МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)
INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT ISO 10893-3— 2023

ТРУБЫ СТАЛЬНЫЕ БЕСШОВНЫЕ И СВАРНЫЕ

Часть 3

Автоматизированный контроль методом рассеяния магнитного потока по всей поверхности труб из ферромагнитной стали для обнаружения продольных и (или) поперечных дефектов

(ISO 10893-3:2011,

Non-destructive testing of steel tubes — Part 3: Automated full peripheral flux leakage testing of seamless and welded (except submerged arc-welded) ferromagnetic steel tubes for the detection of longitudinal and/or transverse imperfections,

IDT)

Издание официальное

Москва Российский институт стандартизации 2023

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Техническим комитетом по стандартизации ТК 357 «Стальные и чугунные трубы и баллоны», Негосударственным образовательным учреждением дополнительного профессионального образования «Научно-учебный центр «Контроль и диагностика» («НУЦ «Контроль и диагностика») и Акционерным обществом «Русский научно-исследовательский институт трубной промышленности» (АО «РусНИТИ») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 357 «Стальные и чугунные трубы и баллоны»
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 31 марта 2023 г. № 160-П)

_		
За	принятие	проголосовали:

ou ilprimitivo ilpotostocobustiti			
Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации	
Армения	AM	ЗАО «Национальный орган по стандартизации и метрологии» Республики Армения	
Беларусь	BY	Госстандарт Республики Беларусь	
Казахстан	KZ	Госстандарт Республики Казахстан	
Киргизия	KG	Кыргызстандарт	
Россия	RU	Росстандарт	
Узбекистан	UZ	Узстандарт	

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 17 мая 2023 г. № 324-ст межгосударственный стандарт ГОСТ ISO 10893-3—2023 введен в действие в качестве национального стандарта Российской Федерации с 1 октября 2023 г.
- 5 Настоящий стандарт идентичен международному стандарту ISO 10893-3:2011 «Неразрушающий контроль стальных труб. Часть 3. Автоматизированный контроль методом рассеяния магнитного потока по всей поверхности труб из ферромагнитной стали (кроме труб, полученных дуговой сваркой под флюсом) для обнаружения продольных и (или) поперечных дефектов» («Non-destructive testing of steel tubes Part 3: Automated full peripheral flux leakage testing of seamless and welded (except submerged arc-welded) ferromagnetic steel tubes for the detection of longitudinal and/or transverse imperfections», IDT).

Изменения и технические поправки к указанному международному стандарту, принятые после его официальной публикации, внесены в текст настоящего стандарта и выделены двойной вертикальной линией, расположенной на полях напротив соответствующего текста, а обозначение и год принятия изменения (технической поправки) приведены в скобках после соответствующего текста (в примечании к тексту).

Международный стандарт разработан Техническим комитетом по стандартизации ISO/TC 17 «Сталь», подкомитетом SC 19 «Технические условия поставки труб, работающих под давлением» Международной организации по стандартизации (ISO).

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для увязки с наименованиями, принятыми в существующем комплексе межгосударственных стандартов.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 Настоящий стандарт подготовлен на основе применения ГОСТ Р ИСО 10893-3—2016*

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

© Оформление. ФГБУ «Институт стандартизации», 2023

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

^{*} Приказом Федерального агентства по техническому регулированию и метрологии от 17 мая 2023 г. № 324-ст ГОСТ Р ИСО 10893-3—2016 отменен с 1 октября 2023 г.

ΓΟCT ISO 10893-3—2023

Содержание

1	Область применения	. 1
2	Нормативные ссылки	. 1
3	Термины и определения	. 1
4	Общие требования	.2
5	Технология контроля	.2
6	Настроечный образец-труба	.4
7	Настройка и проверка настройки оборудования	. 6
8	Приемка	.6
9	Протокол контроля	. 7
П	оиложение А (обязательное) Ограничение применения метода рассеяния магнитного потока	. 8
П	риложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов	
	межгосударственным стандартам	. 9

Введение

Международный стандарт ISO 10893-3 аннулирует и заменяет технически пересмотренные ISO 9402:1989 и ISO 9598:1989.

В комплекс стандартов ISO 10893 под общим наименованием «Неразрушающий контроль стальных труб» входят:

- часть 1. Автоматизированный контроль герметичности стальных бесшовных и сварных труб (кроме труб, полученных дуговой сваркой под флюсом) электромагнитным методом;
- часть 2. Автоматизированный контроль вихретоковым методом стальных бесшовных и сварных труб (кроме труб, полученных дуговой сваркой под флюсом) для обнаружения дефектов;
- часть 3. Автоматизированный контроль методом рассеяния магнитного потока по всей поверхности труб из ферромагнитной стали (кроме труб, полученных дуговой сваркой под флюсом) для обнаружения продольных и (или) поперечных дефектов;
- часть 4. Контроль методом проникающих жидкостей стальных бесшовных и сварных труб для обнаружения поверхностных дефектов;
- часть 5. Метод магнитопорошкового контроля бесшовных и сварных труб из ферромагнитной стали для обнаружения поверхностных дефектов;
 - часть 6. Радиографический контроль сварных швов для обнаружения дефектов;
 - часть 7. Цифровой радиографический контроль сварных швов для обнаружения дефектов;
- часть 8. Ультразвуковой метод автоматизированного контроля бесшовных и сварных стальных труб для обнаружения расслоений;
- часть 9. Ультразвуковой метод автоматизированного контроля расслоений в рулонах/листах для производства сварных труб;
- часть 10. Ультразвуковой метод автоматизированного контроля бесшовных и сварных труб (кроме труб, полученных дуговой сваркой под флюсом) для обнаружения продольных и/или поперечных дефектов по всей поверхности;
- часть 11. Ультразвуковой метод автоматизированного контроля сварных швов стальных труб для обнаружения продольных и (или) поперечных дефектов;
- часть 12. Ультразвуковой метод автоматизированного контроля толщины стенки по всей окружности бесшовных и сварных стальных труб (кроме труб, полученных дуговой сваркой под флюсом).

ТРУБЫ СТАЛЬНЫЕ БЕСШОВНЫЕ И СВАРНЫЕ

Часть 3

Автоматизированный контроль методом рассеяния магнитного потока по всей поверхности труб из ферромагнитной стали для обнаружения продольных и (или) поперечных дефектов

Seamless and welded steel tubes. Part 3. Automated full peripheral flux leakage testing of ferromagnetic tubes for the detection of longitudinal and/or transverse imperfections

Дата введения -2023-10-01

1 Область применения

Настоящий стандарт устанавливает требования к автоматизированному контролю методом рассеяния магнитного потока бесшовных и сварных (кроме труб, сваренных дуговой сваркой под флюсом) труб из ферромагнитной стали для выявления продольных и (или) поперечных дефектов.

Если в заказе на поставку не указано иное, то настоящий стандарт применяется для обнаружения главным образом продольных дефектов.

Настоящий стандарт применяется для контроля труб с наружным диаметром не менее 10 мм.

Настоящий стандарт может быть применен для контроля полых профилей.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты [для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных — последнее издание (включая все изменения)]:

ISO 9712, Non-destructive testing — Qualification and certification of personnel (Неразрушающий контроль. Квалификация и аттестация персонала)

ISO 11484, Steel products — Employer's qualification system for non-destructive testing (NDT) personnel (Изделия стальные. Система оценки работодателем квалификации персонала, осуществляющего неразрушающий контроль)

3 Термины и определения

В настоящем стандарте применены термины по ISO 11484, а также следующие термины с соответствующими определениями:

- 3.1 **искусственный дефект** (reference standard): Дефект для настройки оборудования неразрушающего контроля (например, отверстия, пазы и т. п.).
- 3.2 **настроечный образец-труба** (reference tube): Труба или часть трубы, используемые для целей настройки.
- 3.3 **настроечный образец** (reference sample): Образец (например, сегмент трубы, рулона или листа), используемый для настройки.

Примечание — Термин «образец-труба», используемый в настоящем стандарте, также включает термин «настроечный образец».

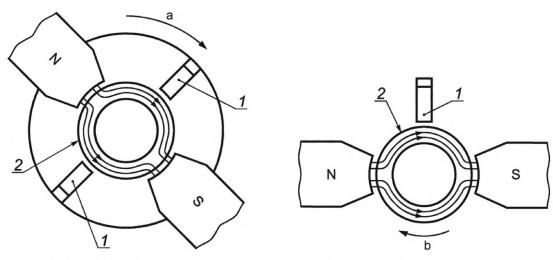
FOCT ISO 10893-3-2023

- 3.4 **труба** (tube): Полое длинное изделие, открытое с обоих концов, любой формы поперечного сечения.
- 3.5 **бесшовная труба** (seamless tube): Труба, изготовленная путем прошивания твердой заготовки для получения полой трубы, которая в дальнейшем обрабатывается (горячим или холодным способом) до ее окончательных размеров.
- 3.6 **сварная труба** (welded tube): Труба, изготовленная путем формирования полого профиля из плоского продукта и сварки смежных кромок вместе, подвергаемая дальнейшей обработке (горячим или холодным способом) для получения окончательных размеров.
- 3.7 **изготовитель** (manufacturer): Организация, которая изготавливает продукцию согласно соответствующему стандарту и заявляет соответствие поставленной продукции всем действующим положениям соответствующего стандарта.
- 3.8 **соглашение** (agreement): Контрактные отношения между изготовителем и заказчиком в момент запроса и заказа.

4 Общие требования

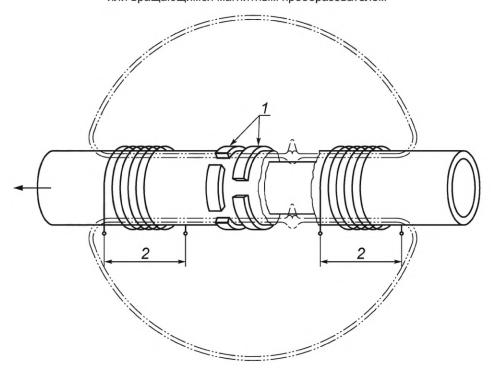
- 4.1 Если спецификация на продукцию или соглашение между заказчиком и изготовителем не оговаривают иное, то контроль методом рассеяния магнитного потока должен проводиться на трубах после завершения всех первичных технологических операций производства (прокатки, термической обработки, холодной и горячей деформации, обработки в размер, предварительной правки и т. п.).
- 4.2 Трубы должны быть достаточно прямыми, чтобы обеспечить возможность проведения контроля. Поверхность трубы должна быть свободна от посторонних веществ, которые могут повлиять на результаты контроля.
- 4.3 Контроль проводят только подготовленные операторы, квалифицированные в соответствии с ISO 9712, ISO 11484 или эквивалентными документами, и под руководством компетентного персонала, назначенного изготовителем (заводом-изготовителем). В случае инспекции третьей стороной это должно быть согласовано между заказчиком и изготовителем.

Допуск к проведению контроля должен быть выдан работодателем в соответствии с письменной процедурой. Процедура неразрушающего контроля должна быть согласована специалистом уровня 3, который был одобрен работодателем.


Примечание — Определение уровней 1, 2 и 3 можно найти в соответствующих международных стандартах, например в ISO 9712 и ISO 11484.

5 Технология контроля

5.1 Трубу необходимо проконтролировать для обнаружения продольных дефектов (см. рисунок 1) и (или), по согласованию между изготовителем и заказчиком поперечных дефектов (см. рисунок 2), методом рассеяния магнитного потока. Ограничения по толщине стенки трубы не определены; данные по ограничению области применения метода приведены в приложении А.


На обоих концах трубы могут оставаться непроконтролированные короткие участки, в отношении которых должны быть приняты меры в соответствии с требованиями спецификации на продукцию.

- 5.2 Во время контроля труба и блок преобразователей должны перемещаться относительно друг друга таким образом, чтобы вся поверхность трубы была просканирована. Относительная скорость сканирования в процессе контроля не должна изменяться более чем на ±10 %.
- 5.3 Максимальная ширина любого из преобразователей вдоль наибольшего размера обнаруживаемого дефекта 30 мм.
- 5.4 Оборудование должно классифицировать трубы как годные или как сомнительные при помощи автоматизированной системы сигнализации о превышении уровня в сочетании с маркировкой и (или) системой сортировки.

