МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СПЛАВЫ ЖАРОПРОЧНЫЕ НА НИКЕЛЕВОЙ ОСНОВЕ

Методы определения висмута

ΓΟCT 24018.4-80

Nickel — based fireresistant alloys. Methods for the determination of bismuth

MKC 77.120.40 OKCTY 0809

Дата введения 01.07.81

Настоящий стандарт устанавливает фотометрический метод определения висмута (при массовых долях от 0,0005 % до 0,010 %) и непламенный атомно-абсорбционный метод определения висмута (при массовых долях от 0,0002 % до 0,01 %).

(Измененная редакция, Изм. № 2).

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методу анализа — по ГОСТ 24018.0.

А. Фотометрический метод определения висмута

Сущность метода

Метод основан на образовании в среде серной кислоты 1 моль/дм³ окрашенного в желтый цвет комплексного соединения висмута с йодистым калием состава К (BiI₄). Висмут предварительно отделяют от основных компонентов сплава осаждением в виде сульфида тиоацетамидом в аммиачном растворе (pH 7,5) в присутствии винной кислоты в качестве комплексообразующего вещества.

(Введен дополнительно, Изм. № 2).

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Спектрофотометр или фотоэлектроколориметр.

рН-метр.

Термометр.

Кислота соляная по ГОСТ 3118, ГОСТ 14261 и разбавленная 1:1 и 1:100.

Кислота азотная по ГОСТ 4461, ГОСТ 11125 и разбавленная 1:1.

Смесь соляной и азотной кислот: к 150 см³ соляной кислоты добавляют 50 см³ азотной кислоты, перемешивают; и разбавленная 1:1, готовят непосредственно перед использованием.

Кислота серная по ГОСТ 4204, ГОСТ 14262.

Аммиак водный по ГОСТ 3760, ГОСТ 24147 и разбавленный 1:200.

Кислота винная по ГОСТ 5817, раствор с массовой концентрацией 50 г/см³, (г/дм³).

Аммоний надсернокислый по ГОСТ 20478, раствор с массовой концентрацией 25 г/см³, (г/дм³).

Серебро азотнокислое по ГОСТ 1277, раствор с массовой концентрацией 0,1 г/см3, (г/дм3).

Тиоацетамил, водный раствор с массовой концентрацией 2 г/см3, (г/дм3).

Квасцы алюмокалиевые по ГОСТ 4329, раствор с массовой концентрацией 1 г/см³, (г/дм³).

Калий йодистый по ГОСТ 4232, раствор с массовой концентрацией 10 г/см3, (г/дм3).

Тиомочевина по ГОСТ 6344, раствор с массовой концентрацией 2 г/см³, (г/дм³).

Универсальная индикаторная бумага, pH 1—10.

Никель марки Н0 по ГОСТ 849.

Никелевый порошок по ГОСТ 9722.

Медь марки М00бк по ГОСТ 859.

Издание официальное

Перепечатка воспрещена

C. 2 FOCT 24018.4-80

Медь азотнокислая, раствор с массовой концентрацией 1 г/см³, (г/дм³):

1 г металлической меди растворяют при нагревании в 15—20 см³ азотной кислоты (1:1). Раствор охлаждают, переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

Висмут марок Ви0; Ви00; Ви000; Ви0000 по ГОСТ 10928.

Стандартные растворы висмута.

Раствор A: 0,1 г висмута растворяют в 30 см³ азотной кислоты (1:1) при нагревании, охлаждают, приливают 10 см³ серной кислоты, выпаривают до начала выделения паров серной кислоты и охлаждают. Раствор переносят в мерную колбу вместимостью 1 дм³, охлаждают, доливают до метки водой и перемешивают.

1 см³ стандартного раствора А содержит 0,0001 г висмута.

Раствор Б: 10 см³ раствора А помещают в мерную колбу вместимостью 100 см³, приливают 2 см³ серной кислоты, охлаждают, доливают до метки водой и перемешивают.

1 см³ стандартного раствора Б содержит 0,00001 г висмута.

(Измененная редакция, Изм. № 1, 2).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Массу навески сплава: 1 г при массовой доле висмута от 0,0005 % до 0,005 %; 0,5 г при массовой доле висмута свыше 0,005 % до 0,010 % помещают в стакан (или колбу) вместимостью 250—300 см³, приливают 30 см³ смеси соляной и азотной кислот, накрывают часовым стеклом и растворяют при нагревании. Раствор выпаривают до объема приблизительно 10 см³. Добавляют 30 см³ воды, 15—20 см³ раствора винной кислоты, 1 см³ раствора азотнокислой меди и нагревают в течение 5 мин. Раствор охлаждают, приливают 20—25 см³ раствора аммиака и снова нагревают в течение 5—8 мин. Устанавливают рН 7,5 раствором соляной кислоты (1:1), используя рН-метр. Разбавляют раствор водой до приблизительно 150 см³, нагревают до 85 °C — 90 °C, приливают 10 см³ раствора тиоацетамида и выдерживают 10 мин при этой же температуре. Вновь приливают 10 см³ раствора тиоацетамида, оставляют раствор с осадком на 2 ч при 40 °C — 50 °C и охлаждают. Осадок сульфидов отфильтровывают на два фильтра средней плотности (белая лента), промывают 7—8 раз холодной водой. Фильтрат отбрасывают. Осадок на фильтре растворяют 40—50 см³ (порциями по 10 см³) горячей смеси соляной и азотной кислот (1:1) и промывают фильтр 2—3 раза горячей водой, собирая фильтрат и промывные воды в стакан, в котором проводилось осаждение.

К полученному раствору прибавляют 2 см³ серной кислоты, раствор выпаривают до начала выделения паров серной кислоты и охлаждают. Обмывают стенки стакана водой и вновь выпаривают до начала выделения паров серной кислоты. Соли растворяют в 50 см³ воды, прибавляют 5 см³ раствора азотнокислого серебра, 10 см³ раствора надсернокислого аммония, нагревают в течение 3—5 мин, приливают 10 см³ раствора алюмокалиевых квасцов и раствор аммиака до слабого запаха. Содержимое стакана нагревают в течение 3—5 мин, осадок отфильтровывают на фильтр средней плотности (белая лента) и промывают 3—4 раза горячим раствором аммиака (1:200). Фильтрат отбрасывают. Осадок растворяют в 30 см³ горячей смеси соляной и азотной кислот (1:1), собирая раствор в стакан, в котором проводилось осаждение. Затем приливают 2 см³ серной кислоты, выпаривают раствор до начала выделения паров серной кислоты и охлаждают. Обмывают стенки стакана водой, снова выпаривают раствор до начала выделения паров серной кислоты и охлаждают. Соли растворяют в 10—15 см³ воды, раствор переносят в мерную колбу вместимостью 50 см³, разбавляют водой до 30—35 см³, приливают 10 см³ раствора йодистого калия и перемешивают. Раствор оставляют на 2—3 мин, добавляют 2,5 см³ раствора тиомочевины порциями в 2—3 приема для восстановления свободного йода, доливают до метки водой и перемешивают.

Оптическую плотность раствора измеряют на спектрофотометре при $\lambda_{\rm max}=337$ нм или на фотоэлектроколориметре со светофильтром, имеющим область пропускания в интервале длин волн от 430 до 480 нм. В качестве раствора сравнения используют воду.

Содержание висмута находят по градуировочному графику с учетом поправки контрольного опыта.

3.2. Построение градуировочного графика

В пять стаканов (или колб) вместимостью 250—300 см³ помещают по 0,5 г металлического никеля или никелевого порошка. В четыре стакана (или колбы) приливают последовательно 0,5; 1,0; 3,0; 5,0 см³ стандартного раствора Б висмута. Пятый стакан (или колба) служит для проведения контрольного опыта. Во все стаканы добавляют по 30 см³ смеси соляной и азотной кислот. Далее

поступают как указано в п. 3.1, из значения оптической плотности анализируемых растворов вычитают значение оптической плотности контрольного опыта.

По найденным величинам оптической плотности растворов и соответствующим им массам висмута строят градуировочный график.

3.1, 3.2. (Измененная редакция, Изм. № 1, 2).

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю висмута (Х) в процентах вычисляют по формуле

$$X = \frac{m \cdot 100}{m_{\rm f}} \,,$$

где m — масса висмута, найденная по градуировочному графику, г;

т. — масса навески сплава, г.

4.2. Абсолютные расхождения результатов параллельных определений не должны превышать (при доверительной вероятности 0,95) допускаемых значений, указанных в табл. 2.

(Измененная редакция, Изм. № 2).

Б. Непламенный атомно-абсорбционный метод определения висмута

Сущность метода

Метод основан на измерении поглощения излучения свободными атомами висмута при длине волны 223,1 или 306,8 нм, образующимися при введении анализируемого раствора в электротермический атомизатор. Висмут предварительно отделяют от основных компонентов сплава осаждением в виде сульфида тиоацетамидом в аммиачном растворе (рН 7,5) в присутствии винной кислоты в качестве комплексообразующего вещества и сульфида меди в качестве коллектора.

5. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Атомно-абсорбционный спектрофотометр с электротермическим атомизатором.

Лампа для определения висмута.

Аргон высокой чистоты по ГОСТ 10157 или смесь аргона с 5 % водорода.

рН-метр.

Термометр.

Кислота соляная по ГОСТ 3118, ГОСТ 14261 и разбавленная 1:1.

Кислота азотная по ГОСТ 4461, ГОСТ 11125 и разбавленная 1:1.

Смесь соляной и азотной кислот: к 150 см³ соляной кислоты добавляют 50 см³ азотной кислоты, перемешивают; и разбавленная 1:1. Смесь кислот готовят непосредственно перед использованием.

Кислота винная по ГОСТ 5817, раствор 500 г/дм3.

Аммиак водный по ГОСТ 3760.

Тиоацетамид, раствор 20 г/дм³.

Медь марки М00бк по ГОСТ 859.

Медь азотнокислая, раствор 0,01 г/см³ 1 г металлической меди растворяют при нагревании в 15—20 см³ азотной кислоты (1:1).

Раствор охлаждают, переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

Никель марки Н0 по ГОСТ 849.

Никелевый порошок по ГОСТ 9722.

Висмут марок Ви0, Ви00, Ви000, Ви0000 по ГОСТ 10928.

Стандартные растворы висмута:

Раствор А: 0,1 г висмута растворяют в 30 см³ азотной кислоты при нагревании, раствор переносят в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают. 1 см³ стандартного раствора А содержит 0,0001 г висмута.

Раствор Б: 10 см³ раствора А помещают в мерную колбу вместимостью 100 см³, добавляют 10 см³ азотной кислоты, доливают до метки водой и перемешивают.

1 см3 стандартного раствора Б содержит 0,00001 г висмута.

C. 4 FOCT 24018.4-80

Раствор В: 10 см³ раствора Б помещают в мерную колбу вместимостью 100 см³, добавляют 10 см³ азотной кислоты, доливают до метки водой и перемешивают. Раствор готовят непосредственно перед использованием.

1 см³ стандартного раствора В содержит 0,000001 г висмута.

6. ПРОВЕДЕНИЕ АНАЛИЗА

6.1. Навеску сплава массой (табл. 1) помещают в стакан или колбу вместимостью 250—300 см³, приливают 20—30 см³ смеси соляной и азотной кислот, накрывают часовым стеклом и растворяют навеску при нагревании.

Таблица	
Массовая доля висмута, %	Масса навески, г
От 0,0002 до 0,002 включ.	0,5
CB. 0,002 * 0,005 *	0,2
* 0,005 * 0,01 *	0,1

Раствор выпаривают до объема приблизительно 10 см³. Добавляют 30 см³ воды, 15—20 см³ раствора винной кислоты, 1 см³ раствора азотнокислой меди и нагревают в течение 10 мин.

Раствор охлаждают, добавляют 20—25 см³ аммиака и снова нагревают в течение 5—8 мин. Устанавливают рН 7,5 раствором соляной кислоты (1:1), используя рН-метр. Рас-

твор разбавляют водой до объема приблизительно 150 см^3 , нагревают до 85 °C - 90 °C, приливают 10 см^3 раствора тиоацетамида, выдерживают 10 мин при этой же температуре. Вновь приливают 10 см^3 раствора тиоацетамида, оставляют раствор с осадком на 2 ч при 40 °C - 50 °C и охлаждают.

Осадок сульфидов отфильтровывают на два фильтра средней плотности (белая лента), промывают 7—8 раз холодной водой. Фильтрат отбрасывают. Осадок на фильтре растворяют в 40—50 см³ (порциями по 10 см³) горячей смеси соляной и азотной кислот, разбавленной (1:1) и промывают фильтр 2—3 раза горячей водой, собирая фильтрат и промывные воды в стакан (или колбу), где производилось осаждение. Раствор выпаривают досуха, соли растворяют в 5 см³ азотной кислоты и снова выпаривают досуха. Соли растворяют в 10 см³ раствора азотной кислоты (1:1) при нагревании, накрывая стакан или колбу стеклом, охлаждают. Раствор переносят в мерную колбу вместимостью 50 см³, доливают водой до метки, перемешивают.

Отбирают микропипеткой аликвотную часть раствора, равную 20 мкдм³, вводят в электротермический атомизатор и фиксируют величину поглощения излучения с помощью регистрирующего устройства. Для измерения отбирают не менее трех аликвотных частей раствора.

Массу висмута находят по градуировочному графику с учетом поправки контрольного опыта.

6.2. Подготовка прибора к измерению

Включение прибора, настройку спектрофотометра на резонансное излучение, регулировку блока управления, блока атомизации проводят согласно инструкции, прилагаемой к прибору.

Условия определения висмута:

- аналитическая линия (λ) 223,1 нм,
 - 306,8 нм:
- спектральная ширина щели 0,2 нм;
- время высушивания при 100 °C 10 с;
- время разложения при 560 °C 15 с;
- время атомизации при 1930 °C 10 с.

Определение висмута проводят в полном потоке инертного газа с отключением его на стадии атомизации.

6.3. Построение градуировочного графика

В семь стаканов (или колб) вместимостью 250—300 см³ помещают навески металлического никеля или никелевого порошка в соответствии с табл. 1.

В шесть стаканов (или колб) приливают последовательно 1, 2, 4, 6, 8, 10 см³ стандартного раствора В висмута. Седьмой стакан (или колба) служит для проведения контрольного опыта.

Во все стаканы приливают по 20—30 см³ смеси соляной и азотной кислот, накрывают часовыми стеклами и растворяют навески при нагревании. Растворы выпаривают до объема приблизительно 10 см³, добавляют по 30 см³ воды, по 20 см³ раствора винной кислоты и нагревают в течение 10 мин. Далее поступают, как указано в пп. 5.3.1 и 5.3.2.

Из значения оптической плотности анализируемых растворов вычитают значение оптической плотности контрольного опыта. По найденным значениям оптической плотности и соответствующим им массам висмута строят градуировочный график.

7. ОБРАБОТКА РЕЗУЛЬТАТОВ

7.1. Массовую долю висмута (Х) в процентах вычисляют по формуле

$$X = \frac{m \cdot 100}{m_1} \,,$$

где m — масса висмута, найденная по градуировочному графику, г;

т — масса навески сплава, г.

7.2. Абсолютные расхождения результатов параплельных определений не должны превышать (при доверительной вероятности 0,95) допускаемых значений, указанных в табл. 2.

Таблица 2

Массовая доля висмута, %	Абсолютное допускаемое расхождение, %	
От 0,0002 до 0,0005 включ.	0,0002	
Св. 0,0005 » 0,001 »	0,0005	
» 0,001 » 0,002 »	0,001	
* 0,002 * 0,005 *	0,002	
» 0.005 » 0.01 »	0,003	

Раздел Б. (Введен дополнительно, Изм. № 2).

С. 6 ГОСТ 24018.4-80

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством металлургии СССР
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 28.02.80 № 958
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта	Обозначение НТД, на который дана ссылка	Номер пункта, подпункта
ΓΟCT 84997	2, 5	ГОСТ 6344—73	2
ΓΟCT 859-2001	2, 5	ГОСТ 9722—97	2. 5
ΓΟCT 1277—75	2	ГОСТ 10157-79	5
ΓΟCT 3118-77	2, 5	ГОСТ 10928-90	2, 5
ΓΟCT 3760—79	2, 5	ΓΟCT 11125-84	2, 5.2
ГОСТ 420477	2	ΓΟCT 14261-77	2, 5.2
ΓΟCT 423274	2	ΓΟCT 14262-78	2
ΓΟCT 4329—77	2	ГОСТ 20478-75	2
ΓΟCT 4461-77	2, 5	ГОСТ 24018.0-90	1.1
ΓΟCT 5817—77	2, 5	ΓΟCT 24147-80	2

- Ограничение срока действия снято по протоколу № 7—95 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11—95)
- ИЗДАНИЕ (август 2004 г.) с Изменениями № 1, 2, утвержденными в декабре 1985 г., декабре 1990 г. (ИУС 4—86, 3—91)