МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT ISO 10382— 2020

КАЧЕСТВО ПОЧВ

Определение хлорорганических пестицидов и полихлорированных бифенилов. Газохроматографический метод с использованием электронозахватного детектора

(ISO 10382:2002, IDT)

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью «Инновационный экологический фонд» (ООО «Инэко») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 31 августа 2020 г. № 132-П)

За принятие проголосовали:

раткое наименование страны по МК (ИСО 3166) 004—97 по МК (ИСО 3166) 004—97		Сокращенное наименование национального органа по стандартизации
Армения	АМ	ЗАО «Национальный орган по стандартизации и ме- трологии» Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Киргизия	KG	Кыргызстандарт
Казахстан	KZ	Госстандарт Республики Казахстан
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Узбекистан	UZ	Узстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 6 октября 2020 г. № 750-ст межгосударственный стандарт ГОСТ ISO 10382—2020 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2022 г.
- 5 Настоящий стандарт идентичен международному стандарту ISO 10382:2002 «Качество почвы. Определение хлорорганических пестицидов и полихлорированных бифенилов. Газохроматографический метод с использованием электронозахватного детектора» («Soil quality Determination of organochlorine pesticides and polychlorinated biphenyls Gas-chromatographic method with electron capture detection», IDT).

Международный стандарт разработан Подкомитетом SC 3 «Химические методы и характеристики почвы» Технического комитета по стандартизации ISO/TC 190 «Качество почв» Международной организации по стандартизации (ISO).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

© ISO, 2002 — Все права сохраняются © Стандартинформ, оформление, 2020

Содержание

1 Область применения
2 Нормативные ссылки
3 Сущность метода
4 Реактивы
5 Аппаратура
6 Приготовление стандартных растворов ПХБ и ХОП
7 Отбор проб и консервирование проб
7.1 Отбор проб
7.2 Консервирование и предварительная обработка проб
8 Выполнение анализа
8.1 Анализ холостой пробы
8.2 Экстракция и концентрирование
8.3 Очистка экстракта
8.4 Отделение ПХБ и неполярных ХОП от некоторых полярных ХОП методом колоночной хроматографии
8.5 Газохроматографический анализ
9 Отчет об испытаниях
10 Характеристики точности
Приложение А (справочное) Таблица времени удерживания полихлорированных бифенилов
и хлорорганических пестицидов для двух различных капиллярных колонок
Приложение В (справочное) Схема приготовления стандартных растворов, включая внутренние
стандарты
Приложение С (справочное) Результаты межлабораторного эксперимента, проведенного в Голландии 16
Приложение D (справочное) Проведение очистки с целью удаления элементарной серы
и некоторых органических соединений серы
Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов
межгосударственным стандартам
Библиография

Введение

Международная организация по стандартизации (ISO) является всемирной федерацией национальных организаций по стандартизации (комитетов — членов ISO). Разработка международных стандартов, как правило, осуществляется техническими комитетами ISO. Каждый комитет-член, заинтересованный в деятельности, для проведения которой был создан технический комитет, имеет право быть представленным в этом комитете. Международные правительственные и неправительственные организации, имеющие связи с ISO, также принимают участие в работах. Что касается стандартизации в области электротехники, ISO работает в тесном сотрудничестве с Международной электротехнической комиссией (IEC).

Международные стандарты разрабатываются в соответствии с правилами, установленными в Директивах ISO/IEC, часть 3.

Основной задачей технических комитетов является подготовка международных стандартов. Проекты международных стандартов, принятые техническими комитетами, рассылаются комитетам-членам на голосование. Их опубликование в качестве международных стандартов требует одобрения не менее 75 % комитетов-членов, принимающих участие в голосовании.

Некоторые элементы настоящего стандарта могут быть объектом патентного права. ISO не несет ответственности за идентификацию всех или какого-либо из таких патентных прав.

ISO 10382 подготовлен Техническим комитетом ISO/TC 190 «Качество почв», Подкомитетом SC 3 «Химические методы и характеристики почв».

Приложения A, B, C и D настоящего стандарта являются справочными.

Поправка к ГОСТ ISO 10382—2020 Качество почв. Определение хлорорганических пестицидов и полихлорированных бифенилов. Газохроматографический метод с использованием электронозахватного детектора

В каком месте	Напечатано	Должно быть
Предисловие. Таблица согла- сования	 	Азербайджан AZ Азстандарт

(ИУС № 8 2023 г.)

КАЧЕСТВО ПОЧВ

Определение хлорорганических пестицидов и полихлорированных бифенилов. Газохроматографический метод с использованием электронозахватного детектора

Soil quality. Determination of organochlorine pesticides and polychlorinated biphenyls.

Gas-chromatographic method with electron capture detection

Дата введения — 2022—01—01

1 Область применения

Настоящий стандарт распространяется на все типы почв и устанавливает метод количественного определения семи полихлорированных бифенилов и семнадцати хлорорганических пестицидов.

При соблюдении условий, указанных в настоящем стандарте, пределы определения могут составлять от 0,1 до 4 мкг/кг (в пересчете на сухое вещество).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных — последнее издание (включая все изменения).

ISO 10381-1, Soil quality — Sampling — Part 1: Guidance on the design of sampling programmes (Качество почв. Отбор проб. Часть 1. Методические указания по составлению программ отбора проб)¹⁾

ISO 10381-2, Soil quality — Sampling — Part 2: Guidance on sampling techniques (Качество почв. Отбор проб. Часть 2. Методические указания по методам отбора проб)²⁾

ISO 11465, Soil quality — Determination of dry matter and water content on a mass basis — Gravimetric method (Качество почвы. Определение содержания сухих веществ и воды по массе. Гравиметрический метод)

ISO 14507, Soil quality — Pretreatment of samples for determination of organic contaminants (Качество почвы. Подготовка образцов к определению содержания органических загрязняющих веществ)

3 Сущность метода

После предварительной обработки пробы проводят экстракцию анализируемого образца почвы углеводородным растворителем.

Экстракт концентрируют; полярные соединения удаляют пропусканием концентрированного экстракта через колонку, заполненную оксидом алюминия. Полученный элюат концентрируют.

Элементарную серу при необходимости удаляют из концентрированного экстракта обработкой сульфитом тетрабутиламмония.

Экстракт анализируют газохроматографическим методом. Разделение соединений проводят с использованием капиллярной колонки с неподвижной фазой низкой полярности. Определение осуществляют с использованием электронозахватного детектора (ЭЗД).

Полихлорированные бифенилы (ПХБ) и хлорорганические пестициды (ХОП) идентифицируют и количественно определяют посредством сравнения относительных времен удерживания и

¹⁾ Заменен на ISO 18400-107:2017, ISO 18400-101:2017, ISO 18400-104:2018.

²⁾ Заменен на ISO 18400-102:2017.

относительных высот пиков (или площадей пиков) по отношению к добавленным стандартам, с соответствующими значениями в растворе внешнего стандарта. Эффективность анализа зависит от состава исследуемого образца почвы. Описанная процедура не учитывает степень неполноты экстракции, связанную с особенностями структуры и состава исследуемого образца почвы.

Предел обнаружения зависит от природы определяемого вещества, используемого оборудования, степени чистоты реактивов, используемых при экстракции почвенного образца, и очистки экстракта.

Примечания

- 1 Для более надежной идентификации определяемых соединений и обнаруженных концентраций необходимо проведение дополнительных исследований. Подтверждение полученных данных можно осуществить повторным проведением газохроматографического анализа с использованием колонки другой полярности и/или проведением анализа методом газовой хроматографии/масс-спектрометрии (ГХ/МС).
- 2 Настоящий метод позволяет также проведение идентификации и количественного определения других нелетучих хлорорганических соединений, например некоторых хлорбензолов.

4 Реактивы

Все используемые реактивы должны быть признанной аналитической степени чистоты. Степень чистоты используемых реактивов должна быть проверена проведением холостого определения согласно 8.1.

- 4.1 Петролейный эфир, температура кипения 40 °C 60 °C.
- 4.2 Ацетон.
- 4.3 н-Гексан.
- 4.4 Диэтиловый эфир.

Диэтиловый эфир может содержать пероксиды, потенциально окисляющие некоторые из определяемых соединений. Следует убедиться в отсутствии пероксидов, например, при встряхивании со свежеприготовленным 10%-ным (по массе) раствором йодида калия.

4.5 Сульфат натрия безводный, прокаленный при (550 ± 20) °C в течение не менее 6 ч, доведенный приблизительно до 200 °C в муфельной печи и затем до температуры окружающей среды в эксикаторе с перхлоратом магния или другим подходящим веществом.

Безводный сульфат натрия при хранении следует хранить тщательно закупоренным.

- 4.6 Оксид алюминия, основной или нейтральный, с удельной поверхностью 200 м²/г, активность Супер 1 по Брокману.
 - 4.7 Оксид алюминия, дезактивированный добавлением 10 % воды.
- К 90 г оксида алюминия (4.6) добавляют 10 г воды. Встряхивают до получения однородной массы. Оксид алюминия выдерживают приблизительно 16 ч перед использованием, не допуская контакта с воздухом.
- 4.8 Силикагель, частицы размером от 60 до 200 мкм, дезактивированный добавлением 5 % воды. 95 г силикагеля выдерживают в сушильном шкафу при 150 °С не менее 24 ч. Охлаждают в эксикаторе и добавляют 5 г воды. Встряхивают до получения однородной массы. Дезактивированный силикагель выдерживают приблизительно 16 ч перед использованием, не допуская контакта с воздухом.

Для каждой новой партии оксида алюминия или силикагеля следует проверять их элюирующую способность относительно стандартного раствора ПХБ или ХОП. При необходимости степень активации сорбента подбирается экспериментально (см. 8.4).

4.9 Стандарты.

4.9.1 Полихлорированные бифенилы.

ПХБ-28: 2,4,4'-трихлорбифенил Номер по каталогу CAS¹): 7012-37-5 ПХБ-52: 2,2',5,5'-тетрахлорбифенил Номер по каталогу CAS: 35693-99-3 ПХБ-101: 2,2',4,5,5'-пентахлорбифенил Номер по каталогу CAS: 37680-73-2 ПХБ-118: 2,3',4,4',5-пентахлорбифенил Номер по каталогу CAS: 31508-00-6 ПХБ-138: 2,2',3,4,4',5'-гексахлорбифенил ПХБ-180: 2,2',3,4,4',5,5'-гептахлорбифенил Номер по каталогу CAS: 35065-27-1 ПХБ-180: 2,2',3,4,4',5,5'-гептахлорбифенил Номер по каталогу CAS: 35065-29-3

Примечание — Номера 28, 52 и т. д. соответствуют последовательности номеров бифенилов согласно правилам ИЮПАК по номенклатуре органических соединений.

¹⁾ Регистрационный номер, принятый CAS (Chemical Abstracts Service).

4.9.2 Хлорорганические пестициды.

Гексахлорбензол (ГХБ) Номер по каталогу CAS: 118-74-1 α -Гексахлорциклогексан (α -ГХЦГ) Номер по каталогу CAS: 319-84-6 β-Гексахлорциклогексан (β-ГХЦГ) Номер по каталогу CAS: 319-85-7 γ-Гексахлорциклогексан (γ-ГХЦГ) (линдан) Номер по каталогу CAS: 58-89-9 Номер по каталогу CAS: 309-00-2 Альдрин Дильдрин Номер по каталогу CAS: 60-57-1 Эндрин Номер по каталогу CAS: 72-20-8 Номер по каталогу CAS: 76-44-8 Гептахлор Гептахлор эпоксид (экзо-, цис- или а-изомер) Номер по каталогу CAS: 28044-83-9 Гептахлор эпоксид (эндо-, транс- или b-изомер) Номер по каталогу CAS: 1024-57-3 α-Эндосульфан Номер по каталогу CAS: 959-98-7 п,п'-ДДЭ Номер по каталогу CAS: 72-55-9 о,п'-ДДД Номер по каталогу CAS: 53-19-0 Номер по каталогу CAS: 784-02-6 о,п'-ДДТ Π,Π' -ДДД Номер по каталогу CAS: 72-54-8 о,п'-ДДЭ Номер по каталогу CAS: 3424-82-6 п,п'-ДДТ Номер по каталогу CAS: 50-29-3

4.9.3 Внутренние стандарты.

ПХБ-155: 2,2',4,4',6,6'-гексахлорбифенил Номер по каталогу CAS: 33979-03-2

Из приведенных ниже соединений выбирают второй внутренний стандарт, не оказывающий мешающего влияния на определяемые компоненты:

ПХБ-143: 2,2',3,4,5,6'-гексахлорбифенил Номер по каталогу CAS: 68194-15-0 ПХБ-207: 2,2',3,3',4,4',5,6,6'-нонахлорбифенил Номер по каталогу CAS: 52663-79-3 Номер по каталогу CAS: 2385-85-5

4.10 Приготовление раствора тетрабутиламмония (сульфита тетрабутиламмония)

Готовят раствор гидросульфата тетрабутиламмония концентрацией 0,1 M ($c[(C_4H_9)_4NHSO_4]$ = 0,1 моль/дм³), используя в качестве растворителя смесь воды и изопропанола, взятую в отношении 1:1 (по объему). В приготовленный раствор добавляют сульфит натрия до насыщения.

Примечание — Как правило, на 100 см³ раствора достаточно добавить 25 г сульфита натрия.

4.11 н-Гептан.

5 Аппаратура

5.1 Стандартная стеклянная химическая посуда.

Всю используемую стеклянную посуду тщательно моют, предпочтительно в посудомоечном аппарате, после чего ополаскивают последовательно ацетоном, а затем петролейным эфиром или гексаном.

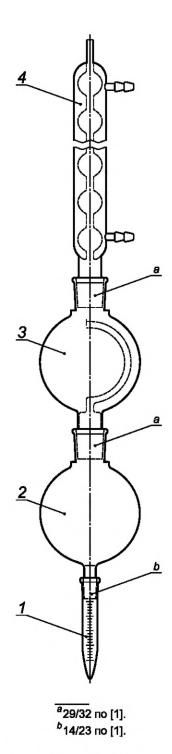
- 5.2 Стеклянные бутыли для анализируемых проб вместимостью 1 дм³ с закручивающимися крышками и тефлоновыми прокладками.
 - 5.3 Встряхиватель для горизонтального встряхивания (200—300 встряхиваний в минуту).
 - 5.4 Водяная баня с нагревом до 100 °C.
 - 5.5 Делительные воронки вместимостью 2 дм³.
 - 5.6 Конические колбы вместимостью 500 см³.
 - 5.7 Испаритель Кудерна Даниша (см. рисунок 1).

Другие испарители, например роторный испаритель, также могут использоваться, если они в равной степени являются подходящими.

5.8 Кварцевое волокно или силанизированное стекловолокно, омытое петролейным эфиром или гексаном.

ВНИМАНИЕ — При работе с кварцевым волокном имеется риск попадания мелких частиц кварца в дыхательные пути. Для предотвращения этого следует проводить работы под тягой или использовать защитные маски.

- 5.9 Кипелки, гранулы из стекла или фарфора, омытые петролейным эфиром или гексаном.
- 5.10 Градуированные пробирки вместимостью 15 см³ со стеклянными пробками на шлифах.
- 5.11 Хроматографические колонки (см. рисунок 2).


5.12 Газовый хроматограф, снабженный системой ввода проб, капиллярной колонкой и электронозахватным детектором (ЭЗД) на основе ⁶³Ni.

Примечания

- 1 Работа с закрытым радиоактивным источником, каковым является источник ЭЗД, проводится при наличии соответствующего разрешения согласно действующему национальному законодательству.
- 2 Газовый хроматограф, снабженный двумя детекторами и имеющий возможность подсоединения двух капиллярных колонок к одной и той же системе ввода проб, наилучшим образом подходит для данного анализа. Это позволяет одновременное проведение основного и подтверждающего анализа.
- 5.13 Капиллярная колонка из кварцевого стекла длиной 50 м и внутренним диаметром около 0,25 мм, покрытая пленкой связанного полисилоксана.

Возможно использование других колонок, однако в данном случае может наблюдаться неудовлетворительное разделение. Для подтверждения полученных результатов используют колонку, покрытую умеренно полярной фазой, например CP-Sil 19, OV 1701 и т. д.

Примечание — В приложении А приведено время удерживания для ПХБ и ХОП, полученное на капиллярных колонках с CP-Sil 8 и CP-Sil 19.

1 — градуированная пробирка вместимостью 15 см 3 ; 2 — перегоночная колба; 3 — приемник; 4 — обратный холодильник

Все комплектующие должны соответствовать [1].

Рисунок 1 — Пример испарителя Кудерна — Даниша

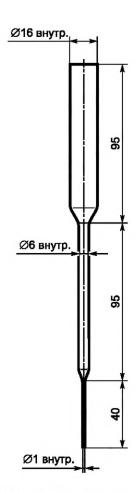


Рисунок 2 — Пример хроматографической колонки

6 Приготовление стандартных растворов ПХБ и ХОП

Готовят индивидуальные основные стандартные растворы компонентов в н-гептане массовой концентрацией около 0,4 мг/см³. Для этого взвешивают 10 мг каждого стандартного вещества (4.9) с точностью до 0,1 мг и растворяют каждый стандарт в 25 см³ н-гептана.

Чистоту основных стандартных растворов проверяют газохроматографически, хроматографируя приготовленные растворы с использованием предпочтительно неспецифичного детектора, например пламенно-ионизационного детектора (ПИД) или детектора по теплопроводности (ДТП).

Готовят смесь стандартов ПХБ и ХОП: объединяют небольшие количества (2—10 мл) индивидуальных основных стандартных растворов, включая внутренние стандарты (см. приложение В). Полученный раствор используют для приготовления рабочих стандартных растворов разбавлением согласно приложению В.

Соединения, присутствующие в растворе смеси стандартов, должны полностью разделяться на используемой газохроматографической колонке.

Приготовленные основной и разбавленные стандартные растворы хранят в темном месте при температуре не выше 4 $^{\circ}$ C.

Примечание — Растворы устойчивы в течение одного года при условии минимального испарения растворителя.

7 Отбор проб и консервирование проб

7.1 Отбор проб

Представительный образец почвы отбирают в соответствии с ISO 10381-1, используя оборудование для отбора проб по ISO 10381-2.

7.2 Консервирование и предварительная обработка проб

Образцы для анализа следует предварительно обработать как можно скорее после отбора проб. Пробы хранят в темном месте при температуре не выше 10 °C, по возможности в хладотермостате. Для анализа на ХОП срок хранения почвенных образцов с естественной влажностью не более 7 дней. Определяют содержание сухого вещества в почве с естественной влажностью в соответствии с ISO 11465. Измельчают образцы, если их однородность недостаточна для отбора представительной пробы почвы. Измельчение следует проводить в криогенных условиях после химической осушки пробы безводным сульфатом натрия (4.5) в соответствии с ISO 14507.

Для воздушно-сухих образцов (закрытых) допускается более длительный срок хранения при комнатной температуре (около одного месяца).

8 Выполнение анализа

8.1 Анализ холостой пробы

Перед проведением определений необходимо выполнить анализ холостой пробы по 8.2—8.5, используя те же количества реактивов, что и при проведении экстракции, очистке экстракта и анализе образца. Для образцов почвы, измельченных в криогенных условиях, проводят холостое определение, используя 8 г сульфата натрия (4.5) и 2 г талька, добавляя все необходимые реактивы.

Если результаты холостого определения необоснованно завышены, т. е. составляют более 10 % минимально определяемых концентраций, необходимо устранить мешающее влияние матрицы пошаговым анализом всех стадий проведения определений.

При проведении измерений на уровне предела определения даже реактивы, используемые для определения остаточных концентраций, могут давать мешающий фоновый сигнал. В этом случае следует проводить холостое определение в каждой серии образцов, поступающих на анализ.

Значения концентраций, полученные в результате анализа холостой пробы, должны быть ниже, чем пределы определения исследуемых веществ.

8.2 Экстракция и концентрирование

8.2.1 Воздушно-сухие образцы

20 г воздушно-сухой пробы помещают в коническую колбу (5.6). К анализируемой пробе добавляют 50 см³ ацетона (4.2) и проводят экстракцию встряхиванием в течение 15 мин на встряхивателе (5.3). Затем добавляют 50 см³ петролейного эфира (4.1) и продолжают встряхивание еще 15 мин. Повторяют экстракцию еще с 50 см³ петролейного эфира (4.1). Экстракты собирают в делительную воронку вместимостью 2 дм³ и удаляют ацетон двукратным встряхиванием смеси с 500 см³ воды. Экстракт пропускают через слой безводного сульфата натрия для удаления влаги и переносят в испаритель (5.7). Сульфат натрия трижды промывают петролейным эфиром порциями по 10 см³, и собранные промывные воды также переносят в испаритель.

8.2.2 Образцы естественной влажности

20 г естественно влажной пробы помещают в коническую колбу (5.6). К анализируемой пробе добавляют 50 см 3 ацетона (4.2) и проводят экстракцию путем энергичного встряхивания в течение 15 мин на встряхивателе (5.3). Затем добавляют 50 см 3 петролейного эфира (4.1) и продолжают встряхивание еще 15 мин. Повторяют экстракцию еще с 50 см 3 петролейного эфира (4.1).

Если влажность образца превышает 25 %, увеличивают количество используемого ацетона. Отношение ацетон:вода должно составлять не менее чем 9:1. Отношение ацетон:петролейный эфир должно постоянно находиться на уровне 1:2.

Полученные экстракты собирают в делительную воронку вместимостью 2 дм 3 и удаляют ацетон двукратным встряхиванием смеси с 500 см 3 воды. Экстракт пропускают через слой безводного сульфата натрия для удаления влаги и переносят в испаритель (5.7). Сульфат натрия трижды промывают петролейным эфиром порциями по 10 см 3 , и собранные промывные воды также переносят в испаритель.

Возможно применение альтернативных способов проведения экстракции, таких как ультразвуковое или микроволновое экстрагирование или экстрагирование под давлением. Однако следует учитывать, что характеристики используемого способа экстракции должны быть не ниже, чем у способа, описанного в настоящем стандарте.

8.2.3 Концентрирование

В испаритель помещают кипелки (5.9) и концентрируют экстракт в течение 10 мин. Сконцентрированный экстракт переносят в градуированную пробирку (5.10) и концентрируют до объема 1 см³ в легком токе азота при комнатной температуре.

Примечание — Слишком высокая температура или слишком сильный поток азота могут привести к потерям наиболее летучих ПХБ и ХОП.

8.3 Очистка экстракта

Готовят адсорбционную колонку, помещая в хроматографическую колонку (5.11) небольшое количество кварцевого волокна (5.8) и наполняя в сухом состоянии колонку (2.0 ± 0.1) г окиси алюминия (4.7).

Перед проведением элюирования проверяют элюирующую способность каждой партии колонок с окисью алюминия, а также устанавливают объем, необходимый для элюирования, используя для этого стандартные растворы ПХБ и ХОП.

При помощи пипетки переносят экстракт в сухую адсорбционную колонку с окисью алюминия. Дважды ополаскивают пробирку петролейным эфиром порциями по 1 см³, и полученные растворы переносят при помощи той же пипетки в колонку. Данную операцию проводят, когда уровень жидкости в колонке находится не ниже верхнего края набивки. Элюируют приблизительно 20 см³ петролейного эфира.

Элюат делят на две равные части. Одну часть оставляют на случай необходимости проведения анализа разбавленного экстракта. Вторую часть концентрируют в легком токе азота без дополнительного нагревания до объема приблизительно 1 см³.

Примечание — Возможно использование готовых промышленных колонок в качестве альтернативы, если их применение в данном случае адекватно.

Присутствие серы в экстракте ПХБ и неполярных ХОП может оказывать мешающее влияние на хроматограмме. Если предполагается присутствие элементарной серы (среди прочего, это вероятно при анализе анаэробных образцов почвы), ее удаляют следующим образом.

К 1 см³ сконцентрированного экстракта добавляют 2 см³ сульфита тетрабутиламмония (4.10) и встряхивают в течение 1 мин. Добавляют 10 см³ воды и продолжают встряхивание еще 1 мин. Отделяют органическую фазу от водной пипеткой Пастера и добавляют несколько кристалликов безводного сульфата натрия для удаления остатков влаги.

Примечание — Возможно применение альтернативных способов удаления серы, например с помощью пирогенной меди (см. приложение D), в случае, если данные способы предполагают равнозначный результат.

Если дальнейшая очистка не требуется, к конечному экстракту добавляют 10 мкл стандартного раствора, содержащего стандарты веществ (4.9.3) в количестве, в 100 раз большем (в пересчете на 1 см³), чем в рабочем стандартном растворе (см. приложение В).

8.4 Отделение ПХБ и неполярных ХОП от некоторых полярных ХОП методом колоночной хроматографии

В случае очень сложных по составу образцов газохроматографический анализ может дать недостаточное разделение веществ. Данную проблему можно решить проведением дополнительного хроматографического разделения всего концентрированного экстракта.

Концентрированный экстракт разделяют колоночной хроматографией на силикагеле (4.8) на две фракции. Первая фракция содержит ПХБ и неполярные ХОП (ГХБ, n,n'-ДДТ, гептахлор, альдрин, n,n'-ДДТ). Вторая фракция содержит более полярные ХОП [α -ГХЦГ, β -ГХЦГ, γ -ГХЦГ (линдан), дильдрин, эндрин, o,n'-ДДД, α -эндосульфан]. Элюирующую способность колонки проверяют с помощью стандартных растворов ПХБ и ХОП. При необходимости регулируют активность силикагеля добавлением дополнительного количества воды (если соединения из первой фракции появляются во второй фракции или если первая фракция не содержит соединения, приведенные выше). Добавляют меньшее количество воды в силикагель, если приведенные выше соединения из второй фракции появляются в первой фракции.

Экстракты разделяют следующим образом. Помещают небольшое количество кварцевого волокна в хроматографическую колонку. Насыпают в условиях сухости $(1,5\pm0,1)$ г силикагеля (4.8) и сверху фиксируют слоем 1 см сульфата натрия (4.5). При помощи пипетки переносят концентрированный экстракт в сухую адсорбционную колонку с силикагелем. Дважды ополаскивают пробирку гексаном

порциями по 1 мл, и полученные растворы переносят при помощи той же пипетки в колонку. Данную операцию проводят, когда уровень жидкости в колонке находится не ниже верхнего края набивки. Элю-ируют из расчета 25 см³ гексана (первая фракция) и 25 см³ смеси гексан:диэтиловый эфир (75:25 по объему) (вторая фракция).

Примечание — Возможно использование готовых промышленных колонок в качестве альтернативы, если они соответствуют по параметрам.

Каждый из двух полученных элюатов делят на две равные части и одну часть каждого элюата оставляют на случай необходимости повторного проведения анализа разбавленного экстракта. Оставшиеся части двух разделенных фракций выпаривают в пробирках до объема 1 см³.

К каждой из двух фракций добавляют 10 мкл стандартного раствора, содержащего стандарты веществ (4.9.3) в количестве, в 100 раз большем (в пересчете на 1 см³), чем в рабочем стандартном растворе (см. приложение В).

8.5 Газохроматографический анализ

8.5.1 Оптимизация условий разделения

Оптимизируют режимы газового хроматографа для достижения оптимального разделения. Количество теоретических тарелок и фактор емкости для ПХБ-138 должны составлять соответственно не менее $6 \cdot 10^4$ и 6 при температуре 220 °C. Необходимо, чтобы наблюдалось достаточное разделение хроматографических пиков ПХБ-28 и ПХБ-31 (разрешение не менее 0,5) при интегрировании пика ПХБ-28.

Ниже приведены ориентировочные режимы газового хроматографа:

температура инжектора (только при проведении

инжекции в режиме без деления потока) 210 °C;

температура колонки 80 °C в течение 4 мин, затем нагрев со скоро-

стью 4 °С/мин до 300 °С;

скорость потока газа-носителя 20—30 см/с.

8.5.2 Построение градуировочных зависимостей

8.5.2.1 Общие положения

Различают два типа градуировки: первичная градуировка (8.5.2.2) и ежедневная градуировка (проверка первичной градуировки), или переградуировка (8.5.2.3).

Первичная градуировка служит для нахождения линейного рабочего диапазона градуировочной кривой. Данный тип градуировки проводится при первичной апробации метода или же после замены/ ремонта оборудования.

Переградуировка используется при проверке линейности рабочего диапазона первичной градуировочной кривой и проводится перед каждой серией анализов.

Примечание — Допустимо применение методов нелинейной градуировки в случае их правомерности.

8.5.2.2 Первичная градуировка

Снимают хроматограммы не менее пяти стандартных растворов с равноотстоящими концентрациями определяемых веществ согласно приложению В, включая хроматограмму растворителя (холостой прогон) (см. приложение В). Идентифицируют пики в соответствии с приложением А, при необходимости используя хроматограммы индивидуальных компонентов. Строят градуировочные графики для каждого соединения.

Для расчетов рекомендуется использовать высоты пиков вместо площадей пиков.

Используя метод наименьших квадратов, рассчитывают прямую, удовлетворяющую всему диапазону градуировочных растворов. Если начало координат попадает в диапазон рассчитанной прямой с вероятностью 95 %, пересчитывают уравнение линейной регрессии с учетом прохождения прямой через начало координат.

Если начало координат не попадает в диапазон прямой с вероятностью 95 %, исключают раствор с самой высокой концентрацией и повторяют расчеты.

Определяют отклонение измеренных значений от первичной градуировочной прямой. При отклонении значений раствора с самой высокой концентрацией не более чем на 5 % принимают, что весь диапазон концентраций попадает в рамки линейности. Если отклонение составляет более 5 %, сужают диапазон исключением значений самой высокой концентрации.

В качестве рабочего стандарта выбирают градуировочный раствор с концентрацией, наиболее близкой к середине линейного диапазона. Если диапазон концентраций в пробах ниже, чем рассчитанный линейный диапазон, допускается в качестве рабочего стандарта использовать градуировочный раствор с низшей концентрацией, принимая условно его концентрацию как среднюю из диапазона анализируемых проб.

8.5.2.3 Переградуировка

Перед проведением каждой серии анализов проверяют первичную градуировочную зависимость следующим образом.

Хроматографируют не менее двух градуировочных стандартов с концентрациями на уровне (20 ± 10) % и (80 ± 10) % от установленного линейного диапазона и рассчитывают прямую исходя из проведенных измерений. Если рассчитанная прямая совпадает с первичной градуировочной прямой с вероятностью не менее 95 %, первичная градуировка признается действительной. В противном случае устанавливают новую градуировочную зависимость согласно 8.5.2.2.

После проведения проверки первичной градуировки поступают следующим образом.

Снимают хроматограмму рабочего стандарта. На основании полученной хроматограммы определяют относительное время удерживания для всех ПХБ и ХОП по отношению к внутреннему стандарту.

Относительное время удерживания t_{RRx} соединения X по отношению к внутреннему стандарту ПХБ-155 рассчитывают по формуле

$$t_{RRx} = \frac{t_{ARx}}{t_{AR\,\Pi\,X5-155}},\tag{1}$$

где t_{AR_X} — абсолютное время удерживания соединения X;

 $t_{AR\;\Pi X B-155}\;$ — абсолютное время удерживания внутреннего стандарта ПХБ-155.

Затем определяют относительный отклик для всех ПХБ и ХОП по отношению к внутреннему стандарту ПХБ-155.

Относительный отклик r_{relX} соединения X по отношению к внутреннему стандарту ПХБ-155 рассчитывают по формуле

$$r_{relX} = \frac{r_X}{r_{\Pi X B-155}} \cdot \frac{c_{\Pi X B-155}}{c_X},\tag{2}$$

где r_X — отклик соединения X;

 $r_{\Pi X 5-155}$ — отклик внутреннего стандарта ПХБ-155;

 c_X — концентрация соединения X;

 $c_{\Pi X \bar{b} - 155}$ — концентрация внутреннего стандарта ПХБ-155.

8.5.3 Проведение измерений

Обрабатывают хроматограммы экстрактов, полученные согласно 8.4. Используя абсолютное время удерживания, идентифицируют пики внутренних стандартов. Для остальных пиков на хроматограммах определяют относительное время удерживания по отношению к обоим внутренним стандартам. Идентифицируют соединение, если его относительное время удерживания отличается от рассчитанного по 8.5.2 не более чем на 0,2 %.

Присутствие любого из идентифицированных соединений подтверждают повторным снятием хроматограммы по 8.5.1, используя колонку с умеренно полярной фазой (5.13) или методом ГХ/МС.

8.5.4 Проведение расчетов

8.5.4.1 Общие принципы

Количественные расчеты концентраций ПХБ и ХОП проводят с использованием внутреннего стандарта, добавляемого к экстракту. Однако здесь возможны ошибки в случае присутствия на хроматограмме пика мешающего соединения, время удерживания которого совпадает со временем удерживания внутреннего стандарта. Поэтому к экстракту добавляют два стандарта для определения того, присутствуют ли в экстракте мешающие компоненты или таковых нет. В зависимости от характеристик используемых капиллярных колонок, выбирают соответствующие стандарты. В качестве стандарта может использоваться только такое соединение, время удерживания которого на обеих колонках не совпадает со временем удерживания ни одного из анализируемых компонентов.

Наличие или отсутствие мешающих соединений определяют исходя из измеренных откликов внутренних стандартов. Если в экстракте отсутствуют мешающие соединения, то отношение между откликами внутренних стандартов в экстракте равно данному отношению в стандартных растворах. Частное

от этих двух отношений называется относительным отношением откликов $R_{\rm rel\it r}$. При отсутствии мешающих соединений значение $R_{\rm rel\it r}$, как правило, равно 1,00. В настоящем стандарте предполагается, что мешающие соединения отсутствуют в экстракте, если $R_{\rm rel\it r}$ = 1,00 ± 0,05.

Если значение $R_{\rm rel\it{r}}$ отличается от 1,00 ± 0,05, предполагают, что на отклик одного из внутренних стандартов оказывает влияние мешающее соединение, присутствующее в экстракте. В этом случае количественные расчеты проводят по стандарту, на который не оказывается мешающее влияние. На практике это осуществляют количественными расчетами всех экстрактов по отношению к одному и тому же внутреннему стандарту и расчетом значений $R_{\rm rel\it{r}}$ для всех экстрактов. На отклик выбранного стандарта оказывается мешающее влияние, только если $R_{\rm rel\it{r}} >$ 1,05. В таких случаях можно провести количественные расчеты относительно другого стандарта умножением рассчитанных концентраций на значение $R_{\rm rel\it{r}}$ для каждого рассматриваемого экстракта.

Описанная проверка на отсутствие мешающего влияния предназначена только для обнаружения возможного мешающего влияния на месте пиков внутренних стандартов на рассматриваемой хроматограмме. Отсутствие мешающих соединений на месте пиков анализируемых ПХБ и ХОП определяют посредством подтверждения присутствия идентифицированных компонентов (8.4). Предполагается, что мешающие соединения отсутствуют на месте пиков ПХБ и ХОП, если проверка дает результаты, отличающиеся от первоначально полученных не более чем на 10 %.

Если результаты проверки дают значения концентраций ниже, чем полученные первоначально, предполагается, что первоначально рассчитанные концентрации завышены и обусловлены влиянием мешающих соединений. В этом случае в качестве результата анализа принимают меньшее из полученных значений, как более правдоподобное.

8.5.4.2 Процедура проведения расчетов

Рассчитывают концентрации ПХБ и ХОП относительно внутреннего стандарта следующим образом.

Подтверждают правильность отклика внутреннего стандарта.

Относительное отношение откликов $R_{\mathrm{rel}r}$ для внутренних стандартов ПХБ и ХОП рассчитывают по формуле

$$R_{\text{rel}r} = \frac{r_{e,155}}{r_{e,2}} \cdot \frac{r_{s,2}}{r_{s,155}},\tag{3}$$

где $r_{\rm e,155}$ — отклик ПХБ-155 в экстракте;

 $r_{\rm e,2}$ — отклик второго выбранного стандарта в экстракте;

 $r_{s.155}$ — отклик ПХБ-155 в рабочем стандартном растворе;

 $r_{\rm s,2}$ — отклик второго выбранного стандарта в рабочем стандартном растворе.

Теоретическое значение относительного отношения откликов $R_{\rm rel\it{r}}$ составляет 1,00. Если $R_{\rm rel\it{r}}$ = 1,00 ± 0,05, считают, что концентрации внутренних стандартов рассчитаны корректно, и для формулы, приведенной ниже, принимают $R_{\rm rel\it{r}}$ = 1,00. Если же получают $R_{\rm rel\it{r}}$ менее 0,95 или более 1,05, то следует перепроверить расчеты по хроматограмме для обоих внутренних стандартов. Особое внимание при этом уделяют форме и ширине пиков. Если количественные расчеты проведены верно, то при расчете конечных концентраций для $R_{\rm rel\it{r}}$ < 0,95 корректировку не проводят (т. е. принимают $R_{\rm rel\it{r}}$ = 1,00), а для $R_{\rm rel\it{r}}$ > 1,05 — проводят (принимают $R_{\rm rel\it{r}}$ равным рассчитанному значению).

Концентрации идентифицированных соединений относительно внутреннего стандарта ПХБ-155 рассчитывают по формуле

$$\rho_{m,i} = \frac{r_{e,i}}{r_{e,155}} \cdot \frac{m_{e,155}}{r_{rel,i,155}} \cdot \frac{2f_t}{m_s \cdot \rho_d} \cdot R_{relr}, \tag{4}$$

где $\rho_{m,i}$ — массовая концентрация индивидуального ПХБ или ХОП в образце, мкг/кг сухого вещества;

 $r_{e,i}$ — отклик ПХБ или ХОП в экстракте;

 $r_{e,155}$ — отклик внутреннего стандарта ПХБ-155 в экстракте;

 $m_{\rm e,155}$ — масса внутреннего стандарта ПХБ-155 в экстракте, нг;

r_{rel,i,155} — относительный отклик ПХБ или ХОП в стандартном растворе по отношению к ПХБ-155;

 f_t — фактор сложения в соответствии с ISO 14507;

 $m_{\rm s}$ — масса анализируемого образца, используемая при вычислениях, г;

 ρ_d — массовая доля сухого вещества в естественно влажном образце, определяемая при высушивании образца при 105 °C в соответствии с ISO 11465, кг/кг;

 $R_{\rm relr}$ — относительное отношение откликов (см. 8.5.4).

Если рассчитанная массовая концентрация одного или нескольких ПХБ или ХОП превышает верхний уровень диапазона линейности для данного соединения, то следует провести повторное хроматографирование экстракта при его разбавлении. Для этого используют вторую часть элюата, полученного по 8.3. Данную порцию экстракта разбавляют таким образом, чтобы содержание определяемого компонента попадало в линейный диапазон концентраций. Далее добавляют 10 мкл стандартных растворов согласно 8.4 и повторяют анализ, начиная с 8.5.

Примечание — Для принятого метода расчета нет необходимости учитывать при расчете коэффициент разбавления.

Полученные результаты округляют в соответствии с таблицей 1.

Таблица 1 — Округление результатов

Массовая концентрация, мкг/кг	Округление проводится до, мкг/кг	
От 1 до 100	1	
От 100 до 1000	10	

9 Отчет об испытаниях

Отчет должен содержать по меньшей мере следующие данные:

- а) информацию, необходимую для идентификации образца;
- b) ссылку на настоящий стандарт;
- с) условия газохроматографического анализа и описание использованных колонок;
- d) массовые концентрации индивидуальных ПХБ и ХОП, мкг/кг сухого вещества, округленные в соответствии с таблицей 1;
- е) дополнительные сведения, не оговариваемые в настоящем стандарте, но имеющие значение для адекватного представления полученных результатов.

10 Характеристики точности

В приложении С представлены результаты межлабораторного эксперимента, выполненного согласно голландскому национальному стандарту NEN 5734, который практически идентичен настоящему стандарту. Для анализа было предложено пять различных образцов почвы. В эксперименте участвовало от 6 до 10 лабораторий. В качестве результатов представлены относительное стандартное отклонение (rsd) воспроизводимости и усредненное значение концентраций определяемых веществ в анализируемых образцах.

Приложение A (справочное)

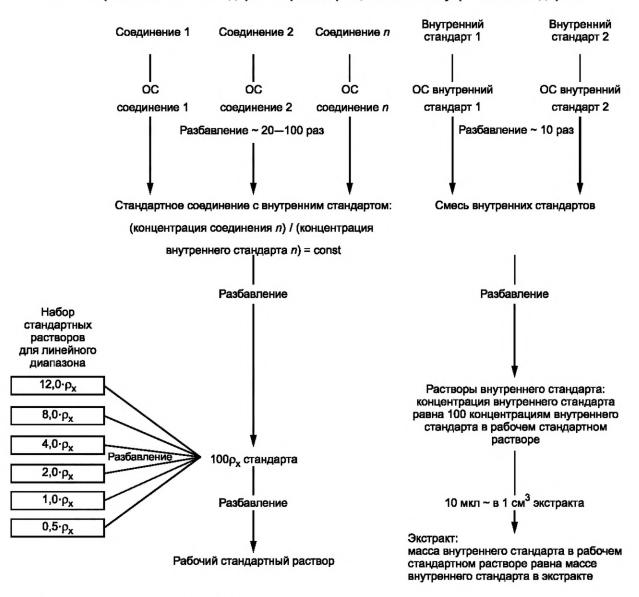
Таблица времени удерживания полихлорированных бифенилов и хлорорганических пестицидов для двух различных капиллярных колонок

Таблица А.1 — Время удерживания

Соединение	Время удерживания, мин				
Соединение	Колонка А ^а	Колонка В ^b			
1,3,5-трихлорбензол	12,67	12,16			
1,2,4-трихлорбензол	13,75	13,59			
1,2,3-трихлорбензол	14,81	14,69			
1,2,3,5-тетрахлорбензол	18,25	17,35			
1,2,4,5-тетрахлорбензол	18,25	17,35			
1,2,3,4-тетрахлорбензол	19,82	19,34			
Пентахлорбензол	24,19	23,12			
Гексахлорбензол	29,50	28,38			
α-ГХЦГ	29,01	30,36			
β-ГХЦГ	30,22	35,41			
ү-ГХЦГ (линдан)	30,63	32,29			
Альдрин	35,75	34,82			
Дильдрин	40,40	40,76			
Изодрин	37,00	36,53			
Эндрин	41,57	41,86			
Телодрин	36,38	35,93			
Гептахлорбензол	34,13	33,55			
Гептахлорэпоксид (<i>транс-</i>)	37,60	37,90			
Гептахлорэпоксид (<i>цис-</i>)					
α-Эндосульфан	39,12	39,01			
о,п'-ДДД	40,55	41,33			
п,п'-ДДД	42,27	43,92			
о,п'-ДДЭ	38,58	38,36			
п,п'-ДДЭ	40,05	39,87			
о,п'-ДДТ	42,56	42,28			
п,п'-ДДТ	44,64	45,19			
ПХБ-28	33,32	32,98			
ПХБ-52	34,85	34,54			
ПХБ-101	38,71	38,27			
ПХБ-118	41,89	41,61			

Окончание таблицы А.1

C	Время удерживания, мин				
Соединение	Колонка А ^а	Колонка В ^b			
ПХБ-138	45,00	44,54			
ПХБ-153	43,18	42,49			
ПХБ-180	50,41	49,47			


Примечание — В зависимости от используемой колонки, возможно совместное элюирование указанных ПХБ с другими конгенерами. Информацию по элюированию можно получить в технических условиях соответствующей колонки или тестовых хроматограммах.

 $^{^{}a}$ 50 м CP-Sil 8; 0,22 мм × 0,12 мкм.

^b 50 м CP-Sil 19; 0,22 мм × 0,12 мкм.

Приложение В (справочное)

Схема приготовления стандартных растворов, включая внутренние стандарты

Для $\rho_{\rm x}$ вначале используют 10 мкг/дм³.

Соединение n — один из стандартов по 4.9.1 или 4.9.2.

Внутренний стандарт n — один из внутренних стандартов по 4.9.3.

ОС — индивидуальные концентрации основных стандартных растворов (раздел 6).

Приложение C (справочное)

Результаты межлабораторного эксперимента, проведенного в Голландии

Таблица С.1 — Результаты межлабораторного эксперимента, проведенного в Голландии

Соединение	Предел обнаружения для почвы, (мг/кг) · р _d	обнаружения обнаружения для для почвы, донных отложений,		Повторяемость для донных отложений <i>r</i> , %	
ПХБ					
ПХБ-28	1,0	1,5	10	10	
ПХБ-52	1,7	1,0	9	9	
ПХБ-101	0,5	0,4	8	7	
ПХБ-118	0,5	0,5	5	10	
ПХБ-138	3,1	0,3	6	4	
ПХБ-153	0,8	0,2	5	10	
ПХБ-180	0,4	0,3	5	5	
ХОП					
Альдрин	0,2	0,5	13	8	
Дильдрин	0,3	0,2	9	9	
Эндрин	0,4	0,3	8	14	
2,4'-ДДТ/4,4'-ДДТ	0,4/4,4	0,3/0,2	7/9	34	
2,4'-ДДД/4,4'-ДДД	0,3/0,4	0,14/0,15	7/5	9/6	
2,4'-ДДЭ/4,4'-ДДЭ	0,3/0,8	0,13/0,10	10/5	11/12	
α-Эндосульфан	0,1	0,39	12	7	
α-ГХЦГ	0,1	0,23	14	12	
B-ГХЦГ 0,3		0,24	8	12	
γ-ГХЦГ (линдан)	0,2	0,24	13	11	
Гептахлор	0,3	0,51	12	13	
транс-гептахлорэпоксид	0,2	0,3	9	7	
транс/цис-хлордан	0,3/0,3	0,3/0,2	9/9	12/10	
Гексахлорбутадиен	0,2	0,7	27	22	
Трихлорбензол	1,6	0,6	7	27	
Тетрахлорбензол	0,7	0,8	13	10	
Пентахлорбензол	0,3	0,5	12	10	
Гексахлорбензол	0,4	0,5	11	7	

Таблица С.2 — Результаты межлабораторного эксперимента, проведенного в Голландии

	Вид пробы									
Соединение	Глі SC	ина 101	To _l SP	рф 111		сок 155	Донные о WC			тложения 106
ПХБ	СКОа	w ^b	СКОа	w ^b	СКОа	wb	СКОа	w ^b	СКОа	w ^b
ПХБ-28	29	3			89	490	59	62	130	64
ПХБ-52	59	3			61	370	54	37	104	110
ПХБ-101	27	5			103	700	52	47	52	29
ПХБ-118	29	4			46	490	47	34		
ПХБ-138	40	7			23	610	66	41		
ПХБ-153	27	8			40	480	47	50	142	110
ПХБ-180	20	5			79	260	57	24	93	30
хоп										
Альдрин			34	110	146	23 000			58	3100
Дильдрин			49	67	64	12 000			73	6100
Эндрин			49	13	43	1800			65	550
ддт	49	53	78	690	106	130 000	47	26	80	230 000
ддд	49	13	81	110	72	12 000	117	19	51	110 000
ддэ	29	120	42	81	84	12 000	66	16	85	4400
α-Эндосульфан			23		56	3500			61	5500
α-ГХЦГ			74	8	28	390			47	7
β-ГХЦГ			49	14	66	2300			52	530
γ-ГХЦГ (линдан)			43	7	29	860			66	32
Гептахлор			76	2	125	580			71	130
Гептахлорэпоксид					77	620			67	35
Хлордан										
Гексахлорбутадиен										
Хлорбензол										
Трихлорбензол										
Тетрахлорбензол										
Пентахлорбензол							65	7		
Гексахлорбензол							60	14		

¹⁷

Таблица С.3 — Результаты межлабораторного эксперимента, проведенного в Голландии

Соединение	Число лабораторий r ^a , %		R ^b , %	
Глина				
ПХБ	10	От 4 до 10	От 20 до 60	
хоп	10	От 4 до 13	От 30 до 50	
Хлорбензол	10	От 10 до 15	_	
Торф				
ПХБ	9	_	_	
хоп	9	_	От 25 до 80	
Хлорбензол	9	<u> </u>	_	
Песок				
ПХБ	10	_	От 25 до 100	
хоп	10	_	От 30 до 150	
Хлорбензол	10	_	_	
Донные отложения				
ПХБ	10		От 50 до 65	
хоп	10 —		От 50 до 120	
Хлорбензол	10	_	От 60 до 65	
Донные отложения				
ПХБ	10	От 4 до 10	От 50 до 140	
хоп	10	От 4 до 15	От 45 до 85	
Хлорбензол	10	От 5 до 15	_	

^b Коэффициент изменчивости для воспроизводимости.

Приложение D (справочное)

Проведение очистки с целью удаления элементарной серы и некоторых органических соединений серы

D.1 Реактивы

- D.1.1 Сульфат меди (II) 5-водный, CuSO₄ · 5H₂O.
- D.1.2 Соляная кислота HCl концентрацией 2 моль/дм³.
- D.1.3 Цинк гранулированный, частицы размером 0,3—1,4 мм.
- D.1.4 Водный раствор анионного ПАВ, например натриевой соли H-додекан-1-сульфоновой кислоты $CH_3(CH_2)_{14}SO_3$ Na концентрацией 35 мас. %.

Примечание — Допускается применение других промышленных ПАВ.

- D.1.5 Вода, освобожденная от кислорода.
- **D.1.6** Ацетон.
- D.1.7 Гексан.

D.2 Приготовление пирогенной меди

ВНИМАНИЕ — Пирогенная медь может самопроизвольно воспламеняться. Следует соблюдать соответствующие меры безопасности.

45 г сульфата меди (II) 5-водного (D.1.1) растворяют в 480 см 3 воды, содержащей 20 см 3 соляной кислоты (D.1.2), в стакане вместимостью 1000 см 3 .

Во втором стакане вместимостью 1000 см³ смешивают 15 г гранулированного цинка (D.1.3), 25 см³ воды и одну каплю раствора анионного ПАВ (D.1.4).

При помощи магнитной мешалки (высокая скорость) размешивают данную смесь до образования однородной суспензии. Далее, не прекращая перемешивание на высокой скорости, осторожно при помощи стеклянной палочки по каплям добавляют раствор сульфата меди (II).

При этом выделяется водород и выпадает в осадок элементарная пирогенная медь (осадок, окрашенный в красный цвет).

Продолжают перемешивание до практически полного прекращения выделения водорода. Дают образовавшейся взвеси осесть. Надосадочную жидкость аккуратно сливают и трижды промывают образовавшийся продукт водой, освобожденной от кислорода (D.1.5), для удаления остатков солей.

Осторожно, продолжая перемешивание, заменяют воду ацетоном (D.1.6). Данную операцию повторяют трижды, используя каждый раз по 250 см³ ацетона для наиболее полного удаления воды.

Повторяют предыдущую операцию, заменяя ацетон гексаном (D.1.7). Также используют 250 см³ гексана и трижды проводят обработку вещества для наиболее полного удаления ацетона.

Осторожно переносят медь в гексане в колбу Эрленмейера и хранят под слоем гексана. Колбу герметично закрывают для предотвращения попадания воздуха и хранят во взрывобезопасном хладотермостате при температуре от 2 °C до 8 °C.

Срок хранения пирогенной меди составляет по меньшей мере 2 мес. После этого эффективность меди в ходе применения для очистки начинает уменьшаться. При этом меняется цвет приготовленного препарата меди.

D.3 Очистка с использованием пирогенной меди

В центрифужную пробирку помещают 1-2 см³ экстракта (в петролейном эфире с температурой кипения 40 °C -60 °C). Добавляют 100 мг порошка пирогенной меди, приготовленной согласно D.2. Смесь центрифугируют не менее 5 мин при скорости вращения приблизительно 3500 об/мин (необходимо убедиться, что раствор не мутный). Экстракт отделяют и при необходимости проводят дальнейшую очистку с использованием колоночной хроматографии.

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
ISO 10381-1	_	*
ISO 10381-2	_	*
ISO 11465	_	*, 1)
ISO 14507	IDT	ГОСТ ISO 14507—2015 «Качество почвы. Предварительная подготов- ка проб для определения органических загрязняющих веществ»

^{*} Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного международного стандарта.

Примечание — В настоящей таблице использовано следующее условное обозначение степени соответствия стандарта:

- IDT — идентичный стандарт.

¹⁾ В Российской Федерации действует ГОСТ Р ИСО 11465—2011 «Качество почвы. Определение массовой доли сухого вещества и массового отношения влаги гравиметрическим методом».

Библиография

- [1] ISO 383 Laboratory glassware Interchangeable conical ground joints (Лабораторная посуда. Сменные конические шлифы)
- [2] DIN 38407-3 Standard methods for the determination of water, waste water and sludge Jointly determinable substances (Group F) Part 3: Determination of polychlorinated biphenyls (F3) [Стандартные методы анализа вод, сточных вод и шламов. Совместное определение веществ (Группа F). Часть 3. Определение полихлорированных бифенилов (F3)]

УДК 631.453:006.86:006.354

MKC 13.080.10

IDT

Ключевые слова: качество почв, хлорорганические пестициды, полихлорированные бифенилы, газохроматографический метод

БЗ 11-2020/199

Редактор Л.В. Коретникова
Технические редакторы В.Н. Прусакова, И.Е. Черепкова
Корректор Е.М. Поляченко
Компьютерная верстка Д.В. Кардановской

Сдано в набор 08.10.2020. Подписано в печать 06.11.2020. Формат $60 \times 84^{1/}_{8}$. Гарнитура Ариал. Усл. печ. л. 3,26. Уч.-изд. л. 2,77.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru Поправка к ГОСТ ISO 10382—2020 Качество почв. Определение хлорорганических пестицидов и полихлорированных бифенилов. Газохроматографический метод с использованием электронозахватного детектора

В каком месте	Напечатано	Должно быть
Предисловие. Таблица согла- сования	 	Азербайджан AZ Азстандарт

(ИУС № 8 2023 г.)