- а) Способ вращающегося магнитного преобразователя b) Способ неподвижного магнитного преобразователя продольное перемещение трубы
 - 1 магнитный преобразователь; 2 труба; N северный полюс; S южный полюс
 - a направление вращения магнитного преобразователя; b направление вращения трубы

Рисунок 1 — Упрощенная схема контроля методом рассеяния магнитного потока с неподвижным или вращающимся магнитным преобразователем

1 — массив преобразователей, расположенных в шахматном порядке; 2 — катушка, создающая постоянное магнитное поле

Примечание — Магнитные преобразователи могут иметь различные формы, например абсолютные и дифференциальные, в зависимости от используемого оборудования и других факторов. Методы введения магнитного потока в направлении, параллельном главной оси трубы, могут быть достигнуты методами, отличными от указанных на этом рисунке.

Рисунок 2 — Упрощенная схема контроля методом рассеяния магнитного потока с множественными концентрическими магнитными преобразователями

6 Настроечный образец-труба

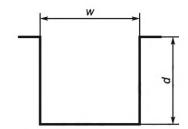
6.1 Общие положения

- 6.1.1 Настоящий стандарт определяет искусственные дефекты, подходящие для настройки оборудования неразрушающего контроля. Размеры этих искусственных дефектов не допускается истолковывать как минимальный размер дефектов, обнаруживаемых этим оборудованием.
- 6.1.2 Каждый отдельный преобразователь оборудования рассеяния магнитного поля калибруют с применением настроечного паза на наружной или на наружной и внутренней поверхностях настроечного образца-трубы.

По согласованию между заказчиком и изготовителем для настройки оборудования на настроечном образце-трубе может быть просверлено отверстие сквозь всю толщину стенки трубы. При этом для обеспечения установленного уровня приемки должен быть выбран максимальный диаметр отверстия, при использовании которого чувствительность контроля необходимо скорректировать таким образом, чтобы она была эквивалентна настройке чувствительности при применении установленного наружного настроечного паза и согласованной глубины внутреннего настроечного паза.

Примечание — Диаметр отверстий может быть определен на основании факторов, связанных с предполагаемой эксплуатацией, и других соответствующих критериев. Типовой ряд размеров диаметра отверстия — от 0,80 до 3,20 мм.

Внутренняя поверхность настроечного образца-трубы может быть подготовлена или механически обработана перед выполнением внутреннего паза. Допускается не использовать внутренний паз при внутреннем диаметре трубы менее 20 мм, если иное не согласовано между заказчиком и изготовителем, или при толщине стенки трубы не менее 20 мм, по причине технических ограничений, указанных в приложении А. Контроль внутренней поверхности трубы не является достоверным даже при соблюдении максимального отношения, указанного в таблице А.1.


- 6.1.3 Настроечный образец-труба должен иметь такие же номинальные диаметр и толщину стенки, обработку поверхности, состояние поставки (например, после прокатки, нормализации, закалки и отпуска) и должен быть из стали с аналогичными свойствами, что и контролируемые трубы. Для труб номинальной толщиной стенки более 10 мм, толщина стенки настроечного образца-трубы может быть больше, чем номинальная толщина стенки контролируемых труб, при условии, что глубина паза имеет значение, соответствующее номинальной толщине стенки контролируемых труб. Изготовитель по запросу должен продемонстрировать эффективность принятого решения.
- 6.1.4 Наружный и при необходимости внутренний пазы, а также настроечное отверстие должны быть достаточно удалены от концов настроечного образца-трубы и друг от друга (если используются оба паза), чтобы полученные от них сигналы были четко различимы.

6.2 Настроечные пазы

6.2.1 Общие сведения

- а) Настроечные пазы должны быть «N»-типа (см. рисунок 3) и должны располагаться параллельно оси трубы; если между заказчиком и изготовителем согласовано обнаружение поперечных дефектов, настроечные пазы должны располагаться перпендикулярно оси трубы (см. рисунок 4).
- b) Боковые поверхности должны быть параллельными, а дно перпендикулярным боковым сторонам.
- с) Настроечные пазы следует изготавливать путем механической или электроэрозионной обработки или другим подходящим способом.

Примечание — Дно или придонные углы паза могут быть скруглены.

w - ширина паза; d - глубина паза

Рисунок 3 — Паз «N»-типа

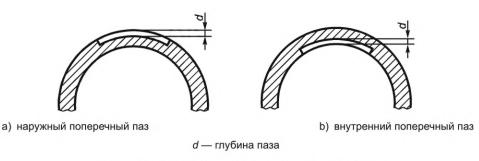


Рисунок 4 — Возможные формы поперечного паза

6.2.2 Размеры настроечного паза

а) Ширина *w* указана на рисунке 3. Ширина настроечного паза не должна превышать 1,0 мм.

Примечание — Второе предложение перечисления а) пункта 6.2.2 изложено в новой редакции в соответствии с ISO 10893-3:2011/AMD.1:2019.

b) Глубина *d* указана на рисунках 3 и 4.

Глубина наружного настроечного паза должна соответствовать таблице 1 со следующими ограничениями:

- минимальная глубина паза 0,30 мм для уровней приемки F2 и F3; 0,50 мм для уровней приемки F4 и F5;
 - максимальная глубина паза 1,5 мм.

Глубина внутреннего настроечного паза должна быть согласована между заказчиком и изготовителем (см. приложение A), но не должна быть меньше, чем глубина наружного настроечного паза, или больше принятого максимального отношения по таблице A.1. Максимальная глубина внутреннего настроечного паза — 3,0 мм.

Допуск на глубину настроечного паза должен быть ±15 % от номинального значения глубины настроечного паза.

с) Длина паза.

Если иное не предусмотрено спецификацией на продукцию или соглашением между изготовителем и заказчиком, длина настроечного паза должна быть больше ширины каждого преобразователя, но не более 50 мм.

При выявлении поперечных дефектов минимальная длина паза по окружности (см. рисунок 4) должна быть 25 мм.

6.2.3 Проверка настроечного паза

Размеры и формы настроечного паза проверяют по соответствующей процедуре.

FOCT ISO 10893-3-2023

Таблица 1 — Уровни приемки и соответствующая глубина наружного настроечного паза

Уровень приемки	Глубина настроечного паза от толщины стенки
F2	5,0 % (но не менее 0,30 мм)
F3	10,0 % (но не менее 0,30 мм)
F4	12,5 % (но не менее 0,50 мм)
F5	15,0 % (но не менее 0,50 мм)

Примечание — Значения глубины настроечного паза, указанные в настоящей таблице, являются такими же для соответствующих категорий во всех международных стандартах, регламентирующих неразрушающий контроль стальных труб, где есть ссылка на различные приемочные уровни. Хотя калибровочные отражатели идентичны, применение различных методов контроля может давать различные результаты. Индекс F (flux leakage) для уровней приемки метода рассеянного потока был выбран, чтобы избежать проведения аналогии с другими методами испытаний.

7 Настройка и проверка настройки оборудования

- 7.1 В начале каждого цикла контроля оборудование необходимо настроить для стабильного получения (например, путем трех прогонов настроечного образца-трубы) четко идентифицируемых сигналов от настроечных пазов. Система сигнализации должна срабатывать по уровню этих сигналов.
- 7.2 В процессе настройки относительная скорость перемещения настроечного образца-трубы и блока преобразователей должна быть такой же, как и во время проведения производственного контроля.
- 7.3 Настройку оборудования следует проверять через регулярные промежутки времени при контроле в процессе изготовления труб одного и того же номинального диаметра, толщины стенки и марки путем прохода (прогона) настроечного образца-трубы через установку.

Проверка настройки оборудования должна проводиться не реже чем каждые 4 ч, а также при смене оператора и в начале, и в конце производственного цикла.

- 7.4 Оборудование настраивают повторно, если изменился любой из параметров настройки, использованный во время первоначальной настройки.
- 7.5 Если при проведении проверки в процессе производства требования настройки не выполняются, все прошедшие контроль трубы с предыдущей проверки настройки подвергают повторному контролю после того, как оборудование будет перенастроено.

8 Приемка

- 8.1 Труба, не вызвавшая срабатывание автоматизированной системы сигнализации, считается годной.
- 8.2 Труба, вызвавшая срабатывание автоматизированной системы сигнализации, считается сомнительной или по усмотрению изготовителя может быть проконтролирована повторно. Если после одной операции повторного контроля все сигналы ниже, чем уровень срабатывания автоматизированной системы сигнализации, труба считается годной; в противном случае труба считается сомнительной.

Примечание — Второе предложение пункта 8.2 изложено в новой редакции в соответствии с ISO 10893-3:2011/AMD.2:2020.

- 8.3 Для сомнительной трубы с учетом требований спецификации на продукцию необходимо предпринять одно из следующих действий:
- а) сомнительный участок должен быть зачищен или проконтролирован повторно другим подходящим методом. Если оставшаяся толщина стенки находится в пределах допуска, трубу следует повторно

проконтролировать. Если после повторного контроля все сигналы ниже, чем уровень срабатывания автоматизированной системы сигнализации, труба считается годной.

По согласованию между заказчиком и изготовителем сомнительный участок может быть подвергнут повторному контролю при помощи других методов испытания на соответствие принятым уровням приемки;

- b) сомнительный участок следует обрезать;
- с) труба считается негодной.

9 Протокол контроля

Если согласовано, то изготовитель представляет заказчику протокол контроля, который должен включать как минимум следующую информацию:

- а) ссылку на настоящий стандарт;
- b) заключение о годности;
- с) любое отклонение от соглашения или согласованных процедур;
- d) обозначение продукта, марку стали и размеры;
- е) описание технологии контроля;
- f) использованный способ калибровки оборудования;
- g) описание настроечного образца и уровня приемки;
- h) дату испытания;
- і) данные оператора контроля.

Приложение А (обязательное)

Ограничение применения метода рассеяния магнитного потока

А.1 Основные положения

При использовании метода рассеяния магнитного потока объект контроля должен быть намагничен до состояния насыщения сильным внешним магнитным полем; цель этого намагничивания — появление рассеянного магнитного потока или его отклонение в месте дефекта.

В процессе контроля труб методом рассеяния магнитного потока, наибольшая чувствительность достигается на поверхности трубы рядом с магнитным преобразователем и уменьшается с увеличением глубины по причине уменьшения эффекта отклонения рассеянного магнитного потока от дефекта на внутренней поверхности по отношению к наружной поверхности. Сигнал, полученный от дефекта на внутренней поверхности, может быть меньше, чем от дефекта такого же размера на наружной поверхности.

В результате заказчик и изготовитель могут согласовать увеличение глубины внутреннего паза для уравнивания чувствительности с наружным пазом в соответствии с таблицей А.1.

Таблица А.1 — Максимальное отношение глубин внутреннего и наружного паза в зависимости от толщины стенки трубы

Толщина стенки трубы T , мм	Максимальное отношение глубин внутреннего и наружного паза для уровня прием		
	F2	F3/F4/F5	
8 < <i>T</i> ≤ 12	2,0	1,2	
12 < <i>T</i> ≤ 15	2,5	1,5	
15 < <i>T</i> ≤ 20	3,0	2,0	

А.2 Неподвижный или вращающийся магнитный преобразователь

При контроле с помощью неподвижного или вращающегося магнитного преобразователя используют один или более магнитных преобразователей, перемещающихся по винтовой траектории относительно поверхности трубы. При этом указанный способ выявляет продольные дефекты с минимальной длиной, зависящей от ширины преобразователя и шага винтовой траектории. Обычно поперечные дефекты не обнаруживаются.

А.3 Способ с множеством преобразователей

В этих способах контроля используют множество неподвижных магнитных преобразователей, окружающих трубу, которая при этом перемещается линейно. Таким образом, обнаруживаются преимущественно поперечные дефекты с минимальной длиной, зависящей от размера преобразователя вдоль окружности. Обычно продольные дефекты не обнаруживаются, за исключением случаев, когда они имеют существенную поперечную составляющую (являются наклонными).

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
ISO 9712	_	*
ISO 11484	IDT	ГОСТ ISO 11484—2022 «Изделия стальные. Система оценки работодателем квалификации персонала, осуществляющего неразрушающий контроль»

^{*} Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного международного стандарта.

Примечание — В настоящей таблице использовано следующее условное обозначение степени соответствия стандарта:

- IDT — идентичный стандарт.

УДК 621.774.08:620.179:006.354

MKC 23.040.10 77.040.20 77.140.75 IDT

Ключевые слова: трубы стальные, неразрушающий контроль, метод рассеяния магнитного потока, продольные дефекты, поперечные дефекты

Редактор М.В. Митрофанова Технический редактор В.Н. Прусакова Корректор И.А. Королева Компьютерная верстка А.Н. Золотаревой

Сдано в набор 18.05.2023. Подписано в печать 23.05.2023. Формат $60 \times 84\%$. Гарнитура Ариал. Усл. печ. л. 1,86. Уч.-изд. л. 1,64.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта