестве форвакуумного насоса любой турбомолекулярный насос или диффузионный насос. Это снижает давление на выходе до $p_3 < 10^{-2}$ Па (10^{-4} мбар). Не рекомендуется использовать охлаждаемую ловушку ввиду искажения результатов.

Для того чтобы получить степень сжатия при нулевой скорости потока K_0 для определенного газа, парциальное давление этого газа в выпускном трубопроводе должно составлять не менее 90 % от p_3 .

Примечание — Из-за низкой степени сжатия для легких газов может быть трудно достичь 90 %-ного парциального давления на выходе, особенно при использовании сухих форвакуумных насосов.

На степень сжатия могут влиять допустимые отклонения производства и температура насоса при измерении. Если проводят измерения парциального давления, их необходимо указать. Если для определения расчетного максимума использовалась экстраполяция, это также следует указать.

5.6 Измерение базового давления

Измерение базового давления приведено в *ГОСТ 32974.1—2023* (5.4). Это давление не является предельным давлением.

5.7 Измерение вибрации

5.7.1 Общие положения

Вибрацию турбомолекулярного вакуумного насоса измеряют в направлении, радиальном к оси вала двигателя, в диапазоне частот от 10 Гц до пятикратного значения номинальной частоты вращения насоса, работающего при стандартных условиях без газовой нагрузки. Регистрируют оба значения — виброскорость и виброускорение.

5.7.2 Испытательное оборудование

Турбомолекулярный вакуумный насос устанавливают в вертикальном и/или горизонтальном положении в соответствии с инструкцией производителя на резиновом листе толщиной не менее 4 мм на твердом основании без вибрации, чтобы обеспечить отсоединение испытуемого насоса от основания. Основание может быть бетонным, в пять раз превышающим массу насоса, но не менее 100 кг.

ВНИМАНИЕ! Следует принять меры предосторожности для обеспечения безопасности персонала на рабочем месте.

Вибрационная измерительная головка прибора должна быть установлена на насосе в плоскости под прямым углом к оси ротора. Эта плоскость должна находиться на расстоянии не более 1/10 наибольшего размера насоса от центра масс насоса.

При подготовке насоса с испытательным оборудованием масса насоса с заглушенным фланцем не должна увеличиваться более чем на 3 %. Во время проведения испытаний к насосу не разрешается подсоединять дополнительный груз.

Насос подсоединяют к форвакуумному насосу с помощью гибкого шланга длиной не менее 750 мм и согнутого под углом более 90°.

5.7.3 Порядок проведения измерения

Перед проведением измерения насос должен работать при стандартных условиях без газовой нагрузки по крайней мере 30 мин. Во время проведения измерений форвакуумный насос должен быть выключен.

6 Отчет об испытаниях

Отчет об испытаниях должен содержать результаты:

- определения быстроты действия (3.3);
- измерения:
 - степени сжатия (3.7),
 - максимальной производительности (3.2),

FOCT 32974.4—2023

- наибольшего выпускного давления (3.1),
- базового давления (3.5),
- вибрации (5.7).

Отчет об испытаниях должен содержать следующую общую информацию об испытанном насосе:

- тип и артикул/серийный номер турбомолекулярного насоса;
- тип и артикул/серийный номер приводного устройства;
- тип и размер фланца, номинальная частота вращения и максимальная потребляемая мощность турбомолекулярного насоса;
 - температура окружающей среды.

6.1 Измерение быстроты действия

Должны быть приведены следующие данные:

- используемый метод (постоянного потока или метод двух манометров):
 - расположение отверстий в случае метода двух манометров,
 - величина стандартной проводимости и формула, примененная для вычисления в случае метода постоянного тока;
- размер измерительной камеры;
- скорость вращения;
- используемый форвакуумный насос или выпускное давление;
- применяемый метод охлаждения и данные о методе;
- измеряемые типы газа;
- объем газа для продувки, если он использовался;
- диаграмма: быстрота действия в зависимости от впускного давления.

6.2 Измерение степени сжатия

Приводят следующие данные:

- скорость вращения;
- используемый форвакуумный насос;
- применяемый метод охлаждения и данные о методе;
- измеряемые типы газа;
- диаграмма: степень сжатия в зависимости от выпускного давления.

6.3 Измерение максимальной производительности

Приводят следующие данные:

- скорость вращения;
- используемый форвакуумный насос (масляный/безмасляный) или выпускное давление;
- применяемый метод охлаждения и данные о методе;
- измеряемые типы газа;
- количество продувочного газа, если использовался;
- максимальная производительность.

6.4 Измерение наибольшего выпускного давления

Приводят следующие данные:

- скорость вращения;
- используемый метод охлаждения и данные о методе;
- измеряемые типы газа;
- наибольшее выпускное давление.

6.5 Измерение базового давления

Приводят следующие данные:

- скорость вращения;
- применяемый метод охлаждения и данные о методе;
- используемый форвакуумный насос или выпускное давление;
- базовое давление.

6.6 Измерение вибрации

Приводят следующие данные:

- скорость вращения;
- документация испытательного оборудования;
- направление измерения вибрации;
- положение измерения вибрации;
- диаграмма: данные о вибрации в зависимости от диапазона частот.

7 Требования безопасности

При проведении измерений необходимо соблюдать предъявляемые κ вакуумным насосам требования безопасности $[2]^*$.

П р и м е ч а н и е — Приведенное выше дополнительное требование направлено на обеспечение безопасности при транспортировании, хранении, установке, эксплуатации и техническом обслуживании насосов.

^{*} В Российской Федерации действует ГОСТ Р 52615—2006 «Компрессоры и вакуумные насосы. Требования безопасности. Часть 2. Вакуумные насосы».

Приложение A (рекомендуемое)

Выведение формул (4) и (5)

Между степенями сжатия $K_{\it eff}$, K_0 и быстротой действия q_V (скоростью откачки) теоретически максимальным значением q_{V0} предполагается линейная зависимость, вычисляемая по формуле

$$q_{V} = q_{V0} \left(\frac{K_0 - K_{eff}}{K_0 - 1} \right). \tag{A.1}$$

Быстрота действия q_V достигает своего максимума q_{V0} , если эффективная степень сжатия $K_{\rm eff}$ достигает единицы. С другой стороны, при максимальной $K_{\rm eff}$ = K_0 быстрота действия по определению будет равна нулю. Эффективная степень сжатия $K_{\rm eff}$ = p_3/p_1 может быть записана как отношение быстроты действия форвакуумного насоса и турбомолекулярного вакуумного насоса по формуле

$$K_{\text{eff}} = \frac{q_V}{q_{VB}}.$$
 (A.2)

Быстроту действия q_{v} , л/с, вычисляют по формуле

$$q_{V} = q_{V0} \left(\frac{K_{0} - q_{V} / q_{VB}}{K_{0} - 1} \right), \tag{A.3}$$

а также по формуле

$$q_V = \frac{K_0}{K_0 + (q_{V0}/q_{VB}) - 1} \tag{A.4}$$

или, уменьшая на K_0 , по формуле

$$q_{V} = \frac{q_{V0}}{1 - \frac{1}{K_{0}} + q_{V0} / (K_{0} \cdot q_{VB})}.$$
(A.5)

Приложение ДА (справочное)

Сведения о соответствии ссылочного межгосударственного стандарта международному стандарту, использованному в качестве ссылочного в примененном международном стандарте

Таблица ДА.1

Обозначение ссылочного межгосударственного стандарта	Степень соответствия	Обозначение и наименование ссылочного международного стандарта
FOCT 32974.1—2023 (ISO 21360-1:2020)	MOD	ISO 21360-1:2020 «Вакуумная технология. Стандартные методы измерения характеристик вакуумных насосов. Часть 1. Общие положения»

Примечание — В настоящей таблице использовано следующее условное обозначение степени соответствия стандарта:

⁻ MOD — модифицированный стандарт.

ГОСТ 32974.4—2023

Библиография

[1]	ISO 3529-2	Vacuum technology — Vocabulary — Part 2: Vacuum pumps and related terms (Вакуумная технология. Словарь. Часть 2. Вакуумные насосы и относящаяся к ним терминология)
[2]	EN 1012-2:1996	Compressors and vacuum pumps — Safety precautions — Part 2: Vacuum pumps (Компрессоры и вакуумные насосы. Требования безопасности. Часть 2. Вакуумные насосы)

УДК 621:006:354 MKC 23.160 MOD

Ключевые слова: турбомолекулярный вакуумный насос; быстрота действия; вибрация; испытание; давление; производительность; сжатие

Редактор Л.С. Зимилова
Технический редактор И.Е. Черепкова
Корректор Е.Д. Дульнева
Компьютерная верстка И.Ю. Литовкиной

Сдано в набор 02.10.2023. Подписано в печать 17.10.2023. Формат $60 \times 84\%$. Гарнитура Ариал. Усл. печ. л. 1,86. Уч-изд. л. 1,49.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Поправка к ГОСТ 32974.4—2023 (ISO 21360-4:2018) Вакуумная технология. Стандартные методы измерения характеристик вакуумных насосов. Часть 4. Турбомолекулярные вакуумные насосы

В каком месте	Напечатано	Должно быть		
Предисловие. Таблица согласования	_	Армения	АМ	ЗАО «Национальный орган по стандартизации и метрологии» Республики Армения

(ИУС № 2 2024 г.)