МЕЖГОСУДАРСТВЕННЫЙ COBET ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС) INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT ISO 2320— 2021

ИЗДЕЛИЯ КРЕПЕЖНЫЕ. ГАЙКИ СТАЛЬНЫЕ САМОСТОПОРЯЩИЕСЯ

Эксплуатационные свойства

(ISO 2320:2015, IDT)

Издание официальное

Москва Российский институт стандартизации 2021

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт «НАМИ» (ФГУП «НАМИ») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5
- 2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 56 «Дорожный транспорт»
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 22 октября 2021 г. № 144-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стан- дартизации
Беларусь	BY	Госстандарт Республики Беларусь
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт
Узбекистан	UZ	Узстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2021 г. № 1528-ст межгосударственный стандарт ГОСТ ISO 2320—2021 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2022 г.
- 5 Настоящий стандарт идентичен международному стандарту ISO 2320:2015 «Изделия крепежные. Гайки стальные самостопорящиеся. Эксплуатационные свойства» («Fasteners Prevailing torque steel nuts Functional properties», IDT).

Международный стандарт разработан Подкомитетом ISO/TC 2/SC 12 «Крепежные изделия с внутренней метрической резьбой» Технического комитета по стандартизации ISO/TC 2 «Крепежные изделия» Международной организации по стандартизации (ISO).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 B3AMEH ΓΟCT ISO 2320-2015

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

© ISO, 2015 © Оформление. ФГБУ «РСТ», 2021

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения	1
2 Нормативные ссылки	
3 Термины и определения	
4 Обозначения	
5 Резьба	
6 Смазка	
7 Механические свойства самостопорящихся гаек	
8 Эксплуатационные требования к свойствам стопорящего момента	3
9 Методы испытаний	
9.1 Общие требования	
9.2 Испытание пробной нагрузкой	
9.3 Испытание стопорящего момента	12
Приложение А (обязательное) Влияние температуры на самостопорящиеся гайки	
с неметаллической вставкой	16
Приложение В (справочное) Основные положения для определения общего	
коэффициента трения µ _{tot}	17
Приложение С (справочное) Испытательное усилие предварительной затяжки	
и стопорящий момент для самостопорящихся гаек МЗ и М4	
классов прочности 8 и 10	18
Приложение ДА (справочное) Сведения о соответствии ссылочных международных	
стандартов межгосударственным стандартам	19
Библиография	20

Поправка к ГОСТ ISO 2320—2021 Изделия крепежные. Гайки стальные самостопорящиеся. Эксплуатационные свойства

В каком месте	Напечатано	Должно быть		
Предисловие. Таблица согла- сования	-	Казахстан	KZ	Госстандарт Республики Казахстан

(ИУС № 8 2022 г.)

ИЗДЕЛИЯ КРЕПЕЖНЫЕ. ГАЙКИ СТАЛЬНЫЕ САМОСТОПОРЯЩИЕСЯ

Эксплуатационные свойства

Fasteners. Prevailing torque steel nuts. Functional properties

Дата введения — 2022—06—01

1 Область применения

Настоящий стандарт устанавливает эксплуатационные свойства самостопорящихся гаек при испытаниях в диапазоне температур окружающей среды от 10 °C до 35 °C. Он включает в себя комбинированный метод испытания для одновременного определения стопорящих свойств и свойств крутящего момента/усилия предварительной затяжки.

Настоящий стандарт распространяется на самостопорящиеся цельнометаллические гайки и самостопорящиеся гайки с неметаллической вставкой:

- с треугольной резьбой в соответствии с [1];
- с комбинацией диаметр/шаг в соответствии с [2] и [3];
- с крупным шагом резьбы от M5 до M39 или с мелким шагом резьбы от M8 × 1 до M39 × 3;
- с допусками резьбы в соответствии с ISO 965-2;
- с механическими свойствами в соответствии с ISO 898-2.

Значения стопорящего момента, установленные в настоящем стандарте, основаны на испытании в лабораторных условиях.

Примечание 1 — Фактические стопорящие моменты при практическом применении могут изменяться.

Примечание 2 — Цельнометаллические гайки, соответствующие требованиям настоящего стандарта, используют в диапазоне температур от минус 50 °C до плюс 150 °C

П р и м е ч а н и е 3 — Гайки с неметаллической вставкой, соответствующие требованиям настоящего стандарта, используют в диапазоне температур от минус 50 °C до плюс 120 °C.

Предупреждение — Температуры вне диапазона температур окружающей среды могут влиять на эксплуатационные свойства (крутящий момент/усилие предварительной затяжки и свойства стопорящего момента) (см. приложение A).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты [для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных — последнее издание (включая все изменения)]:

ISO 273, Fasteners — Clearance holes for bolts and screws (Изделия крепежные. Отверстия с зазором для болтов и винтов)

ISO 898-1, Mechanical properties of fasteners made of carbon steel and alloy steel — Part 1: Bolts, screws and studs with specified property classes — Coarse thread and fine pitch thread (Механические свойства крепежных изделий из углеродистых и легированных сталей. Часть 1. Болты, винты и шпильки установленных классов прочности. Крупная и мелкая резьба)

ISO 898-2, Mechanical properties of fasteners made of carbon steel and alloy steel — Part 2: Nuts with specified property classes — Coarse thread and fine pitch thread (Механические свойства крепежных изделий из углеродистых и легированных сталей. Часть 2. Гайки установленных классов прочности. Крупный и мелкий шаг резьбы)

ISO 965-2, ISO general purpose metric screw threads — Tolerances — Part 2: Limits of sizes for general purpose external and internal screw threads — Medium quality (Резьбы метрические ИСО общего назначения. Допуски. Часть 2. Предельные размеры для наружной и внутренней резьб общего назначения. Средний класс точности)

ISO 16047:2005, Fasteners — Torque/clamp force testing (Изделия крепежные. Испытания крутящего момента и усилия предварительной затяжки)

3 Термины и определения

В настоящем стандарте применены термины по ISO 16047, а также следующие термины с соответствующими определениями:

- 3.1 гайка самостопорящаяся (prevailing torque nut): Гайка, которая не может свободно вращаться по сопряженной резьбе ввиду наличия в ней элемента, создающего стопорящий момент и которая обеспечивает сопротивление вращению, не зависящее от усилия затяжки.
- 3.2 **стопорящий момент гайки** (prevailing torque developed by the nut): Крутящий момент, необходимый для вращения гайки по наружной резьбе сопряженной детали без усилия предварительной затяжки.
- 3.3 **стопорящий момент при закручивании** (prevailing-on torque): Крутящий момент для вращения гайки по наружной резьбе сопряженной детали, измеренный в процессе закручивания гайки без усилия предварительной затяжки.
- 3.4 **стопорящий момент при откручивании** (prevailing-off torque): Крутящий момент для вращения гайки на наружной резьбе сопряженной детали на 360° после снятия усилия предварительной затяжки.
- 3.5 самостопорящаяся цельнометаллическая гайка (prevailing torque all metal type nut): Гайка, имеющая цельную и составную металлическую конструкцию, у которой характеристики стопорящего момента зависят от контролируемой деформации резьбы и/или корпуса гайки, и/или металлической вставки (металлических вставок).
- 3.6 самостопорящаяся гайка с неметаллической вставкой (prevailing torque non-metallic insert type nut): Гайка, имеющая составную конструкцию, в которой характеристики стопорящего момента зависят от зафиксированной(ых) в гайке вставки (вставок) из неметаллического материала.
- 3.7 **точка посадки** (seating point): Точка, в которой при затяжке впервые появляется усилие предварительной затяжки.

4 Обозначения

В настоящем стандарте применены следующие обозначения, установленные в ISO 16047:

D — номинальный диаметр, мм;

 d_{A} — диаметр отверстия зажимного приспособления, мм;

 $F_{\rm P}$ — пробная нагрузка, H;

 F_{65} — нижнее предельное значение нагрузки для определения общего коэффициента трения при 65 % от $F_{\rm p}$, H;

 F_{75} — верхнее предельное значение нагрузки для определения общего коэффициента трения при 75 % от $F_{\rm p}$, H;

 F_{80} — испытательное усилие предварительной затяжки (усилие, при котором заканчивают процесс затяжки) при 80 % от F_{P} , H;

Р — шаг резьбы, мм;

 $T_{\rm Fy}$ — стопорящий момент при закручивании, Н·м;

 $T_{\rm Ed}$ — стопорящий момент при откручивании, Н·м;

 T_{65} — нижнее предельное значение крутящего момента для определения общего коэффициента трения при F_{65} , H·м;

- T_{75} верхнее предельное значение крутящего момента для определения общего коэффициента трения при F_{75} , H·м;
- T_{80} крутящий момент при испытании, соответствующий 80 % пробной нагрузки, Н·м (см. таблицы 1—7);
- μ_{tot} общий коэффициент трения.

5 Резьба

Резьба самостопорящихся гаек должна соответствовать ISO 965-2, за исключением участка стопорящего элемента:

- а) для самостопорящихся гаек с неметаллической вставкой проходной калибр должен свободно завинчиваться (от руки) до соприкосновения со стопорящим элементом;
- b) для самостопорящихся цельнометаллических гаек проходной калибр должен свободно завинчиваться (от руки) не менее чем на один шаг.

6 Смазка

По усмотрению производителя, производственная партия может быть обработана смазочным средством для выполнения эксплуатационных требований.

7 Механические свойства самостопорящихся гаек

Механические свойства самостопорящихся гаек должны соответствовать ISO 898-2. Для испытания пробной нагрузкой следует применять метод испытания, установленный в 9.2.

8 Эксплуатационные требования к свойствам стопорящего момента

Стопорящий момент при закручивании не должен превышать значения, приведенные в таблицах 1—7, для соответствующей гайки.

Стопорящий момент при откручивании должен превышать значения, приведенные в таблицах 1—7, для применяемой гайки.

Для контроля поставки при приемке проводят испытание при первом закручивании/откручивании, если иное соглашение отсутствует.

При первоначальном контроле и в спорном случае следует также проводить испытание пятого откручивания, если иное соглашение отсутствует.

Характеристики стопорящего момента уменьшаются, как функция от числа повторных использований; при каждом повторном использовании гайки потребитель должен учитывать уменьшение характеристик стопорящего момента. По требованию заказчика допускается проводить испытания влияния температуры на стопорящий момент гайки с неметаллической вставкой, как указано в приложении А.

Таблица 1 — Испытательное усилие предварительной затяжки и стопорящие моменты при испытании самостопорящихся гаек класса прочности 04

Резьба <i>D</i>	Испытательное усилие предвари-	Усилие предварительной затяжки для определения общего коэффициента трения µ _{tot} ^b		Стопорящий момент, Н⋅м		
D×P	тельной затяжки <i>F</i> ₈₀ ^а , Н	верхнее предельное зна- чение <i>F</i> ₇₅ ^с , Н	нижнее предель- ное значение F ₆₅ ^d , Н	первое за- кручивание Т _{Fv,max} ^е	первое от- кручивание $T_{\rm Fd,min}$	пятое откру- чивание <i>Т</i> _{Fd,min}
M5	4320	4050	3510	1,6	0,29	0,2
M6	6112	5730	4966	3	0,45	0,3
M7	8800	8250	7150	4,5	0,65	0,45
M8	11 120	10 425	9035		0.05	
M8×1	11 920	11 175	9685	6	0,85	0,6

Окончание таблицы 1

Резьба <i>D</i>	Испытательное усилие предвари-	определения обы	гельной затяжки для цего коэффициента ия µ _{tot} ^b	Стопорящий момент,		-, Н∙м
D×P	тельной затяжки <i>F</i> ₈₀ ^а , H	верхнее предельное зна- чение <i>F</i> ₇₅ ^с , Н	нижнее предель- ное значение $F_{65}^{d},$ Н	первое за- кручивание Т _{Fv,max} е	первое от- кручивание $T_{\rm Fd,min}$	пятое откручивание $T_{\sf Fd,min}$
M10	17 600	16 500	14 300			
M10×1,25	18 640	17 475	15 145	10,5	1,5	1
M10×1	19 600	18 375	15 925		27	
M12	25 600	24 000	20 800			
M12×1,5	26 800	25 125	21 775	15,5	2,3	1,6
M12×1,25	28 000	26 250	22 750			
M14	34 960	32 775	28 405	0.4	2.2	0.0
M14×1,5	38 000	35 625	30 875	24	3,3	2,3
M16	47 760	44 775	38 805	20	4,5	_
M16×1,5	50 800	47 625	41 275	32		3
M18	58 400	54 750	47 450	42	6	4.0
M18×1,5	65 360	61 275	53 105			4,2
M20	74 480	69 825	60 515	54	7,5	5,3
M20×1,5	82 720	77 550	67 210	54		
M22	92 080	86 325	74 815	60	0.5	6.5
M22×1,5	101 200	94 875	82 225	68	9,5	6,5
M24	107 280	100 575	87 165	90	11 5	8
M24×2	116 720	109 425	94 835	80	11,5	8
M27	139 520	130 800	113 360	0.4	12.5	10
M27×2	150 800	141 375	122 525	94	13,5	10
M30	170 560	159 900	138 580	108	16	12
M30×2	188 800	177 000	153 400	100	16	12
M33	210 960	197 775	171 405	100	10	1.1
M33×2	231 360	216 900	187 980	122	18	14
M36	248 400	232 875	201 825	136	21	16
M36×3	262 960	246 525	213 655	130	21	16
M39	296 720	278 175	241 085	150	23	10
M39×3	313 120	293 550	254 410	150	23	18

^а Усилие предварительной затяжки для гаек класса прочности 04 составляет 80 % пробной нагрузки гаек класса прочности 04 для 5 мм $\leq D \leq$ 39 мм, установленной в ISO 898-2.

^b См. приложение В.

^с Верхнее предельное значение усилия предварительной затяжки составляет 75 % пробной нагрузки (см. приложение В).

^d Нижнее предельное значение усилия предварительной затяжки составляет 65 % пробной нагрузки (см. приложение B).

^е Значения стопорящего момента при первом закручивании являются действительными только для цельнометаллических гаек. Для самостопорящихся гаек с неметаллической вставкой максимальные стопорящие моменты должны составлять 50 % от этого значения.

Примечание — Оценка результатов испытаний стопорящего момента методами статистического управления процессами (SPC) не применима.

Таблица 2 — Испытательное усилие предварительной затяжки и стопорящие моменты при испытании самостопорящихся гаек класса прочности 05

Резьба <i>D</i>	Испытательное усилие предвари-	Усилие предварите определения обще трения	его коэффициента	Стог	порящий момент	-, Н∙м
D×P	тельной затяжки <i>F</i> ₈₀ ^а , H	верхнее предель- ное значение $F_{75}^{\rm c},{\rm H}$	нижнее предельное значение $F_{65}^{\ \ d}, \ H$	первое за- кручивание Т _{Fv,max} ^е	первое от- кручивание $T_{{ m Fd,min}}$	пятое откру- чивание Т _{Fd,min}
M5	5680	5325	4615	2,1	0,35	0,24
M6	8000	7500	6500	4	0,55	0,4
M7	11 600	10 875	9425	6	0,85	0,6
M8	14 640	13 725	11 895	0	1.15	0.0
M8×1	15 680	14 700	12 740	8	1,15	0,8
M10	23 200	21 750	18 850			
M10×1,25	24 480	22 950	19 890	14	2	1,4
M10×1	25 760	24 150	20 930			
M12	33 760	31 650	27 430			
M12×1,5	35 200	33 000	28 600	21	3,1	2,1
M12×1,25	36 800	34 500	29 900			
M14	46 000	43 125	37 375	31		
M14×1,5	50 000	46 875	40 625		4,4	3
M16	62 800	58 875	51 025	42	6	
M16×1,5	66 800	62 625	54 275			4,2
M18	76 800	72 000	62 400		_	
M18×1,5	86 000	80 625	69 875	56	8	5,5
M20	98 000	91 875	79 625			_
M20×1,5	108 800	102 000	88 400	72	10,5	7
M22	121 200	113 625	98 475			
M22×1,5	133 200	124 875	108 225	90	13	9
M24	141 200	132 375	114 725	400	45	40.5
M24×2	153 600	144 000	124 800	106	15	10,5
M27	183 600	172 125	149 175	400		40
M27×2	198 400	186 000	161 200	123	17	12
M30	224 400	210 375	182 325	4.40	40	
M30×2	248 400	232 875	201 825	140	19	14
M33	277 600	260 250	225 550		0.1.5	
M33×2	304 400	285 375	247 325	160	21,5	15,5
M36	326 800	306 375	265 525	460	6.1	4
M36×3	346 000	324 375	281 125	180	24	17,5
M39	390 400	366 000	317 200	000	00.5	40.5
M39×3	412 000	386 250	334 750	200	26,5	19,5

^а Усилие предварительной затяжки для гаек класса прочности 05 составляет 80 % пробной нагрузки гаек класса прочности 05 для 5 мм $\leq D \leq$ 39 мм, установленной в ISO 898-2.

^b См. приложение В.

^с Верхнее предельное значение усилия предварительной затяжки составляет 75 % пробной нагрузки (см. приложение В).

^d Нижнее предельное значение усилия предварительной затяжки составляет 65 % пробной нагрузки (см. приложение В).

Окончание таблицы 2

^е Значения стопорящего момента при первом закручивании являются действительными только для цельнометаллических гаек. Для самостопорящихся гаек с неметаллической вставкой максимальные стопорящие моменты должны составлять 50 % от этого значения.

Таблица 3 — Испытательное усилие предварительной затяжки и стопорящие моменты при испытании самостопорящихся гаек класса прочности 5

Резьба	Испытательное	для определения	ительной затяжки в общего коэффи- рения µ _{tot} b	Стопорящий момент,		Н∙м
D D×P	усилие предвари- тельной затяжки <i>F</i> ₈₀ ^a , H	верхнее предельное значение <i>F</i> ₇₅ ^с , H	нижнее предельное значение F ₆₅ ^d , H	первое закру- чивание Т _{Fv,max} е	первое от- кручивание $T_{\rm Fd,min}$	пятое откручивание $T_{\rm Fd,min}$
M5	4320	4050	3510	1,6	0,29	0,2
M6	6112	5730	4966	3	0,45	0,3
M7	8800	8250	7150	4,5	0,65	0,45
M8	11 120	10 425	9035	6	0.85	0.6
M8×1	11 920	11 175	9685	- 6	0,85	0,6
M10	17 600	16 500	14 300			
M10×1,25	18 640	17 475	15 145	10,5	1,5	1
M10×1	19 600	18 375	15 925	1		
M12	25 600	24 000	20 800			
M12×1,5	26 800	25 125	21 775	15,5	2,3	1,6
M12×1,25	28 000	26 250	22 750	1		
M14	34 960	32 775	28 405	0.4	3,3	2.2
M14×1,5	38 000	35 625	30 875	24		2,3
M16	47 760	44 775	38 805	-00	4.5	2
M16×1,5	50 800	47 625	41 275	32	4,5	3
M18	58 400	54 750	47 450	40		4.0
M18×1,5	65 680	61 575	53 365	42	6	4,2
M20	74 480	69 825	60 515		7.5	
M20×1,5	82 400	77 250	66 950	54	7,5	5,3
M22	92 000	86 250	74 750		0.5	0.5
M22×1,5	100 800	94 500	81 900	- 68	9,5	6,5
M24	107 200	100 500	87 100	00	44.5	0
M24×2	116 800	109 500	94 900	- 80	11,5	8
M27	113 600	106 500	92 300	0.4	40.5	40
M27×2	123 200	115 500	100 100	94	13,5	10
M30	139 200	130 500	113 100	460	40	40
M30×2	153 600	144 000	124 800	108	16	12
M33	172 000	161 250	139 750	400	40	4.4
M33×2	188 800	177 000	153 400	122	18	14
M36	202 400	189 750	164 450	400	04	40
M36×3	214 400	201 000	174 200	136	21	16

Окончание таблицы 3

Резьба	Испытательное	для определения	ительной затяжки и общего коэффи- рения µ _{tot} b	Стопорящий момент, Н∙м		Н∙м
D D×P	усилие предвари- тельной затяжки <i>F</i> ₈₀ ^a , H	верхнее предельное значение ${F_{75}}^{\rm c},$ Н	нижнее предельное значение F ₆₅ ^d , H	первое закру- чивание Т _{Fv,max} е	первое от- кручивание $T_{\rm Fd,min}$	пятое откручивание $T_{\sf Fd,min}$
M39	242 400	227 250	196 950	450	00	10
M39×3	255 200	239 250	207 350	150	23	18

^а Усилие предварительной затяжки для гаек класса прочности 5 составляет 80 % пробной нагрузки болтов класса прочности 5.8 для 3 мм ≤ d ≤ 24 мм и 80 % пробной нагрузки болтов класса прочности 4.8 для d > 24 мм. Пробные нагрузки болтов установлены в ISO 898-1.

Таблица 4 — Испытательное усилие предварительной затяжки и стопорящие моменты при испытании самостопорящихся гаек класса прочности 6

Резьба <i>D</i>	Испытательное	для определения	Усилие предварительной затяжки для определения общего коэффи- циента трения µ _{tot} ^b		Стопорящий момент, H·м		
D×P	усилие предвари- тельной затяжки <i>F</i> ₈₀ ^a , H	верхнее предельное значение F ₇₅ ^с , H	нижнее предельное зна- чение <i>F</i> ₆₅ ^d , H	первое закру- чивание Т _{Fv,max} е	первое откру- чивание $T_{\sf Fd,min}$	пятое откручивание $T_{\rm Fd,min}$	
M5	5000	4688	4063	1,6	0,29	0,2	
M6	7072	6630	5746	3	0,45	0,3	
M7	10 160	9525	8255	4,5	0,65	0,45	
M8	12 880	12 075	10 465	6	0,85	0,6	
M8×1	13 760	12 900	11 180				
M10	20 400	19 125	16 575	10,5	1,5	1	
M10×1,25	21 520	20 175	17 485				
M10×1	22 720	21 300	18 460				
M12	29 680	27 825	24 115	15,5	2,3	1,6	
M12×1,5	31 040	29 100	25 220	3 0			
M12×1,25	32 400	30 375	26 325	2 +1			
M14	40 480	37 950	32 890	24	3,3	2,3	
M14×1,5	44 000	41 250	35 750				
M16	55 280	51 825	44 915	32	4,5	3	
M16×1,5	58 800	55 125	47 775				
M18	67 600	63 375	54 925	42	6	4,2	
M18×1,5	76 000	71 250	61 750				

b См. приложение В.

^с Верхнее предельное значение усилия предварительной затяжки составляет 75 % пробной нагрузки (см. приложение В).

^d Нижнее предельное значение усилия предварительной затяжки составляет 65 % пробной нагрузки (см. приложение В).

^е Значения стопорящего момента при первом закручивании являются действительными только для цельнометаллических гаек. Для самостопорящихся гаек с неметаллической вставкой максимальные стопорящие моменты должны составлять 50 % от этого значения.

Окончание таблицы 4

D 5- D	Испытательное	Усилие предварительной затяжки для определения общего коэффи- циента трения µ _{tot} ь		Стопорящий момент, Н⋅м		
Резьба <i>D</i> <i>D</i> × <i>P</i>	усилие предвари- тельной затяжки $F_{80}^{\ \ a}, {\sf H}$	верхнее предельное значение <i>F</i> ₇₅ ^с , Н	нижнее предельное зна- чение F ₆₅ ^d , H	первое закру- чивание Т _{Fv,max} е	первое откру- чивание $T_{\sf Fd,min}$	пятое откручивание $T_{\rm Fd,min}$
M20	86 400	81 000	70 200	54	7,5	5,3
M20×1,5	96 000	90 000	78 000			
M22	106 400	99 750	86 450	68	9,5	6,5
M22×1,5	116 800	109 500	94 900			
M24	124 000	116 250	100 750	80	11,5	8
M24×2	135 200	126 750	109 850			
M27	161 600	151 500	131 300	94	13,5	10
M27×2	174 400	163 500	141 700			
M30	197 600	185 250	160 550	108	16	12
M30×2	218 400	204 750	177 450			
M33	244 000	228 750	198 250	122	18	14
M33×2	268 000	251 250	217 750			
M36	287 200	269 250	233 350	136	21	16
M36×3	304 800	285 750	247 650			
M39	343 200	321 750	278 850	150	23	18
M39×3	362 400	339 750	294 450			

^а Усилие предварительной затяжки для гаек класса прочности 6 составляет 80 % пробной нагрузки болтов класса прочности 6.8, установленной в ISO 898-1.

Таблица 5 — Испытательное усилие предварительной затяжки и стопорящие моменты при испытании самостопорящихся гаек класса прочности 8

Резьба	Испытательное усилие	тяжки для опре	арительной за- еделения обще- нта трения µ _{tot} b	Стопорящий момент, Н⋅м		Н∙м
D D×P	предварительной затяжки <i>F</i> ₈₀ ^a , H	верхнее предельное значение F ₇₅ °, Н	нижнее предельное значение F ₆₅ ^d , H	первое закру- чивание Т _{Fv,max} е	первое откручивание $T_{\rm Fd,min}$	пятое откручивание $T_{\rm Fd,min}$
M5	6584	6173	5350	1,6	0,29	0,2
M6	9280	8700	7540	3	0,45	0,3
M7	13 440	12 600	10 920	4,5	0,65	0,45
M8	16 960	15 900	13 780	6	0,85	0,6
M8×1	18 160	17 025	14 755			

^b См. приложение В.

^с Верхнее предельное значение усилия предварительной затяжки составляет 75 % пробной нагрузки (см. приложение B).

^d Нижнее предельное значение усилия предварительной затяжки составляет 65 % пробной нагрузки (см. приложение В).

^е Значения стопорящего момента при первом закручивании являются действительными только для цельнометаллических гаек. Для самостопорящихся гаек с неметаллической вставкой максимальные стопорящие моменты должны составлять 50 % от этого значения.

Окончание таблицы 5

Испытательное Резьба усилие		тяжки для опре	Усилие предварительной затяжки для определения общего коэффициента трения $\mu_{ ext{to}}^{ ext{b}}$		Стопорящий момент, Н⋅м			
D D×P	предварительной затяжки <i>F</i> ₈₀ ^a , H	верхнее предельное значение <i>F</i> ₇₅ ^c , H	нижнее предельное значение $F_{65}{}^{ m d},$ Н	первое закру- чивание Т _{Fv,max} е	первое откручивание $T_{{\sf Fd,min}}$	пятое откручивание $T_{\rm Fd,min}$		
M10	26 960	25 275	21 905	10,5	1,5	1		
M10×1,25	28 400	26 625	23 075					
M10×1	29 920	28 050	24 310			1		
M12	39 120	36 675	31 785	15,5	2,3	1,6		
M12×1,5	40 880	38 325	33 215			> 22%		
M12×1,25	42 720	40 050	34 710					
M14	53 360	50 025	43 355	24	3,3	2,3		
M14×1,5	58 000	54 375	47 125					
M16	72 800	68 250	59 150	32	4,5	3		
M16×1,5	77 520	72 675	62 985					
M18	92 000	86 250	74 750	42	6	4,2		
M18×1,5	104 000	97 500	84 500					
M20	117 600	110 250	95 550	54	7,5	5,3		
M20×1,5	130 400	122 250	105 950					
M22	145 600	136 500	118 300	68	9,5	6,5		
M22×1,5	160 000	150 000	130 000					
M24	169 600	159 000	137 800	80	11,5	8		
M24×2	184 000	172 500	149 500					
M27	220 000	206 250	178 750	94	13,5	10		
M27×2	238 400	223 500	193 700					
M30	269 600	252 750	219 050	108	16	12		
M30×2	298 400	279 750	242 450					
M33	332 800	312 000	270 400	122	18	14		
M33×2	365 600	342 750	297 050					
M36	392 000	367 500	318 500	136	21	16		
M36×3	415 200	389 250	337 350			19		
M39	468 800	439 500	380 900	150	23	18		
M39×3	494 400	463 500	401 700					

^а Усилие предварительной затяжки для гаек класса прочности 8 составляет 80 % пробной нагрузки болтов класса прочности 8.8, установленной в ISO 898-1.

^b См. приложение В.

^с Верхнее предельное значение усилия предварительной затяжки составляет 75 % пробной нагрузки (см. приложение В).

^d Нижнее предельное значение усилия предварительной затяжки составляет 65 % пробной нагрузки (см. приложение B).

^е Значения стопорящего момента при первом закручивании являются действительными только для цельнометаллических гаек. Для самостопорящихся гаек с неметаллической вставкой максимальные стопорящие моменты должны составлять 50 % от этого значения.

Таблица 6 — Испытательное усилие предварительной затяжки и стопорящие моменты при испытании самостопорящихся гаек класса прочности 10

Резьба Испытательное усилие предвари-		Усилие предварительной за- тяжки для определения общего коэффициента трения µ _{tot} ^b		Стопорящий момент, Н∙м			
D D×P	усилие предвари- тельной затяжки <i>F</i> ₈₀ ^а , Н	верхнее предельное значение F ₇₅ ^с , Н	нижнее предельное значение F ₆₅ ^d , Н	первое закру- чивание Т _{Fv,max} е	первое откру- чивание $T_{\sf Fd,min}$	пятое откручи вание $T_{\rm Fd,min}$	
M5	9440	8850	7670	2,1	0,35	0,24	
M6	13 360	12 525	10 855	4	0,55	0,4	
M7	19 200	18 000	15 600	6	0,85	0,6	
M8	24 320	22 800	19 760	8	1,15	0,8	
M8×1	26 000	24 375	21 125				
M10	38 480	36 075	31 265	14	2	1,4	
M10×1,25	40 640	38 100	33 020		1		
M10×1	42 800	40 125	34 775				
M12	56 000	52 500	45 500	21	3,1	2,1	
M12×1,5	58 480	54 825	47 515				
M12v1,25	61 120	57 300	49 660				
M14	76 400	71 625	62 075	31	4,4	3	
M14×1,5	83 200	78 000	67 600		7.		
M16	104 000	97 500	84 500	42	6	4,2	
M16×1,5	111 200	104 250	90 350				
M18	127 200	119 250	103 350	56	8	5,5	
M18×1,5	143 200	134 250	116 350				
M20	162 400	152 250	131 950	72	10,5	7	
M20×1,5	180 800	169 500	146 900				
M22	201 600	189 000	163 800	90	13	9	
M22×1,5	220 800	207 000	179 400				
M24	234 400	219 750	190 450	106	15	10,5	
M24×2	255 200	239 250	207 350	2 - 1/2	1		
M27	304 800	285 750	247 650	123	17	12	
M27×2	329 600	309 000	267 800				
M30	372 800	349 500	302 900	140	19	14	
M30×2	412 000	386 250	334 750				
M33	460 800	432 000	374 400	160	21,5	15,5	
M33×2	505 600	474 000	410 800				
M36	542 400	508 500	440 700	180	24	17,5	
M36×3	574 400	538 500	466 700				
M39	648 000	607 500	526 500	200	26,5	19,5	
M39×3	684 000	641 250	555 750				

^а Усилие предварительной затяжки для гаек класса прочности 10 составляет 80 % пробной нагрузки болтов класса прочности 10.9, установленной в ISO 898-1.

b См. приложение В.

^с Верхнее предельное значение усилия предварительной затяжки составляет 75 % пробной нагрузки (см. приложение В).

Окончание таблицы 6

Таблица 7 — Испытательное усилие предварительной затяжки и стопорящие моменты при испытании самостопорящихся гаек класса прочности 12

Резьба Испытательное усилие предвари-		Усилие предварительной затяжки для определения общего коэффициента трения µ _{tot} b		Стопорящий момент, Н⋅м			
D D×P	D TORL HOM SOTOWAY		нижнее предельное значение F ₆₅ ^d , H	первое закру- чивание Т _{Fv,max} е	первое откру- чивание <i>Т</i> _{Fd,min}	пятое откручи- вание Т _{Fd,min}	
M5	11 040	10 350	8970	2,1	0,35	0,24	
M6	15 600	14 625	12 675	4	0,55	0,4	
M7	22 400	21 000	18 200	6	0,85	0,6	
M8	28 400	26 625	23 075	8	4.45	0.0	
M8×1	30 400	28 500	24 700	٥	1,15	0,8	
M10	45 040	42 225	36 595				
M10×1,25	47 520	44 550	38 610	14	2	1,4	
M10×1	50 160	47 025	40 755				
M12	65 440	61 350	53 170				
M12×1,5	68 400	64 125	55 575	21	3,1	2,1	
M12×1,25	71 440	66 975	58 045				
M14	89 600	84 000	72 800	24	4.4	0	
M14×1,5	96 800	90 750	78 650	31	4,4	3	
M16	121 600	114 000	98 800	40		4.0	
M16×1,5	129 600	121 500	105 300	42	6	4,2	
M18	148 800	139 500	120 900	50	0		
M18×1,5	168 000	157 500	136 500	56	8	5,5	
M20	190 400	178 500	154 700	70	40.5		
M20×1,5	211 200	198 000	171 600	72	10,5	7	
M22	235 200	220 500	191 100	00	40		
M22×1,5	258 400	242 250	209 950	90	13	9	
M24	273 600	256 500	222 300	400	45	40.5	
M24×2	297 600	279 000	241 800	106	15	10,5	
M27	356 000	333 750	289 250	400	47	40	
M27×2	384800	360 750	312 650	123	17	12	
M30	435 200	408 000	353 600	440	40	44	
M30×2	481 600	451 500	391 300	140	19	14	
M33	538 400	504 750	374 400	400	04.5	45.5	
M33×2	590 400	553 500	479 700	160	21,5	15,5	

^d Нижнее предельное значение усилия предварительной затяжки составляет 65 % пробной нагрузки (см. приложение В).

^е Значения стопорящего момента при первом закручивании являются действительными только для цельнометаллических гаек. Для самостопорящихся гаек с неметаллической вставкой максимальные стопорящие моменты должны составлять 50 % от этого значения.

Окончание таблицы 7

Резьба Испытательное		Усилие предварительной за- тяжки для определения общего коэффициента трения µ _{tot} ^b		Стопорящий момент, Н⋅м			
D D×P	усилие предвари- тельной затяжки <i>F</i> ₈₀ ^a , H	верхнее предельное значение <i>F</i> ₇₅ ^с , Н	нижнее предельное значение F ₆₅ ^d , H	первое закру- чивание Т _{Fv,max} е	первое откручивание $T_{\rm Fd,min}$	пятое откручивание $T_{\rm Fd,min}$	
M36	633 600	594 000	514 800	400	24	47.5	
M36×3	671 200	629 250	545 350	180	24	17,5	
M39	757 600	710 250	615 550	200	26.5	10.5	
M39×3	799 200	749 250	649 350	200	26,5	19,5	

^а Усилие предварительной затяжки для гаек класса прочности 12 составляет 80 % пробной нагрузки болтов класса прочности 12.9, установленной в ISO 898-1.

П р и м е ч а н и е — Оценка результатов испытаний стопорящего момента методами статистического управления процессами (SPC) не применима.

9 Методы испытаний

9.1 Общие требования

Гайки должны быть испытаны в состоянии поставки.

9.2 Испытание пробной нагрузкой

Испытания пробной нагрузкой должны быть выполнены в соответствии с ISO 898-2 со следующими дополнениями.

Гайка для испытаний должна быть собрана с испытательным болтом или с закаленной стальной оправкой. При закручивании гайки на угол поворота 360°, после выступания наружу одного полного витка резьбы, должен быть зафиксирован максимальный стопорящий момент, и сборка должна быть продолжена до выступания из гайки трех полных витков резьбы. При арбитражных испытаниях для самостопорящихся гаек с неметаллической вставкой должна быть использована закаленная стальная оправка, а для самостопорящихся цельнометаллических гаек — испытательный болт. Максимальный стопорящий момент, при закручивании гайки на испытательный болт или оправку, должен быть зафиксирован после выступания наружу одного полного шага резьбы из стопорящего элемента.

Нагрузка, соответствующая пробной нагрузке для гайки по ISO 898-2 должна быть приложена через испытательный болт или оправку в осевом направлении на опорную поверхность и выдержана в течение 15 с. Гайка должна выдерживать эту нагрузку без срыва резьбы и повреждений. Испытания пробной нагрузкой являются решающими при приемке.

Максимальный стопорящий момент после откручивания гайки на половину полного оборота до полного откручивания, должен быть измерен во время движения гайки и не должен превышать максимальный стопорящий момент, зафиксированный при закручивании.

Примечание — Гайка, использованная при испытании стопорящего момента (см. 9.3), может быть использована для испытания пробной нагрузкой, при условии, что резьба гайки не была повреждена.

9.3 Испытание стопорящего момента

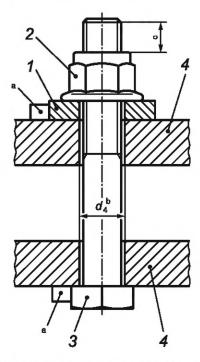
9.3.1 Общие требования

Целью данного метода испытаний самостопорящихся гаек является одновременное определение:

^b См. приложение В.

^с Верхнее предельное значение предварительной затяжки составляет 75 % пробной нагрузки (см. приложение В).

^d Нижнее предельное значение усилия предварительной затяжки составляет 65 % пробной нагрузки (см. приложение B).


^е Значения стопорящего момента при первом закручивании являются действительными только для цельнометаллических гаек. Для самостопорящихся гаек с неметаллической вставкой максимальные стопорящие моменты должны составлять 50 % от этого значения.

- а) эксплуатационных свойств (создающих стопорящий момент для гаек);
- b) свойств крутящего момента/усилия предварительной затяжки, испытанных по ISO 16047.

9.3.2 Устройство для испытаний

Устройство для испытаний по ISO 16047. В дополнение, точность измерения стопорящего момента должна составлять ±5 % от измеряемой величины.

Устройство для испытаний устанавливается в соответствии с рисунком 1. Устройство для испытаний не должно создавать усилие предварительной затяжки во время испытания стопорящего момента.

^а Испытательная опорная пластина/шайба и головка болта должны быть закреплены соответствующим способом для предотвращения прокручивания и установлены соосно.

Рисунок 1 — Приспособление для испытаний и гайка после посадки

9.3.3 Детали для испытаний

Сменный болт/винт и сменная испытательная опорная пластина/испытательная шайба — по ISO 16047. Сменная испытательная опорная пластина/испытательная шайба должна быть типа НН, если иное соглашение отсутствует. За исключением испытательной оправки, сменные детали следует использовать только один раз.

В спорном случае состояние поверхности сменного испытательного болта/винта и испытательной опорной пластины/шайбы должны быть в соответствии с ISO 16047, то есть гладкая поверхность, без покрытия и обезжиренная, если не согласовано иное.

Класс прочности испытательного болта/винта выбирают в соответствии с таблицей 8.

Гайка, использованная при испытании пробной нагрузкой (см. 9.2) не должна применяться при испытании стопорящего момента.

Таблица 8 — Классы прочности для испытательного болта/винта

	Класс прочности
Испытуемая гайка	Соответствующий испытательный болт/винт
04	≥8.8
5	≥8.8

 $^{^{\}rm b}$ d_4 в соответствии с ISO 273, точный ряд.

с От трех до пяти шагов резьбы.

^{1 —} испытательная опорная пластина/шайба; 2 — испытуемая гайка; 3 — испытательный болт/винт с допуском резьбы 6g;

^{4 —} испытательное приспособление, включающее тензодатчик; d_4 — диаметр отверстия в испытательном приспособлении

Окончание таблицы 8

Класс прочности				
Испытуемая гайка	Соответствующий испытательный болт/винт			
05	≥10.9			
6	≥8.8			
8	≥8.8			
10	≥10.9			
12	≥12.9			

9.3.4 Методы испытаний

9.3.4.1 Испытание при первом откручивании

Это испытание может быть проведено автоматически соответствующим испытательным устройством или вручную с подходящими ручными инструментами, такими как динамометрический ключ и тензодатчик (см. 9.3.2).

В спорном случае применяют автоматический режим. Условия испытания крутящего момента/ усилия предварительной затяжки указаны в ISO 16047.

Испытательный болт/винт располагают в испытательном устройстве таким образом, чтобы после закручивания гайки до посадки он выступал из стопорящего элемента в соответствии с рисунком 1.

Испытуемую гайку закручивают вручную на резьбу болта/винта до контакта болта/винта со стопорящим элементом. Конец испытательного болта/винта не должен выступать из гайки до испытаний. Длина резьбы для затяжки должна составлять три—пять шагов в соответствии с рисунком 1.

Начальная точка этапа закручивания соответствует началу измерения стопорящего момента в приспособлении для затяжки (см. точку 1 на рисунке 2).

Вращение от точки 1 должно происходить непрерывно и равномерно до достижения испытательного усилия предварительной затяжки F_{80} . Значения F_{80} установлены в таблицах 1—7. Крутящий момент, соответствующий усилию предварительной затяжки F_{75} , должен быть зафиксирован и записан.

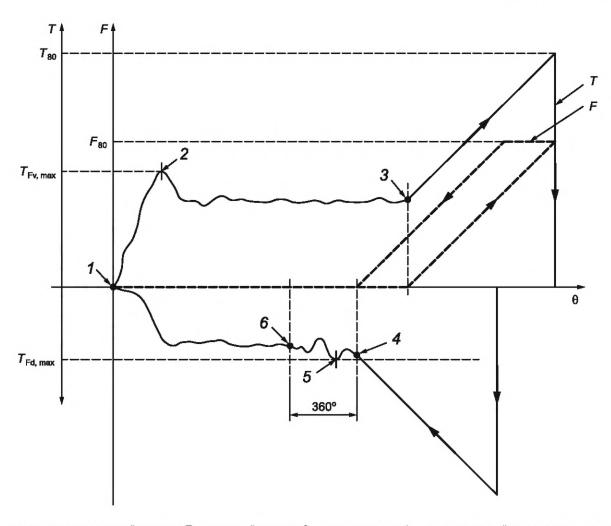
Примечание — При достижении значения F_{80} подается сигнал на отключение испытательного устройства, чтобы гарантировать точный подсчет при F_{75} .

Должна быть определена точка посадки (см. точку 3 на рисунке 2). Между точками 1 и 3 должен быть измерен стопорящий момент при закручивании $T_{\rm Fv,max}$ (см. точку 2 на рисунке 2). Стопорящий момент при закручивании $T_{\rm Fv,max}$ не должен превышать значения, установленные в таблицах 1—7.

Гайку откручивают за счет приложения обратного крутящего момента до уменьшения усилия предварительной затяжки в испытательном болте/винте до нуля (см. точку 4 на рисунке 2). При последующем откручивании на угол поворота 360° (см. точку 5 на рисунке 2) должен быть измерен максимальный стопорящий момент при откручивании $T_{\rm Fd,max}$. Данный крутящий момент должен быть равен или выше значения стопорящего момента при первом откручивании $T_{\rm Fd,min}$, установленного в таблицах 1—7. Точка 6 соответствует угловому положению точки 4 минус 360° .

Затем гайку откручивают до тех пор, пока вновь не будет достигнуто ее начальное угловое положение (см. точку 1).

Во время откручивания гайки вращение должно быть непрерывным и равномерным от усилия предварительной затяжки при испытании F_{80} до точки 1.


После полного откручивания гайки резьбы гайки и болта не должны быть повреждены. В спорном случае испытательный болт должен свинчиваться с соответствующим проходным калибром-кольцом.

9.3.4.2 Испытание при пятом откручивании

Для определения значений при пятом откручивании процедура, указанная в 9.3.4.1, должна быть проведена еще четыре раза между точками 1 и 3.

При пятом откручивании должен быть измерен в соответствии с рисунком 2 максимальный стопорящий момент при откручивании, возникающий при вращении гайки на 360°. Этот крутящий момент должен быть равен или выше величины стопорящего момента при пятом откручивании, установленного в таблицах 1—7.

После полного откручивания гайки резьбы гайки и болта не должны быть повреждены. В спорном случае испытательный болт должен быть проверен на свинчиваемость с соответствующим проходным калибром-кольцом.

F — усилие предварительной затяжки; T — крутящий момент; θ — угол поворота; 1 — точка, в которой впервые возникает стопорящий момент при закручивании и начинается измерение $T_{\rm Fv}$; 2 — стопорящий момент при закручивании; 3 — точка посадки, окончание измерений $T_{\rm Fv}$; 4 — отсутствие контакта с испытательной пластиной/шайбой, начало измерения $T_{\rm Fd}$; 5 — стопорящий момент при откручивании; 6 — окончание измерения $T_{\rm Fd}$

Рисунок 2 — Кривая крутящего момента/усилия предварительной затяжки/угла поворота

9.3.5 Протокол испытаний

Содержание протокола испытаний указано в ISO 16047. Ссылка на настоящий стандарт (ГОСТ ISO 2320), должна быть включена в протокол испытаний.

Стопорящий момент при закручивании $T_{\sf Fv}$ и стопорящий момент при откручивании $T_{\sf Fd}$ (и, если требуется, результат испытания температурной стойкости самостопорящихся гаек с неметаллической вставкой) должны быть включены в протокол испытаний.

Приложение A (обязательное)

Влияние температуры на самостопорящиеся гайки с неметаллической вставкой

Использование самостопорящихся гаек с неметаллической вставкой при предельных значениях температуры минус 50 °C и плюс 120 °C или в их диапазоне может снизить эффективность стопорящего момента и может потребовать применения соответствующего неметаллического материала.

Настоящее приложение устанавливает сравнительное испытание для демонстрации влияния температуры на свойства стопорящего момента. Данное испытание может быть согласовано между покупателем и поставщиком, если необходимо.

Прямая связь между результатом данного испытания и характеристиками гайки в реальных условиях эксплуатации отсутствует.

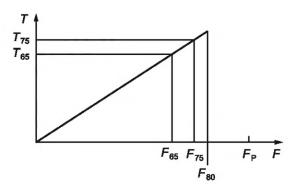
Примечание — Настоятельно рекомендуется разработать метод испытания, учитывающий реальные условия эксплуатации (см. также ISO 16047:2005, раздел 9).

Гайка при температуре окружающей среды (от 10 °C до 35 °C) должна быть закручена на испытательный болт так, чтобы над гайкой выступало от трех до пяти полных шагов резьбы болта, но не возникало усилия предварительной затяжки.

Комплект должен быть помещен в камеру с температурой плюс 120 °C, если иное соглашение отсутствует. Через 1 ч комплект достают из камеры для естественного охлаждения до температуры окружающей среды.

Затем комплект должен быть помещен в камеру с температурой минус 50 °C, если иное соглашение отсутствует. Через 1 ч комплект достают из камеры для естественного восстановления на воздухе до температуры окружающей среды.

С комплектом, приведенным к температуре окружающей среды, должен быть измерен стопорящий момент при откручивании между точкой 4 и точкой 6 в соответствии с 9.3.4.1.


Максимальный измеренный стопорящий момент при откручивании не должен быть ниже соответствующих значений, указанных в таблице 1—7, если не согласовано иное.

Приложение В (справочное)

Основные положения для определения общего коэффициента трения μ_{tot}

Процесс затяжки продолжают до тех пор, пока усилие предварительной затяжки при испытании не составит 80~% пробной нагрузки сопряженного болта. Для оценки коэффициента трения μ_{tot} определяют усилие предварительной затяжки в диапазоне от 65~% до 75~% от значения пробной нагрузки.

Коэффициент трения μ_{tot} рассчитывают как среднее значение коэффициента трения в диапазоне от 65 % до 75 %.

 $F_{
m P}$ — пробная нагрузка; F_{65} — нижнее предельное значение нагрузки для определения общего коэффициента трения, составляющее 65 % от $F_{
m P}$; F_{75} — верхнее предельное значение нагрузки для определения общего коэффициента трения, составляющее 75 % от $F_{
m P}$; F_{80} — усилие предварительной затяжки при испытании (значение, при котором заканчивают процесс затяжки), составляющее 80 % от $F_{
m P}$; T_{65} — нижнее предельное значение крутящего момента для определения общего коэффициента трения при F_{65} ; T_{75} — верхнее предельное значение крутящего момента для определения общего коэффициента трения при F_{75}

Рисунок В.1 — Основные положения для оценки коэффициента трения μ_{tot}

Приложение C (справочное)

Испытательное усилие предварительной затяжки и стопорящий момент для самостопорящихся гаек М3 и М4 классов прочности 8 и 10

См. таблицы С.1 и С.2.

Таблица С.1 — Испытательное усилие предварительной затяжки и стопорящий момент для самостопорящихся гаек класса прочности 8

Dog 60	Испытательное усилие	Усилие предварительной за- тяжки для определения общего коэффициента трения µ _{tot} ^b		Стопорящий момент, Н⋅м			
D D	Резьоа предварительной	Верхнее предельное значение <i>F</i> ₇₅ ^c , H	Нижнее предельное значение <i>F</i> ₆₅ ^d , H	Первое закручи- вание Т _{Fv, max} е	Первое откручи- вание Т _{Fd} , _{min}	Пятое откру- чивание <i>Т</i> _{Fd, min}	
МЗ	2336	2190	1898	0,43	0,12	0,08	
M4	4080	3825	3315	0,90	0,18	0,12	

^а Усилие предварительной затяжки для гаек класса прочности 8 составляет 80 % от пробной нагрузки болтов класса прочности 8.8. Пробные нагрузки для болтов установлены в ISO 898-1.

Примечание — Оценка результатов испытаний стопорящего момента методами статистического управления процессами (SPC) не применима.

Таблица С.2 — Испытательное усилие предварительной затяжки и стопорящий момент для самостопорящихся гаек класса прочности 10

Испытательное уси-		Усилие предварительной затяжки для определения общего коэффициента трения µ _{tot} ^b		Стопорящий момент, Н⋅м			
D	Резьба D лие предварительной затяжки $F_{80}^{\ \ a}, {\sf H}$	Верхнее предельное значение <i>F</i> ₇₅ ^c , H	Нижнее предельное значение <i>F</i> ₆₅ ^d , H	Первое закру- чивание Т _{FV,max} е	Первое откру- чивание Т _{Fd} , _{min}	Пятое откручивание $T_{\rm Fd,\;min}$	
МЗ	3344	3135	2717	0,60	0,15	0,10	
M4	5832	5468	4739	1,20	0,22	0,15	

^а Усилие предварительной затяжки для гаек класса прочности 10 составляет 80 % от пробной нагрузки болтов класса прочности 10.9. Пробные нагрузки для болтов установлены в ISO 898-1.

^b См. приложение В.

^с Верхнее предельное значение усилия предварительной затяжки составляет 75 % от пробной нагрузки, см. приложение В.

^d Нижнее предельное значение усилия предварительной затяжки составляет 65 % от пробной нагрузки, см. приложение В.

^е Стопорящие моменты при первом закручивании применяют только для цельнометаллических гаек. Для стопорящего момента гаек с неметаллической вставкой, максимальные крутящие моменты должны быть 50 % от значений.

^b См. приложение В.

^с Верхнее предельное значение усилия предварительной затяжки составляет 75 % от пробной нагрузки, см. приложение В.

^d Нижнее предельное значение усилия предварительной затяжки составляет 65 % от пробной нагрузки, см. приложение В.

^е Стопорящие моменты при первом закручивании применяют только для цельнометаллических гаек. Для стопорящего момента гаек с неметаллической вставкой, максимальные крутящие моменты должны быть 50 % от значений.

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
ISO 273	_	*
ISO 898-1	IDT	ГОСТ ISO 898-1—2014 «Механические свойства крепежных изделий из углеродистых и легированных сталей. Часть 1. Болты, винты и шпильки установленных классов прочности с крупным и мелким шагом резьбы»
ISO 898-2	IDT	ГОСТ ISO 898-2—2015 «Механические свойства крепежных изделий из углеродистых и легированных сталей. Часть 2. Гайки установленных классов прочности с крупным и мелким шагом резьбы»
ISO 965-2	_	*
ISO 16047:2005	IDT	ГОСТ ISO 16047—2015 «Изделия крепежные. Испытания крутящего момента и усилия предварительной затяжки»

 $^{^*}$ Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного международного стандарта.

Примечание — В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

⁻ IDT — идентичные стандарты.

Библиография

[1] ISO 68-1	ISO general purpose screw Threads — Basic profile — Part 1: Metric screw threads
[2] ISO 261	ISO general purpose metric screw threads — General plan
[3] ISO 262	ISO general purpose metric screw threads — Selected sizes gor screws, bolts and nuts

УДК 621.882.3:006.354 MKC 21.060.20 IDT

Ключевые слова: гайки самостопорящиеся, технические требования, обозначения, стопорящий момент, усилие предварительной затяжки, коэффициент трения

Редактор *Н.В. Таланова*Технический редактор *В.Н. Прусакова*Корректор *И.А. Королева*Компьютерная верстка *Е.О. Асташина*

Сдано в набор 23.11.2021. Подписано в печать 16.12.2021. Формат $60\times84\%$. Гарнитура Ариал. Усл. печ. л. 2,79. Уч.-изд. л. 2,24.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Поправка к ГОСТ ISO 2320—2021 Изделия крепежные. Гайки стальные самостопорящиеся. Эксплуатационные свойства

В каком месте	Напечатано		Должн	ю быть
Предисловие. Таблица согла- сования	-	Казахстан	KZ	Госстандарт Республики Казахстан

(ИУС № 8 2022 г.)