МЕЖГОСУДАРСТВЕННЫЙ COBET ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)
INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT IEC 60331-1— 2021

ИСПЫТАНИЯ ЭЛЕКТРИЧЕСКИХ КАБЕЛЕЙ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПЛАМЕНИ. СОХРАНЕНИЕ РАБОТОСПОСОБНОСТИ

Часть 1

Метод испытания кабелей на номинальное напряжение до 0,6/1,0 кВ включительно и наружным диаметром более 20 мм при воздействии пламени температурой не менее 830 °C одновременно с механическим ударом

(IEC 60331-1:2018, IDT)

Издание официальное

Москва Российский институт стандартизации 2021

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научно-исследовательский, проектно-конструкторский и технологический институт кабельной промышленности» (ОАО «ВНИИКП») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5
- 2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 46 «Кабельные изделия»
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 апреля 2021 г. № 139-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации			
Армения	AM	3AO «Национальный орган по стандартизации метрологии» Республики Армения			
Беларусь	BY	Госстандарт Республики Беларусь			
Киргизия	KG	Кыргызстандарт			
Россия	RU	Росстандарт			
Таджикистан	TJ	Таджикстандарт			
Узбекистан	UZ	Узстандарт			

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 20 августа 2021 г. № 734-ст межгосударственный стандарт ГОСТ IEC 60331-1—2021 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2022 г.
- 5 Настоящий стандарт идентичен международному стандарту IEC 60331-1:2018 «Испытания электрических кабелей в условиях воздействия пламени. Сохранение работоспособности. Часть 1. Метод испытания кабелей на номинальное напряжение до 0,6/1,0 кВ включительно и наружным диаметром более 20 мм при воздействии пламени температурой не менее 830 °C одновременно с механическим ударом» («Test for electric cables under fire conditions Circuit integrity Part 1: Test method for fire with shock at a temperature of at least 830 °C for cables of rated voltage up to and including 0,6/1,0 kV and with an overall diameter exceeding 20 mm», IDT).

Международный стандарт IEC 60331-1:2018 разработан Техническим комитетом TC 20 «Электрические кабели» Международной электротехнической комиссии (IEC).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 B3AMEH FOCT IEC 60331-1-2013

7 Некоторые элементы настоящего стандарта могут быть объектом патентного права. Международная электротехническая комиссия (IEC) не несет ответственности за установление подлинности каких-либо или всех таких патентных прав

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

© IEC, 2018 © Оформление. ФГБУ «РСТ», 2021

ΓΟCT IEC 60331-1—2021

Содержание

1	Область применения1
2	Нормативные ссылки
3	Термины и определения
4	Условия испытания
5	Испытательное оборудование
6	Испытуемый образец (силовые кабели и кабели управления на номинальное напряжение до 0,6 кВ/1,0 кВ включительно)
7	Проведение испытания (силовые кабели и кабели управления на номинальное напряжение до 0,6 кВ/1,0 кВ включительно)
8	Оценка результатов испытания (силовые кабели и кабели управления на номинальное напряжение до 0,6 кВ/1,0 кВ включительно)
9	Проведение повторного испытания
1() Протокол испытания (силовые кабели и кабели управления на номинальное напряжение до 0,6 кВ/1,0 кВ включительно)
11	Маркировка кабеля
П	риложение А (обязательное) Метод проверки источника нагрева
П	риложение В (справочное) Руководство по выбору рекомендуемого испытательного оборудования (горелка и смеситель Вентури)
П	риложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам
Б	иблиография

Введение

Серия стандартов IEC 60331 состоит из следующих частей под общим наименованием «Испытания электрических кабелей в условиях воздействия пламени. Сохранение работоспособности»:

- часть 1. Метод испытания кабелей на номинальное напряжение до 0,6/1,0 кВ включительно и наружным диаметром более 20 мм при воздействии пламени температурой не менее 830 °C одновременно с механическим ударом;
- часть 2. Метод испытания кабелей на номинальное напряжение до 0,6/1,0 кВ включительно и наружным диаметром не более 20 мм при воздействии пламени температурой не менее 830 °C одновременно с механическим ударом;
- часть 3. Метод испытания кабелей на номинальное напряжение до 0,6/1,0 кВ включительно, испытываемых в металлической защитной трубе, при воздействии пламени температурой не менее 830 °C одновременно с механическим ударом;
 - часть 11. Испытательное оборудование. Воздействие пламени температурой не менее 750 °С;
- часть 21. Проведение испытаний и требования к ним. Кабели на номинальное напряжение до 0,6/1,0 кВ включительно;
- часть 23. Проведение испытаний и требования к ним. Кабели электрические для передачи данных;
 - часть 25. Проведение испытаний и требования к ним. Кабели оптические.

Примечания

- 1 Части 21, 23 и 25 касаются условий воздействия пламени температурой не менее 750°С.
- 2 Части 11, 21, 23 и 25 больше не подвергают мониторингу с целью обеспечения релевантности. Рекомендуемый порядок проведения испытаний приведен в частях 1 и 2 IEC 60331.

Со времени первого издания IEC 60331 (1970) область его применения расширена, что позволяет использовать испытательное оборудование при испытании силовых кабелей больших и малых размеров, кабелей для передачи данных, контрольных, управления и оптических кабелей.

Положительные результаты испытания, проведенного в соответствии с настоящим стандартом, являются основанием для нанесения на кабель соответствующей идентификационной маркировки.

Поправка к ГОСТ IEC 60331-1—2021 Испытания электрических кабелей в условиях воздействия пламени. Сохранение работоспособности. Часть 1. Метод испытания кабелей на номинальное напряжение до 0,6/1,0 кВ включительно и наружным диаметром более 20 мм при воздействии пламени температурой не менее 830 °C одновременно с механическим ударом

В каком месте	Напечатано Должно бы			жно быть
Предисловие. Таблица согла- сования	-	Казахстан	KZ	Госстандарт Республики Казахстан

(ИУС № 4 2022 г.)

ИСПЫТАНИЯ ЭЛЕКТРИЧЕСКИХ КАБЕЛЕЙ В УСЛОВИЯХ ВОЗДЕЙСТВИЯ ПЛАМЕНИ. СОХРАНЕНИЕ РАБОТОСПОСОБНОСТИ

Часть 1

Метод испытания кабелей на номинальное напряжение до 0,6/1,0 кВ включительно и наружным диаметром более 20 мм при воздействии пламени температурой не менее 830 °C одновременно с механическим ударом

Tests for electric cables under fire conditions. Circuit integrity. Part 1. Test method for fire with shock at a temperature of at least 830 °C for cables of rated voltage up to and including 0,6/1,0 kV and with an overall diameter exceeding 20 mm

Дата введения — 2022—01—01

1 Область применения

Настоящий стандарт распространяется на кабели на номинальное напряжение до 0,6/1,0 кВ включительно, а также на кабели на номинальное напряжение до 80 В, металлические кабели для передачи данных, телекоммуникационные и оптические кабели наружным диаметром более 20 мм.

Настоящий стандарт устанавливает метод испытания кабелей с целью определения их возможности сохранять работоспособность при воздействии пламени одновременно с механическим ударом в заданных условиях.

Требования к испытательному оборудованию, порядок проведения испытания и требования к нему для кабелей меньшего диаметра приведены в IEC 60331-2.

Настоящий стандарт распространяется на силовые кабели, кабели управления и контрольные кабели на номинальное напряжение до 0,6/1,0 кВ включительно и устанавливает сведения по характерным видам отказов, аппаратуре для проверки целостности цепи, порядку подготовки образцов и проведению испытания, а также отчету по испытанию. В настоящем стандарте не приведена информация по характерным видам отказов, аппаратуре для проверки целостности цепи, порядку подготовки образца и проведению испытания, отчету о проведении испытания, касающаяся кабелей с токопроводящими жилами для передачи данных, телекоммуникационных кабелей и оптических кабелей.

По согласованию между изготовителем и заказчиком (потребителем) данное испытание допускается проводить на кабелях на номинальное напряжение до 1,8/3,0 (3,3) кВ включительно при условии применения соответствующих плавких предохранителей.

В приложении А приведен метод проверки источника нагрева, а также системы контроля, используемый при испытании.

В настоящем стандарте также приведены требования к идентификационной маркировке, которая может быть нанесена на кабель для обозначения его соответствия настоящему стандарту.

Примечание — Испытание, приведенное в настоящем стандарте, допускается проводить при опасных напряжениях и температурах. Для предотвращения поражения персонала электрическим током, возможного возгорания и взрыва, а также возможного появления ядовитых газов, должны быть предприняты соответствующие меры предосторожности.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных — последнее издание (включая все изменения):

IEC 60584-1, Thermocouples — Part 1: EMF specifications and tolerances [Термопары. Часть 1. Требования к электродвижущей силе (ЭДС) и допуски]

IEC 60269-3, Low-voltage fuses — Part 3: Supplementary requirements for fuses for use by unskilled persons (fuses mainly for household and similar applications) — Examples of standardized systems of fuses A to F [Предохранители плавкие низковольтные. Часть 3. Дополнительные требования к плавким предохранителям (преимущественно бытового и аналогичного назначения), используемым неквалифицированным персоналом. Примеры стандартизированных систем плавких предохранителей от A до F)]

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями. ISO и IEC ведут терминологические базы данных для использования в области стандартизации, которые доступны по следующим ссылкам:

- Электропедия IEC: доступна по ссылке: http://www.electropedia.org/;
- онлайн-платформа ISO для поиска доступна по ссылке: http://www.iso.org/obp.
- 3.1 работоспособность (circuit integrity): Способность кабеля продолжать выполнять заданные функции при воздействии установленного источника пламени в течение заданного периода времени в заданных условиях.
- 3.2 условия отсутствия сквозняков (draught-free environment): Условия, при которых воздействие локальных воздушных потоков незначительно влияет на результаты испытания.

4 Условия испытания

Испытание проводят в помещении в условиях отсутствия сквозняков, в камере объемом не менее 20 м³ с использованием оборудования для отвода токсичных газов, выделяющихся при горении. Для поддержания устойчивости пламени при испытании должна быть предусмотрена соответствующая вентиляция. Отверстия для входа воздуха и вытяжная труба должны быть расположены таким образом, чтобы пламя горелки оставалось стабильным во время проверки и проведения испытания. При необходимости горелку защищают от сквозняков, используя защитные экраны. Для наблюдения за кабелем во время испытания в стенки испытательной камеры могут быть установлены окна. Отвод дыма должен осуществляться естественным путем через дымоход, расположенный на расстоянии не менее 1 м от горелки. Для регулирования условий вентиляции допускается использовать заслонку.

Примечание — Опытным путем было определено, что для проведения испытания подходит камера в форме куба со стороной 3 м в соответствии с IEC 61034-1.

Испытательная камера и испытательное оборудование должны находиться при температуре окружающей среды от 10 °C до 40 °C в начале каждого испытания.

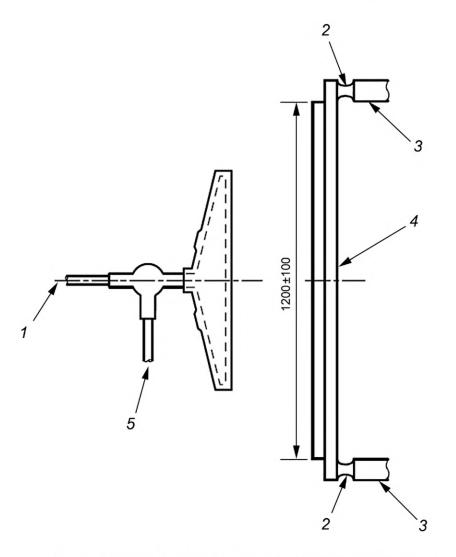
При проведении проверки и испытания кабеля в камере следует поддерживать одни и те же условия вентиляции и экранирования.

5 Испытательное оборудование

5.1 Испытательное устройство

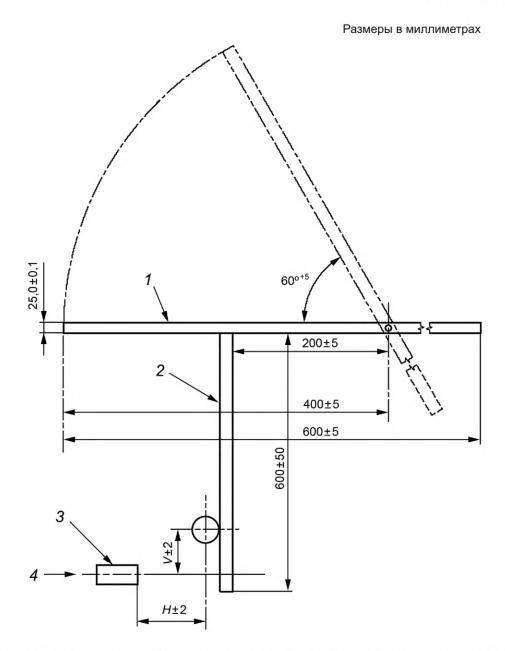
Испытательное устройство состоит из:

- а) испытательной лестницы по 5.2, состоящей из стального каркаса, прикрепленного к жесткой опоре, на которой крепят кабель;
 - b) источника нагрева по 5.3, состоящего из горизонтально установленной горелки ленточного типа;
 - с) ударного устройства по 5.4;
- d) испытательной стенки, оборудованной термопарами для контроля источника нагрева в соответствии с приложением A;


- е) аппаратуры для проверки целостности цепи по 5.6;
- f) плавких предохранителей по 5.7.
- Общее расположение испытательного оборудования показано на рисунках 1—3.

Размеры в миллиметрах 1200±100 ≈400 ≈400 ≈400

1 — ударное устройство; 2 — стальная испытательная лестница; 3 — резиновая втулка; 4 — газовая горелка ленточного типа; 5 — неподвижный вертикальный элемент; 6 — регулируемый вертикальный элемент; 7 — жесткий опорный каркас; P — плоскость регулировки


Рисунок 1 — Схема испытательного устройства

Размеры в миллиметрах

1 — подача воздуха; 2 — резиновая втулка; 3 — жесткий опорный каркас; 4 — горизонтальный стальной элемент испытательной лестницы; 5 — подача пропана

Рисунок 2 — Испытательное устройство (вид сверху)

1 — ударное устройство; 2 — стальная испытательная лестница; 3 — газовая горелка; 4 — осевая линия фронтальной поверхности горелки; H — расстояние по горизонтали от фронтальной поверхности горелки до центра испытуемого образца; V — расстояние по вертикали от осевой линии горелки до центра испытуемого образца

Рисунок 3 — Испытательное устройство (вид сбоку)

5.2 Испытательная лестница и ее крепление

Испытательная лестница представляет собой стальной каркас, приведенный на рисунке 1. Четыре центральных вертикальных элемента лестницы выполнены регулируемыми для того, чтобы можно было размещать испытуемые кабели разных размеров. Длина испытательной лестницы (1200 \pm 100) мм, высота — (600 \pm 50) мм, общая масса — (24 \pm 1) кг. При необходимости на стальные опоры помещают балласт.

Примечание — В качестве материала для конструкции лестницы рекомендуется стальной уголок шириной около 45 мм и толщиной около 6 мм с соответствующими прорезями для фиксации болтов и зажимов.

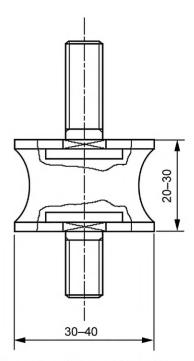
На расстоянии не более 200 мм от обоих концов каждого горизонтального элемента лестницы должны быть отверстия для крепления, точное положение и диаметр которых зависят от конкретного исполнения поддерживающих втулок и опорного каркаса. Испытательную лестницу прикрепляют к

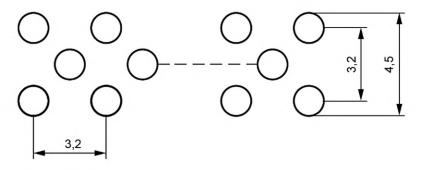
FOCT IEC 60331-1-2021

жесткому опорному каркасу с использованием четырех армированных резиновых втулок твердостью от 50 до 60 единиц по Шору (метод А), устанавливаемых между горизонтальными стальными элементами лестницы и опорным каркасом для обеспечения смещения лестницы при ударе, как показано на рисунках 1 и 2.

Примечание — Типичная резиновая втулка приведена на рисунке 4.

Размеры в миллиметрах




Рисунок 4 — Типичная резиновая втулка для крепления испытательной лестницы

5.3 Источник нагрева

5.3.1 Горелка

Источником нагрева является пропановая газовая горелка ленточного типа с номинальной длиной фронтальной рабочей поверхности 500 мм (наибольшее расстояние между крайними отверстиями), работающая со смесителем Вентури. Номинальная ширина фронтальной рабочей части поверхности горелки — 10 мм. На фронтальной поверхности рабочей части горелки должны быть три ступенчатых ряда отверстий номинальным диаметром 1,32 мм, центры которых находятся на расстоянии 3,2 мм друг от друга, как показано на рисунке 5.

Размеры в миллиметрах (размеры примерные, указаны без отклонений)

Примечание — Круглые отверстия диаметром 1,32 мм с расстоянием между центрами 3,2 мм, расположены ступенчато в три ряда по фронтальной поверхности горелки. Номинальная длина фронтальной поверхности горелки — 500 мм.

Рисунок 5 — Фронтальная поверхность горелки

Рекомендуется использовать горелку с центральной подачей газа.

Допускается на каждой боковой стороне горелки ряд дополнительных небольших отверстий, предназначенных для стабилизации и поддержания пламени при горении.

Указания по выбору рекомендуемых систем испытательного оборудования горелки приведены в приложении В.

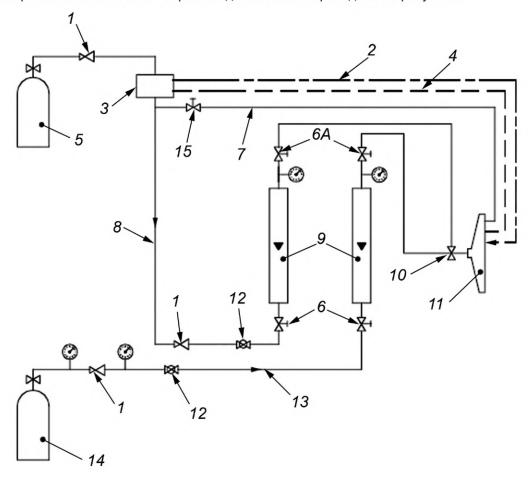
5.3.2 Расходомеры и расход газов

В качестве прецизионных устройств контроля расхода топлива и воздуха при подаче их к горелке используют массовые расходомеры/контроллеры.

При проведении испытания температура точки росы воздуха должна быть не более 0 °C.

Расход газов при испытании должен быть:

- пропана — (320 ± 13) мг/с.


 Π р и м е ч а н и е — Это приблизительно эквивалентно объемному расходу (10 \pm 0,4) л/мин в стандартных атмосферных условиях (давление 1 бар и температура 20 °C).

Степень чистоты пропана не регламентирована. Допускается использовать пропан промышленных марок, содержащих примеси, при условии выполнения требований по калибровке испытательного оборудования;

- воздуха — (3270 ± 163) мг/с.

Примечание — Это приблизительно эквивалентно объемному расходу (160 \pm 8) л/мин в стандартных атмосферных условиях (давление 1 бар и температура 20 °C).

Примерная схема системы контроля подачи топлива приведена на рисунке 6.

1 — редуктор; 2 — пьезоэлектрический воспламенитель; 3 — устройство для прерывания работы горелки; 4 — контрольные термопары; 5 — баллон с пропаном; 6 — винтовой клапан (6А — альтернативное расположение); 7 — вспомогательное питание; 8 — поступление газа; 9 — расходомер типа ротаметр; 10 — смеситель Вентури; 11 — горелка; 12 — шаровой клапан; 13 — система подачи воздуха; 14 — баллон со сжатым воздухом; 15 — винтовой клапан вспомогательного питания

5.3.3 Проверка

Горелку и систему контроля проверяют методом, приведенным в приложении А.

5.4 Ударное устройство

Ударное устройство представляет собой круглый стержень из отожженной стали диаметром $(25,0\pm0,1)$ мм и длиной (600 ± 5) мм.

Стержень свободно вращается вокруг оси, которая параллельна испытательной лестнице и находится в горизонтальной плоскости, проходящей через верхний край испытательной лестницы, на расстоянии (200 \pm 5) мм от нее. Ось делит стержень на две неравные части, больший отрезок длиной (400 \pm 5) мм ударяет по лестнице. Стержень падает под тяжестью собственного веса из начального положения под углом $\left(60_0^{+5}\right)^{\circ}$ к горизонтали, ударяя по верхнему краю испытательной лестницы в ее середине, как показано на рисунках 1 и 3.

5.5 Расположение источника нагрева

Горелку располагают в испытательной камере так, чтобы ее фронтальная поверхность находилась на расстоянии не менее 200 мм над полом камеры или любым массивным блоком испытательной установки и не менее 500 мм от стен камеры.

Горелку располагают напротив центральной части испытуемого образца кабеля на расстоянии $(H\pm 2)$ мм по горизонтали от фронтальной поверхности горелки до оси кабеля и на расстоянии $(V\pm 2)$ мм по вертикали от осевой линии горелки до оси кабеля, как показано на рисунке 3.

Точное положение горелки при испытании кабеля проверяют методом, приведенным в приложении A, с использованием которого определяют значения H и V.

При испытании горелку прочно закрепляют на каркасе для предотвращения ее смещения относительно испытуемого образца.

5.6 Проверка целостности цепи для силовых кабелей и кабелей управления на номинальное напряжение до 0,6 кВ/1,0 кВ включительно

При испытании для проверки целостности цепи по всем токопроводящим жилам образца пропускают ток. Ток подают от трехфазного трансформатора с соединением «звезда» или однофазного трансформатора(ов) достаточной мощности для поддержания стабильного испытательного напряжения с учетом максимально допустимого тока утечки.

Требуемую силу тока получают путем подсоединения к каждой токопроводящей жиле или группе жил нагрузочного индикаторного прибора (например, лампы).

Примечания

- 1 При определении номинальной мощности трансформатора(ов) следует предусмотреть плавкие предохранители с соответствующими характеристиками.
 - 2 Ток 0,25 А, пропускаемый по каждой токопроводящей жиле или группе жил кабеля, является достаточным.

5.7 Плавкие предохранители

Плавкие предохранители, используемые при испытании по разделу 7, должны быть из серии плавких предохранителей А—D типа DII, 2A по IEC 60269-3. Допускается использовать прерыватели цепи с эквивалентными параметрами, соответствующими характеристическим кривым, приведенным в IEC 60269-3.

В спорных случаях следует применять плавкие предохранители.

6 Испытуемый образец (силовые кабели и кабели управления на номинальное напряжение до 0,6 кВ/1,0 кВ включительно)

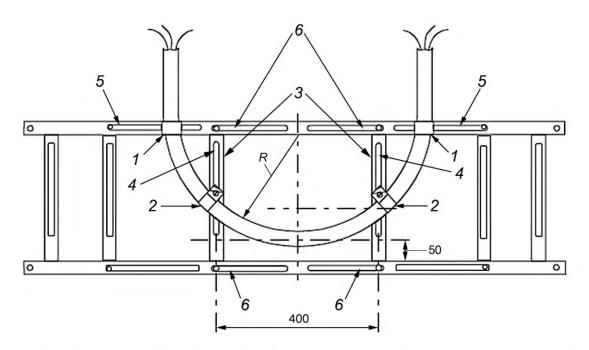
6.1 Подготовка образца

От строительной длины отбирают отрезок кабеля длиной не менее 4,5 м для подготовки образцов. Каждый образец для испытания должен представлять собой отрезок кабеля длиной не менее 1500 мм, с обоих концов которого должны быть удалены оболочка и другие покрытия на длине около 100 мм.

Концы токопроводящих жил образца должны быть зачищены для электрического подсоединения и, при наличии более чем одной токопроводящей жилы, разведены в стороны во избежание замыкания.

6.2 Крепление образца

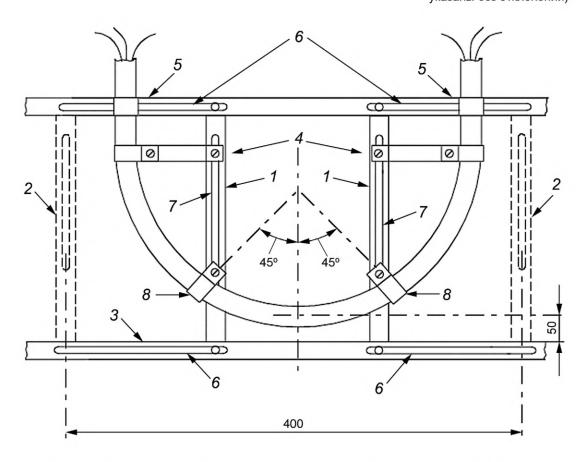
6.2.1 Одножильные кабели с концентрическим металлическим слоем и многожильные кабели


Образец изгибают приблизительно в форме дуги круга. Внутренний радиус изгиба должен соответствовать установленному изготовителем минимальному радиусу изгиба при нормальных условиях эксплуатации кабеля.

Образец крепят по центру испытательной лестницы, как показано на рисунке 7, используя металлические зажимы, которые должны быть заземлены. На верхнем горизонтальном элементе лестницы рекомендуется использовать два U-образных болтовых хомута, а на двух центральных вертикальных элементах — P-образные хомуты, изготовленные из металлической ленты шириной (20 ± 2) мм для кабелей диаметром от 20 до 50 мм и шириной (30 ± 3) мм для кабелей больших диаметров. P-образные хомуты должны иметь приблизительно тот же диаметр, что испытуемый образец.

Если образец кабеля слишком мал для крепления на центральных вертикальных элементах в положении, показанном на рисунке 7, то два вертикальных элемента следует равномерно сдвинуть к центру так, чтобы кабель можно было закрепить, как показано на рисунке 8.

Если радиус изгиба при нормальной эксплуатации слишком велик для крепления кабеля в прорезях для фиксации U-образного хомута, как указано на рисунке 7, то испытуемый образец закрепляют на четырех центральных вертикальных элементах, как показано на рисунке 9, с использованием P-образных хомутов, которые заземляют.


Размеры в миллиметрах (размеры примерные, указаны без отклонений)

1 — U-образный хомут; 2 — P-образный хомут; 3 — регулируемые вертикальные элементы; 4 — прорезь для фиксации P-образного хомута; 5 — прорезь для фиксации U-образного хомута; 6 — прорезь для перемещения регулируемых вертикальных элементов; R — минимальный радиус изгиба кабеля при нормальных условиях эксплуатации

Рисунок 7 — Способ крепления образца большего диаметра при испытании (с радиусом изгиба приблизительно от 200 до 400 мм)

Размеры в миллиметрах (размеры примерные, указаны без отклонений)

1 — отрегулированное положение вертикальных элементов; 2 — исходное положение вертикального элемента; 3 — нижний горизонтальный элемент испытательной лестницы; 4 — дополнительный зажим для обеспечения дугообразной формы кабеля (при необходимости); 5 — U-образный хомут; 6 — прорезь для перемещения регулируемых вертикальных элементов; 7 — прорезь для крепления Р-образного хомута; 8 — Р-образный хомут

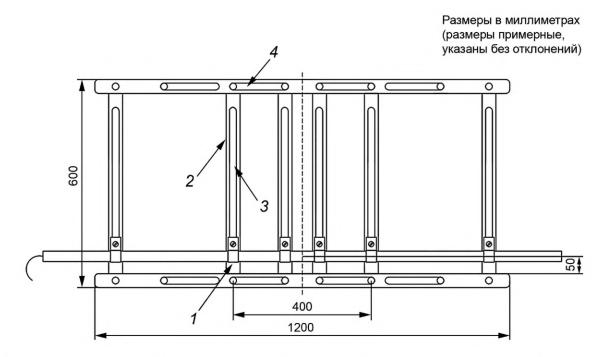
Рисунок 8 — Способ крепления образца меньшего диаметра при испытании с отрегулированным положением вертикальных элементов лестницы (с максимальным радиусом изгиба около 200 мм)

указаны без отклонений)

Размеры в миллиметрах (размеры примерные, указаны без отклонений)

1 — Р-образный хомут; 2 — регулируемые вертикальные элементы; 3 — прорезь для крепления Р-образного хомута; 4 — прорезь для перемещения регулируемых вертикальных элементов

Рисунок 9 — Способ крепления образца с радиусом изгиба более 400 мм при нормальных условиях эксплуатации


6.2.2 Одножильные кабели без концентрического металлического слоя

Образец в виде прямого отрезка крепят по центру испытательной лестницы, как показано на рисунке 10, используя четыре вертикальных элемента и металлические зажимы, для крепления кабеля к этим вертикальным элементам, которые должны быть заземлены.

Ширина металлических зажимов должна соответствовать 6.2.1.

Примечание — Испытание образца в виде прямого отрезка кабеля проводят для одножильных кабелей без концентрического металлического слоя, так как изгибание не влияет на характеристики кабеля этого типа в силу того, что в нем не возникают внутренние силы как в многожильном кабеле.

Диаметр Р-образных хомутов должен быть приблизительно таким же, что и у испытуемого кабеля.

1 — Р-образный хомут;
 2 — регулируемые вертикальные элементы;
 3 — прорезь для крепления Р-образного хомута;
 4 — прорезь для перемещения регулируемых вертикальных элементов

Рисунок 10 — Способ крепления образца одножильного кабеля без концентрического металлического слоя

7 Проведение испытания (силовые кабели и кабели управления на номинальное напряжение до 0,6 кВ/1,0 кВ включительно)

7.1 Испытательное оборудование и его размещение

Испытательное оборудование — по разделу 5.

Образец крепят на испытательной лестнице и регулируют положение горелки по отношению к образцу в соответствии с 5.5.

7.2 Электрические соединения

Со стороны конца образца(ов), подсоединенного(ых) к трансформатору, заземляют нейтральную и защитную жилы (при наличии). Металлические экраны, контактную проволоку и металлическое покрытие соединяют между собой и заземляют. Трансформатор(ы) подсоединяют к токопроводящим жилам, исключая нейтральную или защитную жилы, как показано на рисунке 11. Если металлическая оболочка, броня или экран выполняют функцию нейтральной или защитной жилы, они должны быть подсоединены, как показано на рисунке 11, в качестве нейтральной или защитной жилы.

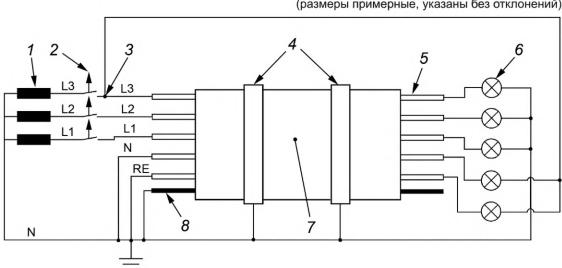
Для одно-, двух- или трехфазных кабелей каждую фазную жилу подсоединяют к отдельной фазе трансформатора(ов) через плавкие предохранители или через прерыватели цепи с эквивалентными характеристиками, рассчитанными на ток 2 А.

Для многожильных кабелей с четырьмя или более жилами (кроме нейтральной или защитной) жилы делят на три приблизительно равные группы; при этом соседние жилы должны быть, по возможности, в разных группах.

Для многопарных кабелей жилы делят на две равные группы, при этом одну жилу каждой пары подсоединяют к одной фазе, а другую жилу — к другой фазе (см. L1 и L2 на рисунке 11). Четверки рассматривают как две пары.

Для многожильных кабелей, скрученных тройками, жилы делят на три равные группы, при этом одну жилу каждой тройки подсоединяют к одной фазе, вторую жилу — к другой фазе, последующую жилу — к третьей фазе трансформатора (см. L1, L2 и L3 на рисунке 11).

Жилы каждой группы соединяют последовательно, а каждую группу подсоединяют к отдельной фазе трансформатора через плавкий предохранитель или прерыватель цепи с эквивалентными характеристиками, рассчитанными на ток 2 А.


В соответствии с указанным выше, нейтральную жилу заземляют. Нейтральную жилу заземляют, если кабель предназначен для использования в системе, в которой нейтральную жилу не заземляют. Допускается испытывать нейтральную жилу аналогично испытанию фазной жилы, если это указано в стандартах или технических условиях на кабели конкретных марок. Если металлическая оболочка, броня или экран выполняет функцию нейтральной жилы, ее заземляют. Все перечисленные особенности при проведении испытаний должны быть включены в протокол.

Для конструкций кабелей, отличных от указанных выше, испытательное напряжение прикладывают по возможности так, чтобы соседние жилы были подсоединены к разным фазам.

В некоторых случаях, например при испытании контрольного кабеля или кабеля управления с использованием трехфазного трансформатора, невозможно одновременное приложение испытательного напряжения номинального значения между жилами и между жилой и землей. В таких случаях значение испытательного напряжения либо между жилами, либо между жилой и землей должно быть равным номинальному значению и соответственно испытательное напряжение между жилами и испытательное напряжение между жилой и землей будут равны или будут превышать значение номинального напряжения.

На конце образца, не подсоединенном к трансформатору, должно быть выполнено следующее:

- каждую фазную жилу или группу жил заземляют через нагрузочный индикаторный прибор по 5.6;
- нейтральную и защитную жилы через нагрузочный индикаторный прибор по 5.6 соединяют с жилой L1, L2 или L3 на конце образца, соединенном с трансформатором (см. рисунок 11).

Размеры в миллиметрах (размеры примерные, указаны без отклонений)

1 — трансформатор; 2 — плавкий предохранитель (2 A); 3 — фазы L1, L2 или L3; 4 — металлические зажимы; 5 — испытуемая жила или группа жил; 6 — нагрузочный индикаторный прибор; 7 — образец; 8 — металлический экран (при наличии); L1, L2, L3 — фазные жилы (L2, L3 — при наличии); N — нейтральная жила (при наличии); PE — защитная жила (при наличии)

Рисунок 11 — Схема основных соединений

7.3 Использование горелки и ударного устройства

Зажигают горелку и устанавливают расход газа и воздуха на уровне значений, полученных при проверке источника нагрева (см. приложение A).

После включения горелки ударное устройство подготавливают к выполнению удара и включают секундомер для измерения продолжительности испытания. Ударное устройство должно сработать и ударить по лестнице спустя 5 мин \pm 10 с после включения горелки, а затем срабатывать через каждые 5 мин \pm 10 с. После каждого удара ударяющий стержень должен быть поднят над испытательной лестницей не более чем за 20 с после удара.

7.4 Воздействие электрического тока

Непосредственно после включения секундомера включают электропитание и устанавливают напряжение на уровне номинального напряжения кабеля (но не менее 100 В переменного тока), т. е. испытательное напряжение между жилами должно быть равно номинальному напряжению между жилами, а испытательное напряжение между жилой и землей должно быть равно номинальному напряжению между жилой и землей.

Испытание проводят в течение времени, указанного в 8.1, после чего пламя гасят.

8 Оценка результатов испытания (силовые кабели и кабели управления на номинальное напряжение до 0,6 кВ/1,0 кВ включительно)

8.1 Время воздействия пламени

Время воздействия пламени должно быть установлено в стандартах или технических условиях на кабели конкретных марок. Если время воздействия пламени не установлено, то продолжительность воздействия пламени и работы ударного устройства выбирают из ряда: 30, 60, 90, 120 мин.

8.2 Критерии оценки

Кабель считают сохраняющим работоспособность в течение установленного времени в условиях испытания по разделу 7, если:

- напряжение приложено в течение всего испытания, т. е. плавкий предохранитель не перегорает или не отключается прерыватель цепи;
 - токопроводящая жила не разрушается, т. е. лампа не гаснет.

Несоответствие одному из указанных критериев является достаточным для признания кабеля неисправным.

9 Проведение повторного испытания

При получении неудовлетворительных результатов проводят испытание двух дополнительных образцов, отобранных от того же отрезка кабеля, взятого для проведения испытания. Результаты испытания считают удовлетворительными, если оба образца соответствуют установленным требованиям.

10 Протокол испытания (силовые кабели и кабели управления на номинальное напряжение до 0,6 кВ/1,0 кВ включительно)

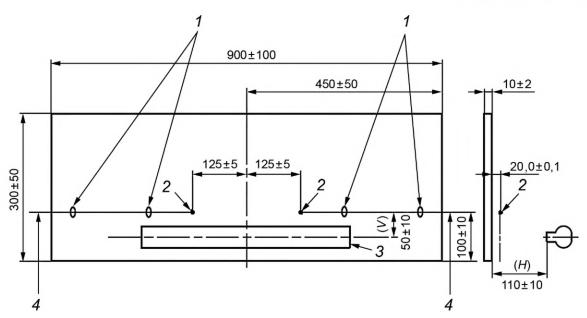
Протокол испытания должен содержать следующую информацию:

- а) обозначение настоящего стандарта;
- b) подробное описание испытуемого кабеля;
- с) наименование изготовителя испытуемого кабеля;
- d) значение испытательного напряжения и места приложения напряжения в электрических соединениях в соответствии с 7.2 (абзацы 7—9);
- е) любое отклонение от стандартной процедуры проведения испытания (т. е. от метода обнаружения неисправности);
 - f) тип и расположение зажимов, которыми закрепляют образец кабеля;
 - g) фактический радиус изгиба кабеля при испытании;
 - h) метод контроля температуры во время процедуры верификации;
 - і) характер отказа (т. е. превышение допустимого напряжения или разрыв токопроводящей жилы);
 - ј) критерии оценки результатов испытания по разделу 8;
 - k) время воздействия пламени;
 - I) объем испытательной камеры и значение температуры в начале испытания.

11 Маркировка кабеля

Если требуется маркировать кабель для обозначения его соответствия настоящему стандарту, маркировка должна содержать номер международного стандарта и длительность воздействия пламени: «IEC 60331-1 (XX)», где XX — длительность в минутах.

Данную маркировку наносят дополнительно к обязательной маркировке, соответствующей требованиям стандарта или технических условий на кабели конкретных марок.


Приложение А (обязательное)

Метод проверки источника нагрева

А.1 Измерительное оборудование

Температуру пламени измеряют с использованием двух термопар диаметром 1,5 мм с минеральной изоляцией и в оболочке из нержавеющей стали, соответствующих типу К по IEC 60584-1, установленных на испытательной стенке, как показано на рисунке A.1. Кончики термопар должны находиться на расстоянии (20 ± 1) мм от фронтальной стороны испытательной стенки. Горизонтальная осевая линия термопар должна находиться примерно на (100 ± 10) мм выше нижнего края испытательной стенки. Испытательная стенка представляет собой панель из теплостойкого негорючего неметаллического материала длиной (900 ± 100) мм, высотой (300 ± 50) мм и толщиной (10 ± 2) мм.

Размеры в миллиметрах

1— опоры для термопар; 2— кончик термопары; 3— горелка; 4— термопара типа K диаметром 1,5 мм в оболочке; H— расстояние до кончика термопары от фронтальной поверхности горелки по горизонтали; V — расстояние до кончика термопары от осевой линии горелки по вертикали

Рисунок А.1 — Расположение системы измерения температуры

А.2 Порядок проведения проверки

Горелку помещают на расстоянии 100—120 мм от термопар по горизонтали H и на 40—60 мм ниже осевой линии термопар по вертикали V, как показано на рисунке A.1

Горелку зажигают и регулируют подачу газа и воздуха до значений, указанных в 5.3.

Для обеспечения стабильных условий контролируют температуру по показаниям термопар в течение 10 мин.

А.3 Оценка результатов

Результат проверки считают удовлетворительным, если:

а) среднее значение усредненных показаний каждой из двух термопар в течение 10 мин находится в пределах (830_0^{140}) °C и

b) разность усредненных показаний каждой из двух термопар не превышает 40 °C.

Для получения среднего значения каждые 30 с проводят не менее одного измерения.

Специальный метод получения усредненного значения показаний термопары в течение заданного периода не установлен, однако для уменьшения разброса результатов, обусловленного точечным измерением, рекомендуется использовать записывающую аппаратуру с устройством для усреднения значений.

Если результаты проверки неудовлетворительные, расход газов следует изменить в пределах допуска, указанного в 5.3, и провести новую проверку.

А.4 Новая проверка

Если результаты проверки по разделу A.3 неудовлетворительные, следует изменить расстояния H и V между горелкой и термопарами (в пределах допуска, указанного в A.2) и провести новую проверку.

Если в пределах указанных допусков нельзя получить удовлетворительный результат, систему горелки считают не соответствующей требованиям настоящего стандарта.

А.5 Отчет по результатам проверки

Значения расстояний H и V, при которых получен удовлетворительный результат, и используемый расход газов фиксируют.

Приложение В (справочное)

Руководство по выбору рекомендуемого испытательного оборудования (горелка и смеситель Вентури)¹⁾

Для испытаний допускается использовать продукцию компании AGF:

- рабочую часть горелки, соответствующую требованиям настоящего стандарта (код продукта 11-55), а также 500-миллиметровую горелку (код продукта 1857В), включающую в себя указанную рабочую часть;
 - смеситель Вентури (код продукта 14-18).

Адрес для обращений: AGF Burner, Inc. www.agfburner.com 1955 Swarthmore Ave Lakewood, NJ 08703-8060

¹⁾ Данная информация приведена для сведения заказчика (потребителя) и не означает, что МЭК одобряет или рекомендует именно этот продукт. Допускается использование аналогичных изделий, если очевидно, что их применение приведет к тем же результатам.

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
IEC 60584-1	_	*
IEC 60269-3	MOD	ГОСТ 31196.3—2012 (IEC 60269-3:1987, IEC 60269-3A:1978) «Предохранители плавкие низковольтные. Часть 3. Дополнительные требования к плавким предохранителям бытового и аналогичного назначения»

^{*}Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного международного стандарта.

П р и м е ч а н и е — В настоящей таблице использовано следующее условное обозначение степени соответствия стандарта:

- МОО — модифицированный стандарт.

Библиография

- Tests for electric cables under fire conditions Circuit integrity Part 2: Test method for fire with shock at a temperature of at least 830 °C for cables of rated voltage up to and including 0,6/1,0 kV and with an overall diameter not exceeding 20 mm (Испытания электрических кабелей в условиях воздействия пламени. Сохранение работоспособности. Часть 2. Метод испытания кабелей на номинальное напряжение до 0,6/1,0 кВ включительно и наружным диаметром не более 20 мм при воздействии пламени температурой не менее 830°C одновременно с механическим ударом)
- IEC 61034-1 Measurement of smoke density of cables burning under defined conditions Part 1: Test apparatus (Измерение плотности дыма при горении кабелей в заданных условиях. Часть 1. Испытательное оборудование)

УДК 621.315.2.001.4:006.354

MKC 29.060.20 13.220.40 IDT

Ключевые слова: электрические кабели, метод испытания, работоспособность при воздействии пламени и механического удара, испытание в защитной трубе, испытательное оборудование

Редактор *Д.А. Кожемяк*Технический редактор *И.Е. Черепкова*Корректор *О.В. Лазарева*Компьютерная верстка *Л.А. Круговой*

Сдано в набор 23.08.2021. Подписано в печать 26.08.2021. Формат $60\times84\%$. Гарнитура Ариал. Усл. печ. л. 3,26. Уч.-изд. л. 2,61.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Поправка к ГОСТ IEC 60331-1—2021 Испытания электрических кабелей в условиях воздействия пламени. Сохранение работоспособности. Часть 1. Метод испытания кабелей на номинальное напряжение до 0,6/1,0 кВ включительно и наружным диаметром более 20 мм при воздействии пламени температурой не менее 830 °C одновременно с механическим ударом

В каком месте	Напечатано	Должно быть		
Предисловие. Таблица согла- сования		Казахстан	KZ	Госстандарт Республики Казахстан

(ИУС № 4 2022 г.)