ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р 8.992— 2020

Государственная система обеспечения единства измерений

СТАНДАРТНЫЕ СПРАВОЧНЫЕ ДАННЫЕ

Армко железо. Никель. Температурный коэффициент линейного расширения и удельное электрическое сопротивление в диапазоне температур от 300 К до 1000 К

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Главным научным метрологическим центром «Стандартные справочные данные о физических константах и свойствах веществ и материалов» (ГНМЦ «ССД»)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 180 «Стандартные справочные данные о физических константах и свойствах веществ и материалов»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 29 апреля 2020 г. № 185-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Содержание

1 Область применения	
2 Нормативные ссылки	
3 Общие положения	1
Приложение А (справочное) Экспериментальные данные	6
Библиография	

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

СТАНДАРТНЫЕ СПРАВОЧНЫЕ ДАННЫЕ

Армко железо. Никель. Температурный коэффициент линейного расширения и удельное электрическое сопротивление в диапазоне температур от 300 К до 1000 К

State system for ensuring the uniformity of measurements. Standard reference data. Armko iron. Nickel. Temperature coefficient linear expansion and electrical resistivity in the temperature range from 300 K to 1000 K

Дата введения — 2021—02—01

1 Область применения

Настоящий стандарт распространяется на стандартные справочные данные (ССД) о температурном коэффициенте линейного расширения (ТКЛР) и электрических сопротивлений.

Настоящий стандарт предназначен для использования ССД о ТКЛР Армко железа и никеля в металлургии, машиностроении, материаловедении в диапазоне температур от 300 К до 1000 К, измерения которого выполнены на кварцевом дилатометре [1], и данных об удельном электрическом сопротивлении, определяемых четырехзондовым методом на постоянном токе (см. приложение A).

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий стандарт: ГОСТ Р 34100.3 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен сылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Общие положения

Тепловое (линейное) расширение — деформация, вызванная изменением температуры. ТКЛР представляет собой относительное изменение линейного размера при изменении температуры на 1 К. ССД о ТКЛР представлены в виде таблиц и рассчитаны по уравнениям, отображающим зависимость ТКЛР от значений температуры.

Относительное удлинёние (тепловую деформацию) ΔL вычисляют по формуле

$$\Delta L - \Delta L_{(T-T_a)} / L_{T_b} = (L_T - L_{T_b}) / L_{T_b}$$
, (1)

где $\Delta L_{(T-T_0)}$ — удлинение в интервале температуры $(T-T_0)$, м;

- койечная температура интервала, К;

Т_о — начальная температура, при которой определялись размеры образца L, К;

 $L_{T_0}^{-}$ — размер образца при температуре T_0 , м; L_{T}^{-} — размер образца при температуре T, м.

Средний (интегральный) ТКЛР в интервале температуры ($T - T_0$) $\overline{\alpha}_{(T - T_0)}$ K^{-1} вычисляют по формуле

$$\overline{U}_{(T_{-}, T_{0})} = (1/L_{T_{0}}) \Delta L_{(T_{-}, T_{0})} / (T - T_{0}).$$
 (2)

Полученные значения $\bar{\alpha}_{(T-T_0)}$ относились к значениям температуры T. Значения истинного (дифференциального) ТКЛР α вычисляли путем нахождения аппроксимирующего полинома L = f(T) и его дифференцирования. Расчетная формула для истинного ТКЛР имеет следующий вид

$$\alpha_i = (\delta L/\delta T) \cdot (1/L_i). \tag{3}$$

Поправки, учитывающие тепловое расширение кварца вводили непосредственно в программу для расчетов.

Значения электросопротивления р вычисляли по формуле

$$\rho = (1 * \overline{\alpha} \Delta T) \cdot \frac{SU_x R_0}{U_0 I_0}, \qquad (4)$$

где $\overline{\alpha}$ — коэффициент теплового расширения образца в интервале температуры $\Delta T = T - T_0$;

 $\Delta T = T - T_0$ — интервал температуры;

S — площадь сечения рабочего участка образца;

 U_x и U_0 — падения напряжения на образце и эталонном сопротивлении R_0 соответственно;

 R_0 — эталонное сопротивление;

 I_{p} — длина рабочего участка образца (расстояние между потенциальными зондами). Стандартные справочные данные для образцов Армко железа и никеля, востребованные в ряде отраслей техники, представлены в актуальных для практического применения интервалах температур (300—1100) К и (300—1050) К соответственно, для которых нет надежных аттестованных данных.

В таблице 1 приведены стандартные справочные значения среднего $\bar{\alpha}_{(T-T_0)}$ и истинного ТКЛР, а также удельного электросопротивления образцов. При составлении окончательных таблиц приведены термодинамические значения температуры, К. Температура, при которой определялся начальный размер образцов, составляла 293,15 К. Начальная температура при измерениях температурных зависимостей была, как правило, 303,15 К. Температурные зависимости AL после исследований экстраполировались к значению при температуре 293,15 К. Для каждого состава проводили три серии измерений «нагрев — охлаждение», итого получали шесть температурных зависимостей. Каждая серия представляла собой температурные зависимости длины образца и электросопротивления при нагреве и охлаждении. Температуры, а следовательно и значения при этих температурах не были одними и теми же. Поэтому проводилось усреднение значений (Т, L, р) в каждой серии следующим образом:

1-я серия измерений:

$$(T_{i \text{ Har}} + T_{i \text{ oxn}})/2 = T_{i \text{ cpeq 1}};$$

 $(L_{i \text{ Har}} + L_{i \text{ oxn}})/2 = L_{i \text{ cpeq 1}};$

$$(\rho_{i,\text{max}} + \rho_{i,\text{oxn}})/2 = \rho_{i,\text{open}}.$$

Пример

т _{нас} к	$\tau_{\rm core}$ K	L Har MM	L _{акп} мм	р 10 ⁸ наг. Ом·м	р 10 ⁸ охл, Ом м	T _{op} , K	L _{op} , MM	р·10 ⁸ _{ср} . Ом м
324,65	337,90	70,1040	70,1130	11,840	11,962	331,28	70,1085	11,901
334,15	347,90	70,1090	70,1210	12,514	12,760	341,03	70,1150	12,637
364,40	357,40	70,1330	70,1305	13,027	13,949	360,90	70,1317	13,488

Расчеты проводились аналогичным образом для двух последующих серий.

2-я серия измерений:

$$(T_{i \text{ Har}} + T_{i \text{ oxn}})/2 = T_{i \text{ open}2};$$

$$(L_{, \text{наг}} + L_{i \text{ oxn}})/2 = L_{, \text{сред}2};$$

 $(\rho_{, \text{наг}} + \rho_{i \text{ oxn}})/2 = \rho_{, \text{сред}2}.$
3-я серия измерений:
 $(T_{i \text{ наг}} + T_{i \text{ oxn}})/2 = T_{i \text{ cpeд}3};$
 $(L_{i \text{ наг}} + L_{i \text{ oxn}})/2 = L_{i \text{ cpeд}3};$
 $(\rho_{i \text{ наг}} + \rho_{i \text{ oxn}})/2 = \rho_{i \text{ cpeд}3}.$

Далее значения трех серий усреднялись и окончательные значения для данного образца следующие:

 $(T_{icpeq1} + T_{icpeq2} + T_{icpeq3})/3 = T_{icpeq}$ — температура для данного образца, усредненная по трем сериям:

 $(L_{\text{icpeq1}} + L_{\text{icpeq2}} + L_{\text{icpeq3}})/3 = L_{\text{icpeq}}$ — длина для данного образца, усредненная по трем сериям; $(\rho_{\text{icpeq1}} + \rho_{\text{icpeq2}} + \rho_{\text{icpeq3}})/3 = \rho_{\text{icpeq}}$ — электросопротивление для данного образца, усредненное по трем сериям.

Для получения ССД о ТКЛР ($\bar{\alpha}$ и α), приведенных в таблице 1, использовался аппроксимирующий полином L = f(T), результат его дифференцирования представлялся также полиномом. Для каждого значения температуры T_i , к которой относились значения $\bar{\alpha}_{(T-T_0)}$ и α_p вычислялись значения L_i ($L_{T_i} - L_{T_0}$) и ($\delta L/\delta T$), по формулам (2) и (3) соответственно. Ниже приведены стандартные справочные данные о температурном коэффициенте линейного расширения и электросопротивлении Армко железа и никеля.

Т а б л и ц а 1 — Стандартные справочные данные о температурном коэффициенте линейного расширения и электросопротивлении Армко железа и никеля

	Арм	ко железо		Никель				
T,K	α 10 ⁶ , K ⁻¹	α·10 ⁶ , K ⁻¹	р 10 ⁸ , Ом м	T,K	α 10 ⁶ . K⁻¹	α 10 ⁶ , Κ-1	р 10 ⁸ , Ом м	
300	10,02	9,42	10,882	300	12,80	12,80	6,2058	
310	10,17	9,66	11,268	310	12,78	12,78	6,6969	
320	10,31	9,90	11,679	320	12,77	12,77	7,1808	
330	10,45	10,13	12,115	330	12,77	12,76	7,6596	
340	10,59	10,36	12,574	340	12,77	12,77	8,1354	
350	10,72	10,58	13,056	350	12,77	12,78	8,6100	
360	10,84	10,80	13,561	360	12,77	12,80	9,0854	
370	10,96	11,02	14,087	370	12,78	12,82	9,5637	
380	11,08	11,23	14,634	380	12,79	12,86	10,046	
390	11,19	11,43	15,202	390	12,81	12,91	10,536	
400	11,30	11,64	15,790	400	12,83	12,96	11,035	
410	11,40	11.83	16,398	410	12,85	13,03	11,545	
420	11,50	12,02	17,025	420	12,88	13,10	12,067	
430	11,60	12,21	17,670	430	12,91	13,19	12,605	
440	11,69	12,39	18,333	440	12,95	13,29	13,159	
450	11,78	12,57	19,014	450	12,98	13,40	13,732	
460	11,87	12,74	19,713	460	13,03	13,52	14,326	
470	11,95	12,91	20,429	470	13,07	13,65	14,942	
480	12,03	13,07	21,161	480	13,12	13,80	15,584	
490	12,11	13,23	21,910	490	13,17	13,96	16,252	
500	12,18	13,38	22,676	500	13,23	14,13	16,950	
510	12,23	13,53	23,457	510	13,29	14,32	17,678	
520	12,28	13,67	24,254	520	13,35	14,52	18,439	
530	12,33	13,81	25,067	530	13,42	14,73	19,235	

ГОСТ Р 8.992-2020

Продолжение таблицы 1

	Армко железо			Никель					
T,K	α 10 ⁶ . K ⁻¹	α 10 ⁶ , K ⁻¹	р 10 ⁸ , Ом м	T,K	ú 10 ⁶ , K⁻¹	∝.10 ⁶ , K ⁻¹	р 10 ⁸ , Ом м		
540	12,37	13,95	25,896	540	13.49	14,96	20,068		
550	12,42	14,08	26,740	550	13,57	15,21	20,940		
560	12,47	14,20	27,599	560	13,65	15,46	21,853		
570	12,52	14,32	28,475	570	13,73	15,74	22,809		
580	12,58	14,44	29,366	580	13,82	16,03	23,810		
590	12,63	14,55	30,272	590	13,91	16,34	24,858		
600	12,68	14,66	31,194	600	14,00	16,66	25,956		
610	12,73	14,76	32,132	610	14,10	17,00	27,104		
620	12,79	14,85	33,086	620	14,20	17,36	28,306		
630	12,84	14,95	34,055	630	14,31	17.74	29,272		
650	12,95	15,12	36,044	650	14,53	17,08	30,104		
660	13,00	15,19	37,063	660	14,58	16,70	30,514		
670	13,06	15,27	38,099	670	14,60	16,33	30,920		
680	13,11	15,33	39,153	680	14,62	15,96	31,323		
690	13,17	15,40	40,224	690	14,65	15,58	31,722		
700	13,22	15,46	41,313	700	14,68	15,51	32,118		
710	13,28	15,51	42,421	710	14,70	15,58	32,511		
720	13,33	15,56	43,548	720	14.73	15,65	32,900		
730	13,38	15,60	44,694	730	14.75	15,71	33,285		
740	13,43	15,64	45,859	740	14.78	15,78	33,668		
750	13,49	15,68	47,046	750	14,81	15,85	34,047		
760	13,54	15,71	48,253	760	14,84	15,92	34,422		
770	13,59	15,73	49,482	770	14,87	15,99	34,795		
780	13,64	15,76	50,733	780	14,90	16,07	35,163		
790	13,69	15,77	52,007	790	14,93	16,14	35,529		
800	13,73	15,78	53,304	800	14,96	16,22	35,891		
810	13,78	15,79	54,626	810	14,99	16,29	36,250		
820	13,83	15,79	55,973	820	15,02	16,37	36,605		
830	13,87	15,79	57,345	830	15,05	16,45	36,957		
840	13,91	15,78	58,744	840	15,08	16,53	37,305		
850	13,96	15,77	60,170	850	15,12	16.62	37,650		
860	14,00	15,75	61,625	860	15,15	16,71	37,992		
870	14,04	15,73	63,109	870	15,18	16,79	38,330		
880	14,07	15,70	64,622	880	15,22	16,88	38,665		
890	14,11	15,67	66,167	890	15,25	16,98	38,997		
900	14,14	15,64	67,744	900	15,29	17,07	39,325		
910	14,18	15,60	69,354	910	15,32	17,17	39,650		
920	14,21	15,55	70,998	920	15,36	17,27	39,971		
930	14,24	15,50	72,678	930	15,39	17,38	40,289		
940	14,26	15,45	74,393	940	15,43	17,48	40,604		

Окончание таблицы 1

	Apa	ко железо					
7,K	α 10 ⁶ , K ⁻¹	α 10 ⁶ , Κ ⁻¹	р 10 ⁸ , Ом м	т,к	α 10 ⁶ . Κ ⁻¹	u 10 ⁶ . K-1	р 10 ⁸ , Ом м
950	14,29	15,39	76,147	950	15,47	17,59	40,915
960	14,31	15,32	77,938	960	15,51	17,71	41,223
970	14,33	15,25	79,770	970	15,55	17,82	41,528
980	14,35	15,18	81,642	980	15,58	17,94	41,829
990	14,37	15,10	83,557	990	15,62	18,07	42,126
1000	14,38	15,02	85,516	1000	15,66	18,19	42,421
1010	14.39	14,93	87,519	1010	15,70	18,32	42,712
1020	14.40	14,84	89,569	1020	15,75	18,46	42,999
1030	14_41	14,74	91,666	1030	15,79	18,60	43,283
1040	14,41	14,64	93,813	1040	15,83	18,74	43,564
1050	14,41	14,53	96,010	1050	15,87	18,89	43,841
				1060	15,91	19,04	44,115
				1070	15,96	19,20	44,386
				1080	16,00	19,36	44,653
				1090	16,05	19,52	44,917
				1100	16,09	19,70	45,177

Приложение А (справочное)

Экспериментальные данные

Таблицы экспериментальных данных о температурном коэффициенте линейного расширения и электросопротивлении Армко железа и никеля приведены в таблице А.1.

Т а б л и ц а А.1 — Экспериментальные данные о ТКЛР α и электросопротивлении ρ Армко железа и никеля

	Армко железо		Никель			
7. K	a-10 ⁶ , K ⁻¹	р 10 ⁸ . Ом м	<i>T</i> , K	a 10 ⁶ , K ⁻¹	р 10 ⁸ , Ом к	
331,28	10,153	11,901	310	12,78	6,67	
341,03	10,377	12,637	330	12,76	7,63	
360,90	10,819	13,488	350	12,78	8,57	
379,40	11,214	14,852	370	12,82	9,52	
388,78	11,407	15,128	390	12,91	10,48	
403,15	11,696	15,687	400	12,96	10,98	
413,03	11,889	16,439	420	13,1	12,00	
428,15	12,175	17,428	440	13,29	13,09	
437,65	12,349	18,218	460	13,52	14,24	
447,90	12,532	18,732	480	13,8	15,49	
458,28	12,712	19,892	500	14,13	16,84	
467,40	12,866	20,23	520	14,52	18,31	
477,78	13,036	20,864	540	14,96	19,92	
487,15	13,186	21,467	560	15,47	21,69	
499,15	13,371	22,474	580	16,03	23,62	
507,40	13,495	23,116	600	16,66	25,74	
517,52	13,642	23,984	620	17,36	28,06	
527,03	13,775	24,67	630	17,74	29,01	
537,03	13,911	25,548	631	17,7847	29,05	
547,15	14,044	26,259	632	17,7474	29,09	
559,28	14,197	27,286	633	17,7101	29,13	
567,15	14,292	27,906	634	17,6728	29,18	
579,53	14,436	28,896	635	17,6355	29,22	
586,03	14,508	29,575	636	17,5982	29,26	
595,90	14,615	30,625	637	17,5609	29,30	
605,03	14,709	31,329	638	17,5236	29,34	
619,65	14,852	32,688	639	17,4863	29,38	
629,15	14,939	33,679	640	17,449	29,42	
638,53	15,022	34,573	641	17,4117	_	
648,40	15,104	35,617	642	17,3744	_	
667,15	15,246	37,47	643	17,3371	-	
678,90	15,327	38,72	644	17,2998	-	
686,65	15,377	39,36	645	17,2625	-	
697,03	15,439	40,742	650	17,076	29,82	

Окончание таблицы А.1

	Армко железо			Никель	
T, K	α·10 ⁶ , K ⁻¹	р 10 ⁸ , Ом·м	T, K	α 10 ⁶ K ⁻¹	р 10 ⁸ , Ом м
705,15	15,485	41,539	668	16,4046	_
714,78	15,534	42,521	688	15,6586	
724,28	15,578	43,715	700	15,211	31,79
738,40	15,637	45,173	750	15,85375	33,67
748,65	15,673	46,387	763	15,91182	-
755,40	15,694	47,213	800	16,26	35,47
772,40	15,738	49,331	820	16,39	36,16
780,03	15,754	50,056	840	16,54	36,84
791,90	15,773	51,3	850	16,7	37,17
798.78	15,779	52,721	860	16,87	37,50
809,90	15,787	54,156	880	17,06	38,16
818,40	15,789	55,44	900	17,26	38,79
827,15	15,787	56,632	920	17,47	39,42
837,90	15,780	57,885	940	17,7	40,02
846,78	15,771	59,108	950	17,95	40,32
855,90	15,757	60,338	960	18,2	40,62
865,90	15,737	61,927	980	18,47	41,20
874,40	15,716	62,983	1000	18,75	41,77
883,90	15,689	64,588	1020	19,05	
893,28	15,659	66,033	1040	19,36	
902,40	15,625	67,012	1050	19,68	43,12
912,53	15,583	68,32	1060	19,78	_
920,40	15,547	70,183	1080	19,76	_
931,15	15,493	71.817	1100	19,78	44,39
944,65	15,418	74,256			
952,40	15,371	75,334			
966,28	15,280	77,72			
976,53	15,207	79,777			
985,53	15,138	82,211			
993,65	15,074	83,185			
1004,90	14,979	85,01			
1015,65	14.883	86,706			
1023,53	14.809	89,16			4
1033,15	14,716	90,769			
1041,65	14,629	93,428			

На рисунках 1—10 приведены температурные зависимости электросопротивления и ТКЛР для Армко железа и никеля и полиномы их олисывающие.

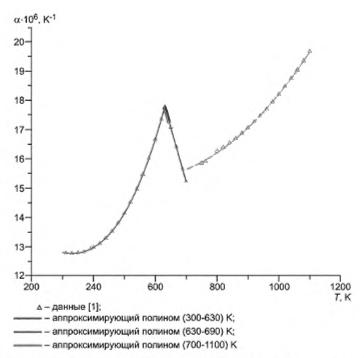


Рисунок А.1 — Экспериментальные данные о температурной зависимости дифференциального ТКЛР никеля и аппроксимирующие полиномы

Уравнения, описывающие температурные зависимости дифференциального ТКЛР с никеля в соответствующих интервалах температур:

 $\begin{array}{lll} \alpha \cdot 10^{8} = 14,82198 - 0,00596 \cdot T - 2,02955 \cdot 10^{-5} \cdot 7^{2} + 5,88968 \cdot 10^{-8} \cdot 7^{3} & (300 - 630) \ \mathrm{K} \\ \alpha \cdot 10^{8} = 41,321 - 0,0373 \cdot T & (630 - 690) \ \mathrm{K} \\ \alpha \cdot 10^{8} = 19,86357 - 0,01628 \cdot T + 1,46316 \cdot 10^{-5} \cdot 7^{2} & (700 - 1100) \ \mathrm{K} \end{array}$

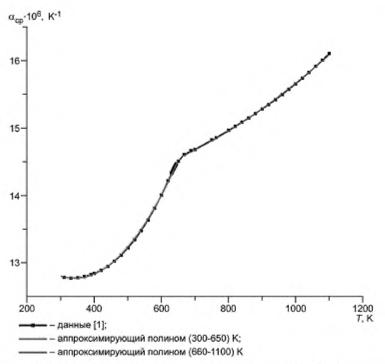


Рисунок А.2 — Экспериментальные данные о температурной зависимости среднего ТКЛР никеля и аппроксимирующие полиномы

Уравнения, описывающие температурные зависимости среднего ТКЛР $\bar{\alpha}$ никеля в соответствующих интер-

валах температур. $\overline{\alpha} \cdot 10^6 = 14,9283 - 1,26548 \cdot 10^{-2} \cdot T + 1,85172 \cdot 10^{-5} \cdot T^2$ $\overline{\alpha} \cdot 10^6 = 14,0559 - 8,0402 \cdot 10^{-4} \cdot T + 2,41209 \cdot 10^{-5} \cdot T^2$

(300-650) K

(660-1100) K

FOCT P 8.992-2020

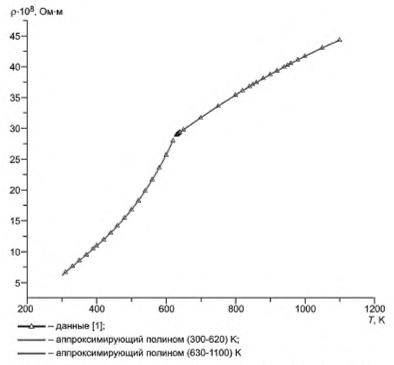


Рисунок А.3 — Экспериментальные данные о температурной зависимости электросопротивления никеля и аппроксимирующие полиномы

Уравнения, описывающие температурные зависимости электросопротивления р никеля в соответствующих интервалах температур:

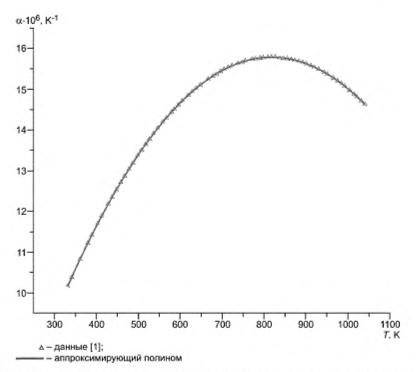


Рисунок А.4 — Экспериментальные данные о температурной зависимости дифференциального ТКЛР Армко железа и аппроксимирующий полином

Уравнение, описывающее температурную зависимость дифференциального ТКЛР α Армко железа во всем интервале температур $\alpha \cdot 10^6 = -0.08234 + 0.03876 \cdot T - 2.36552 \cdot 10^{\cdot 5} \cdot 7^2$

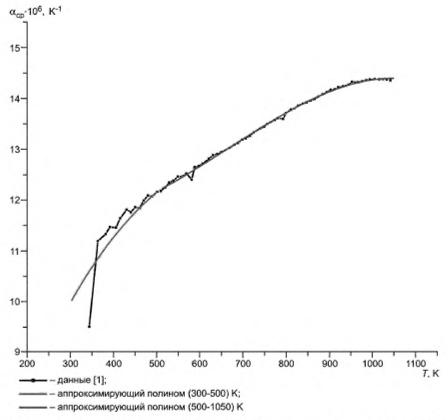


Рисунок А.5 — Экспериментальные данные о температурной зависимости среднего ТКЛР Армко железа и аппроксимирующие полиномы

Уравнения, описывающие температурные зависимости среднего ТКЛР $\bar{\alpha}$ в соответствующих интервалах температур:

 $\overline{\alpha}$. $10^6 = 2,65553 + 0.03575 \cdot T - 4,32205 \cdot 10^{-5} \cdot T^2 + 1,96467 \cdot 10^{-8} \cdot T^3$ (300—500) K $\overline{\alpha}$. $10^6 = 12,96673 - 0.01067 \cdot T + 2,43377 \cdot 10^{-5} \cdot T^2 - 1,22576 \cdot 10^{-8} \cdot T^3$ (510—1050) K

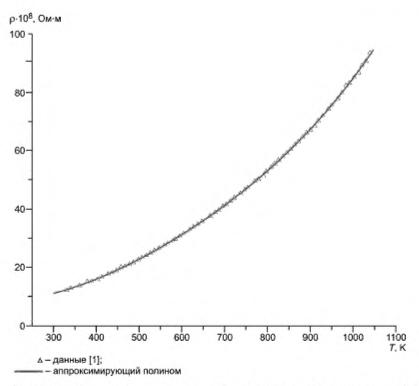


Рисунок A.6 — Экспериментальные данные о температурной зависимости электросопротивления Армко железа и аппроксимирующий полином

Уравнение, описывающее температурную зависимость электросопротивления р Армко железа в соответствующем интервале температур

$$\rho \cdot 10^8 = 15,98008 - 0,09012 \cdot T + 3,17782 \cdot 10^{-4} \cdot T^2 - 2,85874 \cdot 10^{-7} \cdot T^3 + 1,26538 \cdot 10^{-10} \cdot T^4$$

Оценка достоверности полученных данных о ТКЛР и электросопротивлении никеля и Армко железа осуществлялась многократным повторением измерений ТКЛР и электросопротивления в выбранном температурном диапазоне, с последующей совместной обработкой большого числа серий измерений, а также сопоставлением с аналогичными данными из литературных источников. Сравнение с литературными данными по электросопротивлению и ТКЛР для никеля проведено в диапазоне температур (300—1100) К и для Армко железа — в диапазоне температур (300—1050) К. Ниже приведены графики сопоставлений температурных зависимостей электросопротивления и ТКЛР никеля и Армко железа. Расширенная неопределенность данных о ТКЛР не превышает 8 %. Расширенная неопределенность данных об удельном электрическом сопротивлении составляет 1,2 %.

Расширенная неопределенность получена путем умножения стандартной неопределенности на коэффициент охвата k = 2, соответствующий уровню доверия 95 % при допущении нормального распределения. Оценивание неопределенности проведено в соответствии с ГОСТ Р 34100.3

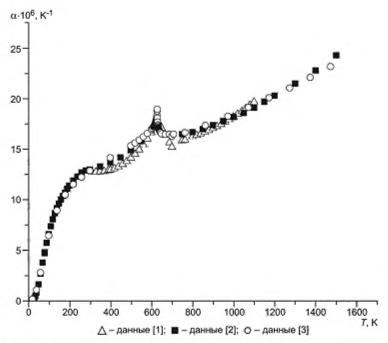


Рисунок А.7 — Экспериментальные данные температурных зависимостей ТКЛР никеля

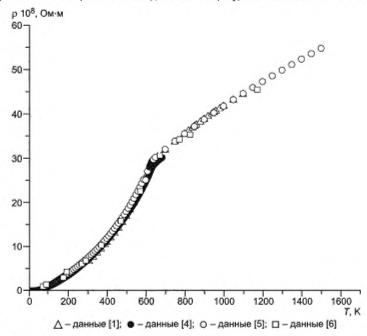


Рисунок А.8 — Экспериментальные данные о температурной зависимости электросопротивления никеля

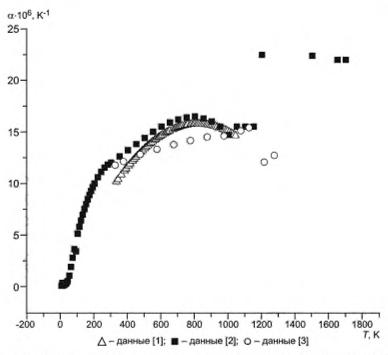


Рисунок А.9 — Экспериментальные данные температурных зависимостей ТКЛР Армко железа

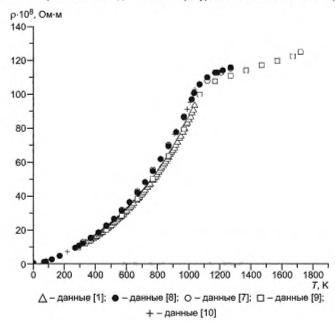


Рисунок A.10 — Экспериментальные данные о температурной зависимости электросопротивления Армко железа

Библиография

- [1] ГСССД 372—2020. Армко железо. Никель. Температурный коэффициент линейного расширения и удельное электрическое сопротивление в диапазоне температур от 300 К до 1000 К / Д.К. Палчаев, Ж.Х. Мурлиева, М.Э. Исхаков, С.Х. Гаджимагомедов. — М.: ВНИИМС, 2020, — 30 с.
- [2] Новикова С.И. Тепловое расширение твердых тел. М.: Наука, 1974, 291 с.
- [3] Kollie T.G. Phys. Rev. B 1611 (1977) 4872
- [4] Kamalakar M.V. Thesis Ph.D. Jadavpur University Kolkata, 2009
- Bel'skaya E.A, Peletsky V.E. Nickel. The electrical resistivity in the temperature range 200—1500 K: Standard Reference Data. Moscow, 1985
- [6] Shmatko O.A., Usov. Y.A. Electric and Magnetic properties of metals and alloys (Handbook) Kiev. Naukova Dumka, 1987
- [7] Laubitz M.I., J Canad. J. Phys. 38 (1960) 887
- [8] Shanks H.R., Klein A.H., Danielson G.C. J. Appl. Phys. 38 (1967) 2885
- [9] Gumenuk V.S., Lebedev V.V. ΦΜΜ (Russian) 8 (1959) 223
- [10] Watson T.W., Flynn D.R., Robinson H.E. Res. J. NBS-C. Engineering and Instrumentation 71 (1967) 285

УДК 669.539.5-536:006.354

OKC 17.020

Ключевые слова: стандартные справочные данные, вещества, материалы, свойства, неопределенность

53 6-7-2020/14

Редактор Н.А. Аргунова Технический редактор И.Е. Черепкова Корректор И.А. Королева Компьютерная верстка Е.О. Асташина

Сдано в набор 15.05.2020. Подписано в печать 17.06.2020 Формат 60×84¹/₈. Гарнитура Ариал. Усл. яеч. л. 2,32. Уч.-изд. л. 1,90.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта