МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT ISO 647— 2018

Угли бурые и лигниты

ОПРЕДЕЛЕНИЕ ВЫХОДА СМОЛЫ, ВОДЫ, ГАЗА И КОКСОВОГО ОСТАТКА ПУТЕМ ПЕРЕГОНКИ ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ

(ISO 647:2017, IDT)

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Техническим комитетом по стандартизации Республики Казахстан ТК 6 «Уголь и продукты его переработки» на базе ТОО «Научно-исследовательский центр «Уголь» на основе официального перевода на русский язык англоязычной версии указанного в пункте 5 стандарта, который выполнен Республиканским государственным предприятием «Казахстанский институт стандартизации и сертификации» (РГП «КазИнСт»)
- 2 ВНЕСЕН Комитетом технического регулирования и метрологии Министерства по инвестициям и развитию Республики Казахстан
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 октября 2018 г. № 113-П)

За принятие проголосовали:

Краткое наименование страны ло МК (ИСО 3168) 004—97 по МК (ИСО 3168) 004—97		Сокращенное наименование национального органа по стандартизации	
Беларусь	BY	Госстандарт Республики Беларусь	
Казахстан	KZ	Госстандарт Республики Казахстан	
Киргизия	KG	Кыргызстандарт	
Россия	RU	Росстандарт	
Таджикистан	TJ	Таджикстандарт	
Узбекистан	UZ	Узстандарт	

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 15 октября 2020 г. № 853-ст межгосударственный стандарт ГОСТ ISO 647—2018 введен в действие в качестве национального стандарта Российской Федерации с 1 апреля 2021 г.
- 5 Настоящий стандарт идентичен международному стандарту ISO 647:2017 «Угли бурые и лигниты. Определение выхода смолы, воды, газа и коксового остатка путем перегонки при низкой температуре» («Brown coals and lignites — Determination of the yields of tar, water, gas and coke residue by low temperature distillation», IDT).

Международный стандарт ISO 647:2017 разработан Подкомитетом SC 5 «Методы анализа» международного Технического комитета ISO/TC 27 «Твердое минеральное топливо».

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

> © ISO, 2017 — Все права сохраняются © Стандартинформ, оформление, 2020

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

FOCT ISO 647-2018

Содержание

1 Область применения	1
2 Нормативные ссылки	1
3 Термины и определения	1
4 Сущность метода	1
5 Реактивы	2
5.1 Графитовая паста	2
5.2 Ксилол	2
5.3 Толуол	2
6 Аппаратура	2
6.1 Реторта	2
6.2 Печь	3
6.3 Термопара и милливольтметр или ртутный гозонаполненный (азот) термометр	3
6.4 Приемник	3
6.5 Ванна для охлаждения	4
6.6 Аппарат для перегонки	4
7 Подготовка пробы	4
8 Проведение испытания	5
9 Обработка результатов	6
10 Прецизионность метода	7
10.1 Повторяемость	7
10.2 Воспроизводимость	7
11 Протокол испытаний , ,	7
Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов	
межгосударственным стандартам	8

Введение

Международный стандарт ISO 647:2017 заменяет ISO 647:1974, который был пересмотрен. Выход продуктов низкотемпературной перегонки, в частности выход смолы, составляет основу классификации бурых углей и лигнитов для использования при низкотемпературной карбонизации.

Используемые средства измерений должны соответствовать требованиям законодательства государства в области обеспечения единства измерений.

Угли бурые и лигниты

ОПРЕДЕЛЕНИЕ ВЫХОДА СМОЛЫ, ВОДЫ, ГАЗА И КОКСОВОГО ОСТАТКА ПУТЕМ ПЕРЕГОНКИ ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ

Brown coals and lignites. Determination of the yields of tar, water, gas and coke residue by low temperature distillation

Дата введения — 2021—04—01

1 Область применения

Настоящий стандарт распространяется на угли бурые и лигниты и устанавливает метод определения выхода смолы, воды, газа и коксового остатка, полученных путем перегонки при конечной температуре 520 °C.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных последнее издание (включая все изменения):

ISO 5068-2, Brown coals and lignites — Determination of moisture content — Part 2: Indirect gravimetric method for moisture in the analysis sample (Угли бурые и лигниты. Определение содержания влаги. Часть 2. Косвенный гравиметрический метод определения влаги в аналитической пробе)

ISO 1170, Coal and coke — Calculation of analyses to different bases (Уголь и кокс. Расчет результатов анализов на различные состояния)

3 Термины и определения

В настоящем стандарте термины и определения отсутствуют.

ISO и IEC поддерживают терминологические базы данных для использования в области стандаргизации, доступные по следующим электронным адресам.

- Электропедия МЭК: доступна по адресу http://www.electropedia.org/;
- Платформа онлайн-просмотра ИСО: доступна по адресу http://www.iso.org/obp.

4 Сущность метода

Пробу нагревают в алюминиевой реторте до температуры 520 °С в течение 80 мин. Продукты разложения поступают в приемник, охлаждаемый водой. Смола и вода конденсируются, а газообразные продукты выделяются в атмосферу. Коксовый остаток в реторте взвешивают. Приемник и его содержимое взвешивают, массу воды в нем определяют путем отгонки с толуолом или ксилолом. Массу смолы вычисляют по разности.

Общая масса воды в приемнике включает влагу в угле и воду, образующуюся в результате разложения угля. Отдельно определяют массовую долю влаги в угле таким образом, чтобы можно было рассчитать воду, образующуюся в результате разложения угля.

Выход газа в процентах (плюс ошибки) получают путем вычитания из 100 % суммы выходов коксового остатка, смолы и общей воды. Результаты определения приводят на аналитическое и сухое состояния.

FOCT ISO 647-2018

5 Реактивы

5.1 Графитовая паста

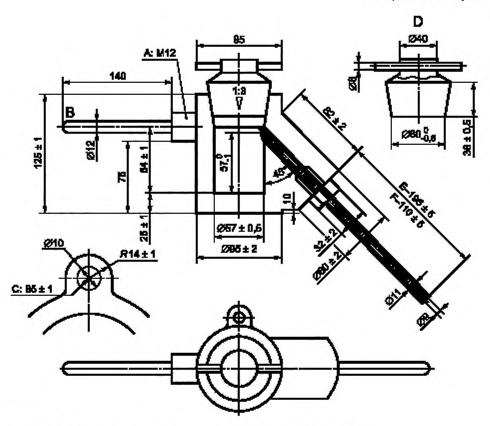
Сухой графит измельчают и готовят подходящую пасту, смешивая с водой или густым смазочным маслом.

5.2 Ксилол

Температура начала кипения от 135 °C до 140 °C.

5.3 Толуол

Температура начала кипения 110 °C.


6 Аппаратура

6.1 Реторта

Изготовленная из алюминия реторта с размерами, показанными на рисунке 1. Объем реторты с крышкой и отводной трубкой должен составлять (170 ± 10) см³. Отводная трубка должна быть выполнена из латуни, а ее внутренние стенки должны быть чистыми и полированными. Новую реторту перед использованием прогревают до 520 °C в течение 20 мин.

Если по причине износа верхняя кромка конической части крышки ниже верхней кромки реторты, ее свободный объем составляет менее 160 см³, то требуется новая крышка. Новая крышка большего размера должна быть притерта, так чтобы при установке ее верхняя кромка возвышалась не менее чем на 7 мм над верхней кромкой реторты. Это необходимо, чтобы свободный объем реторты не превышал 180 см³.

Размеры в миллиметрах

Материалы: Реторта алюминиевая, содержание алюминия — не более 99 %.

Объем реторты — (170 ± 10) см³.

Отводная трубка — латунь.

A — резьба; В — опорный стержень; С — глубина отверстия для термометра (мм); D — крышка; Е — см. рисунок 2 а); F — см. рисунок 2 b)

Рисунок 1 — Реторта

6.2 Печь

Печь с электрическим или газовым обогревом. Для электрического нагрева необходимо использовать печь с проволокой высокого сопротивления или карбидно-кремниевыми стержнями.

6.3 Термопара и милливольтметр или ртутный гозонаполненный (азот) термометр

Возможность индикации температуры до 550 °C.

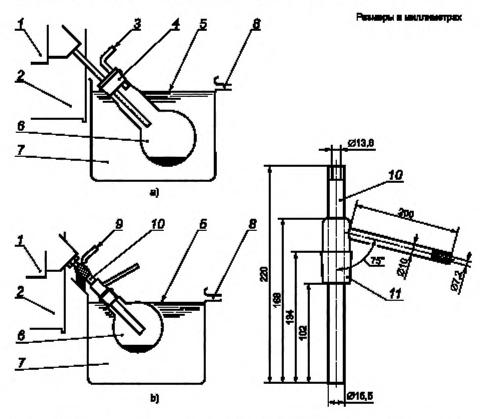
Перед использованием у нового термометра должен быть определен срок службы и он должен быть откалиброван. Термометр должен калиброваться с интервалом в один месяц путем сравнения показаний со стандартным термометром.

6.4 Приемник

Стеклянная круглодонная колба объемом 750 см³ с коническим шлифом и с длинным или коротким горлышком в зависимости от слособа соединения с ретортой (см. рисунок 2), снабженная резиновой или стеклянной пробкой.

6.5 Ванна для охлаждения

Расстояние между приемником и стенками ванны должно быть не менее 20 мм. Поток воды регулируют таким образом, чтобы температура в ванне поддерживалась в диапазоне от 10 °C до 15 °C.


6.6 Аппарат для перегонки

Аппарат для перегонки должен состоять из конденсатора, градуированной трубки для измерения уровня воды и дистилляционной колбы. Все части аппарата должны соединяться посредством шлифов.

7 Подготовка пробы

Лабораторную пробу распределяют на подносе и дают ей достичь приблизительного равновесного состояния влаги с атмосферой. Осторожно измельчают пробу так, чтобы не менее 90 % проходило
через сито с размером отверстий 1 мм и не более 50 % проходило через сито с размером отверстий
0,2 мм. Если массовая доля влаги в измельченной пробе составляет более 20 %, проводят дополнительную сушку на воздухе, чтобы снизить ее от 10 % до 20 %. Испытываемую пробу хранят в герметичном контейнере. Допускается хранение пробы не более 1 недели в контейнере с пробкой, заполненном
более чем на 80 % своего объема.

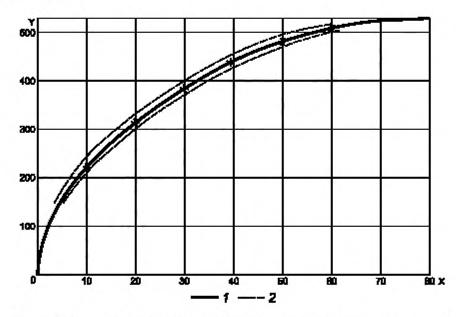
Примечание — Если проба хранится более 1 недели в контейнерах, которые негерметично закрыты или не полностью заполнены, потеря выхода смолы может достигать до 0,5 %, а в некоторых случаях и значительно выше.

1 — реторта с отводной трубкой; 2 — нагревательная печь; 3 — газоотводная трубка; 4 — термостойкая пробка; 5 — уровень охпаждающей воды; 6 — приемник; 7 — ванна для охлаждения; 8 — выходное отверстие; 9 — холодная вода; 10 — стеклянная соединительная трубка; 11 — соединительный шлиф

8 Проведение испытания

Взвешивают приблизительно 50 г испытываемой пробы с точностью до 0,05 г и полностью переносят в реторту. Коническую часть крышки слегка смазывают графитовой пастой, вставляют в реторту и закрывают, вращая крышку. Одновременно определяют массовую долю влаги в испытываемой пробе по ISO 5068-2.

Взвешивают приемник и пробку с точностью до 0,05 г и соединяют приемник с отводной трубкой реторты с помощью термостойкой пробки (см. рисунок 2 а) или стеклянной соединительной трубки (см. рисунок 2 b). В последнем случае вставляют латунную отводную трубку на расстоянии около 8 мм в стеклянную соединительную трубку и закрепляют с помощью короткой резиновой трубки. Место соединения обматывают хлопком, асбестом, льняной тканью, фильтровальной бумагой или другим подобным материалом и охлаждают потоком воды, пока реторта нагревается. Помещают реторту в печь, а приемник в ванну для охлаждения и проверяют устройство на газонепроницаемость. Некоторые типы печей необходимо предварительно подогревать до введения реторты, чтобы достичь 220 °C в течение 10 мин. Приемник должен быть погружен в ванну для охлаждения как можно глубже, но резиновая пробка или шлиф не должны касаться воды. Включают подачу воды через ванну для охлаждения и нагревают реторту в соответствии с требованиями, приведенными в таблице 1.


Таблица 1 — Требования к нагреву реторты

Время от начала нагревания, мин	Температура, °С
10	220
20	310
30	380
40	440 480
50	
60	505
70	520
80	520

Скорость нагрева необходимо поддерживать в пределах, показанных на рисунке 3.

В конце вышеуказанного периода прекращают нагрев и удаляют реторту с подключенным приемником из печи. Дают постоять в течение 10 мин, чтобы смола, собранная в отводной трубке, стекла в приемник. Отсоединяют приемник от реторты и, если необходимо, переносят оставшуюся смолу из отводной трубки в приемник с помощью небольшого шпателя. В чистой гладкой латунной трубке допускается оставлять только небольшое количество смолы. Закрывают приемник и отводную трубку реторты пробками и охлаждают реторту до комнатной температуры. Осторожно удаляют коксовые остатки и взвешивают их с точностью до 0,05 г в предварительно взвешенном бюксе.

Вытирают оставшуюся снаружи приемника воду и снова взвешивают для нахождения массы смолы вместе с общей массой воды. Добавляют 200 см³ толуола или ксилола в приемник и определяют общее содержание воды отгонкой с помощью аппарата для перегонки (6.6).

X — время, мин; Y — температура, °C; f — кривая зависимости температуры от времени; 2 — пределы

- 1 Общее время для перегонки при низкой температуре от 20 °C до 520 °C составляет 80 мин.
- 2 Эффективное время для перегонки при низкой температуре от 310 °C до 520 °C составляет 60 мин.

Рисунок 3 — График нагрева

9 Обработка результатов

Выход смолы, воды, газа и коксового остатка, %, на аналитическое состояние определяется по формулам:

$$\omega_{CR} = \frac{m_4}{m_0} \cdot 100, \qquad (1)$$

$$\omega_{\text{Tar}} = \frac{\left(m_2 - m_1 - m_3\right)}{m_0} \cdot 100,$$
 (2)

$$\omega_{\rm DW} = \frac{m_3}{m_0} \cdot 100 - M, \tag{3}$$

$$\omega_{Gas} = 100 - (\omega_{CR} + \omega_{Tar} + \omega_{DW} + M) = \frac{(m_0 + m_1 - m_2 - m_4)}{m_0} \cdot 100,$$
 (4)

где m_0 — масса пробы, г;

т — масса пустой пробки приемника, г:

т₂ — масса приемника с пробкой, смолой и общей водой, г;

та — масса общей воды, определенная отгонкой, г;

та — масса коксового остатка, г;

M — массовая доля влаги в пробе, %;

 ω_{CR} — выход коксового остатка, %; ω_{Tar} — выход смолы, %;

 ω_{DW} — выход воды, образованной в результате разложения, %; ω_{Gas} — выход газа, %.

Результат — предпочтительно среднее значение двух определений (см. раздел 10), вычисляют с точностью до 0,1 %. Результат выхода смолы, воды, образованной при разложении, коксового остатка и газа приводят на аналитическое и сухое состояния. Выход смолы может быть пересчитан на сухое беззольное состояние. Пересчет результатов определения на различные состояния топлива — в соответствии с ISO 1170.

10 Прецизионность метода

10.1 Повторяемость

Результаты повторных определений, проведенных в одной и той же лаборатории одним и тем же оператором с использованием одной и той же аппаратуры в течение короткого промежутка времени на двух предствительных частях, взятых от одной и той же пробы, не должны превышать значения предела повторяемости, г, приведенные в таблице 2.

10.2 Воспроизводимость

Среднее значение результатов повторных определений, проведенных в двух разных лабораториях на предствительных частях, взятых от одной и той же пробы на последнем этапе подготовки пробы, не должно превышать значения предела воспроизводимости, R, приведенные в таблице 2.

Таблица 2 — Пределы повторяемости и воспроизводимости для смолы, воды и коксового остатка

Определяемый показатель (на сухое состояние)	Максимально допустимое раскождение между результатами определений,		
	Повторяемость	Воспроизводимость	
ω _{Tar}	0,5	0,7	
ω _{DW}	0,4	8,0	
ω _{CR}	0,7	1,0	

11 Протокол испытаний

Протокол испытаний должен содержать следующую информацию:

- а) данные об испытываемой пробе;
- b) ссылка на настоящий стандарт;
- с) используемый метод (если стандарт включает несколько методов);
- d) результаты и состояние угля;
- е) любые отклонения от метода;
- f) особенности, замеченные при определении;
- дату проведения испытания.

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
ISO 5068-2	IDT	ГОСТ ISO 5068-2—2012 «Угли бурые и лигниты. Определение содержания влаги. Часть 2. Косвенный гравиметрический метод определения влаги в аналитической пробе»
ISO 1170	NEQ	ГОСТ 27313—2015 (ИСО 1170—2013) «Топливо твердое мине- ральное. Обозначение показателей качества и формулы пересче- та результатов анализа на различные состояния топлива»

Примечание — В настоящей таблице использованы следующие условные обозначения степени соответствия стандартов:

⁻ IDT — идентичные стандарты;

⁻ NEQ — неэквивалентные стандарты.

УДК 662.62:543 MKC 73.040 IDT

Ключевые слова: угли бурые и лигниты, выход смолы, воды, газа, коксового остатка, низкотемпературная перегонка

БЗ 11-2020/138

Редактор В.Н. Шмельков Технические редакторы В.Н. Прусакова, И.Е. Черепкова Корректор Е.М. Поляченко Компьютерная верстка Д.В. Кардановской

Сдано в набор 20.10.2020. Подписано в печать 13.11.2020. Формат 60 × 84 ¹/₈. Гарнитура Ариап. Усл. печ. л. 1,86. Уч.-изд. л. 1,60.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru