ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р 70728— 2023 (ИСО 19029:2016)

Доступный дизайн

МАЯКИ ЗВУКОВЫЕ В ОБЩЕСТВЕННЫХ МЕСТАХ

(ISO 19029:2016, MOD)

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Федеральным государственным бюджетным учреждением «Российский институт стандартизации» (ФГБУ «Институт стандартизации») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 381 «Технические средства и услуги для инвалидов и других маломобильных групп населения»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 17 апреля 2023 г. № 242-ст
- 4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 19029:2016 «Доступный дизайн. Звуковые маяки в общественных местах» (ISO 19029:2016 «Accessible design Auditory guiding signals in public facilities», MOD) путем изменения отдельных фраз (слов, значений показателей, ссылок), которые выделены в тексте курсивом с подчеркиванием сплошной горизонтальной линией

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.rst.gov.ru)

Содержание

1 Область применения
2 Термины и определения
3 Требования и рекомендации
Библиография

Предисловие к ИСО

Международная организация по стандартизации (ИСО) является всемирной федерацией национальных организаций по стандартизации (комитетов — членов ИСО). Разработка международных стандартов, как правило, осуществляется техническими комитетами ИСО. Каждый комитет-член, заинтересованный в деятельности, для которой был создан технический комитет, имеет право быть представленным в этом комитете. Международные правительственные и неправительственные организации, взаимодействующие с ИСО, также принимают участие в работе. ИСО работает в тесном сотрудничестве с Международной электротехнической комиссией (МЭК).

Процедуры, используемые для разработки настоящего стандарта, а также процедуры, предназначенные для его дальнейшего обслуживания, описаны в Директивах ИСО/МЭК, часть 1. В частности, должны быть указаны разные критерии утверждения, необходимые для различных типов документов ИСО. Настоящий стандарт был разработан в соответствии с правилами редактирования Директив ИСО/МЭК, часть 2 (см. www.iso.org/directives).

Некоторые элементы настоящего стандарта могут быть объектом патентных прав. Международная организация ИСО не может нести ответственность за идентификацию какого-либо одного или всех патентных прав. Подробная информация о любых патентных правах, идентифицированных в ходе разработки стандарта, будет указана в разделе «Введение» и/или в перечне полученных патентных деклараций ИСО (см. www.iso.org/patents).

Любой товарный знак, используемый в настоящем стандарте, представляет собой информацию, предоставленную для удобства пользователей, и не является ее подтверждением.

С целью разъяснения значения особых терминов и определений ИСО, связанных с оценкой соответствия, а также информации о соблюдении ИСО принципов ВТО в технических барьерах в торговле (ТБТ) переходите по ссылке (URL): Foreword — Supplementary information.

Настоящий стандарт был подготовлен Техническим комитетом ИСО/ТК 173 «Вспомогательные средства для людей с ограничениями жизнедеятельности», подкомитетом ПК 7 «Доступный дизайн».

Введение

Звуковые маяки в общественных местах для помощи при передвижении, определении местоположения (т. е. направления и расстояния), являются средством помощи для слепых и слабовидящих, передвигающихся и путешествующих самостоятельно.

В настоящем стандарте приведены рекомендации по звуковым характеристикам и спецификациям звуковых маяков в общественных учреждениях для помощи в передвижении слепых и слабовидящих. Установленные звуковые характеристики и технические характеристики звукового оборудования позволяют пользователю правильно определить источник звука даже в шумной обстановке.

Настоящий стандарт полезен для звукорежиссеров, устанавливающих звуковые маяки в общественных местах, и дизайнеров, проектирующих общественные помещения с учетом возможностей и потребностей максимального числа людей, вне зависимости от их физического состояния, возраста или других факторов.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Доступный дизайн

МАЯКИ ЗВУКОВЫЕ В ОБЩЕСТВЕННЫХ МЕСТАХ

Accessible design. Auditory guiding signals in public facilities

Дата введения — 2024—01—01

1 Область применения

Настоящий стандарт устанавливает характеристики звуковых маяков для слепых и слабовидящих, чтобы предоставить информацию о местоположении определенных объектов инфраструктуры. К объектам инфраструктуры относятся железнодорожные вокзалы, аэропорты, порты, автовокзалы, правительственные учреждения, библиотеки, общественные центры, парки, школы, больницы, театры, крупные супермаркеты, а также туалеты, лестницы и т. д.

Пример — В качестве звукового маяка может послужить звуковой сигнал из билетной кассы железнодорожного вокзала. Пешеходы, включая слепых и слабовидящих, могут узнать местоположение билетной кассы, определяя местоположение (источник) звукового сигнала.

Примечание — Звуковые маяки также пригодны для зрячих людей.

Настоящий стандарт также определяет некоторые характеристики и способы использования оборудования, которое применяется в звуковых маяках.

Настоящий стандарт не устанавливает характеристики предупреждений, таких как звуковые сигналы тревоги или аварийные сигналы.

Примечание — Звуковые сигналы, предупреждающие об опасности, рассматриваются в ИСО 7731.

Настоящий стандарт не устанавливает характеристики звуковых маяков, исходящих от персонального мобильного оборудования, которым пользуются слепые и слабовидящие.

2 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

- 2.1 **звуковой маяк** (auditory guiding signal): Звуковой сигнал, который предоставляет информацию о местоположении определенных объектов инфраструктуры.
- 2.2 **гармонический тон** (harmonic tone): Звук, состоящий из основной частотной составляющей и ее кратных частотных составляющих.

Пример — Звуки с периодической волновой формой, такие как музыкальный тон, треугольный волновой звук, прямоугольный волновой звук и зубчатый волновой звук.

- 2.3 **звуковой указатель** (sound signal generator): Оборудование, генерирующее сигнал, подаваемый на источник звуковых сигналов.
 - 2.4 **цель** (goal): Точка, от которой транслируется сигнал звукового маяка.

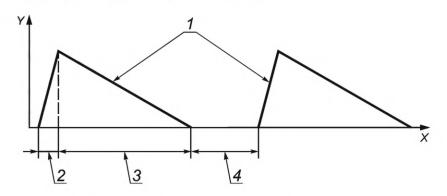
Пример — Вход на объект, шлагбаум на вокзале, туалет, начало лестницы и т. д.

2.5 **угол распространения** (emission angle): Угол, при котором затухание звука составляет менее 10 дБ от оси излучения.

3 Требования и рекомендации

3.1 Характеристики звука

3.1.1 Рабочие параметры


Продолжительность нарастающей части сигнала звуковых маяков должна быть не более 5 мс.

Примечания

1 Нарастающая часть длительностью не более 5 мс позволяет слушателю легко определить направление звука.

2 Часть спада не влияет на локализацию звука.

Интервал между сигналами должен быть не более 2 с.

1 — сигнал; 2 — подъем; 3 — спад; 4 — интервал; X — время; Y — амплитуда

Рисунок 1 — Огибающая сигнала

3.1.2 Частотная составляющая

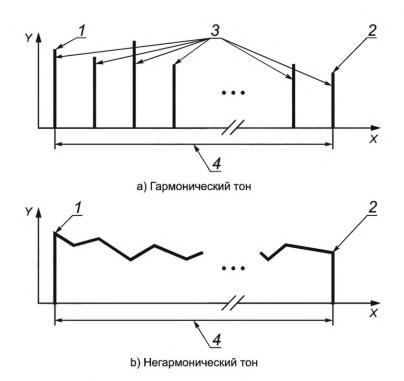
Самая низкая частотная составляющая не должна превышать 1 кГц ± 10 %.

Примечание — Если звук представляет собой гармонический тон, самая низкая частота равна основной частоте.

Самая высокая частотная составляющая не должна быть ниже 8 кГц.

Примечание — Самая высокая частотная составляющая не ниже 8 кГц позволяет слушателю легко определять направление звука.

Если звук является гармоническим тоном, он должен иметь гармоники всех порядков в своей полосе частот.


Звук, имеющий только одну частотную составляющую, не должен использоваться в качестве сигнала звуковых маяков.

Примечание — Если звук имеет узкие или плохие частотные составляющие, он не соответствует требованиям.

Пример — Звук зубчатой волны имеет все гармоники в своей полосе частот.

Если звук не является гармоническим тоном, он должен иметь как можно больше частотных составляющих в своей полосе частот и должен иметь такой спектр, чтобы пользователь мог отличить его от окружающего шума.

Пример — К негармоническим звукам для звуковых маяков относятся сочетания гармонических тонов, импульсный звук и т. д.

1 — самая низкочастотная составляющая; 2 — самая высокочастотная составляющая; 3 — гармоники; 4 — ширина полосы частот; X — частота; Y — мощность

Рисунок 2 — Частотные составляющие

3.2 Оборудование

3.2.1 Звуковой указатель

Звуковой указатель должен быть способен генерировать передачу сигнала звукового маяка, имеющего частотные составляющие, указанные в 3.1.2.

Если звуковой сигнал записывается, воспроизводится и/или передается в цифровом виде, разрешение дискретизации должно быть не менее 8 бит и рекомендуется не менее 16 бит.

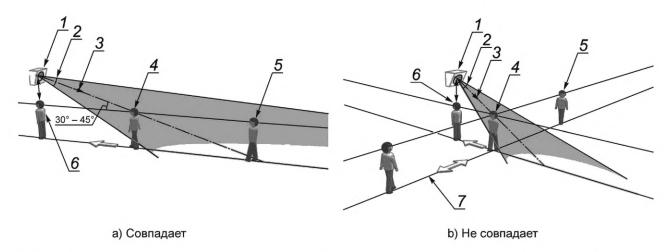
Если звуковой сигнал записывается в виде сжатых данных, степень сжатия не должна быть настолько высокой, чтобы ухудшать качество звука.

3.2.2 Источник звуковых сигналов

Источник звуковых сигналов <u>(далее — ИЗС)</u> должен издавать звуковой сигнал, имеющий частотную составляющую, указанную в 3.1.2.

Пример — Обычный полнодиапазонный <u>ИЗС</u> диаметром приблизительно 10 см, установленный в соответствующем корпусе, имеет практически плоские частотные характеристики в диапазоне от 100 Гц до 10 кГц.

3.2.3 Расположение источников звуковых сигналов


<u>ИЗС</u> располагают по возможности на одной вертикали с целью, при этом распространение звука должно быть обращено к основному потоку пользователей.

Примеры

- 1 ИЗС обращен к точке пересечения основного потока пользователей и пути к цели.
- 2 ИЗС подвешивают к потолку и располагают над целью на высоте 3 м от пола.
- 3 ИЗС устанавливают в/на короткой вертикальной стойке на полу на высоте 0,8 м от пола.

Препятствия, мешающие распространению звука, не должны находиться на оси распространения звука и в пределах 3 м от <u>ИЗС</u> по углу распространения звука.

Пример — К препятствиям, мешающим распространению звука, относятся вывески, стены, столбы и т. п.

1 — источник звуковых сигналов; 2 — угол распространения; 3 — ось распространения; 4 — точка прослушивания; 5 — пользователь; 6 — цель; 7 — основной поток пользователей

Рисунок 3 — Расположение $\underline{\textit{ИЗС}}$ в случаях, когда основной поток пользователей и ход к цели совпадают (a) и не совпадают (b)

3.3 Окружающая звуковая среда

3.3.1 Соотношение «сигнал/шум»

Соотношение «сигнал/шум» должно быть <u>в пределах от 5 дБ до 10 дБ на расстоянии 1 м от ИЗС.</u> Для измерения соотношения «сигнал/шум» определяют уровень звукового давления сигнала и уровень звукового давления окружающего шума.

Для сигнала следует использовать максимальный уровень звукового давления со стандартной частотной характеристикой «A» и стандартной экспоненциальной временной характеристикой «FAST (F)».

Для окружающего шума следует использовать средний по времени уровень звукового давления со стандартной частотной характеристикой «А».

3.3.2 Звуковые маяки для различных целей

Если для разных целей звуковые ориентиры слышны в одном месте, то они не должны звучать одновременно.

3.3.3 Отражение и реверберация звука

Отражение звука и реверберация должны быть сведены к минимуму.

Примечания

- 1 Если отражение звука и/или реверберация мешают прослушиванию звуковых сигналов, на потолке и/или стене размещают звукопоглотители.
 - 2 Рекомендуется спроектировать пространство с учетом звукового окружения.

3.3.4 Функционирование звуковых маяков

Время работы звуковых маяков должно устанавливаться в зависимости от места установки и типа цели.

Примечание — Может быть предусмотрена возможность управления звуковыми маяками.

Целесообразно, чтобы <u>ИЗС</u> или его корпус имели вид/обозначение, указывающее, что оборудование предназначено для передачи сигналов звуковых маяков для помощи при передвижении незрячим и слабовидящим.

Библиография

- [1] ISO 7240-16, Fire detection and alarm systems Part 16: Sound system control and indicating equipment (Системы обнаружения огня и системы тревожной сигнализации. Часть 16. Контрольно-измерительные приборы и индикаторы для аудиосистем)
- [2] ISO 11429, Ergonomics System of auditory and visual danger information signals (Эргономика. Система звуковых и визуальных сигналов опасности и информационных сигналов)
- [3] ISO 15006, Road vehicles Ergonomic aspects of transport information and control systems Specifications for in-vehicle auditory presentation (Транспорт дорожный. Эргономические аспекты систем транспортной информации и управления. Технические требования и процедуры соответствия для звукового представления в транспортном средстве)
- [4] ISO/TR 16352, Road vehicles Ergonomic aspects of invehicle presentation for transport information and control systems Warning systems (Транспорт дорожный. Эргономические аспекты представления транспортной информации и систем управления внутри транспортного средства. Системы оповещения)
- [5] ISO 11064-6, Ergonomic design of control centres Part 6: Environmental requirements for control centres (Эргономическое проектирование центров управления. Часть 6. Требования к состоянию окружающей среды для центров управления)
- [6] ISO 23600, Assistive products for persons with vision impairments and persons with vision and hearing impairments Acoustic and tactile signals for pedestrian traffic lights (Вспомогательные технические средства для лиц с нарушением функций зрения и лиц с нарушением функций зрения и слуха. Звуковые и тактильные сигналы дорожных светофоров)
- [7] IEC 60073 Ed. 6.0:2002, (b) Basic and safety principles for man-machine interface, marking and identification Coding principles for indicators and actuators (Основополагающие принципы и принципы безопасности для интерфейса человек—машина, маркировка и идентификация. Принципы кодирования для индикаторов и пускателей)
- [8] IEC 60268-5, Sound system equipment Part 5: Loudspeakers (Оборудование звуковых систем. Часть 5. Гром-коговорители)
- [9] MLIT/Addendum to the «Guidelines to Improve Barrier-Free Access for Public Transport Passenger Facilities», 2002
- [10] Blauert J. Spatial Hearing. The MIT Press, Cambridge, revised edition, 1997

УДК 615.418.3.001.4:006.354

OKC 13.180 11.180.15

Ключевые слова: доступный дизайн, звуковые маяки, характеристики звука, слепые и слабовидящие

Редактор *Е.В. Якубова*Технический редактор *В.Н. Прусакова*Корректор *Р.А. Ментова*Компьютерная верстка *А.Н. Золотаревой*

Сдано в набор 19.04.2023. Подписано в печать 20.04.2023. Формат $60\times84\%$. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 1,12.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта