ТРУБОПРОВОДЫ МОРСКОЙ ВОДЫ СТАЛЬНЫЕ ОЦИНКОВАННЫЕ

РАСЧЕТ ДОЛГОВЕЧНОСТИ ЭЛЕМЕНТОВ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ТРУБОПРОВОДЫ МОРСКОЙ ВОДЫ СТАЛЬНЫЕ ОЦИНКОВАННЫЕ

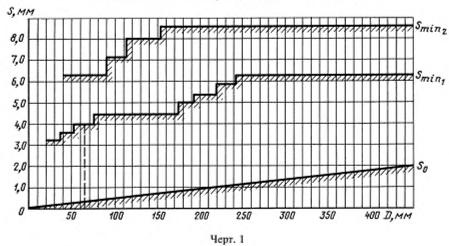
Расчет полговечности элементов

ГОСТ 24723—81

Sea water pipes steel zinc-plated, Elements longevity calculation

МКС 03.120.01 23.040.10 ОКСТУ 2903

Дата введения 01.07.81


Настоящий стандарт устанавливает требования к долговечности элементов судовых стальных оцинкованных трубопроводов, транспортирующих холодную и горячую морскую воду, и методику определения и обеспечения показателей долговечности на стадии проектирования.

(Измененная редакция, Изм. № 1).

1. ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1. Трубопроводы должны изготовляться из углеродистой стали с массовой долей углерода не более 0,18 %, кремния — не более 0,37 % и оцинковываться горячим способом.
- 1.2. Номинальная толщина стенки стальных труб S_{re} должна быть не менее величины S_{\min_i} (черт. 1). Для труб, проходящих через балластные цистерны, толщина стенок должна быть не менее величины S_{\min_i} .

Выбор толщины стенки трубы в зависимости от диаметра

Условные обозначения, принятые в стандарте, приведены в приложении 1.

Издание официальное

Перепечатка воспрещена

При выборе толщины стенки стальной трубы учитывается уменьшение ее в период эксплуатации за счет коррозии до величины S_0 (см. черт. 1).

Величину надбавки на коррозию $\Delta S_{\rm Fe}$ определяют по формуле

$$\Delta S_{Fe} = S_{Fe} - S_0. \qquad (1)$$

1.3. Для выполнения требований по долговечности определение значений ΔS_{Fe} и S_{Zn} необходимо проводить в соответствии с методикой настоящего стандарта.

(Измененная редакция, Изм. № 1).

2. КАТЕГОРИИ ЭЛЕМЕНТОВ СУДОВЫХ ТРУБОПРОВОДОВ

 Элементы трубопроводов в зависимости от конструктивно-технологического исполнения подразделяют на три категории, указанные в табл. 1.

Таблица 1

Категория здементов	Наименование элементов		
1	Труба прямая с переходом по диаметру $ \text{при } \frac{d_1 - d_2}{l} \leq 0,2 $ Стакан переборочный		
П	Труба с погибом радиусом не менее 2,5 наружных диаметров* Колено литое, кованое или штампованное Тройник литой, кованый или штампованный Труба с погибом радиусом, равным или более 2 наружных диаметров, сваренная из секторов Труба прямая длиной менее 2,5 наружных диаметров за запорной арматурой, насосом, теплообменным аппаратом или за дроссельной шайбой Труба прямая с переходом по диаметру $ \text{при } \frac{d_1 - d_2}{l} \leq 0,5 $		
ш	Труба с отростком Труба с погибом радиусом менее 2 наружных диаметров, сваренная из секторов		

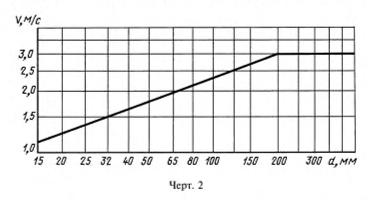
Если в результате гибки трубы не происходит утонение стенки, то радиус погиба может быть менее 2,5 наружных диаметров,

- 2.2. Для предотвращения контактной коррозии необходимо:
- применять арматуру с корпусами из чугуна или стали;
- обеспечить электрической изоляцией участки стальных оцинкованных трубопроводов от примыкающих к ним механизмов, теплообменных аппаратов и арматуры из сплавов на медной основе:
- применять элементы трубопроводов с внутренней футеровкой из пластмасс (без электрической изоляции).

3. ПОКАЗАТЕЛИ И ТРЕБОВАНИЯ К ДОЛГОВЕЧНОСТИ ТРУБОПРОВОДОВ

- Долговечность трубопроводов морской воды определяется долговечностью входящих в их состав элементов.
 - 3.2. При оценке долговечности элементов трубопроводов определяют:
 - показатель безотказности среднюю наработку до отказа T₁, лет;
 - 2) показатель долговечности средний срок службы до списания T_2 , лет.
- 3.3. Под отказом элемента трубопроводов понимают нарушение его работоспособности. Нарушение работоспособности может быть вызвано общим или местным утонением стенки трубы до

C. 3 FOCT 24723-81


значения S_0 , при котором напряжение в элементе трубопровода под действием внутреннего давления достигает предела текучести.

- Под средней наработкой до отказа понимают математическое ожидание наработки элемента до первого отказа.
- 3.5. Под средним сроком службы до списания понимают средний срок службы элемента трубопровода от начала эксплуатации до его списания, обусловленного появлением отказа.
- При расчете показателей безотказности и долговечности определяющим фактором является коррозионная стойкость элементов трубопроводов в морской воде.
 - 3.7. Требования к долговечности:
 - для трубопроводов холодной морской воды T₂ не менее 10 лет;
 - для трубопроводов горячей морской воды T₂ не менее пяти лет.
- 3.8. Если в результате расчета T_2 будет меньше 10 лет, допускается предусматривать ремонт или замену отдельных элементов трубопровода через пять лет эксплуатации ($T_2 = 5$ лет).
- Размер труб и толщина цинкового покрытия должны быть указаны в нормативно-технической документации на системы.
 - Разд. 3. (Измененная редакция, Изм. № 1).

4. ХАРАКТЕРИСТИКА УСЛОВИЙ ЭКСПЛУАТАЦИИ

- 4.1. Условиями эксплуатации трубопроводов являются:
- скорость потока морской воды;
- температура морской воды;
- коэффициенты, характеризующие условия эксплуатации.
- 4.2. Расчетная скорость потока морской воды в стальных оцинкованных трубах не должна превышать значений, указанных на черт. 2.

Максимальная расчетная скорость потока морской воды в стальных оцинкованных трубах

- 4.3. В зависимости от температуры транспортируемой среды трубопроводы делятся на:
- трубопроводы холодной морской воды с температурой не более 313 К (40 °C);
- трубопроводы горячей морской воды с температурой свыше 313 К (40 °C).
- 4.4. Коэффициентами, характеризующими условия эксплуатации, являются: коэффициент интенсивности эксплуатации K_1 и коэффициент технического использования K_2 .
- 4.4.1. Под K_1 понимается отношение времени нахождения внутренней поверхности труб в потоке морской воды за определенный период эксплуатации к суммарному времени нахождения труб в потоке и в неподвижной морской воде за тот же период эксплуатации. Значения коэффициента K_1 должны приниматься в соответствии с табл. 2.

В обоснованных случаях допускается принимать другие значения коэффициента K_1 в зависимости от конкретного типа судна и особенностей эксплуатации систем.

Таблина 2

Наяменование системы	K ₁
Креновая	0,20
Водяных завес	0,10
Спринклерная	0,10
Балластная	0.30
Дифферентная	0,20
Сточная	0,70
Осушительная	0,40
Противопожарная водяная	0,40
Бытовой морской воды	0.50
Производственной морской воды промысловых судов	0,60
Охлаждения судового оборудования	0,75
Охлаждения морской водой энергетических установок	0.75

 Π р и м е ч а н и е. Для противопожарной водяной системы, эксплуатируемой только для тушения пожара, $K_1 = 0.10$.

4.4.2. Под K_2 понимается отношение времени нахождения труб в потоке и в неподвижной морской воде за некоторый период эксплуатации к суммарному времени нахождения труб в потоке, неподвижной морской воде, сухом и демонтированном состоянии за тот же период эксплуатации. Для систем морской воды значение K, принимается равным 0,90.

5. МЕТОДИКА ОПРЕДЕЛЕНИЯ НАДЕЖНОСТИ ЭЛЕМЕНТОВ ТРУБОПРОВОДОВ

 Для определения показателей долговечности следует оценить условия эксплуатации проектируемого трубопровода.

Условия эксплуатации оценивают в следующем порядке:

- устанавливают основной режим работы проектируемой системы;
- определяют значение коэффициента K₁ (см. п. 4.4.1);
- выполняют гидравлический расчет трубопровода на основном режиме с учетом ограничения скорости потока морской воды в соответствии с черт. 2.

(Измененная редакция, Изм. № 1).

- Принятая толщина стенки трубы должна удовлетворять требованию п. 1.2.
- 5.3. С целью выявления элементов различных категорий (см. табл. 1) проводят анализ схемы проектируемого трубопровода. Определение показателей долговечности T_1 и T_2 следует проводить для элементов III, II и затем I категорий.

(Измененная редакция, Изм. № 1).

 Среднюю наработку до отказа элементов стального оцинкованного трубопровода определяют по формуле

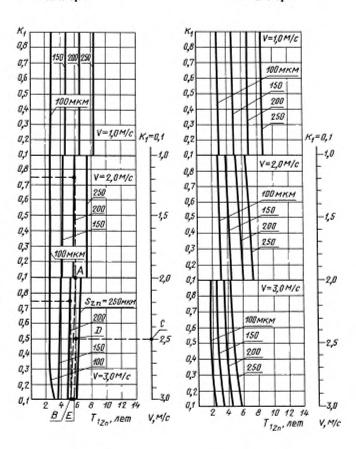
$$T_1 = T_{1Z_0} + T_{1Fe}. (2)$$

5.5. Средний срок службы до списания элементов определяют по формуле

$$T_2 = \frac{T_1}{K_2}.$$
 (3)

5.6. При определении долговечности элементов решают задачи:

(Измененная редакция, Изм. № 1).


5.6.1. По заданным условиям эксплуатации (скорости потока морской воды, коэффициенту интенсивности эксплуатации), назначению трубопровода (горячей или холодной морской воды), принятой толщине стенки стальной трубы S_{Fe} и цинкового покрытия S_{Za} следует определить среднюю наработку до отказа T_1 , а затем по формуле (3) — средний срок службы до списания T_2 .

Среднюю наработку до отказа T_1 элементов трубопровода в холодной и горячей морской воде при скорости потока от 1,0 до 3,0 м/с определяют:

- для цинкового покрытия с толщиной защитного слоя 100, 150, 200 и 250 мкм по черт. 3—8;
- для стальной трубы с толщиной стенки от 3.0 до 14.0 мм без покрытия по черт. 9—14.

Средняя наработка до отказа цинкового покрытия элементов трубопровода. Холодная морская вода. І категория

П категория

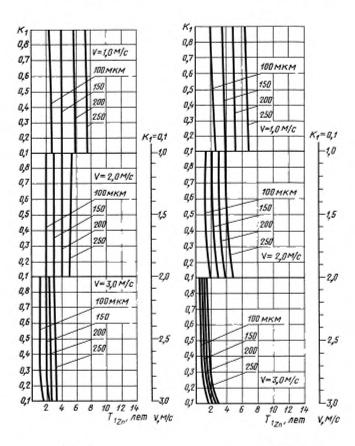
Черт. 3

Черт. 4

Средняя наработка до отказа цинкового покрытия элементов трубопровода. Холодная морская вода ПП категория

Горячая морская вода І категория

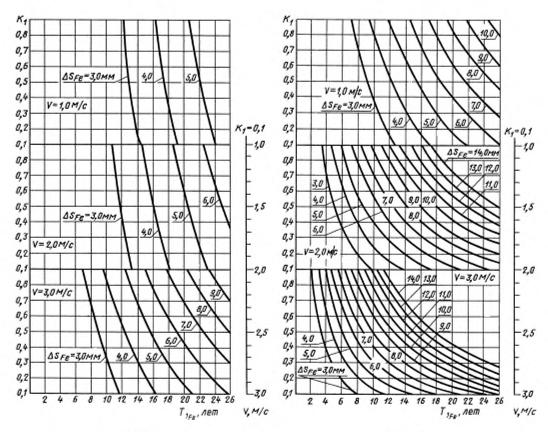
Черт. 6

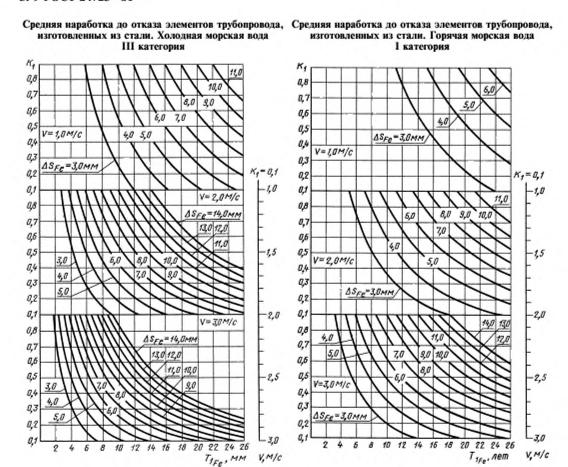


Черт. 5

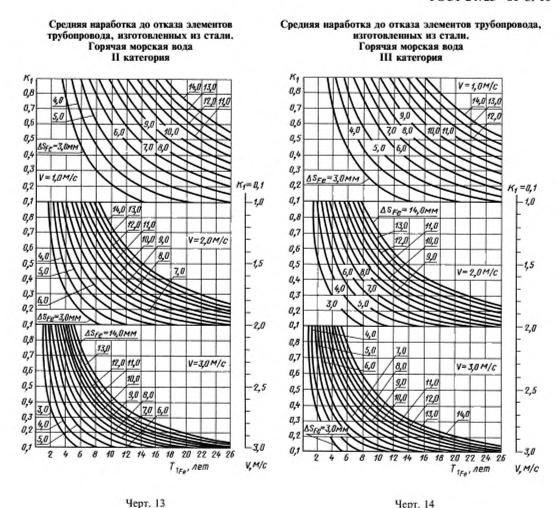
Средняя наработка до отказа цинкового покрытия элементов трубопровода.

Горячая морская вода II категория


III категория


Черт. 7

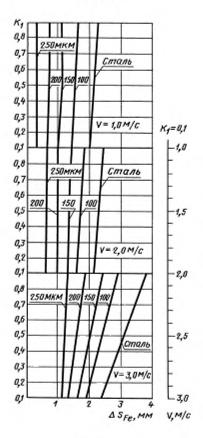
Черт. 8


Средняя наработка до отказа элементов трубопровода, изготовленных из стали. Холодная морская вода І категория Средняя наработка до отказа элементов трубопровода, изготовленных из стали. Холодная морская вода II категория

Черт. 9 Черт. 10

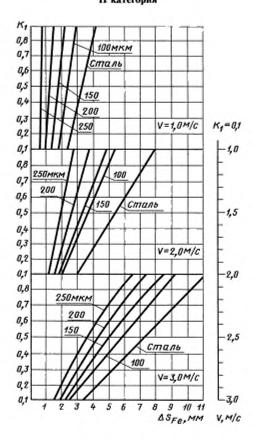
Черт. 11 Черт. 12

Если вычисленное по формуле (3) значение T_2 не удовлетворяет требованиям п. 3.7 настоящего стандарта, следует принять меры по изменению конструкции элементов трубопровода или условий эксплуатации, после чего расчет должен быть повторен.


Черт, 14

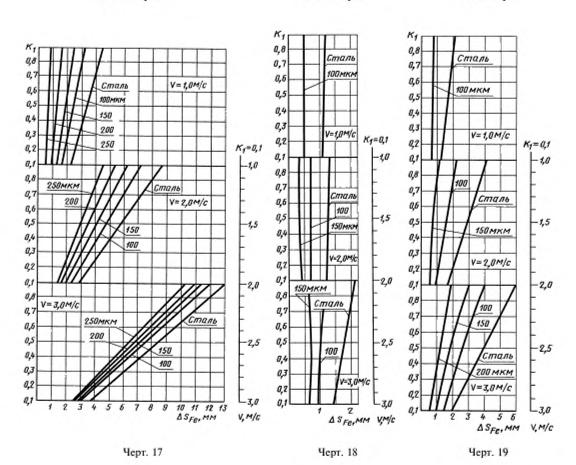
5.6.2. По заданному показателю долговечности T_2 (10 или 5 лет) и условиям эксплуатации (скорость потока морской воды, коэффициент интенсивности эксплуатации), назначению трубопровода (горячей или холодной морской воды) и принятой толщине защитного слоя цинка S_{Z_0} следует определить величину надбавки на коррозию $\Delta S_{\rm Fe}$.

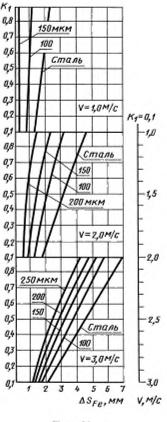
Величину надбавки на коррозию $\Delta S_{\rm re}$ элементов трубопровода с толщиной защитного слоя цинка 100, 150, 200 и 250 мкм в холодной и горячей морской воде при скорости потока от 1,0 до 3,0 м/с определяют по черт. 15—23.

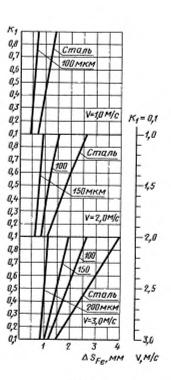

C. 11 FOCT 24723-81

Надбавка на коррозию стенки стальной трубы. Холодная морская вода. Средний срок службы до списания элементов — 10 лет. I категория

Черт. 15

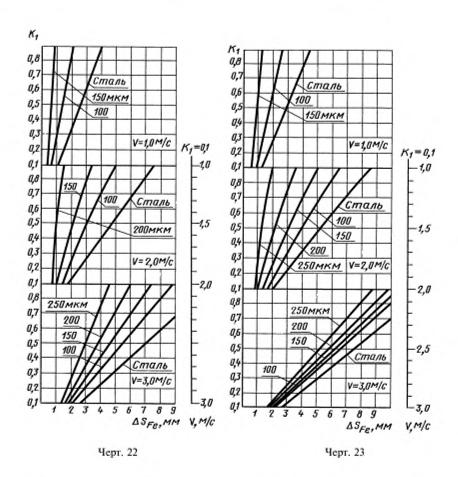

Надбавка на коррозию стенки стальной трубы. Холодная морская вода. Средний срок службы до списания элементов — 10 лет. II категория


Черт. 16


Надбавка на коррозию стенки стальной трубы. Холодная морская вода. Средний срок службы до списания элементов — 10 лет. III категория Надбавка на коррозию стенки стальной трубы. Холодная морская вода. Средний срок службы до списания элементов — 5 лет. І категория

П категория

Надбавка на коррозию стенки стальной трубы. Холодная морская вода. Средний срок службы до списания — 5 лет. III категория Горячая морская вода. Средний срок службы до списания элементов — 5 лет. I категория



Черт. 20

Черт. 21

Надбавка на коррозию стенки стальной трубы. Горячая морская вода. Средний срок службы до списания элементов — 5 лет. II категория

III категория

Затем с учетом черт. 1 и формулы (1) следует выбрать необходимые размеры труб. (Измененная редакция, Изм. № 1).

- 5.7. При прохождении трубопровода через балластные цистерны надбавку на коррозию наружной поверхности стенки стальной трубы принимают по черт. 15 при v = 1,0 м/с и $K_1 = 0,1$.
 - 5.8. Примеры расчета приведены в приложении 2.

Условные обозначения, принятые в стандарте

Эбозначение	Наименование	
S_0	Допустимая толщина стенки трубы при давлении 1,0 МПа	мм
S_{\min_i}	Минимальная толщина стенок труб систем морской воды (кроме проходящих через балластные цистерны)	
S_{\min_2}	минимальная толщина стенок труб систем морской воды, проходящих через балластные цистерны	
$\Delta S_{\rm Fe}$	Надбавка на коррозию стальных труб без покрытия	MM
$S_{\rm Fe}$	Номинальная толщина стенки стальных труб	MM
S_{Zn}	Расчетная толщина цинкового покрытия	мкм
d	Условный проход трубы	MM
D	Наружный диаметр трубы	MM
d_1	Больший диаметр перехода	MM
d_2	Меньший диаметр перехода	мм
1	Длина перехода	MM
T_1	Средняя наработка до отказа элемента стального оцинкованного трубопровода	лет
T_{1Zn}	Средняя наработка до отказа цинкового покрытия	лет
$T_{\rm IFe}$	Средняя наработка до отказа элемента стальной трубы без покрытий	лет
T_2	Средний срок службы до списания	лет
¥	Скорость потока морской воды	м/с
K_1	Коэффициент интенсивности эксплуатации	-
K ₂	Коэффициент технического использования	_
P	Расчетное внутреннее давление морской воды в трубопроводе	МПа

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1

Условие. Требуется определить среднюю наработку до отказа T_1 и средний срок службы до списания T_2 элементов трубопровода охлаждения морской водой судового оборудования, изготовленного из стальных труб d=65 мм с толщиной защитного слоя цинка $S_{\rm Zn}=200$ мкм.

Температура среды до теплообменного аппарата — менее 313 К (40 °C), после теплообменного аппарата более 313 К (40 °С),

Решение

- 1.1. По черт. 2 v = 2.0 м/с.
- 1.2. По табл. $2 K_1 = 0.75$. 1.3. По черт. $1 S_{\min_1} = 4.5$ мм; $S_0 = 0.3$ мм.
- 1.4. Принимаем ближайший размер трубы, например 76 × 5,0 мм.
- 1.5. По формуле (1) етандарта:

$$\Delta S_{E_0} = 5.0 - 0.3 = 4.7 \text{ MM}.$$

- 1.6. Последовательно, для элементов III. II и I категорий, по черт. 3—8 определяем T_{1Z_0} , а по черт. $9-14-T_{1Fe}$.
 - По формуле (2) получаем T₁ для элементов III, II и I категорий.
 - 1.8. По формуле (3) определяем T_2 при $K_2 = 0.90$.

Результаты расчета средней наработки до отказа и среднего срока службы до списания, лет, приведены в табл. 1.

		Холодная вода			Горячая вода	
Показатели на- дежности			Категория	элементов		
	1	ıı	111	1	11	111
T _{1 Zn} T _{1 Fc} T ₁ T ₂	5,8 18,2 24,0 26,7	5,2 6,2 11,4 12,7	3,5 5,2 8,7 9,7	5,0 10,4 15,4 17,2	4,0 3,1 7,1 7,9	3,0 2,8 5,8 6,4

Таблина 1

 Полученные расчетные значения показателей надежности (кроме элементов III категории) удовлетворяют требованиям 10-летнего срока службы для холодной морской воды и 5-летнего срока службы для горячей морской воды.

Пример 2

Условие. Требуется определить среднюю наработку до отказа T_1 и средний срок службы до списания T_2 трубопровода охлаждения морской водой судового оборудования, изготовленного из стальных труб d = 125 мм с толщиной защитного слоя цинка Szn = 200 мкм. Температура среды до теплообменного аппарата — менее 313 К (40 °С), после теплообменного аппарата — более 313 К (40 °С).

Решение

- 2.1. По черт. 2 v = 2.5 м/c.
- 2.2. По табл. $2 K_1 = 0.75$.
- 2.3. По черт. $1 S'_{min_3} = 4,5$ мм; $S_0 = 0,6$ мм.
- Принимаем ближайший размер трубы, например 133 × 6,0 мм.
- По формуле (1) стандарта:

$$\Delta S_{Fc} = 6.0 - 0.6 = 5.4 \text{ mm}.$$

2.6. Методом интерполяции, последовательно, для элементов I, II и III категорий по черт. 3-8 определяют T_{1Zn} , а по черт. $9-14-T_{1Fe}$

Поясним порядок действий при интерполяции на одном из чертежей (см. черт. 3):

C. 17 FOCT 24723-81

- при v=2,0 м/с, $K_1=0,75,$ $S_{Z_0}=200$ мкм, $T_{1Z_0}=5,9$ года (точка A); при v=3,0 м/с, $K_1=0,75,$ $S_{Z_0}=200$ мкм, $T_{1Z_0}=5,2$ года (точка B).

Соединим точки А и В прямой линией; на вспомогательной шкале интерполяции откладываем v = 2,5 м/с (точка C) и от нее проводим горизонтальную линию до пересечения с линией AB, получаем точку D. Из точки D опускаем вертикальную линию на шкалу T_{1Z_0} .

- Точка E дает значение $T_{1\mathrm{Z}n}=5,6$ года для $\nu=2,5$ м/с. 2.7. По формуле (2) получаем T_1 для элементов I, II и III категорий. 2.8. По формуле (3) определяем T_2 при $K_2=0.90$.

Результаты расчета средней наработки до отказа и среднего срока службы до списания, лет, приведены в табл. 2.

Таблина 2

		Холодная вода			Горячая вода	
Показатель надежности	Категория элементо					
	1	11	111	1	11	111
T _{1 Zn} T _{1 Fe} T ₁ T ₁	5,6 17,8 23,4 26,0	4,2 5,9 10,1 11,2	2.6 4,9 7,5 8,3	4,5 9,4 13,9 15,4	3,1 2,9 6,0 6,7	2,0 2,7 4,7 5,2

2.9. Полученное расчетное значение $T_2 = 8.3$ года для элементов III категории в потоке холодной морской воды не удовлетворяет требованию п. 3.2 стандарта для 10-летнего срока службы. В этом случае необходимо руководствоваться п. 5.6.1 стандарта или предусмотреть ремонт или замену элементов трубопровода через 5 лет эксплуатации.

Пример 3

Условие. Требуется определить требуемую толщину стенки стальной трубы для элементов трубопровода охлаждения морской водой судового оборудования, изготовленного из труб d = 65 мм с толщиной защитного слоя цинка $S_{\rm Zn}=200$ мкм, при условии обеспечения среднего срока службы до списания элементов трубопровода холодной морской воды $T_2=10$ лет.

Решение

- 3.1. По черт, $2 \nu = 2.0 \text{ м/с}$.
- 3.2. По табл. $2 K_1 = 0.75$.
- Последовательно, для холодной морской воды по черт. 15, 16 и 17 определяем надбавку на коррозию стенки стальной трубы.
 - По черт. I определяем S₀ = 0,3 мм.
 - 3.5. По формуле (1) стандарта определяем S_{Fe} .

Результаты расчета толщины стенки стальной трубы, мм, с учетом формулы (1) стандарта приведены в табл. 3.

Таблина 3

Толщина стенки трубы	Холодная вода Категория элементов			
	AS _{Fe} So Sea	1,0 0,3 1,3	3,3 0,3 3,6	4,6 0,3 4,9

Пример 4

Условие. Требуется определить толщину стенки стальной трубы для элементов трубопровода охлаждения морской водой судового оборудования, изготовленного из стальных труб d = 125 мм с толщиной защитного слоя цинка Szn = 150 мкм и обеспечить срок службы до списания элементов трубопровода горячей морской воды $T_2 = 5$ лет.

Решение

4.1. По черт. 2 - v = 2.5 м/c.

- 4.2. По табл. 2 $K_1 = 0.75$.
- 4.3. Методом интерполяции аналогично примеру 2 последовательно для горячей морской воды по черт. 21, 22 и 23 определяем надбавку на коррозию стенки стальной трубы.
 - 4.4. По черт, 1 определяем $S_0 = 0.6$ мм.
- 4.5. Результаты расчета требуемой толщины стенки трубы, мм, с учетом формулы (1) стандарта приведены в табл. 4.

Таблица 4

	Горячая вода Категория элементов			
Толщина стенки трубы				
	1	11	m	
S _{Fe}	1,3 0,6 1,9	4,6 0,6 5.2	6,2 0,6 6,8	

Пример 5

Условие. Требуется определить толщину стенки стальной трубы для элементов трубопровода, проходящей через бадластные цистерны изготовленного из стальных труб d=150 мм с толщиной защитного слоя цинка $S_{Zn}=150$ мкм и обеспечить срок службы до списания элементов трубопровода, омываемого снаружи и внутри холодной морской водой, $T_2=10$ лет при скорости потока в трубопроводе 2,0 м/с.

Решение.

- 5.1. По табл. $2 K_1 = 0.30$.
- 5.2. Для внутренней поверхности труб последовательно по черт. 15, 16 и 17 определяем надбавку на коррозию стальной трубы для элементов I, II и III категорий.
- 5.3. Надбавка на коррозию наружной поверхности стальной трубы определяется в соответствии с п. 5.7 стандарта.
- 5.4. Результаты расчета требуемой толщины стенки трубы, мм, с учетом коррозии внутренней и наружной поверхности труб приведены в табл. 5.

Таблина 5

Толщина стенки трубы	Холодная вода Категория элементов			
	ΔS_{Fe} (внутренняя)	1,4	4,2	5,4
ΔS_{Fe} (внутренняя) ΔS_{Fe} (наружная)	1,0	1,0	1,0	
S_0	0,7	0,7	0,7	
S_{Fe}	3,1	5.9	7,1	

C. 19 FOCT 24723-81

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 30.04.81 № 2218
- 2. Стандарт полностью соответствует СТ СЭВ 1590-79
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. Ограничение срока действия снято Постановлением Госстандарта от 19.04.88 № 1063
- 5. ИЗДАНИЕ (февраль 2003 г.) с Изменением № 1, утвержденным в апреле 1988 г. (ИУС 7-88)

Редактор В.Н. Копысов
Технический редактор В.Н. Прусакова
Корректор М.С. Кабашова
Компьютерная верстка А.Н.Золотаревой

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 25.02.2003. Подписано в печать 14.03.2003. Усл.печ.л. 2,32. Уч.-изд.л. 1,80. Тираж 132 экз. С 9966. Зак. 228.