ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 58501— 2019/ ISO/IEEE 11073-10425: 2016

ИНФОРМАТИЗАЦИЯ ЗДОРОВЬЯ

Обмен данными с персональными медицинскими приборами

Часть 10425

Специализация прибора: глюкометр непрерывного действия (CGM)

(ISO/IEEE 11073-10425:2016, IDT)

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Российский научно-технический центр информации по стандартизации, метрологии и оценке соответствия» (ФГУП «СТАНДАРТИНФОРМ» на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 468 «Информатизация здоровья»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 29 августа 2019 г. № 571-ст
- 4 Настоящий стандарт идентичен международному стандарту ISO/IEEE 11073-10425:2016 «Информатизация здоровья. Обмен данными с персональными медицинскими приборами. Часть 10425. Специализация прибора: глюкометр непрерывного действия (CGM)» (ISO/IEEE 11073-10425:2016 «Health informatics Personal health device communication Part 10425: Device specialization Continuous glucose monitor (CGM)», IDT).

При применении настоящего стандарта рекомендуется использовать вместо ссылочного международного стандарта соответствующий ему национальный или межгосударственный стандарт, сведения о котором приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

> © ISO, 2016 — Все права сохраняются © Стандартинформ, оформление, 2019

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Obsop	.1
	1.1 Область применения	.1
	1.2 Назначение	.1
	1.3 Контекст	.2
2	Нормативные ссылки	.2
3	Термины, определения и сокращения	.3
	3.1 Термины и определения	.3
	3.2 Сокращения	.3
4	Введение в стандарты комплекса IEEE 11073 $^{\text{тм}}$ по персональным медицинским приборам	.4
	4.1 Общие положения	.4
	4.2 Введение в структуры моделирования IEEE 11073-20601	.4
	4.3 Соответствие другим стандартам	.5
5	Понятия и модальности мониторинга глюкозы	.5
	5.1 Общие положения	.5
	5.2 Типы приборов	.6
	5.3 Взаимосвязь агента CGM с менеджером	.7
	5.4 Собранные данные	.8
	5.5 Хранимые данные	.9
6	Информационная модель предметной области непрерывного мониторинга глюкозы	.9
	6.1 Обзор	.9
	6.2 Расширения класса	.9
	6.3 Диаграмма экземпляров объектов	.9
	6.4 Тилы конфигураций	.10
	6.5 Профили	.11
	6.6 Объект системы медицинского прибора (MDS)	.11
	6.7 Числовые объекты	.14
	6.8 Объекты массива считываний в реальном времени	.23
	6.9 Объекты перечислений	.23
	6.10 Объекты PM-store	.27
	6.11 Объекты класса Scanner	.31
	6.12 Объекты расширения класса	.31
	6.13 Правила расширения информационной модели CGM	.31
7	Сервисная модель глюкометра непрерывного действия	.31
	7.1 Общие положения	.31
	7.2 Сервисы доступа к объекту	.32
	7.3 Сервисы отчетов о событиях доступа к объекту	.34
8	Коммуникационная модель глюкометра непрерывного действия	.34
	8.1 Обзор	.34

ГОСТ Р 58501-2019

8.2 Характеристики коммуникации
8.3 Процедура ассоциации
8.4 Процедура конфигурирования
8.5 Процедура выполнения
8.6 Синхронизация времени
9 Тестовые ассоциации
9.1 Поведение в стандартной конфигурации
9.2 Поведение в расширенных конфигурациях
10 Соответствие
10.1 Применимость
10.2 Спецификация соответствия
10.3 Уровни соответствия
10.4 Заявления о соответствии реализации
Приложение А (справочное) Библиография44
Приложение В (обязательное) Дополнительные определения АСН.1
Приложение С (обязательное) Присвоение идентификаторов
Приложение D (справочное) Примеры последовательности сообщений
Приложение Е (справочное) Примеры блока данных протокола
Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов национальным и межгосударственным стандартам

Предисловие к ISO/IEEE 11073-10425

Международная организация по стандартизации ИСО (the International Organization for Standardization) является международной организацией, которая была создана национальными организациями по стандартизации (члены ИСО). Работу по подготовке международных стандартов обычно выполняют технические комитеты ИСО. Любой член ИСО, заинтересованный в предмете, по которому создан технический комитет, имеет право на представительство в этом комитете. Международные организации, правительственные и неправительственные, совместно с ИСО также принимают участие в работе организации. ИСО тесно сотрудничает с Международной электротехнической комиссией (МЭК) по всем вопросам стандартизации в электротехнике.

Стандарты ИИЭР разрабатываются в сообществах ИИЭР и в координационных комитетах по стандартизации, относящихся к ведению Бюро стандартов Ассоциации по стандартизации ИИЭР (ИИЭР-СА). Стандарты ИИЭР разрабатываются на основе процесса достижения консенсуса, одобренного Американским национальным институтом стандартов (American National Standards Institute), который для получения окончательного документа сводит вместе добровольных участников, представляющих разные точки зрения и интересы. Добровольные участники не обязаны быть членами ИИЭР и работают на безвозмездной основе. Хотя ИИЭР управляет этим процессом и устанавливает правила по обеспечению беспристрастности в процессе достижения консенсуса, тем не менее ИИЭР не готовит независимую оценку, тестирование или проверку точности какой-либо информации, содержащейся в его стандартах.

Основной задачей технических комитетов ИСО является разработка международных стандартов. Проекты международных стандартов, одобренные техническими комитетами, рассылаются членам ИСО для голосования. Публикация в качестве международного стандарта требует одобрения по меньшей мере 75 % членов ИСО, участвовавших в голосовании.

Необходимо отметить возможность того, что какие-либо элементы настоящего стандарта могут оказаться предметом патентных прав. Публикация настоящего стандарта не связана с существованием или действием каких-либо патентных прав. Ни ИСО, ни ИИЭР не несут ответственности ни за выявление любых патентов или патентных прав, по которым необходимо получение лицензии, ни за проведение исследований, являются ли разумными или недискриминационными любые лицензионные условия или положения, предусмотренные в связи с представлением гарантийного письма или патентного заявления и формы лицензионной декларации, если таковые имеются, или в любых лицензионных соглашениях. Пользователи настоящего стандарта несут ответственность за определение юридической силы любых патентных прав и за риск нарушения таких прав. Более подробная информация может быть получена в ИСО или в Ассоциации по стандартизации ИИЭР.

Стандарт ISO/IEEE 11073-10425 подготовлен комитетом по стандартизации 11073 Сообщества ИИЭР по техническим средствам, применяемым в медицине и биологии (как IEEE 11073-10425-2014). Он был одобрен техническим комитетом ISO/TC 215 «Информатизация здоровья» и утвержден членами ИСО по ускоренной процедуре, которая определена в Соглашении о сотрудничестве между ИСО и ИИЭР. ИИЭР отвечает за поддержание настоящего стандарта при содействии со стороны стран—членов ИСО.

Аннотация: в контексте комплекса стандартов ISO/IEEE 11073 по обмену данными с устройствами настоящий стандарт устанавливает нормативное определение обмена данными между глюкометрами непрерывного действия (continuous glucose monitor, CGM) и менеджерами (например, сотовыми
телефонами, персональными компьютерами, бытовыми медицинскими приборами контроля, телевизионными приставками), при котором обеспечивается интероперабельность с автоматическим конфигурированием. В данном стандарте используются соответствующие части существующих стандартов,
включая терминологию и информационные модели ISO/IEEE 11073. В нем указывается использование
специфичных кодов терминов, форматов и вариантов поведения в телемедицинской среде, ограничивающих необязательность основных инфраструктур в пользу интероперабельности. В настоящем
стандарте определена общая основа коммуникационной функциональности устройств СGМ. В этом
контексте СGM относится к регулярному (как правило, через 5 мин) измерению уровня глюкозы в организме с помощью датчика, постоянно закрепленного на теле.

Ключевые слова: глюкометр непрерывного действия, IEEE 11073-10425™, коммуникация с медицинскими приборами, персональные медицинские приборы.

Важные уведомления и отказы от ответственности, касающиеся стандартизирующих документов ИИЭР

Документы ИИЭР доступны для использования в соответствии с важными уведомлениями и отказами от ответственности. Эти уведомления и отказы от ответственности или ссылка на данную страницу имеются во всех стандартах, и их можно отыскать под заголовком «Важное уведомление» или «Важные уведомления и отказы от ответственности в отношении использования стандартизующих документов ИИЭР».

Уведомление и отказ от ответственности в отношении использования стандартизирующих документов ИИЭР

Стандартизирующие документы ИИЭР (стандарты, рекомендованные практики и руководства), как утвержденные, так и для пробного использования, разрабатываются в сообществах ИИЭР, а также в координационных комитетах по стандартизации, относящихся к ведению Бюро стандартов Ассоциации по стандартизации ИИЭР (ИИЭР-СА). ИИЭР (далее — Институт) разрабатывает стандарты на основе процесса достижения консенсуса, одобренного Американским национальным институтом стандартов (American National Standards Institute, ANSI), который для получения окончательного документа сводит вместе добровольных участников, представляющих разные точки зрения и интересы. Добровольные участники не обязаны быть членами ИИЭР и работают на безвозмездной основе. Хотя ИИЭР управляет этим процессом и устанавливает правила по обеспечению беспристрастности в процессе достижения консенсуса, тем не менее ИИЭР не изготовит независимую оценку, тестирование или проверку точности какой-либо информации или обоснованность любых суждений, содержащихся в его стандартах.

ИИЭР не гарантирует и не подтверждает точность либо содержание материала, включенного в его стандарты, и явным образом отказывается от каких-либо гарантий (явных, неявных и предусмотренных законом), не включенных в этот или любой другой документ, относящийся к стандарту, включая, не ограничиваясь, такие гарантии как: пригодность для продажи; пригодность для конкретной цели; отсутствие нарушения прав, а также качество, точность, эффективность, действительность или полнота материала. Кроме того, ИИЭР отказывается от каких-либо и всех условий, относящихся к результатам; и качественному исполнению. Документы по стандартам ИИЭР предоставляются «КАК ЕСТЬ» и «БЕЗ ГАРАНТИИ».

Использование стандарта ИИЭР является абсолютно добровольным. Наличие стандарта ИИЭР не означает, что отсутствуют другие варианты изготовления, тестирования, измерения, покупки, рынка или предоставления других товаров и услуг, относящихся к области применения стандарта ИИЭР. Более того, точка зрения, выраженная в момент утверждения и выпуска стандарта, может измениться после изменений состояния дел, а также получения комментариев от пользователей стандарта.

Публикуя и делая стандарты доступными, ИИЭР тем самым не предлагает и не оказывает профессиональных либо других услуг от имени какого-либо лица или предприятия, а кроме того, ИИЭР не выполняет каких-то обязательств какого-либо другого лица или предприятия перед другими. Любое лицо, применяющее какой-либо стандарт ИИЭР, должно основываться на своем независимом суждении при соблюдении должной осторожности в любых указанных обстоятельствах или, в зависимости от конкретного случая, обратиться за советом к компетентному специалисту при определении правомерности указанного стандарта ИИЭР.

НИ ПРИ КАКИХ УСЛОВИЯХ ИИЭР НЕ БУДЕТ НЕСТИ ОТВЕТСТВЕННОСТЬ ЗА КАКИЕ-ЛИБО ПРЯМЫЕ, КОСВЕННЫЕ, СЛУЧАЙНЫЕ, СПЕЦИАЛЬНЫЕ, ТИПИЧНЫЕ УБЫТКИ ИЛИ ПОСЛЕДУЮЩИЙ УЩЕРБ (ВКЛЮЧАЯ, НЕ ОГРАНИЧИВАЯСЬ, ЗАКУПКУ ЗАМЕЩАЮЩИХ ТОВАРОВ ИЛИ УСЛУГ), А ТАКЖЕ ЗА НЕВОЗМОЖНОСТЬ ИСПОЛЬЗОВАНИЯ ДАННЫХ ИЛИ ДОХОДОВ ЛИБО ЗА ОПЕРАЦИОННЫЙ ПРОСТОЙ, НЕЗАВИСИМО ОТ ПРИЧИН И ОСНОВАНИЙ ВОЗНИКНОВЕНИЯ ОТВЕТСТВЕННОСТИ, БУДЬ ТО НАРУШЕНИЕ УСЛОВИЙ КОНТРАКТА, ПРЯМОЙ ОТВЕТСТВЕННОСТИ ИЛИ ВНЕДОГОВОРНОЙ ОТВЕТСТВЕННОСТИ, ВКЛЮЧАЯ ХАЛАТНОСТЬ И ДРУГИЕ ПРИЧИНЫ, ВОЗНИКАЮЩИЕ В РЕЗУЛЬТАТЕ ПУБЛИКАЦИИ, ИСПОЛЬЗОВАНИЯ ИЛИ ОПОРЫ НА ЛЮБОЙ СТАНДАРТ, ДАЖЕ ЕСЛИ БЫЛО СООБЩЕНО О ВОЗМОЖНОСТИ ТАКОГО УЩЕРБА, И ВНЕ ЗАВИСИМОСТИ ОТ ВОЗМОЖНОГО ПРОГНОЗИРОВАНИЯ ТАКОГО УЩЕРБА.

Переводы

Процесс разработки ИИЭР на основе согласованного мнения включает в себя анализ документов только на английском языке. В случае перевода стандарта ИИЭР на другой язык только версия на английском языке, публикуемая ИИЭР, считается утвержденным стандартом ИИЭР.

Официальные заявления

Заявление, письменное или устное, не обработанное в соответствии с инструкцией по процедурам в отношении стандартов ИИЭР (ИИЭР-СА), не должно рассматриваться или подразумеваться в качестве официальной позиции ИИЭР или одного из его комитетов, а также не должно считаться или рассматриваться в качестве формальной позиции ИИЭР. На лекциях, симпозиумах, семинарах или обучающих курсах отдельное лицо, представляющее информацию по стандартам ИИЭР, должно уточнить, что его/ее точка зрения должна рассматриваться как личное мнение данного лица, а не как формальная позиция ИИЭР.

Комментарии к стандартам

Комментарии по поводу изменения стандартизирующих документов ИИЭР принимаются от любой заинтересованной стороны независимо от ее принадлежности к ИИЭР. Однако ИИЭР не предоставляет консультации и рекомендации в отношении стандартизирующих документов ИИЭР. Предложения об изменении документов следует представлять в форме предлагаемого изменения текста вместе с подходящими сопроводительными комментариями. Поскольку стандарты ИИЭР представляют собой консенсус соответствующих интересов, необходимо, чтобы все ответы на комментарии и вопросы также обеспечивали баланс интересов. По этой причине ИИЭР, члены его сообществ и координационных комитетов по стандартизации не могут предоставить незамедлительный ответ на комментарии или вопросы (за исключением ранее рассмотренных). По этой же причине ИИЭР не отвечает на просьбы о толковании. Любое лицо, которое хотело бы участвовать в изменении какого-либо стандарта ИИЭР, может присоединиться к соответствующей рабочей группе ИИЭР.

Комментарии к стандартам необходимо направлять по адресу:

Secretary, IEEE-SA Standards Board

445 Hoes Lane

Piscataway, NJ 08854 USA

Нормативно-правовые акты

Пользователи стандартизирующих документов ИИЭР должны ознакомиться со всеми применимыми законами и нормами. Соблюдение положений любого стандартизирующего документа ИИЭР не означает соответствие каким-либо применимым нормативным требованиям. Разработчики стандарта несут ответственность за соблюдение или цитирование подходящих нормативных требований. Публикуя свои стандарты, ИИЭР не призывает к немедленным действиям, которые не согласуются с применимым законодательством. Кроме того, эти документы не могут толковаться как призыв к таким действиям.

Авторские права

Проекты и утвержденные версии стандартов ИИЭР охраняются авторским правом, принадлежащим ИИЭР в рамках национального (США) и международного законодательства об авторском праве. Они предоставляются ИИЭР для использования в различных общественных и личных целях. Например, они могут упоминаться в законах и нормативных актах, а также использоваться для частного саморегламентирования, стандартизации, продвижения способов и методов проектирования. Предоставляя эти документы для использования и применения уполномоченными органами и частными пользователями, ИИЭР не передает какие-либо авторские права на них.

Ксерокопии

При условии уплаты соответствующего сбора ИИЭР предоставит пользователям ограниченную, неисключительную лицензию на ксерокопирование частей любого отдельного стандарта только для некоммерческого внутреннего использования физическим лицом или компанией. По вопросам оплаты лицензионных сборов обращайтесь по адресу: Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA, или по телефону: +1 978 750 8400. Кроме того, Copyright Clearance Center может предоставить разрешение на ксерокопирование частей любого отдельного стандарта для образовательных целей.

Обновление стандартизирующих документов ИИЭР

Пользователи стандартизирующих документов ИИЭР должны иметь в виду, что эти документы могут в любое время заменяться на их новые издания или время от времени корректироваться путем публикации изменений, поправок или списка опечаток. Официальный документ ИИЭР по состоянию на любой момент времени состоит из текущей редакции документа, дополненной изменениями, поправками или списками опечаток, вступившими в силу.

FOCT P 58501-2019

Каждый стандарт ИИЭР не реже одного раза в десять лет проходит процедуру пересмотра. Если документ не проходил процедуру пересмотра более десяти лет, разумно предположить, что такой документ по-прежнему имеет определенную ценность, однако не вполне точно характеризует фактическое положение дел. Пользователям настоятельно рекомендуется проверить наличие у них самого последнего издания необходимого стандарта ИИЭР.

Для определения степени актуальности данного документа и наличия дополнений к нему в виде опубликованных изменений, поправок или списков опечаток посетите веб-сайт IEEE-SA http://ieeexplore. ieee.org/xpl/standards.jsp или обратитесь к ИИЭР по ранее указанному почтовому адресу. Дополнительные сведения о IEEE-SA и процессе разработки стандартов ИИЭР доступны на веб-сайте IEEE-SA по адресу: http://standards.ieee.org.

Список опечаток

Co списком опечаток (если имеется) в стандартах ИИЭР можно ознакомиться на веб-сайте ИИЭР-CA по следующему адресу: http://standards.ieee.org/findstds/errata/index.html. Пользователям рекомендуется периодически посещать эту веб-страницу для ознакомления со списком опечаток.

Патенты

Необходимо учесть, что для внедрения настоящего стандарта может потребоваться использование предмета, на которое распространяется действие патентных прав. Опубликование настоящего стандарта не означает, что ИИЭР проведена проверка существования или действительности какихлибо патентных прав в связи с вышеизложенным. Если владелец или заявитель патента зарегистрировал заявление с использованием принятого гарантийного письма, такое заявление публикуется на веб-сайте ИИЭР-СА по адресу: http://standards.ieee.org/about/sasb/patcom/patents.html. Гарантийные письма могут содержать сведения о том, что отправитель готов или не готов предоставить лицензии в рамках патентных прав без компенсации или за разумное вознаграждение при разумных условиях и положениях, которые явно свободны от любой недобросовестной дискриминации заявителей, желающих получить такие лицензии.

Возможно наличие существенных пунктов формулы изобретения, для которых не получено гарантийное письмо. ИИЭР не несет ответственности за идентификацию существенных пунктов формулы изобретения, для которых может потребоваться лицензия, а также за выяснение законности или области применения пунктов формулы изобретения, или за определение разумности или недискриминационности каких-либо условий или положений лицензии, предоставленной в связи с отправкой гарантийного письма (при наличии) или в любых лицензионных соглашениях. Пользователи настоящего стандарта несут прямую ответственность в части определения законности любых патентных прав и риска нарушения таких прав. IEEE Standards Association может предоставить необходимую дополнительную информацию.

Участники

На момент завершения настоящего стандарта Рабочая группа по персональным медицинским приборам состояла из следующих лиц:

Дайди Джонг (Daidi Zhong), Председатель
Майкл Дж. Кирван (Michael J. Kirwan), Председатель
Натаниэль М. Хэмминг (Nathaniel M. Hamming), Заместитель председателя

Charles R. Abbruscato (Чарльз Р. Абрускато)	Saeed A. Choudhary (Свид А. Чоудхари)	Julian Goldman (Джулиан Голдмэн)
Nabil Abujbara (Набил Абухбара)	Jinhan Chung (Дзиньхан Чанг)	Raul Gonzalez Gomez(Рауль Госалес Гомес)
Maher Abuzaid (Махер Абусаид)	Malcolm Clarke (Малкольм Кларке)	Chris Gough (Крис Гу)
Manfred Aigner (Манфред Эйгнер)	John A. Cogan (Джон А. Коган)	Channa Gowda (Чанна Гоуда)
Jorge Alberola (Йорге Алберола)	John T. Collins (Джолн Т. Коллинз)	Charles M. Gropper (Чарльз М. Гроппер)

ГОСТ Р 58501-2019

Karsten Alders (Кэрстен Элдерс)	Cory Condek (Кори Кондек)	Amit Gupta (Амит Гупта)
Murtaza Ali (Муртаза Али)	Todd H. Cooper (Тодд Г. Купер)	Jeff Guttmacher (Джефф Гуттмахер)
Rolf Ambuehl (Рольф Эмбуэл)	David Cornejo (Дэвид Корнехо)	Rasmus Haahr (Pacмyc Xaap)
David Aparisi (Дэвид Эпаризи)	Douglas Coup (Дуглас Куп)	Christian Habermann (Кристиан Хаберманн)
Lawrence Arne (Лоуренс Арнэ)	Nigel Cox (Найджел Кокс)	Michael Hagerty (Майкл Хэгерти)
Diego B. Arquillo (Диего Б. Аркуилло)	Hans Crommenacker (Ханс Кромменакер)	Jerry Hahn (Джерри Хан)
Serafin Arroyo (Серафин Арройо)	Tomio Crosley (Томио Кросли)	Robert Hall (Роберт Холл)
Muhammad Asim (Мухаммад Азин)	David Culp Дэвид Калп)	Rickey L. Hampton (Рики Л. Хэмптон)
Merat Bagha (Mepar Barxa)	Allen Curtis (Аплен Кертис)	Sten Hanke (Стэн Хэнке)
Doug Baird (Даг Бэйард)	Ndifor Cyril Fru (Ндифор Сирил Фру)	Jordan Hartmann (Джордан Хартманн)
David Baker (Дэвид Бейкер) Anindya Bakshi (Аниндуя Бакши)	Eyal Dassau (Эйал Дассо) David Davenport (Дэвид Дэвенпорт)	Kai Hassing (Кэй Хэссинг) Marc Daniel Haunschild (Марк Дэниэль Хаунсшильд)
Ananth Balasubramanían (Анант Баласубраманиан)	Russell Davis (Рассел Дэвис)	Wolfgang Heck (Вольфганг Хек)
Sunlee Bang (Санли Банг)	Ed Day (Эд Дэй)	Charles Henderson (Чарльз Хэндерсон)
M. Jonathan Barkley (М. Джонатан Баркли)	Sushìl K. Deka Суши К Дека)	Jun-Ho Her (Юн-Xo Xe)
Gilberto Barrón (Джильберто Бэррон)	Pedro de-las-Heras-Quiros (Педро де-лас-Херас-Куйрос)	Takashi Hibino (Такаши Хибино)
David Bean (Дэвид Бин)	Jim Dello Štritto (Джим Делло Стритто)	Timothy L. Hirou (Тимоти Л. Хибино)
John Bell (Джон Бэлл)	Matthew d'Entremont (Мэтью Дэнтермон)	Allen Hobbs (Аллен Хоббс)
Rudy Belliardi (Руди Бельярди)	Lane Desborough (Лэйн Десборо)	Alex Holland (Алекс Холланд)
Daniel Bernstein (Дэниэль Бернстайн)	Kent Dicks (Кент Дикс)	Arto Holopainen (Арто Холопайнен)
George A. Bertos (Джордж А. Бертос)	Hyoungho Do (Хюнгхо До)	Robert Hoy (Роберт Хоу)
Chris Biernacki (Крис Бьернаки)	Xiaolian Duan (Сяолиан Дуань)	Frank Hsu (Фрэнк Хсу)
Ola Björsne (Ола Бьорсна)	Brian Dubreuil (Брайан Дубреул)	Anne Huang (Анне Хуанг)
Thomas Blackadar (Томас Блэкэдр)	Jakob Ehrensvard (Джекоб Эренсвард)	Sen-Der Huang (Сен-Дер Хуанг)
Marc Blanchet (Марк Бланшэ)	Fredrik Einberg (Фредрик Эйнберг)	Zhiqiang Huang (Чжицианг Хуанг)
Thomas Bluethner (Томас Блютнер)	Roger M. Ellingson (Раджер Эллингсон)	Ron Huby (Рон Хаби)

ГОСТ Р 58501-2019

Douglas P. Bogia (Дуглас П. Боджиа)	Michihiro Enokida (Мичихиро Энокида)	Robert D. Hughes (Роберт Д. Хьюз)
Xavier Boniface (Ксавьер Бонфэйс)	Javier Escayola Calvo (Хавьер Эскайола Кальво)	David Hughes (Дэвид Хьюз)
Shannon Boucousis (Шэннон Боукози)	Leonardo Estevez (Леонардо Эстевес)	Jiyoung Huh (Дзиюнг Ху)
Julius Broma (Юлиус Брома)	Roger Feeley (Роджер Фиили)	Hugh Hunter (Хью Хантер)
Lyle G. Bullock, Jr.(Лайл Дж. Баллок-мл)	Bosco T. Fernandes (Боско Т. Фернандес)	Hitoshi lkeda (Хитоши Икеда)
Bernard Burg (Бернард Берг)	Christoph Fischer (Кристоф Фишер)	Yutaka Ikeda (Ютаки Икеда)
Chris Burns (Крис Бернс)	Morten Flintrup (Мортен Флинтрап)	Philip O. Isaacson (Филипп О. Исааксон)
Anthony Butt (Энтони Батт)	Joseph W. Forler (Джозеф У. Форлер)	Atsushi Ito (Атсуши Ито)
Jeremy Byford-Rew (Джереми Байфорд-Рю)	Russell Foster (Рассел Фостер)	Michael Jaffe (Майкл Яффе)
Satya Calloji (Сатья Каллохи)	Eric Freudenthal (Эрик Фриденталь)	Praduman Jain (Прадуман Йейн)
Carole C. Carey (Кэрол С. Кэри)	Matthias Frohner (Маттиас Фрохнер)	Danny Jochelson (Дэнни Йохелсон)
Santiago Carot-Nemesio (Сантьяго Кэрот-Немезио)	Ken Fuchs (Кен Фухс)	Chris Johnson (Крис Джонсон)
Randy W. Carroll (Рэнди У. Кэрролл)	Jing Gao (Дзинг Гао)	Phaneeth Junga (Фэйнит Юнга)
Simon Carter (Саймон Картер)	Marcus Garbe (Маркус Гарбе)	Akiyoshi Kabe (Акиолши Кабэ)
Seungchul Chae (Сеунгчул Чае)	John Garguilo (Джон Гаргуйло)	Steve Kahle (Стив Кале)
Rahul Chauhan (Рахул Чаухан)	Rick Geimer (Рик Гемер)	Tomio Kamioka (Томио Камиока)
James Cheng (Джеймс Ченг) Peggy Chien (Пегги Чиен) Chia-Chin Chong (Чиа-Чин Чонг)	Igor Gejdos (Игорь Гейдос) Ferenc Gerbovics (Ференц Гербовикс) Nicolae Goga (Николаз Гога)	Kei Kariya (Кей Карья) Andy Kaschl (Энди Касчи) Junzo Kashihara (Юнзо Кашихара)
Kohichi Kashiwagi (Кохичи Кашиваки) Ralph Kent (Ральф Кент) Laurie M. Kermes (Лори М. Кермес)	Jim Niswander (Джим Нисвандер) Hiroaki Niwamoto (Хироаки Нивамото) Thomas Norgall (Томас Норгелл)	Sternly K. Širnon (Стенли К. Саймон) Marjorie Skubic (Мэрджори Скубич) Robert Smith (Роберт Смит)
Ikuo Keshi (Икуо Кеши) Junhyung Kim (Дзюнхюнг Ким) Min-Joon (Минь-Цзун) Kim Minho Kim (Ким Минхо Ким)	Anand Noubade (Ананд Нубаде) Yoshiteru Nozoe (Йошитеру Нозое) Abraham Ofek (Абрахам Офек) Brett Olive (Бретт Олив)	Ivan Soh (Айвэн Сох) Motoki Sone (Мотоки Соне) Emily Sopensky (Эмили Сопенски) Rajagopalan Srinivasan (Раджагопалан Сринивасан)

Taekon Kim (Таэкон Ким) Tetsuya Kimura (Тецуя Кимура) Alfred Kloos (Альфред Клоос) Jeongmee Koh (Йеонгми Кох) Begonya Otal (Бегонья Отал) Charles Palmer (Чарльз Палмер) Bud Panjwani (Бад Панджавани) Carl Pantiskas (Карл Пантискас) Andreas Staubert (Андреас Стауберт) Nicholas Steblay (Николас Стеблэй) Beth Stephen (Бет Стивен) Lars Steubesand (Ларс Стюбесан)

Jean-Marc Koller (Жан-Марк Коллер) John Koon (Джон Куун) Patty Krantz (Патти Крантц) Alexander Kraus (Александр Краус) Harry P. Pappas (Гэрри П. Паппас) Mikey Paradis (Мики Парадис) Hanna Park (Ханна Парк) Jong-Tae Park (Джо-Тае Парк) John (Ivo) Stivoric (Джон (Иво) Стиворич) Raymond A. Strickland (Рэймонд Стриклэнд) Hermanni Suominen (Херманни Суоминен) Lee Surprenant (Ли Сьюпренант)

Ramesh Krishna (Рамеш Кришна) Geoffrey Kruse (Джеффри Крус) Falko Kuester (Фалко Кюстер) Rafael Lajara (Рафаэль Лайара) Myungeun Park (Мунгеун Парк) Soojun Park (Сууцзюн Парк) Phillip E. Pash (Филлип Е. Паш) TongBi Pei (ТонгБи Пэй) Ravi Swami (Рави Свами) Ray Sweidan (Рэй Свэйден) Jin Tan (Цзин Тан) Haruyuyki Tatsumi (Харюуки Татсуми)

Pierre Landau (Пьер Ландау) Jaechul Lee (Яэкуль Ли) JongMuk Lee (ЮнгМук Ли) Kyong Ho Lee (Кунг Хо Ли) Soren Petersen (Сорен Петерсен) James Petisce (Джеймс Петисэ) Peter Piction (Питер Пиктион) Michael Pliskin (Майкл Плишкин) John W. Thomas (Джон У. Toмac) Brad Tipler (Брэд Типлер) Jonas Tirén (Йонас Тирэн) James Tomcik (Джеймс Томчик)

Rami Lee (Рами Ли) Sungkee Lee (Санки Ли) Woojae Lee (Вуцзяз Ли) Yonghee Lee (Юнгхи Ли) Jeff Price (Джефф Прайс) Harald Prinzhorn (Харальд Принзхорн) John Quinlan (Джон Куинлан) Arif Rahman (Ариф Рахман) Janet Traub (Джанет Трауб) Jesús Daniel (Джезус Дэниаль) Trigo Gary (Триго Гэри) Tschautscher Masato Tsuchid (Чаучер Масато Тсучид)

Joe Lenart (Джо Ленарт) Kathryn A. Lesh (Кэтрин А. Лэш) Qiong Li (Кионг Ли) Ying Li (Йинг Ли) Tanzilur Rahman (Танзилур Рахман) Steve Ray (Стив Рэй) Phillip Raymond (Филлип Рэймонд) Tim Reilly (Тим Райли) Ken Tubman (Кен Табмэн) Yoshihiro Uchida (Йошиширо Учида) Sunil Unadkat (Санил Унадкат) Fabio Urbani (Фабио Урбани)

Patrick Lichter (Патрик Лихтер) Jisoon Lim (Цзисун Лим) Joon-Ho Lim (Юн-Хо-Лим) John Lin (Джон Лин) Jiajia Liu (Цзяцзя Лиу) Barry Reinhold (Барри Рэйнольд) Brian Reinhold (Брайэн Рэйнольд) Melvin I. Reynolds (Мэлвин А. Рэйнольдс) John G. Rhoads (Джон Г. Родс) Jeffrey S. Robbins (Джеффри С. Роббинс)

Philipp Urbauer (Филипп Урбайер) Laura Vanzago (Лаура Ванзаго) Alpo Värri (Алпо Варри) Ciro de la Vega (Циро де ла Вега) Dalimar Velez (Далмар Велез)

ГОСТ P 58501-2019

Wei-Jung Lo (Вэй-Цзюнг Ло) Charles Lowe (Чарльз Лоу) Don Ludolph (Дон Лудолф) Christian Luszick (Кристиан Лузик) Moskowitz Robert (Московиц Роберт) Timothy Robertson (Тимоти Робертсон) David Rosales (Дэвид Розалес) Bill Saltzstein (Билл Залстайн)

Naveen Verma (Навин Верма) Rudi Voon (Руди Вуун) Isobel Walker (Изобель Услкер) David Wang (Дэвид Ванг)

Bob MacWilliams (Боб Маквильямс) Srikkanth Madhurbootheswaran (Срикант Мадхурбутхешварн) Romain Marmot (Роман Мэрмот) Sandra Martinez (Сандра Мартинес)

Benedikt Salzbrunn (Бенедикт Зальцбрюн) Jerry P. Wang (Джерри П. Ванг) Giovanna Sannino (Джованна Саннино) Jose A. Santos-Cadenas (Жозе Сантош-Каденас) Stefan Sauermann (Стефан Зауэрманн)

Yao Wang (Яо Ванг) Yi Wang (И Ванг) Steve Warren (Стив Уоррен)

Miguel Martínez de Espronceda Cámara (Мигель Мартинез дэ Эспронседа Камара) Peter Mayhew (Питер Мэйхыю)

John Sawyer (Джон Сойер) Guillaume Schatz (Гильомэ Шатц) Alois Schloegl (Алоиз Шлегль)

Fujio Watanabe (Фуджио Ватанабэ) Toru Watsuji (Тору Ватцуи) Mike Weng (Майк Венг)

Jim McCain (Джим Маккейн)

Paul S. Schluter (Пол С. Шлютер)

Kathleen Wible (Кэтлин Уайбл)

László Meleg (Ласло Мележ) Alexander Mense (Александр Менсе) Ethan Metsger (Этан Мецгер) Yu Miao (Ю Мяо)

Lars Schmitt (Ларс Шмидт) Mark G. Schnell (Марк Г. Шнель) Richard A. Schrenker (Ричард А. Шренкер) Antonio Scorpiniti (Антонио Скорпинити)

Paul Williamson (Пол Вильямсон) Jan Wittenber (Ян Виттенбер) Jia-Rong Wu (Цзя-Рон Ву) Will Wykeham (Уилл Вэйкхэм)

Jinsei Miyazaki (Цзинсэй Миядзаки) Erik Moll (Эрик Молл) Darr Moore (Дарр Myp) Piotr Murawski (Петр Муравский)

Kwang Seok Seo (Кванг Сеок Сео) Riccardo Serafin (Рикардо Серафин) Sid Shaw (Сид Шо) Frank Shen (Франк Шен)

Ariton Xhafa (Эритон Ксхафа) Junjie Yang (Юнье Янг) Ricky Yang (Рики Янг) Melanie Yeung (Мелани Еунг)

Soundharya Nagasubramanian (Саунхарья Нагасубраманьян) Jae-Wook Nah (Яз-Вук Нах) Alex Neefus (Алекс Нифус) Trong-Nghia Nguyen-Dobinsky (Тронг-Нгха-Нгуен-Добинский)

Ligun Shen (Ликун Шен) Bozhi Shi (Божи Ши) Min Shih (Мин Ших) Mazen Shihabi (Мазен Шихаби) Done-Sik Yoo (Дон-Сик Ю) Jason Zhang (Джейсон Чжанг) Zhiqiang Zhang (Чжицианг Чжанг) Thomas Zhao (Томас Чжао)

Michael E. Nidd (Майкл Э. Нидд)

Redmond Shouldice (Рэдмонд Шоулдайс)

Miha Zoubek (Миха Зоубек)

Tetsu Nishimura (Тетсу Нишимура)

Szymon Zysko (Симон Зиско)

Следующие члены индивидуального баллотировочного комитета голосовали по данному стандарту. Они могли голосовать за одобрение, неодобрение или отказ от голосования.

Thomas Blackadar (Томас Блэкдэр)

Werner Hoelzl (Вернер Хётиль)

Nick S. A. Nikioo (Ник С. А. Никийю)

Lyle G. Bullock, Jr. (Лайл Дж. Баллок, мл.) Keith Chow (Keйт Yoy)

Noriyuki Ikeuchi (Ноюриюки Икеучи)

Melvin I. Reynolds (Мэлвин Ай. Рэйнольдс)

Atsushi Ito (Атсуши Ито)

Bartien Sayogo (Бартен Сайого)

Sourav Dutta (Сурав Дутта)

Joseph El Youssef (Джозеф Эль Юсуф) Christoph Fischer (Кристоф Фишер)

Hector Barron Gonzalez (Гектор Баррон Гонзалес) Randall Groves (Рэндалл Грувс) Kai Hassing (Кай Хэссинг) Wolfgang Heck (Волфганг Хек)

Raj Jain (Рэй Джейн)

Piotr Karocki (Петр Кароки) Robert Kircher (Роберт Кирхер)

JongMuk Lee (Йонгмук Ли)

Jie Li (Цзе Ли)

William Lumpkins (Вильям Лампкинс)

Greg Luri (Грег Лури)

Paul Schluter (Поль Шлютер)

Lars Schmitt (Ларс Шмидт) Eugene Stoudenmire (Юджин

Студенмайер)

Walter Struppler (Уолтер

Страпплер)

Jan Wittenber (Ян Виттенбер) Oren Yuen (Орен Юэн) Daidi Zhong (Дайди Чжунг)

Когда Отдел стандартов Ассоциации стандартов ИИЭР (IEEE-SA Standards Board) утвердил настоящий стандарт 21 августа 2014 г., в его состав входили следующие члены:

> Джон Кулик (John Kulick), председатель Йон Уолтер Родел (Jon Walter Rosdahl), заместитель председателя Ричард X. Халетт (Richard H. Hulett), предыдущий председатель Константинос Карачалиос (Konstantinos Karachalios), секретарь

Peter Balma (Питер Балма)

Farooq Bari (Фарук Бари) Ted Burse (Тед Берс)

Clint Chaplain (Клинт Чаплэйн) Stephen Dukes (Стивен Дьюкс) Jean-Phillippe Faure (Жан-Филипп Фаура)

Gary Hoffman (Гэри Хоффман)

Michael Janezic (Майкл Янезич)

Jeffrey Katz (Джеффри Кац) Joseph L. Koepfinger* (Джозеф Кепфингер)

David J. Law (Дэвид Дж. Ло) Hung Ling (Ханг Ланг) Oleg Logvinov (Олег Логвинов)

T. W. Olsen (T.B. Олсен) Glenn Parsons (Гленн Парсонс) Ron Peterson (Рон Петерсон)

Adrian Stephens (Эдриэн Стефенс) Peter Sutherland (Питер Сазерлэнд)

Yatin Trivedi (Йетин Триведи) Phil Winston (Фил Уинстон) Don Wright (Дон Райт) Yu Yuan (Ю Юань)

Также включены следующие, не имеющие права голоса, контактные лица Отдела стандартов Ассоциации стандартов ИИЭР:

Ричард Дэблэсио (Richard DeBlasio), представитель DOE Майкл Янежич (Michael Janezic), представитель NIST Дон Мессина (Don Messina) Издание контента ИИЭР Кэтрин Беннетт (Kathryn Bennett) Программы технического сообщества ИИЭР

^{*} Почетный член.

Введение

Данное введение не является частью стандарта IEEE 11073-10425—2014 «Информатизация здоровья. Обмен данными с персональными медицинскими приборами. Часть 10425. Специализация прибора. Глюкометр непрерывного действия (CGM)».

Стандарты комплекса ISO/IEEE 11073 определяют взаимосвязь между медицинскими приборами и внешними компьютерными системами. В настоящем стандарте использован оптимизированный протокол, описанный в IEEE 11073-20601—2010, и определен специфичный подход к интероперабельному обмену данными с приборами для непрерывного мониторинга глюкозы¹⁾. Данный комплекс стандартов согласуется и опирается на существующие медицинские стандарты, обеспечивая поддержку обмена данными с клиническими или лерсональными медицинскими приборами (ПМП).

¹⁾ Информацию по ссылкам можно найти в разделе 2.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

информатизация здоровья

Обмен данными с персональными медицинскими приборами

Часть 10425

Специализация прибора: глюкометр непрерывного действия (CGM)

Health informatics. Personal health device communication. Part 10425. Device specialization: continuous glucose monitor (CGM)

Дата введения — 2020—05—01

ВНИМАНИЕ! Стандартизирующие документы ИИЭР не предназначены для обеспечения безопасности, защищенности, охраны здоровья или защиты окружающей среды либо защиты от помех со стороны других устройств или сетей. Исполнители, занимающиеся практической реализацией стандартизирующих документов ИИЭР, несут ответственность за определение и обеспечение соответствия всем подходящим методикам в области физической и информационной безопасности, защиты окружающей среды и здоровья, защиты от помех, а также за соблюдение всех требований действующего законодательства и нормативных документов.

Данный документ ИИЭР доступен для использования в соответствии с важными уведомлениями и отказами от ответственности. Такие уведомления и отказы содержатся во всех публикациях, содержащих настоящий документ, и выделяются заголовком «Важное уведомление» или «Важные уведомления и отказы от ответственности, касающиеся документов ИИЭР». Их также можно получить, обратившись с запросом к ИИЭР, либо просмотреть на caume http://standards.ieee.org/IPR/disclaimers.html.

1 Обзор

1.1 Область применения

Настоящий стандарт устанавливает нормативное определение обмена данными между глюкометрами непрерывного действия (CGM) и менеджерами (например, сотовыми телефонами, персональными компьютерами, бытовыми медицинскими приборами, телевизионными приставками), при котором обеспечивается интероперабельность с автоматическим конфигурированием. В настоящем стандарте используются соответствующие части существующих стандартов, включая терминологию и информационные модели ISO/IEEE 11073. В нем указывается использование специфичных кодов терминов, форматов и вариантов поведения в телемедицинской среде, ограничивающих необязательность основных инфраструктур в пользу интероперабельности. В настоящем стандарте определена общая основа коммуникационной функциональности устройств СGM. В этом контексте СGM относится к регулярному (как правило, через 5 мин) измерению уровня глюкозы в организме с помощью датчика, постоянно закрепленного на теле.

1.2 Назначение

Настоящий стандарт удовлетворяет потребность в открытом для публики, независимом стандарте контроля обмена информацией между персональными медицинскими приборами (ПМП) и вычисли-

ГОСТ P 58501—2019

тельными устройствами (например, сотовыми телефонами, персональными компьютерами, бытовыми медицинскими приборами, телевизионными приставками). Интероперабельность является ключевым фактором роста потенциального рынка этих устройств и позволяет людям быть более информированными участниками процесса управления своим здоровьем.

1.3 Контекст

Обзор среды, для которой написан настоящий стандарт, см. в стандарте IEEE 11073-20601а™ 1). Настоящий стандарт определяет специализацию устройства СGM, являющегося специальным типом агента, и приводит описание понятий, связанных с данным устройством, его возможностей, а также его внедрения в соответствии с настоящим стандартом.

Настоящий стандарт создан на основе стандартов IEEE 11073-20601a-2010 и ISO/IEEE 11073-20601:2010, которые, в свою очередь, используют информацию из стандартов ISO/IEEE 11073-10201:2004 [В7] и ISO/IEEE 11073-20101:2004 [В8] ²⁾.

Правила кодирования для медицинских устройств MDER (medical device encoding rules), использованные в настоящем стандарте, в полном объеме описаны в стандарте ISO/IEEE 11073-20601:2010.

В настоящем стандарте воспроизведены релевантные части номенклатуры, приведенной в стандарте ISO/IEEE 11073-10101:2004 [B6], а также добавлены новые целевые номенклатурные коды. Сочетание настоящего стандарта со стандартами ISO/IEEE 11073-20601:2010 и IEEE 11073-20601™-2014 документирует все номенклатурные коды, требуемые для его реализации.

Примечание 1— Стандарт IEEE 11073-20601-2014 является редакцией ISO/IEEE 11073-20601:2010. Он содержит новый материал и поправки и не копирует содержание ISO/IEEE 11073-20601:2010. В тексте настоящего стандарта ссылка на стандарт IEEE 11073-20601-2014 относится к документу, получаемому после использования нового материала и поправок в ISO/IEEE 11073-20601:2010³).

Примечание 2 — В настоящем стандарте ISO/IEEE 11073-104zz используется для указания ссылки на комплекс стандартов по специализации устройств, использующих стандарт IEEE 11073-20601:2014, где число zz может быть любым числом от 01 до 99 включительно.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание, для недатированных — последнее издание ссылочного стандарта (включая все изменения к нему).

ISO/IEEE 11073-20601:2010, Информатизация здоровья. Информационное взаимодействие с персональными медицинскими приборами. Часть 20601. Прикладной профиль. Оптимизированный протокол обмена. (ISO/IEEE 11073-20601:2010, Health informatics — Personal health device communication — Part 20601: Application profile — Optimized Exchange Protocol)⁴⁾

IEEE 11073-20601a-2010, Информатизация здоровья — Информационное взаимодействие с персональными медицинскими приборами. Часть 20601. Прикладной профиль. Оптимизированный протокол обмена. Поправка 1 (IEEE Std 11073-20601a-2010, Health informatics — Personal health device communication — Part 20601: Application profile — Optimized Exchange Protocol — Amendment 1)^{5),6)}

¹⁾ Информацию по ссылкам можно найти в разделе 2.

²⁾ Цифры в скобках соответствуют номеру источника в разделе «Библиография» приложения А.

³⁾ Примечания в тексте, таблицах, а также в рисунках даются только для информации и не содержат требований, необходимых для реализации стандарта.

⁴⁾ Публикации ISO/IEEE получены из Центрального секретариата ИСО (http://www.iso.org/). В США публикации ISO/IEEE можно получить также от Института инженеров по электротехнике и электронике (http://standards. jeee.org/).

⁵⁾ Публикации ИИЭР получены от Института инженеров по электротехнике и радиоэлектронике (<u>http://standards.ieee.org</u>).

⁶⁾ Наименования стандартов IEEE или продуктов, на которые дается ссылка в этом разделе, являются товарными знаками Института инженеров по электротехнике и радиоэлектронике.

3 Термины, определения и сокращения

3.1 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями. Определения терминов, не указанных в данном разделе, см. в Онлайновом словаре по стандартам IEEE (IEEE Standards Dictionary Online)⁷⁾.

- 3.1.1 агент (agent): Узел, собирающий и передающий персональные медицинские данные ассоциированному менеджеру.
 - 3.1.2 глюкоза в крови (blood glucose): Концентрация глюкозы в крови.
- 3.1.3 класс (class): В объектно-ориентированном моделировании класс описывает атрибуты, методы и события, присущие объектам, являющимся его экземплярами.
 - 3.1.4 вычислительное устройство (compute engine): См. менеджер (manager).
- 3.1.5 глюкометр непрерывного действия; CGM (continuous glucose monitor; CGM): Медицинский прибор, выполняющий оценку концентрации глюкозы в крови, как правило, по жидкости тела.
- 3.1.6 прибор (device): Термин, используемый для ссылок на физический прибор, выполняющий роль либо агента, либо управляющего устройства.
- 3.1.7 глюкоза (glucose): Обычно именуется «сахар» и является основным источником энергии, используемой клетками тела.
- 3.1.8 дескриптор (handle): Локально уникальное 16-битовое целое число без знака, идентифицирующее один из экземпляров объекта внутри агента.
- 3.1.9 интерстициальная (тканевая) жидкость; ISF (interstitial fluid; ISF): Тонкий слой жидкости, окружающий клетки тела.
- 3.1.10 менеджер (manager): Узел, получающий данные от одной или нескольких агентских систем.

П р и м е ч а н и е — Примерами менеджеров могут служить мобильный телефон, медицинское устройство, телевизионная приставка или компьютерная система.

- 3.1.11 объект (object): В объектно-ориентированном моделировании конкретный экземпляр класса, реализующий его атрибуты, методы и события.
 - 3.1.12 идентификатор объекта (obj-handle): См. идентификатор (handle).
- 3.1.13 персональный медицинский прибор; ПМП (personal health device; PHD): Прибор, используемый для индивидуального контроля состояния здоровья.
- 3.1.14 персональный телемедицинский прибор (personal telehealth device): См. персональный медицинский прибор (personal health device).

3.2 Сокращения

В настоящем стандарте применены следующие сокращения:

APDU — блок данных прикладного протокола (application protocol data unit);

ACH.1 — Абстрактная синтаксическая нотация версии 1 (Abstract Syntax Notation One);

AST — получение крови из альтернативных мест (alternative site testing);

BGM — глюкометр (blood glucose meter);

CGM — глюкометр непрерывного действия (continuous glucose monitor);

DIM — информационная модель предметной области (domain information model);

EUI-64 — расширенный уникальный идентификатор (64 бита) [extended unique identifier (64 bits)];

HCP — медицинский специалист (health care professional);

ICS — заявление о соответствии реализации (implementation conformance statement);

ISF — интерстициальная (тканевая) жидкость (interstitial fluid);

MDC — обмен данными с медицинским прибором (medical device communication);

MDER — правила кодирования для медицинских устройств (medical device encoding rules):

MDS — система медицинского прибора (medical device system);

MOC — класс управляемых объектов (managed object class);

OID — объектный идентификатор (object identifier);

PDU — блок данных протокола (protocol data unit);

⁷⁾ Подписка на IEEE Standards Dictionary Online доступна по адресу: <a href="http://www.ieee.org/portal/innovate/prod-ucts/standard/standards/

ГОСТ P 58501-2019

PHD — персональный медицинский прибор, ПМП (personal health device);

VMO — виртуальный медицинский объект (virtual medical object);

VMS — виртуальная медицинская система (virtual medical system).

4 Введение в стандарты комплекса IEEE 11073™ по персональным медицинским приборам

4.1 Общие положения

Настоящий стандарт и другие стандарты комплекса ISO/IEEE 11073, посвященные персональным медицинским приборам (ПМП), представляют собой часть более обширного комплекса стандартов ISO/IEEE 11073. Полный комплекс стандартов описывает соединения и обмен данными между агентами и менеджерами, а также с компьютеризированными медицинскими информационными системами. Описание руководящих принципов для стандартов комплекса ISO/IEEE 11073, посвященных персональным медицинским приборам, представлено в стандарте IEEE 11073-20601-2014.

IEEE 11073-20601-2014 поддерживает моделирование и реализацию широкого множества ПМП. Настоящий стандарт определяет требования к глюкометру непрерывного действия (ССМ). В нем определены все аспекты, необходимые для реализации сервисов прикладного уровня и протокола обмена данными между агентом, представляющим прибор ССМ, и менеджером. Настоящий стандарт определяет подмножество объектов и функциональности, описанные в IEEE 11073-20601-2014, а также расширяет и добавляет определения в тех случаях, где это необходимо. Все новые определения приведены в Абстрактной синтаксической нотации версии 1 (АСН.1 [В9]) в приложении В. Номенклатурные коды, использованные в настоящем стандарте, которые не определены в IEEE 11073-20601-2014, представлены в обязательном приложении С.

4.2 Введение в структуры моделирования IEEE 11073-20601

4.2.1 Общие положения

В основу комплекса стандартов ISO/IEEE 11073, и в частности IEEE 11073-20601-2014, положена парадигма управления объектно-ориентированными системами. Общая модель системы состоит из трех основных компонентов: информационная модель предметной области (DIM), сервисная модель и коммуникационная модель. Подробное описание структур моделирования приведено в IEEE 11073-20601-2014.

4.2.2 Информационная модель предметной области

Информационная модель предметной области (DIM) представляет собой иерархическую модель, описывающую информацию агента в виде набора объектов. Эти объекты и их атрибуты представляют элементы, которые управляют поведением и сообщают статус агента, а также данные, которыми агент может обмениваться с менеджером. Информационное взаимодействие между агентом и менеджером определено прикладным протоколом в IEEE 11073-20601-2014.

4.2.3 Сервисная модель

Сервисная модель определяет базовые механизмы сервисов обмена данными. Такие сервисы отображаются на сообщения, которыми обмениваются между собой агент и менеджер. Протокольные сообщения, используемые в стандартах комплекса ISO/IEEE 11073, определены в нотации ACH.1. Сообщения, определенные в IEEE 11073-20601-2014, могут сосуществовать с сообщениями, определенными в других стандартных прикладных профилях, описанных в стандартах комплекса ISO/IEEE 11073.

4.2.4 Коммуникационная модель

В общем случае коммуникационная модель поддерживает топологию, при которой один или несколько агентов взаимодействуют с одним менеджером с помощью двухточечных соединений. Для каждого такого логического соединения динамическое поведение системы определено конечным автоматом состояний в соответствии с IEEE 11073-20601-2014.

4.2.5 Реализация моделей

В агенте, реализующем настоящий стандарт, должны быть реализованы все обязательные элементы информационной, сервисной и коммуникационной модели, а также условно обязательные элементы в тех случаях, когда выполняются соответствующие условия. В агенте по возможности должны быть реализованы рекомендованные элементы, а также могут быть реализованы любые комбинации необязательных элементов. В менеджере, реализующем настоящий стандарт, должен быть применен по меньшей мере один из обязательных, условно обязательных, рекомендованных или необязательных элементов. В данном контексте термин «применен» означает использование данного элемента как части основной функции прибора, выполняющего роль менеджера. Например, менеджеру, основной функцией которого является вывод данных на экран, может потребоваться выводить на экран часть данных элемента для того, чтобы применять его.

4.3 Соответствие другим стандартам

Приборы, которые соответствуют данному стандарту, также могут (при необходимости) соответствовать другим стандартам специфичных предметных областей и приборов, заменяющих требования настоящего стандарта в различных аспектах, включая безопасность, надежность и управление рисками. Предполагается, что пользователь данного стандарта знаком со всеми другими применимыми стандартами, которые соответствуют спецификациям более высокого уровня. Как правило, медицинские приборы будут соответствовать требованиям базового стандарта МЭК 60601-1:2005 [В1] в части электрической и механической безопасности, а также требованиям стандарта для специфичного прибора, который может быть определен в комплексе стандартов МЭК 60601-2 [В2]. К программным аспектам могут применяться такие стандарты, как МЭК 62304:2006/ЕН 62304:2006 [В3].

Приборы, которые соответствуют требованиям настоящего стандарта, реализуют более высокие уровни сетевого программного обеспечения, а также применяют более низкие уровни в зависимости от приложения. Требования к производительности таких приложений и соответствия определены в иных источниках и не входят в область применения настоящего стандарта. Более того, использование любого медицинского оборудования подлежит оценке риска и управлению риском в зависимости от приложения. Уместными примерами могут служить ИСО 14971:2007 [В5] и МЭК 80001-1:2010 [В4]. Требования оценки и управления подобными рисками, а также соответствия не входят в область применения настоящего стандарта.

5 Понятия и модальности мониторинга глюкозы

5.1 Общие положения

В этом разделе представлены общие концепции приборов CGM. В контексте ПМП в данном семействе стандартов CGM представляет собой прибор, оценивающий концентрацию глюкозы в крови, как правило, с помощью измерений, проводящихся в интерстициальной (тканевой) жидкости (ISF). Концентрация глюкозы считывается с датчика непрерывно с периодическими интервалами. Прибор CGM улучшает контроль проведения терапии в отличие от одиночных, эпизодических измерений с помощью глюкометра (blood glucose meter, BGM). Частые измерения, обеспечиваемые приборами CGM, дают пациенту более качественную оценку с точки зрения колебаний уровней глюкозы в крови в течение дня и, в свою очередь, могут снизить риск развития диабетических осложнений.

Глюкоза, или концентрация сахара в крови, является основным источником энергии для клеток тела. Уровень глюкозы строго регулируется в теле человека и обычно поддерживается на уровне примерно 70 мг/дл — 150 мг/дл (4 мкмоль/л — 8 мкмоль/л). Таким образом, общее количество глюкозы в циркулирующей крови составляет примерно 3,5—7,5 г (с учетом того, что общее количество крови у взрослого человека составляет 5 л). У здорового взрослого мужчины весом 75 кг и общим объемом крови 5 л уровень глюкозы в крови составляет 100 мг/дл (5,5 мкмоль/л), что соответствует общему количеству около 5 г (1/5 унции и эквивалентно потребительскому пакетику сахара) глюкозы в крови и примерно 45 г (1,5 унции) во всей жидкости тела (которая включает кровь и ISF). Уровень глюкозы повышается после еды, а самый низкий — обычно утром, до первого приема пищи.

Невозможность поддержания глюкозы в крови в нормальном диапазоне значений приводит к формированию условий стабильно высокого (гипергликемия) или низкого (гипогликемия) уровня сахара в крови. Сахарный диабет, который по нескольким причинам характеризуется стабильной гипергликемией, является наиболее известным заболеванием, относящимся к потере способности регулирования уровня сахара в крови. Если не лечить или ненадлежащим образом управлять этим процессом, то диабет может вызвать осложнения, включая сердечно-сосудистые заболевания, почечную недостаточность, а также глазные болезни.

FOCT P 58501-2019

Концентрация глюкозы в крови измеряется в мкмоль/л или в мг/дл. В странах, где применяется метрическая система, обычно используются мкмоль/л. Однако в США, а также в других странах используют мг/дл. Для перевода измерений глюкозы в крови из одной системы измерений в другую используются следующие преобразования:

- разделить мг/дл на 18,02, чтобы получить мкмоль/л (или умножить на 0,0555),
- умножить мкмоль/л на 18,02, чтобы получить мг/дл (или разделить на 0,0555).

Концентрацию глюкозы, измеренную различными методами, можно отнести к различным типам, определяемым тремя элементами: типом образца, источником образца, а также эталонным методом концентрации. В таблице 1 показаны все типы концентрации глюкозы, определенные в данном стандарте.

Таблица 1 — Типы концентрации глюкозы

Тип образца	Источник образца	Эталонный метод
	Капилляры	Цельная кровь
Кровь	Калидииры	Плазма
	Вены	Цельная кровь
	Вены	Плазма
	Артерии	Цельная кровь
		Плазма
		Цельная кровь
	Неопределенный	Плазма
Тканевая жидкость	Подкожная фасция	Нет
Контрольный раствор	Нет	Нет

П р и м е ч а н и е — Концентрация глюкозы в крови может быть косвенным образом получена из тканевой жидкости, и это распространенный метод, который используется при мониторинге глюкозы. Как правило, для контроля качества глюкометра используется контрольный раствор.

Тканевая жидкость является распространенным источником измерений, выполняемых прибором CGM, хотя в новых технологиях также могут быть задействованы другие источники. BGM могут применять другие источники образцов для измерений, а наиболее распространенным источником является капиллярная цельная кровь.

5.2 Типы приборов

Устройства непрерывного мониторинга глюкозы, как правило, конструируются как портативные устройства, постоянно подсоединенные к телу.

Форма конструкции CGM может варьироваться, однако, как правило, приборы CGM включают следующие компоненты: датчик глюкозы, передатчик, а также приемник. Эти компоненты могут быть размещены в разных физических устройствах.

На момент написания стандарта современная технология предусматривает датчик, который состоит из маленькой металлической нити, которая вставляется в подкожный слой жировой ткани, где он аппроксимирует уровень глюкозы в крови, измеряя характеристики тканевой жидкости. Предпочтительными местами установки датчика являются живот, поясничная область, а также плечевые части рук. Как правило, существуют механические средства (например, пластырь) для фиксации датчика по месту. Датчик необходимо периодически заменять.

Передатчик, подсоединенный к датчику, используется для беспроводной передачи результатов измерений приемнику. Этот приемник часто представляет собой физически отдельное устройство, которое может отображать графики трендов и другие статистические данные или уведомления наряду с текущими измерениями уровня глюкозы, как это показано на рисунке 1(а). Дозаторы инсулина, а также другие индивидуальные электронные приборы также могут выполнять функции приемника измерений СGM, как это показано на рисунке 1(b). Приборы непрерывного мониторинга глюкозы обеспечивают аппроксимацию глюкозы в крови, как правило, из тканевой жидкости. Чтобы обеспечить точную аппроксимацию, прибор CGM периодически калибруется по непосредственным измерениям глюкозы в крови. Хотя ручной ввод измерений глюкозы в крови в приемник CGM возможен, более сложные приборы CGM обеспечивают беспроводную связь между передатчиком или приемником и BGM.

Для ясности использовались термины «передатчик» и «приемник», однако следует знать, что оба этих устройства в действительности могут быть приемопередатчиками.

5.3 Взаимосвязь агента CGM с менеджером

Как указано в 5.2, прибор CGM может состоять из двух физических частей, например, датчика/ передатчика и приемника. Настоящая специализация устройства описывает стандарт интероперабельности только одной из этих физических частей с вычислительным устройством, выступающим в роли менеджера CGM. Например, он может регламентировать взаимодействие между менеджером и приемником CGM или датчиком/передатчиком CGM, если в системе нет специального приемника CGM. Эти сценарии показаны на рисунке 1. Могут также существовать другие сценарии, которые здесь не обсуждаются.

Агент CGM может периодически отсылать результаты измерений менеджеру при его доступности, либо обмен может произойти после сеанса CGM (часы или дни). Далее, менеджер может запросить хранящиеся результаты за определенный период времени. Такая функциональность, помимо сценария хранения и отправки, предусматривает наличие меток времени для каждого результата измерений. Агент должен обеспечить разрешение меток времени для любых измерений, сообщаемых компонентами CGM. Менеджер, как было упомянуто ранее, может быть представлен персональным компьютером, мобильным телефоном или другим вычислительным устройством.

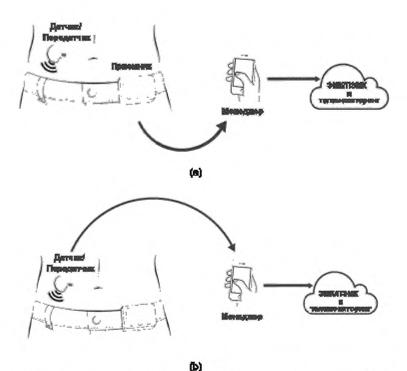


Рисунок 1 — Взаимосвязь агента с менеджером — сценарий обмена данными приемника CGM с менеджером изображен на (а), а вариант связи датчика/передатчика CGM с менеджером изображен на (b) (могут существовать другие сценарии, не изображенные на рисунке 1)

5.4 Собранные данные

5.4.1 Общие положения

CGM представляет собой портативное устройство и поэтому при сборе данных может быть не подключен к менеджеру. Ниже приведены два основных варианта подсоединения CGM к менеджеру и отправки данных:

- Пользователь СGM посещает медицинского специалиста для оценки адекватности инсулиновой терапии. С целью определения необходимых поправок в инсулиновую терапию медицинский специалист обычно сравнивает исторические данные, хранящиеся в СGM, с соответствующими данными, хранящимися в дозаторе инсулина. Поскольку промежуток между такими визитами может составлять несколько месяцев, то CGM, как правило, в состоянии сохранять данные в течение таких периодов.
- Пользователь СGM подсоединяет агента СGM к менеджеру по мере необходимости оценки адекватности инсулиновой терапии и внесения поправок. Это обычно происходит чаще (например, раз в неделю).

Помимо двух вышеуказанных вариантов агент CGM также может быть постоянно подключен к менеджеру для отправки собранных данных (например, от искусственной поджелудочной железы).

5.4.2 Глюкоза

Результаты измерения концентрации глюкозы в крови кратко называют глюкозой. Как правило, GSM определяет глюкозу по другим жидкостям, и таким образом возникает потребность в калибровке для проведения вычисления уровней глюкозы в крови.

5.4.3 Калибровка датчика

Для калибровки CGM обычно требуется выполнить непосредственное измерение глюкозы в крови. Это можно сделать с помощью BGM, но для ведения журнала выполненных калибровок результаты этих измерений требуется хранить в памяти глюкометра непрерывного действия. Традиционно калибровочное измерение глюкозы вводится вручную пользователем, но также оно может быть взято непосредственно из BGM.

5.4.4 Срок службы датчика

СGM-датчики со временем перестают давать правильные показания по причине используемого метода сбора результатов измерений, например, датчик, встроенный в подкожную фасцию, сталкивается с накоплением. Таким образом, датчики СGM должны периодически заменяться, и каждый изготовитель указывает ресурс датчика. Время работы датчика обозначает предлагаемый срок использования датчика.

5.4.5 Интервалы отбора глюкозы

Интервал отбора глюкозы указывает частоту измерений глюкозы.

5.4.6 Тренд глюкозы

Тренд глюкозы представляет собой скорость изменения измерений глюкозы в момент времени.

5.4.7 Нижние/верхние пороговые значения для пациента

Нижние/верхние пороговые значения для пациента представляют собой параметры, используемые для обозначения диапазона концентрации глюкозы, приемлемого для пациента. Если значения концентрации глюкозы выходят за предел диапазона, то стандартной реакцией будет информирование пациента (например, сообщение о состоянии CGM либо другой признак), а также регистрация события.

5.4.8 Критичный диапазон прибора

Критичный диапазон прибора представляет собой параметр, указывающий критичный диапазон концентрации глюкозы. Если концентрация глюкозы выходит за пределы этого диапазона, то СGM, как правило, информирует пациента (например, передает сообщение о состоянии CGM либо другой признак), а также регистрирует событие.

5.4.9 Пороговые значения скорости изменения

Пороговые значения скорости изменения глюкозы представляют собой параметры, указывающие максимальную скорость повышения или понижения концентрации глюкозы. Если скорость изменения концентрации глюкозы выходит за любое из этих пороговых значений, то ССМ, как правило, информирует пациента (например, передает сообщение о состоянии ССМ либо другой признак), а также регистрирует событие.

5.4.10 CTaTyc PHD DM

Статус PHD DM позволяет осуществлять общую обработку уведомлений персонального медицинского прибора (ПМП). С помощью меток времени он указывает возникновение информации, предупреждение, ошибку, обслуживание, а также не определенные сообщения.

5.4.11 CTatyc CGM

Объект статуса СGM представляет специфичные уведомления, даваемые прибором CGM, включая предупреждения, ошибки и события обработки, но не ограничиваясь ими.

5.5 Хранимые данные

Как указано в 5.4.1, СGM может использоваться в течение нескольких месяцев работы без подключения к менеджеру с целью передачи данных. После подключения СGM к менеджеру последний способен выбрать, какие из измерений или наблюдений, хранимых агентом, следует извлечь. В зависимости от возможностей агента по организации его данных в кластеры хронологически непрерывных данных, менеджер также может выбрать диапазоны времени извлекаемых хранимых данных. Агент затем передает выбор менеджера в одном или нескольких блоках сообщений для обработки менеджером или другим аппаратом обработки. Менеджер также может обладать возможностью выбора кластеров данных, подлежащих удалению.

6 Информационная модель предметной области непрерывного мониторинга глюкозы

6.1 Обзор

В данном разделе описывается информационная модель предметной области (domain information model, DIM) CGM.

6.2 Расширения класса

В настоящем стандарте не определены расширения классов, описанных в стандарте IEEE 11073-20601-2014.

6.3 Диаграмма экземпляров объектов

Диаграмма экземпляров объектов информационной модели предметной области СGM, которая определена для целей настоящего стандарта, показана на рисунке 2. Описания различных объектов CGM [например, объекта системы медицинских приборов (medical device system, MDS) CGM, числовой объект глюкозы, а также перечисляемый статуса CGM] см. в 6.6—6.12. Правила расширения информационной модели предметной области CGM за рамки элементов, описанные в настоящем стандарте, см. в 6.13. Каждый раздел, описывающий объект CGM, содержит следующую информацию:

- номенклатурный код, используемый для идентификации класса объекта. Примером использования такого кода служит событие конфигурации, когда для каждого объекта сообщается класс объекта.
 Это позволяет менеджеру определить, является ли класс указываемого объекта числовым, массивом считываний в режиме реального времени, перечислением, сканером или классом PM-store;
- атрибуты объекта. Каждый объект имеет атрибуты, которые отображают и передают информацию о физическом устройстве и его источниках данных. Каждый объект имеет атрибут Handle, идентифицирующий экземпляр объекта в памяти агента. Значения атрибутов доступны и модифицируются с помощью методов, например, GET и SET. Типы атрибутов задаются в нотации ACH.1. Определения ACH.1 для новых типов атрибутов, специфичных для данного стандарта, приведены в Приложении В, а определения ACH.1 для существующих типов атрибутов, на которые дается ссылка в настоящем стандарте, приведены в стандарте IEEE 11073-2060-2014;
 - доступные методы объекта;
- потенциальные события, генерируемые объектом. Данные передаются менеджеру, используя события;
 - доступные сервисы, например, получение или изменение атрибутов.

Атрибуты каждого класса определены в таблицах, указывающих наименование атрибута, его значение и его квалификатор. Квалификаторы означают следующее: М — обязательный атрибут (Mandatory), С — условно обязательный атрибут (Conditional), зависящий от условия, заявленного в

ГОСТ P 58501-2019

графе «Примечания» или «Значение» (если дается ссылка на стандарт IEEE 11073-20601-2014, то условие берется из него), R — атрибут рекомендован (Recommended), NR — атрибут не рекомендован (Not Recommended) и О — атрибут не обязателен (Optional). Обязательные атрибуты должны быть реализованы агентами. Условно-обязательные атрибуты по возможности реализуются, если применимо условие и могут быть реализованы в ином случае. Рекомендуемые атрибуты по возможности должны быть реализованы агентом. Не рекомендуемые атрибуты не должны быть реализованы агентом. Необязательные атрибуты могут быть реализованы агентом. Для атрибутов с квалификаторами R (рекомендован) или NR (не рекомендован) должны выполняться требования, указанные в графах «Примечание» и «Значение», приведенные в стандарте IEEE 11073-20601-2014.

Атрибуты могут быть статическими, динамическими или наблюдаемыми, как это указано в стандарте IEEE 11073-20601-2014.

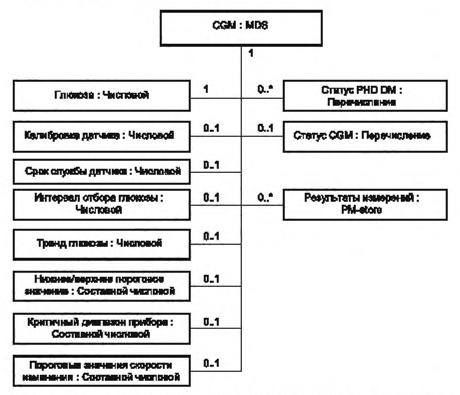


Рисунок 2 — Информационная модель предметной области глюкометра непрерывного действия

6.4 Типы конфигураций

6.4.1 Общие положения

Как указано в стандарте IEEE 11073-20601-2014, имеются два доступных стиля конфигурации. В подразделах 6.4.2 и 6.4.3 кратко описаны стандартные и расширенные конфигурации.

6.4.2 Стандартная конфигурация

Стандартные конфигурации определены в специализациях ИСО/ИИЭР 11073-104zz (например, в настоящем стандарте), и им присвоен хорошо известный идентификатор (Dev-Configuration-Id). Использование стандартной конфигурации согласуется во время ассоциации между агентом и менеджером. Если менеджер подтверждает, что он понимает и хочет работать, используя конфигурацию, то агент может начинать передачу измерений без промедления. Если менеджер не понимает конфигурацию, то агент предоставляет конфигурацию до начала передачи информации об измерениях.

6.4.3 Расширенная конфигурация

Расширенная конфигурация агента предварительно не определена в стандарте. Агент определяет, какие объекты, атрибуты, а также значения будут использоваться в конфигурации и присваивает идентификатор конфигурации. Когда агент выполняет ассоциацию с менеджером, то он согласует приемлемую конфигурацию. Как правило, менеджер не распознает конфигурацию агента при первом подсоединении, поэтому менеджер отвечает, что агенту необходимо передать информацию о конфигурации как отчет о событии конфигурации. Но если менеджер уже понимает конфигурацию, либо потому, что она была предварительно загружена каким-то образом, или агент ранее уже ассоциировался с менеджером, то тогда менеджер отвечает, что конфигурация известна и дополнительной информации по конфигурации посылать не нужно.

6.5 Профили

6.5.1 Общие положения

Профиль дололнительно ограничивает объекты, сервисы, а также коммуникационную модель специализации. С помощью профилирования специализации прибора стандарт предоставляет дополнительные рекомендации по специфичным обязательным объектам, которые должны быть реализованы, необязательным объектам, а также объектам, которые не требуются. В настоящем стандарте не определены профили для прибора CGM.

6.6 Объект системы медицинского прибора (MDS)

6.6.1 Атрибуты объекта MDS

В таблице 2 приведены атрибуты объекта CGM MDS. Номенклатурный код для идентификации класса объекта MDS имеет следующий вид: MDC_MOC_VMS_MDS_SIMP.

Таблица 2 — Атрибуты объекта MDS

Наименование атрибута	Значение	Квалификатор
Handle	0	M
System-Type	Атрибут отсутствует. См. стандарт ИИЭР 11073-20601- 2014.	NR
System-Type-Spec-List	(MDC_DEV_SPEC_PROFILE_CGM, 1)	M
System-Model	{«Изготовитель», «модель»}	M
System-Id	Расширенный уникальный идентификатор (64 бита) (EUI-64)	М
Dev-Configuration-Id	Стандартная конфигурация: 0x09C4 Расширенная конфиг: 0x4000—0x7FFF	M
Attribute-Value-Map	См. стандарт ИИЭР 11073-20601-2014	С
Production-Specification	См. стандарт ИИЭР 11073-20601-2014	С
Mds-Time-Info	См. стандарт ИИЗР 11073-20601-2014	C
Date-and-Time	См. стандарт ИИЭР 11073-20601-2014	C
Base-Offset-Time	См. стандарт ИИЗР 11073-20601-2014	R
Relative-Time	См. стандарт ИИЭР 11073-20601-2014	С
HiRes-Relative-Time	См. стандарт ИИЗР 11073-20601-2014	С
Date-and-Time-Adjustment	См. стандарт ИИЭР 11073-20601-2014	R
Power-Status	onBattery (от батареи) или onMains (от электросети)	R
Battery-Level	См. стандарт ИИЭР 11073-20601-2014	R
Remaining-Battery-Time	См. стандарт ИИЭР 11073-20601-2014	R
Reg-Cert-Data-List	См. стандарт ИИЭР 11073-20601-2014	0
Confirm-Timeout	См. стандарт ИИЭР 11073-20601-2014	0

П р и м е ч а н и е — Информацию о том, является ли атрибут статическим или динамическим, см. в стандарте IEEE 11073-20601-2014.

В ответе на команду Get объекта MDS возвращаются только реализованные атрибуты и их соответствующие значения.

ГОСТ P 58501—2019

Описательные объяснения отдельных атрибутов, а также информацию об идентификаторах и типах атрибутов см. в стандарте IEEE 11073-20601-2014.

Атрибут Dev-Configuration-Id содержит локально уникальное 16-битовое значение, идентифицирующее экземпляр конфигурации прибора. Для агента CGM с расширенной конфигурацией этот идентификатор выбран в диапазоне от extended-config-start до extended-config-end (см. стандарт IEEE 11073-20601-2014), как это показано в таблице 2.

Агент посылает Dev-Configuration-Id, будучи в состоянии «Ассоциирующий» (Associating) (см. 8.3), с целью идентификации его конфигурации на время обмена данными. Если у менеджера уже имеется информация о конфигурации, относящаяся к Dev-Configuration-Id, то он распознает Dev-Configuration-Id. Тогда состояние «Конфигурирующий» (Configuring) (8.4) пропускается, и агент с менеджером входят в состояние «Выполнение» (Operating). Если менеджер не распознает Dev-Configuration-Id, то агент и менеджер переходят в состояние «Конфигурирующий» (Configuring).

Если агент реализует несколько специализаций IEEE 11073-104zz, то значение атрибута System-Туре-Spec-List представляет собой перечень пар тип/версия, каждая из которых дает ссылку на соответствующую специализацию прибора, а также версию такой специализации.

Как определено в ISO/IEEE 11073-20601a-2010, атрибут Production-Specification содержит серийные номера компонентов, редакции и т. д. в формате, специфичном для изготовителя. У объекта CGM MDS атрибут Production-Specification содержит необходимую информацию для всех физических компонентов, например, датчик, передатчик, приемник и т. д. (в зависимости от ситуации). Когда один из этих компонентов меняется или заменяется, то атрибут Production-Specification объекта MDS соответственно уточняется.

6.6.2 Методы объекта MDS

В таблице 3 определены методы (действия) объекта MDS агента CGM. Эти методы вызываются с помощью сервиса Action. В графе Имя типа субсервиса (Subservice type name) таблицы 3 приводится имя метода; в графе Режим (Mode) указано, вызывается ли метод как не подтверждаемое действие (т. е. roiv-cmip-action из стандарта IEEE 11073-20601-2014) или как подтверждаемое действие (т. е. roiv-cmip-confirmed-action); в графе Тип субсервиса (Subservice type)(action-type) указан номенклатурный код, используемый в поле action-type запроса на действие, а также в ответе (см. стандарт IEEE 11073-20601-2014); в графе Параметры (Parameters) (action-info-args) приводится ассоциированная структура данных АСН.1 (определения АСН.1 см. в стандарте IEEE 11073-20601-2014), предназначенная для использования в сообщении действия в поле запроса action-info-args; а в графе Результаты (Results) (action-info-args) указана структура, предназначенная для использования в поле action-info-args ответа.

Таблица 3 — Методы объекта MDS

Сервис	Имя типа субсервиса	Режим	Тип субсервиса(action-type)	Параметры (action-info-args)	Результаты (action-info-args)
ACTION	Set-Time	Подтверждаемый	MDC_ACT_SET_TIME	SetTimeInvoke	_
ACTION	Set-Base-Offset-Time	Подтверждаемый	MDC_ACT_SET_BO_TIME	SetBOTimeInvoke	

Set-Time

Этот метод позволяет менеджеру устанавливать у агента абсолютное время на часах реального времени. Агент указывает, является ли команда Set-Time действенной, используя бит mds-time-capabset-clock атрибута Mds-Time-Info (см. стандарт IEEE 11073-20601-2014).

Если агент поддерживает атрибут Absolute-Time-Stamp, то этот метод должен быть реализован.

Set-Base-Offset-Time

Этот метод позволяет менеджеру устанавливать у агента базовое время и смещение на часах реального времени. Агент указывает, является ли команда Set-Base-Offset-Time действенной, используя бит mds-time-capab-set-clock атрибута Mds-Time-Info (см. стандарт IEEE 11073-20601-2014).

Если агент поддерживает атрибут Base-Offset-Time-Stamp, то этот метод должен быть реализован.

6.6.3 События объекта MDS

В таблице 4 определены события, информация о которых может передаваться объектом CGM MDS.

Сервис	Имя типа субсервиса	Режим	Тип субсервиса {event-type}	Параметры (event- info)	Результаты (event-reply- info)
EVENT RE- PORT	MDS-Configura- tion-Event	Подтверждаемый	MDC_NOTI_CON- FIG	ConfigReport	ConfigReport Rsp
	MDS-Dynamic-Da- ta-Update-Fixed	Подтверждаемый	MDC_NOTI_SCAN_ REPORT_FIXED	ScanReportInfo- Fixed	_
	MDS-Dynamic-Da- ta-Update-Var	Подтверждаемый	MDC_NOTI_SCAN_ REPORT_VAR	ScanReportInfoVar	_
	MDS-Dynamic-Da- ta-Update-MP- Fixed	Подтверждаемый	MDC_NOTI_SCAN_ REPORT_MP_ FIXED	ScanReportInfoMP- Fixed	-
	MDS-Dynamic-Da- ta-Update-MP- Var	Подтверждаемый	MDC_NOTI_SCAN_ REPORT_MP_VAR	ScanReportInfoMP- Var	-

Таблица 4 — События объекта MDS непрерывного мониторинга глюкозы

- MDS-Configuration-Event:

Данное событие передается агентом в ходе процедуры конфигурирования, если менеджер еще не знает конфигурации агента по предыдущим ассоциациям или не был реализован для распознавания конфигурации в соответствии со специализацией прибора ССМ. Событие предоставляет статическую информацию о возможностях измерений, поддерживаемых агентом.

- MDS-Dynamic-Data-Update-Var:

Данное событие предоставляет динамические данные измерений, хранящиеся у агента в числовых объектах и объектах перечислений. Эти данные сообщаются с использованием общего переменного формата списка атрибутов. Событие передается агентом как незапрашиваемое сообщение (т. е. передача данных измерений, инициированная агентом). Дополнительную информацию об отчете о незапрашиваемом событии см. в 8.5.3.

- MDS-Dynamic-Data-Update-Fixed:

Данное событие обеспечивает данные динамических измерений, хранящиеся у агента в числовых объектах и объектах перечислений. Эти данные сообщаются в фиксированном формате, который определяется атрибутом Attribute-Value-Мар объекта(ов). Событие передается агентом как незапрашиваемое сообщение (т. е. передача данных измерений, инициированная агентом). Дополнительную информацию об отчете о незапрашиваемом событии см. в 8.5.3.

- MDS-Dynamic-Data-Update-MP-Var:

Это событие аналогично MDS-Dynamic-Data-Update-Var, но позволяет включить данные от нескольких лиц.

- MDS-Dynamic-Data-Update-MP-Fixed:

Это событие аналогично MDS-Dynamic-Data-Update-Fixed, но позволяет включить данные от нескольких лиц.

Примечание — Стандарт IEEE 11073-20601-2014 требует, чтобы менеджеры поддерживали все перечисленные прежде события объектов MDS.

6.6.4 Другие сервисы MDS

6.6.4.1 Сервис GET

Arent CGM поддерживает сервис GET, предоставляемый объектом MDS для извлечения значений всех реализованных атрибутов объекта MDS. Сервис GET может быть вызван, как только arent CGM получает ответ на ассоциацию (Association Response) и переходит в состояние «Ассоциирован» (Associated), включая подсостояния «Выполнение» (Operating) и «Конфигурирующий» (Configuring).

Менеджер может запросить у агента атрибуты объекта MDS, и в этом случае менеджер посылает сообщение «Remote Operation Invoke | Get» (см. roiv-cmip-get в стандарте IEEE 11073-20601-2014) с дескриптором MDS, имеющим зарезервированное значение 0. Агент сообщает свои атрибуты объекта MDS менеджеру, используя сообщение «Remote Operation Response | Get» (см. rors-cmip-get в стандарте IEEE 11073-20601-2014). В таблице 5 дается обзор сервиса GET, включая некоторые поля сообщений.

ГОСТ P 58501-2019

Таблица 5 — Сервис GET объекта MDS непрерывного мониторинга глюкозы

Сервис	Имя типа субсервиса	Режим	Тип суб- сервиса	Параметры	Результаты
GET	_	<подразумеваемое подтверждение>	-	GetArgumentSim- ple = (obj-handle = 0), attribute-id-list <необязательный>	GetResultSimple = (obj-handle = 0), attribute-list

Подробную информацию о процедуре получения атрибутов объекта MDS см. в 8.5.2. 6.6.4.2 Сервис SET

Специализация CGM не требует реализации поддержки сервиса SET объекта MDS.

6.7 Числовые объекты

6.7.1 Общие положения

Информационная модель предметной области СGM (см. рисунок 2) содержит числовые объекты, представляющие характеристики концентрации глюкозы, калибровки датчика, срока службы датчика, интервала измерений, трендов, пороговых значений для пациента, нижнего и верхнего предела измерений, а также пороговых значений скорости изменения. Эти характеристики описаны в 6.7.2—6.7.9. В таблице 6 показаны атрибуты, общие для всех числовых объектов.

Таблица 6 — Общие атрибуты числовых объектов

Имя атрибута	Значение	Квалификатор
Handle	См. стандарт IEEE 11073-20601-2014	M
Type	Определен в следующих подразделах	M
Supplemental-Types	См. стандарт IEEE 11073-20601-2014	0
Metric-Spec-Small	Определен в следующих подразделах	М
Metric-Structure-Small	См. стандарт IEEE 11073-20601-2014	0
Measurement-Status	См. стандарт IEEE 11073-20601-2014	С
Metric-Id	См. стандарт IEEE 11073-20601-2014	0
Metric-Id-List	См. стандарт IEEE 11073-20601-2014	С
Metric-Id-Partition	См. стандарт IEEE 11073-20601-2014	0
Unit-Code	Определен в следующих подразделах	M
Attribute-Value-Map	См. стандарт IEEE 11073-20601-2014	C
Source-Handle-Reference	См. стандарт IEEE 11073-20601-2014	0
Label-String	См. стандарт IEEE 11073-20601-2014	0
Unit-LabelString	См. стандарт IEEE 11073-20601-2014	0
Absolute-Time-Stamp	См. стандарт IEEE 11073-20601-2014	С
Base-Offset-Time-Stamp	См. стандарт IEEE 11073-20601-2014	С
Relative-Time-Stamp	См. стандарт IEEE 11073-20601-2014	С
HiRes-Time-Stamp	См. стандарт IEEE 11073-20601-2014	С
Measure-Active-Period	См. стандарт IEEE 11073-20601-2014	0
Simple-Nu-Observed-Value	См. стандарт IEEE 11073-20601-2014	С
Compound-Simple-Nu-Observed-Value	См. стандарт IEEE 11073-20601-2014	С
Basic-Nu-Observed-Value	См. стандарт IEEE 11073-20601-2014	С
Compound-Basic-Nu-Observed-Value	См. стандарт IEEE 11073-20601-2014	С
Nu-Observed-Value	См. стандарт IEEE 11073-20601-2014	С
Compound-Nu-Observed-Value	См. стандарт IEEE 11073-20601-2014	С
Accuracy	См. стандарт IEEE 11073-20601-2014	0

Примечание 1 — Информацию о том, является ли атрибут динамическим или статическим, см. в стандарте IEEE 11073-20601-2014.

Примечание 2 — Описания квалификаторов см. в 6.3.

Каждый объект представляет собой специфичную характеристику измерения глюкозы, установок пациента или операций датчика. Объект обозначается атрибутом Туре. Описание каждого числового объекта определяет данные или события, которые он создает, возможные состояния, и там, где это уместно, его поведение. В соответствующих таблицах определяются числовые значения, сформированные агентом, в ответ на изменение состояния.

Иногда интерпретация одного значения атрибута объекта зависит от значений других атрибутов этого же объекта. Например, атрибуты Unit-Code и Unit-LabelString служат контекстом для наблюдаемых значений.

Всякий раз, когда контекстно-зависимый атрибут меняется, агент сообщает об этих изменениях менеджеру с помощью события объекта MDS (см. 6.6.3) перед тем, как сообщить любые зависимые значения.

Числовой объект не поддерживает каких-либо методов, событий или других сервисов.

Специализация CGM рекомендует использовать атрибут Base-Time-Offset для всех числовых объектов. Атрибут Base-Time-Offset позволяет удобно корректировать время на основе изменения часовых поясов.

6.7.2 Глюкоза

Глюкозой называют измерение концентрации глюкозы в крови. Как правило, в CGM это измерение выполняется с использованием других жидкостей тела (не крови), поэтому для вычисления уровней глюкозы в крови требуется калибровка. В таблице 7 представлены атрибуты числового объекта глюкозы. Числовой объект глюкозы должен поддерживаться агентом CGM.

Числовой объект глюкозы не поддерживает какие-либо методы, события или другие сервисы.

Наблюдаемое значение, сообщаемое в данном объекте, является измерением глюкозы. Должны использоваться только неотрицательные числа.

Для агента CGM со стандартной конфигурацией структура AttrValMap (см. стандарт IEEE 11073-20601-2014) атрибута Attribute-Value-Map содержит ID атрибута, а также информацию о длине атрибутов Basic-Nu-Observed-Value и Base-Offset-Time-Stamp в том же порядке, как это указано в таблице 7.

Измерение глюкозы, превышающее возможности датчика прибора, показывается с наблюдаемым значением +INFINITY, а измерение глюкозы, которое ниже возможностей датчика прибора, показывается с наблюдаемым значением –INFINITY.

Атрибут глюкозы числового типа определяет тип жидкости, которую будет отбирать прибор CGM. Если тип жидкости неизвестен, то должна быть выбрана (по ситуации) не определенная цельная кровь, MDC_CONC_GLU_UDTRM_WHOLEBLOOD, или не определенная плазма, MDC_CONC_GLU_ UDTRM_PLASMA. Числовой атрибут глюкозы дополнительно определяется атрибутом supplementaltype, который указывает, из какого места тела будет отбирать пробы CGM. Если место отбора проб неизвестно, то должен быть выбран MDC_CTXT_GLU_SAMPLELOCATION_UNDETERMINED, а если место отбора проб отсутствует в предоставляемых кодах, то должен быть выбран MDC_CTXT_GLU_ SAMPLELOCATION_OTHER.

Атрибут measurement-status используется для квалификации измерения, или обеспечения дополнительных условий работы и рекомендован для использования. Сообщение о статусе измерения calibration-ongoing должно означать, что в момент выполнения измерения СGM находился в процессе калибровки. Сообщение о статусе измерения invalid должно означать, что в момент выполнения измерений CGM не был откалиброван. Сообщение о статусе измерений questionable должно означать, что измерение не надежное. Сообщение о статусе измерения validated-data должно означать, что в момент выполнения измерений CGM был откалиброван и измерение надежное.

Таблица 7 — Атрибуты числового объекта глюкозы

Имя атрибута	Расширенная конфигурация	Стандартная конфигурация (Dev-Configuration-Id = 0x09C4)		
	Значение	Квал.	Значение	Квал.
Handle	См. стандарт IEEE 11073-20601-2014	M	1	М

ГОСТ Р 58501-2019

Продолжение таблицы 7

Имя атрибута	Расширенная конфигурация		Стандартная конфигурация (Dev-Configuration-Id = 0x09C	
	Значение	Квал	Значение	Квал.
Туре	{MDC_PART_SCADA, MDC_CONC_GLU_ISF, или MDC_CONC_GLU_CAPILLARY_WHOLEBLOOD, или MDC_CONC_GLU_CAPILLARY_ELASMA, или MDC_CONC_GLU_VENOUS_WHOLEBLOOD, или MDC_CONC_GLU_VENOUS_PLASMA, или MDC_CONC_GLU_ARTERIAL_WHOLEBLOOD, или MDC_CONC_GLU_ARTERIAL_WHOLEBLOOD, или MDC_CONC_GLU_CONTRO, или MDC_CONC_GLU_CONTRO, или MDC_CONC_GLU_UNDETERMINED_WHOLEBLOOD, или MDC_CONC_GLU_UNDETERMINED_UNDETERMINED_PLASMA}	М	{MDC_PART_SCADA, MDC_ CONC_GLU_ISF}	M
Supplemental- Types	(MDC_PART_PHD_DM, MDC_CTXT_GLU_SAMPLELOCATION_FINGER, или MDC_CTXT_GLU_SAMPLELOCATION_AST, или MDC_CTXT_GLU_SAMPLELOCATION_EARLOBE, или MDC_CTXT_GLU_SAMPLELOCATION_CTRLSOLUTION, или MDC_CTXT_GLU_SAMPLELOCATION_SUBCUTANEOUS, или MDC_CTXT_GLU_SAMPLELOCATION_UNDETERMINED, или MDC_CTXT_GLU_SAMPLELOCATION_UNDETERMINED, или MDC_CTXT_GLU_SAMPLELOCATION_OTHER} CM. стандарт IEEE 11073-20801-2014 и текст ниже	0	{MDC_PART_PHD_DM, MDC_ CTXT_GLU_SAMPLELOCA- TION_SUBCUTANEOUS}	М
Metric-Spec- Small	mss-avail-intermittent mss-avail-stored-data mss-acc-agent-initiated mss-cat-calcula- tion	М	mss-avail-intermittent mss-avail- stored-data mss-acc-agent-initi- ated mss-cat-calculation	М
Measurement- Status	См. стандарт ИИЭР 11073-20601-2014 и текст ниже	R	См. стандарт IEEE 11073-20601-2014	М
Unit-Code	MDC_DIM_ MILLI_G_PER_DL или MDC_ DIM_MILLI_MOLE_PER_L	М	MDC_DIM_MILLI_G_PER_DL	М
Attribute- Value-Map	См. стандарт IEEE 11073-20601-2014	С	MDC_ATTR_NU_VAL_OBS_BA- SIC, 38TEM MDC_ATTR_TIME_ STAMP_BO.	M
Base-Offset- Time	См. стандарт IEEE 11073-20601-2014	R	Если используется фикси- рованный формат и стан- дартная конфигурация не установлена, то этот атрибут обязательный; иначе приме- няются условия из стандарта IEEE 11073-20601-2014	М
Basic-Nu-Ob- served-Value	См. стандарт IEEE 11073-20601-2014	R	Если используется фикси- рованный формат и стан- дартная конфигурация не установлена, то этот атрибут обязательный; иначе приме- няются условия из стандарта IEEE 11073-20601-2014	М

Окончание таблицы 7

Имя атрибута	Расширенная конфигура	ция	Стандартная конфигурация (Dev-Configuration-ld = 0x09C4)	
	Значение	Knan.	Значение	Квал
Measure- ment-Confi- dence-95	См. текст ниже	0	См. текст ниже	NR
Threshold- Notification- Text-String	См. текст ниже	0	См. текст ниже	NR

Примечание 1 — Информацию о том, является ли атрибут динамическим или статическим, см. в стандарте IEEE 11073-20601-2014.

Примечание 2 — Описания квалификаторов см. в 6.3.

6.7.2.1 Атрибут Measurement-confidence-95

Атрибут measurement-confidence-95 указывает верхнюю и нижнюю границы диапазона, в пределах которого изготовитель на 95 % уверен в том, что хранится действительное значение измерения. Нижняя и верхняя границы имеют те же единицы, что и измерение. Нижняя граница должна быть меньше или равна верхней границе.

Атрибут measurement-confidence-95 не должен включаться в стандартную конфигурацию и является необязательным для расширенных конфигураций. В таблице 8 приведено определение атрибута measurement-confidence-95.

Таблица 8 — Атрибут measurement-confidence-95 глюкозы

Имя атри- бута	ID атрибута	Тип атрибута	Примечание	Квалификаторы
Measure- ment-Confi- dence-95	MDC_ATTR_MSMT_CON- FIDENCE_95	MeasurementConfi- dence95	Этот атрибут определяет нижнюю и верхнюю границы диапазона, в пределах которого изготовитель на 95% уверен, что хранится действительное значение. Нижняя и верхняя границы имеют те же единицы, что и измерение	Необязательный Наблюдаемый

Примечание 1 — Определения структуры АСН,1 см. в Приложении В.

6.7.2.2 Атрибуты глюкозы threshold и status

Один атрибут расширяет числовой объект глюкозы и предоставляется с целью сообщения подробной информации о пороговых значениях глюкозы у агента, а второй атрибут сообщает, достигло ли измерение порогового значения либо вышло за него. Для обеспечения сообщения о статусе порогового значения атрибут Measurement-Status был расширен (совместим с ISO/IEEE 11073-10201:2004 [B8]) по сравнению с определением в стандарте IEEE 11073-20601-2014. Следует помнить, что объекты низких/ высоких пороговых значений пациента, а также нижнего и верхнего предела измерений прибора, описанные в 6.7.7 и 6.7.8 соответственно, хранят числовые пороговые значения глюкозы. Дополнительные детали см. в таблице 9.

ГОСТ P 58501-2019

Таблица 9 — Атрибуты глюкозы threshold и status

Имя атрибута	ID атрибута	Тип атрибута	Примечание	Квалификаторы
Threshold- Notification- Text-String	MDC_ATTR_THRES_NOTIF _TEXT_STRING	OCTET STRING	Текст, относящийся к текущему уведомле- нию о пороговом зна- чении	Необязательный Наблюдаемый
Measure- ment-Status	MDC_ATTR_MSMT_STAT	MeasurementSta- tus	Динамично отражает, находится ли наблюдаемое значение в пределах или за пределами грании пороговых значений. Если пороговые значения должны использоваться, этот атрибут обязателен. Используйте бит ms-mt-state-in-alarm (14) для указания, что измерение находится за пределами пороговых значений. Используйте msmt-state-al-inhibited(15) для указания, что индикация пороговых значений не работает и не должна вызывать отображаемое оповещение. Эти биты расширены по сравнению с определением атрибута Меаsurement-Status, приведенным в ИИЭР 11073-20601. Все остальные биты атрибута МеаsurementStatus имеют те же определения, что в стандарте ИИЭР 11703-20601	Необязательный Наблюдаемый

Примечание -- Определение отображения битов АСН.1 см. в приложении В.

6.7.3 Калибровка датчика

Как было сказано выше, для калибровки CGM, как правило, требуется измерение уровня глюкозы. Это измерение может исходить от BGM, но их следует сохранять в памяти прибора непрерывного мониторинга глюкозы, чтобы иметь журнал выполненных калибровок. В таблице 10 приведены атрибуты числового объекта калибровки датчика.

Таблица 10 — Атрибуты числового объекта калибровки датчика

Имя атрибута	Расширенная конфигурация	
	Значение	Квалификатор
Туре	{MDC_PART_PHD_DM, MDC_CGM_SENSOR_CALIBRATION}	M
Supplemental- Types	(MDC_PART_PHD_DM, MDC_CTXT_GLU_SAMPLELOCA- TION_FINGER или MDC_CTXT_GLU_SAMPLELOCATION_AST, или MDC_CTXT_GLU_SAMPLELOCATION_EARLOBE, или MDC_CTXT_GLU_SAMPLELOCATION_SUBCUTANEOUS, или MDC_CTXT_GLU_SAMPLELOCATION_UNDETERMINED, или MDC_CTXT_GLU_SAMPLELOCATION_OTHER } CM. стандарт ИИЭР 11073-20601-2014	0

Окончание таблицы 10

	Расширенная конфигурация	
Имя атрибута	Значение	Квалификатор
Metric-Spec-Small	mss-avail-stored-data mss-upd-aperiodic mss-acc-agent-initiated mss-cat-manual mss-cat-setting mss-cat-manual устанавливается лишь в том случае, если показания вводятся вручную	М
Measurement- Status	См. стандарт ИИЭР 11073-20601-2014 и текст ниже	R
Unit-Code	MDC_DIM_MILLI_G_PER_DL или MDC_DIM_MILLI_MOLE_PER_L	M
Base-Offset-Time- Stamp	См. стандарт IEEE11073-20601-2014	R
Basic-Nu-Ob- served-Value	См. стандарт IEEE 11073-20601-2014	R

П р и м е ч а н и е 1 — Информацию о том, является ли атрибут динамическим или статическим, см. в стандарте IEEE 11073-20601-2014.

Примечание 2 — Описания квалификаторов см. в 6.3.

Числовой объект калибровки датчика не поддерживает каких-либо методов, событий или других сервисов.

Рекомендуется использовать атрибут measurement-status. Этот атрибут используется для квалификации калибровки или предоставления дополнительных условий калибровки. Статус измерений invalid указывает, что CGM не откалиброван. Статус измерений validated-data указывает, что CGM был откалиброван.

Числовое значение калибровки датчика дополнительно определяется атрибутом supplementaltype, который указывает часть тела, используемую для калибровочных измерений глюкозы. Если место взятия проб не известно, то должно быть выбрано значение MDC_CTXT_GLU_SAMPLELOCATION_ UNDETERMINED, а если место отбора проб отсутствует в предоставляемых кодах, то должно быть выбрано значение MDC_CTXT_GLU_SAMPLELOCATION_OTHER.

6.7.4 Срок службы датчика

Датчики CGM со временем перестают давать правильные показания вследствие метода выполнения измерений, например датчик, введенный в подкожную фасцию, сталкивается с накоплением. Таким образом, датчики CGM периодически надо заменять, и каждый изготовитель указывает срок службы своего датчика. Числовой объект срока службы датчика указывает предлагаемый период использования датчика CGM. В таблице 11 приведены атрибуты числового объекта срока службы датчика.

Таблица 11 — Атрибуты числового объекта срока службы датчика

Имя атрибута	Расширенная конфигурация		
имя атриоута	Значение	Квалификатор	
Туре	{MDC_PART_PHD_DM, MDC_CGM_SENSOR_RUN_ TIME}	М	
Metric-Spec-Small	mss-upd-aperiodic mss-msmt-aperiodic mss-acc-agent-ini- tiated mss-cat-calculation mss- avail-stored-data mss- cat-setting См. IEEE 11073-20601-2014	М	
Unit-Code	MDC_DIM_HR	M	
Base-Offset-Time-Stamp	См. стандарт IEEE 11073-20601-2014	R	
Basic-Nu-Observed-Value	См. стандарт IEEE 11073-20601-2014	R	

FOCT P 58501-2019

Примечание 1 — Информацию о том, является ли атрибут динамическим или статическим, см. в стандарте IEEE 11073-20601-2014.

Примечание 2 — Описания квалификаторов см. в 6.3.

Числовой объект срока службы датчика не поддерживает никаких методов, событий или других сервисов.

Используя атрибут метки времени в качестве времени начала, а атрибут наблюдаемого значения в качестве продолжительности с единицами измерения в часах, можно вычислить дату и время, когда следует заменить датчик ССМ. Как правило, этот объект создается лишь при вставке датчика; но если ССМ способен определить качество датчика, то этот объект может быть использован для определения динамического срока службы датчика.

6.7.5 Интервал отбора проб глюкозы

Числовой интервал отбора проб глюкозы указывает частоту выполнения измерений глюкозы прибором CGM, В таблице 12 приведены атрибуты числового объекта интервала отбора проб глюкозы.

Таблица 12 — Атрибуты числового объекта интервала отбора проб глюкозы

Имя атрибута	Значение	Квалификатор
Туре	{MDC_PART_PHD_DM, MDC_CGM_SENSOR_SAMPLE_ INTERVAL}	М
Metric-Spec-Small	mss-upd-aperiodic mss-acc-agent-initiated mss-avaif-stored- data mss-cat-manual mss- cat-setting См. стандарт ИИЭР 11073-20601-2014	М
Unit-Code	MDC_DIM_MIN	М
Base-Offset-Time-Stamp	См. стандарт IEEE 11073-20601-2014	R
Basic-Nu-Observed-Value	См. стандарт IEEE 11073-20601-2014	R

П р и м е ч а н и е 1 — Информацию о том, является ли атрибут динамическим или статическим, см. в стандарте IEEE 11073-20601-2014.

Примечание 2 — Описания квалификаторов см. в 6.3.

Числовой объект интервала отбора проб глюкозы не поддерживает никаких методов, событий или других сервисов.

Числовым типом интервала отбора проб глюкозы служит DC_CGM_SENSOR_SAMPLE_INTERVAL, а атрибут unit-code числового интервала отбора проб глюкозы представляет собой минуты.

6.7.6 Тренд глюкозы

Терапия, используемая для обеспечения гликемического контроля, может учитывать изменение глюкозы крови с течением времени либо ее наклон. Эта метрика обеспечивается числовым объектом тренда глюкозы, атрибуты которого приведены в таблице 13.

Таблица 13 — Атрибуты числового объекта тренда глюкозы

Имя атрибута	Значение	Квалификатор
Туре	{MDC_PART_PHD_DM MDC_CONC_GLU_TREND}	М
Metric-Spec-Small	См. стандарт IEEE 11073-20601-2014	М
Unit-Code	MDC_DIM_ MILLI_G_PER_DL_PER_MIN или MDC_DIM_MIL- LI_MOLE_PER_L_PER_MIN	М
Base-Offset-Time-Stamp	См. стандарт IEEE 11073-20601-2014	R
Basic-Nu-Observed-Value	См. стандарт IEEE 11073-20601-2014	R
Threshold-Notification- Text-String	См. текст ниже	0

Примечание 1 — Информацию о том, является ли атрибут динамическим или статическим, см. в стандарте IEEE 11073-20601-2014.

Примечание 2 — Описания квалификаторов см. в 6.3.

Числовой объект тренда глюкозы не поддерживает никаких методов, событий или других серви-

Числовым типом интервала отбора проб глюкозы служит MDC_CONC_GLU_TREND, а атрибут units-code имеет значение MDC_DIM_MILLI_G_PER_DL_PER_MIN или MDC_DIM_MILLI_MOLE_ PER_L_PER_MIN, в зависимости от ситуации. Наблюдаемое значение представляет собой изменение измерений концентрации глюкозы в минуту.

6.7.6.1 Атрибуты threshold и status тренда глюкозы

Один атрибут, расширяющий числовой объект тренда глюкозы, предоставляется с целью сообщения подробной информации о пороговых значениях скорости изменения глюкозы у агента, а второй атрибут сообщает, находится ли скорость в границах пороговых значений, либо выходит за них.

Для обеспечения сообщения о статусе порогового значения атрибут Measurement-Status был расширен (совместим с ISO/IEEE 11073-10201:2004 [B8]) по сравнению с определением в стандарте IEEE 11073-20601-2014. Следует помнить, что объекты пороговых значений скорости изменения (см. 6.7.9) хранят числовые пороговые значения скорости изменения глюкозы. Дополнительные детали см. в таблице 14.

Таблица 14 — Атрибуты threshold и status тренда глюкозы

Имя атрибута	ID атрибута	Тип атрибута	Примечание	Квалификаторы
Threshold- Notifica- tion-Text- String	MDC_ATTR_THRES_ NOTIF_TEXT_STRING	OCTET STRING	Текст, относящийся к текущему уведомлению о пороговом зна- чении	Необязательный Наблюдаемый
Measu- rement- Status	MDC_ATTR_MSMT_ STAT	Measurement- Status	Динамично отражает, находит- ся ли наблюдаемое значение в пределах или за пределами гра- ниц пороговых значений. Если пороговые значения должны ис- пользоваться, этот атрибут обя- зателен. Используйте бит msmt- state-in-alarm (14) для указания, что измерение находится за пределами пороговых значений. Используйте msmt-state-al-inhib- ited (15) для указания, что ин- дикация пороговых значений не работает и не должна вызывать отображаемое оповещение. Эти биты расширены по сравнению с определением атрибута Меаз- игеmentStatus приведенным в IEEE 11073-20601. Все осталь- ные биты атрибута Меазигетеnt- Status имеют те же определения, что в стандарте IEEE 11073- 20601	Условный Наблюдаемый

Примечание 1 — Определение отображения битов АСН.1 см. в приложении В.

6.7.7 Нижние/верхние пороговые значения для пациента

Числовые нижние/верхние пороговые значения для пациента представляют собой параметры, используемые для указания диапазона концентрации уровня глюкозы, приемлемого для пациента. Если концентрация глюкозы выходит за рамки этого диапазона, то стандартной реакцией будет уведомление пациента и регистрация события в журнале. В таблице 15 приведены атрибуты числового объекта нижнего/верхнего порогового значения для пациента.

FOCT P 58501-2019

Таблица 15 — Атрибуты числового объекта нижнего/верхнего порогового значения для пациента

Имя атрибута	Значение	Квалификатор
Туре	(MDC_PART_PHD_DM, MDC_CONC_GLU_PATIENT_ THRESHOLDS_LOW_HIGH)	М
Metric-Spec-Small	См. стандарт IEEE 11073-20601-2014	М
Metric-Structure-Small	(ms-struct-compound-fix, 2) См. стандарт IEEE 11073-20601-2014	М
Metric-Id-List	MDC_CONC_GLU_PATIENT_THRESHOLD_LOW, 38TEM MDC_CONC_GLU_PATIENT_THRESHOLD_HIGH	М
Unit-Code	MDC_DIM_ MILLI_G_PER_DL или MDC_DIM_MILLI_MOLE_ PER_L	М
Base-Offset-Time-Stamp	См. стандарт IEEE 11073-20601-2014	R
Compound-Basic-Nu-Ob- served-Value	См. стандарт IEEE 11073-20601-2014	R

Примечание 1 — Информацию о том, является ли атрибут динамическим или статическим, см. в стандарте IEEE 11073-20601-2014.

Примечание 2 — Описания квалификаторов см. в 6.3.

Числовой объект нижнего/верхнего порогового значения для пациента не поддерживает каких-либо методов, событий или других сервисов.

Числовым типом нижних/верхних пороговых значений для пациента служит MDC_CONC_GLU_PATIENT_THRESHOLDS_LOW_HIGH, а атрибут units-code имеет значение MDC_DIM_MILLI_G_PER_DL или MDC_DIM_MILLI_MOLE_PER_L, в зависимости от ситуации. Составное наблюдаемое значение атрибута нижнего/верхнего порогового значения для пациента должно содержать сначала нижнее пороговое значение, MDC_CONC_GLU_PATIENT_THESHOLD_LOW, а затем верхнее пороговое значение, MDC_CONC_GLU_PATIENT_THESHOLD_HIGH.

6.7.8 Критичный диапазон прибора

Числовой объект критичного диапазона прибора представляют собой параметр, указывающий критичный диапазон концентрации глюкозы. В таблице 16 приведены атрибуты числового объекта критичного диапазона прибора.

Таблица 16 — Атрибуты числового объекта критичного диапазона прибора

Имя атрибута	Значение	Квалификатор
Туре	{MDC_PART_PHD_DM, MDC_CONC_GLU_ THRESHOLDS_HYPO_HYPER}	м
Metric-Spec-Small	См. стандарт IEEE 11073-20601-2014	М
Metric-Structure-Small	{ms-struct-compound-fix, 2} См. стандарт IEEE 11073-20601-2014	М
Metric-Id-List	MDC_CONC_GLU_THRESHOLD_HYPO, затем MDC_CONC_GLU_THRESHOLD_HYPER	М
Unit-Code	MDC_DIMMILLI_G_PER_DL или MDC_DIM MILLI_MOLE_PER_L	М
Base-Offset-Time-Stamp	См. стандарт IEEE 11073-20601-2014	R
Compound-Basic-Nu-Observed-Value	См. стандарт IEEE 11073-20601-2014	R

П р и м е ч а н и е 1 — Информацию о том, является ли атрибут динамическим или статическим, см. в стандарте IEEE 11073-20601-2014.

Примечание 2 — Описания квалификаторов см. в 6.3.

Числовой объект критичного диапазона прибора не поддерживает каких-либо методов, событий или других сервисов.

Числовым типом критичного диапазона прибора служит MDC_CONC_GLU_PATIENT_
THRESHOLDS_HYPO_HYPER, а атрибут units-code имеет значение MDC_DIM_MILLI_G_PER_DL или
MDC_DIM_MILLI_MOLE_PER_L, в зависимости от ситуации. Составное наблюдаемое значение атрибута критичного диапазона измерений прибора должно содержать сначала нижний предел диапазона,
MDC_CONC_GLU_PATIENT_THESHOLD_HYPO, а затем верхний предел, MDC_CONC_GLU_PATIENT_
THESHOLD_HYPER.

6.7.9 Пороговые значения скорости изменения глюкозы

Числовой объект пороговых значений скорости изменения уровня глюкозы представляет собой параметр, указывающий максимальную скорость повышения или понижения уровня глюкозы. В таблице 17 приведены атрибуты числового объекта пороговых значений скорости изменения уровня глюкозы.

Таблица 17 — Атрибуты числового объекта пороговых значений скорости изменения уровня глюкозы

Имя атрибута	Значение	Квалификатор
Туре	{MDC_PART_PHD_DM,MDC_CONC_GLU_RATE_THRESHOLDS}	M
Metric-Spec-Small	См. стандарт IEEE 11073-20601-2014	M
Metric-Structure- Small	(ms-struct-compound-fix, 2) См. стандарт IEEE 11073-20601-2014	М
Metric-Id-List	MDC_CONC_GLU_RATE_THRESHOLD_INCREASE, ЗАТЕМ MDC_ CONC_GLU_RATE_THRESHOLD_DECREASE	М
Unit-Code	MDC_DIMMILLI_G_PER_DL_PER_MIN или MDC_DIM_MILLI_ MOLE_PER_L_PER_MIN	М
Base-Offset-Time- Stamp	См. стандарт IEEE 11073-20601-2014	R
Compound-Ba- sic-Nu-Observed- Value	См. стандарт IEEE 11073-20601-2014	R

Примечание 1 — Информацию о том, является ли атрибут динамическим или статическим, см. в стандарте IEEE 11073-20601-2014.

Примечание 2 — Описания квалификаторов см. в 6.3.

Числовой объект пороговых значений скорости изменения глюкозы не поддерживает никаких методов, событий или других сервисов.

Числовым типом пороговых значений скорости изменения глюкозы служит MDC_CONC_GLU_RATE_THRESHOLDS, а атрибут units-code имеет значение MDC_DIM_MILLI_G_PER_DL_PER_MIN или MDC_DIM_MILLI_MOLE_PER_L_PER_MIN, в зависимости от ситуации. Составное наблюдаемое значение атрибута пороговых значений скорости изменения глюкозы должно содержать сначала пороговое значение скорости повышения глюкозы, MDC_CONC_GLU_RATE_THRESHOLD_INCREASE, а затем пороговое значение скорости понижения глюкозы, MDC_CONC_GLU_RATE_THRESHOLD_DECREASE.

6.8 Объекты массива считываний в реальном времени

Объекты массива считываний в реальном времени не требуются настоящим стандартом.

6.9 Объекты перечислений

6.9.1 Общие положения

CGM DIM (см. рисунок 2) содержит объекты перечислений, представляющие общий статус прибора, а также специфичный статус CGM. Класс перечисления идентифицируется номенклатурным кодом MDC_MOC_VMO_METRIC_ENUM. В подразделах 6.9.2 и 6.9.3 даются точные определения объектов перечисления общего и специфичного статуса CGM. В таблице 18 приведены общие атрибуты всех объектов перечислений.

ГОСТ P 58501-2019

Объекты перечислений не поддерживают никаких методов, событий или других сервисов.

Таблица 18 — Общие атрибуты объекта перечисления

Имя атрибута	Значение	Квалификаторы	
Handle	См. стандарт IEEE 11073-20601-2014	M	
Туре	Определено в подразделах ниже	M	
Supplemental-Types	См. стандарт IEEE 11073-20601-2014	0	
Metric-Spec-Small	Определено в подразделах ниже	M	
Metric-Structure-Small	См. стандарт IEEE 11073-20601-2014	0	
Measurement-Status	См. стандарт IEEE 11073-20601-2014	С	
Metric-Id	См. стандарт IEEE 11073-20601-2014	0	
Metric-Id-List	См. стандарт IEEE 11073-20601-2014	С	
Metric-Id-Partition	См. стандарт IEEE 11073-20601-2014	0	
Unit-Code	См. стандарт IEEE 11073-20601-2014	0	
Attribute-Value-Map	См. стандарт IEEE 11073-20601-2014	С	
Source-Handle-Reference	См. стандарт IEEE 11073-20601-2014	0	
Label-String	См. стандарт IEEE 11073-20601-2014	0	
Unit-LabelString	См. стандарт IEEE 11073-20601-2014	0	
Absolute-Time-Stamp	См. стандарт IEEE 11073-20601-2014	С	
Base-Offset-Time-Stamp	См. стандарт IEEE 11073-20601-2014	С	
Relative-Time-Stamp	См. стандарт IEEE 11073-20601-2014	С	
HiRes-Time-Stamp	См. стандарт IEEE 11073-20601-2014	С	
Measure-Active-Period	См. стандарт IEEE 11073-20601-2014	0	
Enum-Observed-Value-Simple-OID	См. стандарт IEEE 11073-20601-2014	С	
Enum-Observed-Value-Simple-Bit- Str	См. стандарт IEEE 11073-20601-2014	С	
Enum-Observed-Value-Basic-Bit-Str	См. стандарт IEEE 11073-20601-2014	С	
Enum-Observed-Value-Simple-Str	См. стандарт IEEE 11073-20601-2014	С	
Enum-Observed-Value	См. стандарт IEEE 11073-20601-2014	С	
Enum-Observed-Value-Partition	См. стандарт IEEE 11073-20601-2014	0	

П р и м е ч а н и е 1 — Информацию о том, является ли атрибут динамическим или статическим, см. в стандарте IEEE 11073-20601-2014.

Примечание 2 — Описания квалификаторов см. в 6.3.

6.9.2 CTatyc PHD DM

Объект статуса PHD DM позволяет регистрировать общие события прибора, чтобы отслеживать важные для пользователя события и информацию по поиску неисправностей для изготовителей. В случае, если CGM представляет собой несколько физических приборов, например, датчик, передатчик или приемник, и эти события о статусе PHD DM регистрируются в агенте CGM для каждого физического прибора, то должен быть только один экземпляр объекта статуса PHD DM для каждого физического прибора, а для уточнения физического прибора должен использоваться атрибут Supplemental-Types. Не должно быть двух объектов статуса PHD DM с тем же самым значением supplemental-type. В таблице 19 приведены определения атрибутов объекта, представляющего статус PHD DM. Объект перечисления статуса PHD DM может поддерживаться агентом CGM.

Таблица 19 — Атрибуты объекта перечисления статуса PHD

Имя атрибута	Расширенная конфигурация	Квалификатор	
Туре	{ MDC_PART_PHD_DM, MDC_PHD_DM_DEV_ STAT }	М	
\{ MDC_PART_PHD_DM, MDC_CGM_DEV_TYPE_ SENSOR или MDC_CGM_DEV_TYPE_TRANSMIT- TER, или MDC_CGM_DEV_TYPE_RECEIVER, или MDC_CGM_DEV_TYPE_OTHER} См. стандарт IEEE 11073-20601-2014		R	
Metric-Spec-Small	mss-avail-intermittent mss-avail-stored-data mss-upd-aperiodic mss-acc-agent-initiated mss- acc- manager-initiated	М	
Base-Offset-Time-Stamp	См. стандарт IEEE 11073-20601-2014	R	
Enum-Observed-Value-Simple-Bit- Str	См. текст ниже	М	

П р и м е ч а н и е 1 — Информацию о том, является ли атрибут динамическим или статическим, см. в стандарте IEEE 11073-20601-2014.

Примечание 2 — Описания квалификаторов см. в 6.3.

Наблюдаемое значение, сообщаемое в данном объекте, является общим статусом объекта.

Поскольку это, по существу, флаги события, то атрибут *Unit-Code* не подходит для данного объекта. Аналогичным образом, *Source-Handle-Reference* тоже не подходит, так как этот объект выполняет мониторинг статуса оборудования.

Явное выражение существования оповещения реализуется с помощью установки соответствующего бита в атрибуте Enum-Observed-Value-Simple-Bit-Str в соответствии с определениями, приведенными в таблице 20. Если менеджер поддерживает данный объект, то он должен быть в состоянии интерпретировать весь набор представляемых состояний. Агенту не требуется реализовать все свойства, указанные в таблице 20. Когда изменяется статус какого-либо состояния, мониторинг которого выполняется, то агент должен сообщить статус всех мониторируемых состояний.

Обнаружение изменения состояния может занять некоторое время. В случае задержки в обнаружении начала или остановки состояния информация о событии должна сообщаться с меткой времени, обозначающей время возникновения соответствующего события, а не время сообщения о событии.

Если подходящего существующего бита нет, то должен использоваться бит device-statusundetermined. Менеджер должен интерпретировать эти биты только в контексте данного атрибута и только в рамках данной специализации прибора, поскольку другие специализации могут использовать соответствующие термины для других целей.

Таблица 20 — Отображение статуса PHD DM в атрибуте объекта Bit-Str

Бит	Условие статуса PHD DM	Мнемоника PHDDMStat
0	Агент сообщает, что возникло не определенное, или не поддерживаемое состояние	device-status-undetermined
1	Агент сообщает, что возникла перезагрузка	device-status-reset
5	Агент сообщает, что возник общий отказ device-status-error	
6	Агент сообщает, что возник механический отказ	device-status-error-mechanical
7	Агент сообщает, что возник отказ электроники device-status-error-electronic	
8	Агент сообщает, что возникла ошибка программного обеспечения	device-status-error-software
9	Агент сообщает, что возник отказ батареи	device-status-error-battery

FOCT P 58501-2019

Окончание таблицы 20

Бит	Условие статуса PHD DM	Мнемоника PHDDMStat
15	Агент сообщает, что требуется общее обслуживание	device-status-service
16	Агент сообщает, что требуется синхронизация времени	device-status-service-time-sync-required
17	Агент сообщает, что требуется калибровка	device-status-service-calibration-required
18	Агент сообщает, что требуется пополнение компонента	device-status-service-replenishment-require
25	Агент сообщает, что заряд батареи низкий	device-status-battery-low
26	Агент сообщает, что батарея разряжена	device-status-battery-depleted
27	Агент сообщает, что батарея была заменена	device-status-battery-replaced
28	Агент сообщает, что батарея отсоединялась	device-status-battery-interrupted

Примечание 1 — Биты, перечисленные в таблице 20, имеют значения 0 = Het (False) и 1 = Да (True).

Примечание 2 — Специфичные отображения битов PHDDMStat определены в Приложении В.

Примечание 3 — Все биты, не определенные в таблице 20 или Приложении В, зарезервированы для будущего использования.

6.9.3 CTatyc CGM

Объект перечисления статуса CGM позволяет указать специфичный статус функционирования, состояния калибровки, уведомления, ошибки и т. д. для системы CGM. Данный объект перечисления отличается от статуса PHD DM, описанного в 6.9.2, поскольку предоставляет дополнительные коды статуса, специфичные для системы CGM. Объект перечисления удовлетворяет эту потребность. Если данный объект должен быть реализован, то тип объекта и присваивания битов должны быть реализованы в соответствии с описанием. В таблице 21 приведены атрибуты объекта перечисления статуса CGM.

Таблица 21 — Атрибуты статуса приборадля непрерывного мониторинга глюкозы

Имя атрибута	Расширенная конфигурация		
	Значение	Квалификатор	
Туре	{MDC_PART_PHD_DM, MDC_CGM_DEV_STAT}	M	
Metric-Spec-Small	mss-avail-intermittent mss-avail-stored-da- ta mss-upd-aperiodic mss-msmt-aperiodic mss-acc-agent-initiated	М	
Base-Offset-Time-Stamp	См. стандарт IEEE 11073-20601-2014	R	
Enum-Observed-Value-Simple-Bit-Str	См. текст ниже	R	

П р и м е ч а н и е 1 — Информацию о том, является ли атрибут динамическим или статическим, см. в стандарте IEEE 11073-20601-2014.

Примечание 2 — Описания квалификаторов см. в 6.3.

Объект перечисления статуса CGM не поддерживает никаких методов, событий или других сервисов.

Агент явным образом выражает существование статуса CGM, устанавливая соответствующие биты в значении атрибута Enum-Observed-Value-Simple-Bit-Str, как это описано в таблице 22. Рекомендуется использовать атрибут Enum-Observed-Value-Simple-Bit-Str, поскольку число имеющихся в данный момент вариантов статуса превышает то, что позволяет атрибут Enum-Observed-Value-Basic-Bit-Str. Следует помнить, что менеджер должен интерпретировать эти биты только в контексте данного атрибута и только в рамках данной специализации прибора, поскольку другие специализации могут использовать соответствующие термины для других целей.

	Таблица 22 — Отображение ста	туса приброа, датчика и	сигнала в атрибуте объекта Bit-Str
--	------------------------------	-------------------------	------------------------------------

Бит	Состояние прибора или датчика	Мнемоника CGMStat
0	Сеанс остановлен	sensor-session-stopped
2	Тип датчика не подходит для прибора	sensor-type-incorrect
3	Неисправность датчика	sensor-malfunction
4	Предупреждение, специфичное для устройства	device-specific-alert
7	Калибровка не разрешена	sensor-calibration-not-allowed
8	Рекомендована калибровка	sensor-calibration-recommended
9	Требуется калибровка	sensor-calibration-required
10	Температура датчика слишком высокая для по- лучения действительного теста/результата на момент измерений	sensor-temp-too-high
11	Температура датчика слишком низкая для полу- чения действительного теста/результата на мо- мент измерений	sensor-temp-too-low
12	Результат датчика меньше нижнего порогового sensor-result-below-patient-low значения для пациента	
13	Результат датчика больше верхнего порогового значения для пациента	sensor-result-above-patient-high
14	Результат датчика меньше нижнего предела кри- тичного диапазона	sensor-low-hypo
15	Результат датчика больше верхнего предела критичного диапазона	sensor-high-hyper
16	Превышена скорость понижения глюкозы	sensor-rate-decrease-exceeded
17	Превышена скорость повышения глюкозы	sensor-rate-increase-exceeded
18	Результат датчика ниже уровня, который может sensor-result-too-low обработать прибор	
19	Результат датчика выше уровня, который может обработать прибор	sensor-result-too-high
20	Коммуникация датчика за пределами диапазона	sensor-com-out-of-range

Примечание 1 — Биты, перечисленные в таблице 22, имеют значения 0 = Het (False) и 1 = Да (True).

Примечание 2 — Специфичные отображения битов PHDDMStat определены в приложении В.

Примечание 3 — Все биты, не определенные в таблице 22 или приложении В, зарезервированы для будущего использования.

6.10 Объекты РМ-store

6.10.1 Общие положения

В контексте персональных медицинских приборов CGM являются портативными или мобильными приборами и, как правило, физически закреплены на пользователе. Таким образом, агенты CGM могут использоваться для сбора информации измерений или наблюдений в то время, когда они не находятся в сети и ассоциация агента и менеджера не может быть установлена. Достаточно обычна ситуация, при которой определенный набор измерений, выполненных с помощью агентов CGM, требуется передать более чем одному менеджеру, например дома и в медицинском учреждении.

Для поддержки двойного использования агент может иметь две или более конфигурации. В одной конфигурации может использоваться модель кратковременного хранения измерений, при которой самые последние данные загружаются сразу после установления ассоциации (инициированной агентом) с незначительным участием пользователя, которая например может применяться дома обычным пользователем, часто загружающим измерения в персональный компьютер или в мобильное устройство, к примеру сотовый телефон. В другой конфигурации может использоваться модель длительного хранения измерения, при которой данные загружаются по запросу менеджера, который, например, может использоваться терапевтом пациента или другим медицинским специалистом.

Модель долговременного хранения реализуется с помощью объектов PM-store. Любая конфигурация, которая не имеет в своем составе объекта PM-store, для передачи наблюдений использует отчеты о событиях, инициируемые агентом. Использование временно хранящихся данных, определенное в стандарте IEEE 11073-20601-2014, является наиболее удобным вариантом для небольшого количества измерений, которые подлежат автоматическому удалению после загрузки.

В другом варианте, когда сохраняется большое число измерений либо не используется функция автоматического удаления, должна использоваться конфигурация с объектом PM-store. Любая конфигурация, включающая объект PM-store для постоянного хранения, должна обеспечить доступ к передаче данных, хранящихся в объекте PM-store. Поэтому в настоящем стандарте описывается механизм использования PM-store для более длительного хранения измерений. Для удаления данных, содержащихся в объектах PM-store, необходимы действия пользователя, выполняемые с помощью менеджера или интерфейса пользователя в приборе, и емкость хранения ограничивается лишь количеством памяти.

6.10.2 Модель длительного хранения

Модель PM-store, которая определяется в настоящем стандарте, использует один или несколько сегментов PM-segment для данных каждого объекта, подлежащего длительному хранению (см. в качестве примера рисунок 3). Если объект PM-store реализуется, то в нем должен присутствовать сегмент, содержащий измерения глюкозы. Другие сегменты являются необязательными и хранят наблюдения от реализованных поддерживающих объектов.

Каждая запись данных должна содержать в заголовке segm-entry-header время в одном из форматов, чтобы менеджер мог сопоставлять записи, хранящиеся в различных сегментах. Если конкретный объект не поддерживается, то соответствующий ему сегмент не требуется. Каждый сегмент имеет кратность нуль ко многим или один ко многим, поскольку требуется, чтобы сегменты PM-segment содержали данные для непрерывного периода времени (см. стандарт IEEE 11073-20601-2014). Поэтому изменение времени и/или даты на часах агента, как правило, приводит к созданию новых экземпляров сегментов для поддерживаемых объектов измерений или наблюдений. Далее агент CGM может подразделять данные одного непрерывного периода времени на несколько сегментов с целью дальнейшей кластеризации данных (например, один сегмент на сутки или на непрерывный период времени функционирования СGM). Если конкретный сегмент, создающийся в результате таких изменений времени/даты или объединений в кластеры, не содержит какие-либо записи, то его существование не требуется.

Следует помнить, что объект PM-store не является частью стандартной конфигурации, определенной в настоящем стандарте.

Следование рекомендациям этого стандарта должно позволить разработчику хранение и извлечение данных в рамках данной модели, однако специфика определения конкретного характера расположения данных, а также последующей визуализации, анализа либо иного управления извлеченными данными не входит в область применения настоящего стандарта.

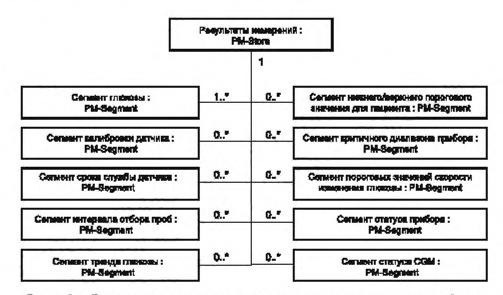


Рисунок 3 — Пример модели длительного хранения данных глюкометра непрерывного действия

6.10.3 Атрибуты объекта PM-store

В таблице 23 перечислены атрибуты объекта PM-store, реализуемого агентом. Объекты PM-store идентифицируются номенклатурным кодом MDC_MOC_VMO_PMSTORE.

Таблица 23 — Атрибуты объекта PM-store

Имя атрибута	Расширенная конфигурация		
	Значение	Квалификатор	
Handle	См. стандарт IEEE 11073-20601-2014	М	
PM-Store-Capab	См. стандарт IEEE 11073-20601-2014	M	
Store-Sample-Algorithm	См. стандарт IEEE 11073-20601-2014	M	
Store-Capacity-Count	См. стандарт IEEE 11073-20601-2014	M	
Store-Usage-Count	См. стандарт IEEE 11073-20601-2014	М	
Operational-State	См. стандарт IEEE 11073-20601-2014	M	
PM-Store-Label	См. стандарт IEEE 11073-20601-2014	0	
Sample-Period	См. стандарт IEEE 11073-20601-2014	NR	
Number-Of-Segments	См. стандарт IEEE 11073-20601-2014	М	
Clear-Timeout	См. стандарт IEEE 11073-20601-2014	M	

В атрибуте PM-Store-Capab должны устанавливаться следующие биты:

pmsc-var-no-of-segm:

Если агент создает новые сегменты для хранения данных нескольких сеансов или для учета переустановки времени, как это описано в разделе «Сопоставимое время» (Comparable time) стандарта IEEE 11073-20601-2014, то должен быть установлен бит pmsc-var-no-of-segm.

- pmsc-epi-seg-entries:

Бит pmsc-epi-seg-entries должен быть установлен.

- pmsc-peri-seg-entries:

Бит pmsc-peri-seg-entries не должен быть установлен.

Остальные биты атрибута PM-Store-Capab специфичны для конкретного агента и должны устанавливаться соответствующим образом.

Примечание 1 — Информацию о том, является ли атрибут динамическим или статическим, см. в стандарте IEEE 11073-20601-2014.

Примечание 2 — Описания квалификаторов см. в 6.3.

6.10.4 Методы объекта PM-store

В таблице 24 приведены методы объекта PM-store.

Таблица 24 — Методы объекта PM-store

Сервис	Имя типа субсервиса	Режим	Тип субсервиса (action-type)	Параметры (action-info-args)	Результаты (action-info-args)
	Clear-Segments	Подтверждаемый	MDC_ACT_ SEG_CLR	SegmSelection	
ACTION	Get-Segment-Info	Подтверждаемый	MDC_ACT_SEG_ GET_INFO	SegmSelection	SegmentInfoList
	Trig-Segment-Da- ta-Xfer	Подтверждаемый	MDC_ACT_SEG_ TRIG_XFER	TrigSegmDataX- ferReq	TrigSegmDataX- ferRsp

ГОСТ Р 58501-2019

Clear-Segments

Этот метод позволяет менеджеру удалить все записи данных, хранящиеся в объекте PM-segment. Агент должен поддерживать метод Clear-Segments, устанавливая бит pmsc-clear-segm-by-all-sup атрибута PM-Store-Capab. Этот метод не гарантирует удаление сегментов PM-segment. См. стандарт IEEE 11073-20601-2014 в части информации о том, что должен ответить агент в том случае, если он решает защитить определенные сегменты от удаления.

Get-Seament-Info

Этот метод позволяет менеджеру извлечь атрибуты объекта PM-segment.

Trig-Segment-Data-Xfer

Этот метод позволяет менеджеру инициировать передачу записей данных, хранящихся в объекте PM-segment. Подробную информацию см. в стандарте IEEE 11073-20601-2014.

6.10.5 События объекта PM-store

В таблице 25 приведены определения событий, передаваемых объектами PM-store.

Таблица 25 — События объекта PM-store

Сервис	Имя типа субсервиса	Режим	Tun cy6cepeuca (event-type)	Параметры (event-info)	Результаты (event-reply-info)
EVENT REPORT	Segment- Data-Event	Подтверждаемый	MDC_NOTI_SEG- MENT_DATA	SegmentData- Event	SegmentDataResult

Segment-Data-Event

Это событие позволяет агенту передать записи данных, хранящиеся в объекте PM-segment. Оно инициируется менеджером с использованием действия Trig-Segment-Data-Xfer. Подробную информацию см. в стандарте IEEE 11073-20601-2014.

6.10.6 Сервисы объекта PM-store

6.10.6.1 Ceрвис GET

Сервис GET должен предоставляться агентом, реализующим объекты PM-store. Данный сервис должен быть доступен только в том случае, когда агент находится в состоянии «Выполнение» (Operating). Подробную информацию см. в стандарте IEEE 11073-20601-2014.

6.10.6.2 Cepsuc SET

В настоящем стандарте сервисы SET для объектов PM-store не определены.

6.10.7 Объекты PM-segment

В таблице 26 определены атрибуты объекта сегмента PM-segment, создаваемого для периодического сеанса и содержащегося в периодическом объекте PM-store, управляющем хранящимися измерениями или наблюдениями. Класс PM-segment идентифицируется номенклатурным кодом MDC_ MOC_PM_SEGMENT.

Таблица 26 — Общие атрибуты объекта PM-segment

Maria annu Cana	Расширенная конфигурация			
Имя атрибута	Значение	Квалификатор		
Instance-Number	См. стандарт IEEE 11073-20601-2014	М		
PM-Segment-Entry-Map	См. стандарт IEEE 11073-20601-2014	М		
PM-Seg-Person-Id	См. стандарт IEEE 11073-20601-2014	С		
Operational-State	См. стандарт IEEE 11073-20601-2014	М		
Sample-Period	См. стандарт IEEE 11073-20601-2014	С		
Segment-Label	См. стандарт IEEE 11073-20601-2014	0		
Segment-Start-Abs-Time	См. стандарт IEEE 11073-20601-2014	С		

Окончание таблицы 26

Maria Santa	Расширенная конфигурация				
Имя атрибута	Значение	Квалификатор			
Segment-End-Abs-Time	См. стандарт IEEE 11073-20601-2014	С			
Date-and-Time-Adjustment	См. стандарт IEEE 11073-20601-2014	С			
Segment-Start-BO-Time	См. стандарт JEEE 11073-20601-2014	С			
Segment-End-BO-Time	См. стандарт IEEE 11073-20601-2014	С			
Segment-Usage-Count	См. стандарт IEEE 11073-20601-2014	М			
Segment-Statistics	См. стандарт IEEE 11073-20601-2014	0			
Fixed-Segment-Data	Данные сегмента, передаваемые как массив записей в формате, указанном в атрибуте PM-Segment-Entry- Мар.	М			
Confirm-Timeout	См. стандарт IEEE 11073-20601-2014	0			
Transfer-Timeout	См. стандарт IEEE 11073-20601-2014	М			

Примечание 1 — Информацию о том, является ли атрибут динамическим или статическим, см. в стандарте IEEE 11073-20601-2014.

Примечание 2 — Описания квалификаторов см. в 6.3.

Атрибут Fixed-Segment-Data служит контейнером для хранящихся измерений или наблюдений. При передаче атрибута Fixed-Segment-Data в отчете о событии все записи данных форматируются в соответствии со значением атрибута PM-Segment-Entry-Map. Каждая запись данных содержит необязательный заголовок, а также один или несколько элементов. Каждый элемент содержит данные одного или нескольких метрических измерений.

6.11 Объекты класса Scanner

Объекты класса Scanner не требуются в соответствии с настоящим стандартом.

6.12 Объекты расширения класса

В этом стандарте нет объектов расширения класса, определенных в соответствии со стандартом IEEE 11073-20601-2014.

6.13 Правила расширения информационной модели CGM

Информационная модель предметной области СGM, определенная в настоящем стандарте, может быть расширена с помощью включения элементов, которые определены в стандарте IEEE 11073-20601-2014, а также метрик и атрибутов, специфичных для конкретного поставщика. Для любого реализованного расширения объекта или атрибута должны как можно точнее выполняться рекомендации настоящего стандарта.

Агент CGM, имеющий конфигурацию с расширениями за рамки стандартной конфигурации, описанной в настоящем стандарте, должен использовать идентификатор конфигурации в диапазоне идентификаторов, зарезервированном для расширенных конфигураций (см. стандарт IEEE 11073-20601-2014).

7 Сервисная модель глюкометра непрерывного действия

7.1 Общие положения

Сервисная модель определяет концептуальные механизмы сервисов обмена данными. Эти сервисы отображаются на сообщения, которыми обмениваются агент и менеджер. Протокольные сообщения в рамках комплекса стандартов ISO/IEEE 11073 определены в нотации АСН.1. Подробное описание

ГОСТ P 58501-2019

сервисной модели ПМП см. в стандарте IEEE 11073-20601-2014. В подразделах 7.2 и 7.3 определяются специфичные сервисы доступа к объекту и сервисы отчета о событии для агента СGM, соответствующему настоящему стандарту.

7.2 Сервисы доступа к объекту

Сервисы доступа к объекту стандарта IEEE 11073-20601-2014 используются для доступа к объектам, которые определены в информационной модели предметной области глюкометра.

Следующие общие сервисы доступа к объекту поддерживаются агентом CGM в соответствии с настоящим стандартом:

- Сервис GET: используется менеджером для извлечения значений из системы медицинского прибора агента и атрибутов объекта PM-store. Список атрибутов объекта системы медицинского прибора CGM приведен в 6.6.4.1, а список атрибутов PM Store CGM приведен в 6.10.3.
- Сервис SET: используется менеджером для установки значений атрибутов объекта агента. Настоящий стандарт не определяет никакие настраиваемые атрибуты для агента CGM.
- Сервис отчетов о событиях: используется агентом для передачи менеджеру отчетов о конфигурациях, а также данных измерений. Список отчетов о событиях для специализации прибора CGM приведен в 6.6.3.
- Сервис действий: используется менеджером для вызова действий (или методов), поддерживаемых агентом. Примером служит действие Set-Time, используемое для установки абсолютного времени на часах реального времени агента.

В таблице 27 приведены сервисы доступа к объекту, описанные в настоящем стандарте.

Таблица 27 — Сервисы доступак объекту прибора непрерывного мониторинга глюкозы

Сервис	Имя типа субсервиса	Режим	Тип суб- сервиса	Параметры	Результат	Примечание
	1 — 1	<подразумеваемое подтверждение>	-	GetArgumentSim- ple = (obj-handle = 0), attribute-id-list <необязательный>	GetResult- Simple = (obj-handle = 0), attribute- list	Позволяет менед- жеру извлечь зна- чение атрибутов объекта системы медицинского прибора агента
GET	-	<подразумеваемое подтверждение>	1	GetArgumentSim- ple = (obj-handle = дескриптор объекта PM- store), attribute-id-list <необязательный>	GetResult- Simple = (obj-handle = дескриптор объекта РМ- store), attri- bute-list	Позволяет менед- жеру извлечь зна- чение атрибутов объекта PM-store агента
	MDS-Con- figuration -Event	Подтверждаемый	MDC_ NOTI_ CONFIG	ConfigReport	ConfigRepor- tRsp	Отчет о конфи- гурации с целью информирования менеджера о кон- фигурации агента
EVENT REPORT	MDS-Dy- namic- Data-Up- date-Var	Подтверждаемый	MDC_ NOTI_ SCAN_RE PORT_ VAR	ScanReportinfoVar	_	Отчет о данных с целью предостав- ления динами- ческих данных менеджеру по не- которым или всем объектам агента в переменном формате

Продолжение таблицы 27

Сервис	Имя типа субсервиса	Режим	Тип суб- сервиса	Параметры	Результат	Примечание
	MDS- Dynamic- Data- Update- Fixed	Подтверждаемый	MDC_ NOTI_ SCAN_RE PORT_ FIXED	ScanReportInfoFixed	-	Отчет о данных с целью предостав- ления динами- ческих данных менеджеру по не- которым или всем объектам агента в фиксированном формате
EVENT	MDS- Dynamic- Data- Up- date-MP- Var	Подтверждаемый	MDC_ NOTI_ SCAN_RE PORT_ MP_VAR	ScanReportInfo- MPVar	_	То же самое, что и MDS-Dynamic- Data-Update-Var, но позволяет включить данные от нескольких лиц
REPORT	MDS-Dy- namic- Data-Up- date-MP- Fixed	Подтверждаемый	MDC_ NOTI_ SCAN_ REPORT_ MP_ FIXED	ScanReportInfo- MPFixed	=	To же самое, что и MDS-Dynamic-Da- ta-Update-Fixed, но позволяет включить данные от нескольких лиц
	Segment- Data-Event	Подтверждаемый	MDC_ NOTI_ SEG- MENT_ DATA	SegmentDataEvent	SegmentData- Result	Событие объекта РМ-store для предоставления агентом менеджеру данных, хранящихся в атрибуте Fixed-Segment-Data cerмenta PM-segment
	Set-Time	Подтверждаемый	MDC_ ACT_SET_ TIME	SetTimeInvoke	=======================================	Метод менеджера для установки на часах агента тре- буемого значения времени в фор- мате абсолютного времени
ACTION	Set-Base- Offset-Time	Подтверждаемый	MDC_ ACT_SET_ BO_TI ME	SetBOTimeInvoke	_	Метод менеджера для установки на часах агента требуемого зна- чения времени в формате базо- вого смещения времени
	Clear-Seg- ments	Подтверждаемый	MDC_ ACT_ SEG_CLR	SegmSelection	-	Позволяет ме- неджеру удалить данные, хранящи- еся в избранных сегментах РМ- segment areнта
	Get-Seg- ment-Info	Подтверждаемый	MDC_ ACT_ SEG_ GET_ INFO	SegmSelection	SegmentInfoList	

Окончание таблицы 27

Сервис	Имя типа субсервиса	Режим	Тип суб- сервиса	Параметры	Результат	Примечание
7	Trig-Seg- ment-Data- Xfer	Подтверждаемый	MDC_ ACT_ SEG_ TRIG_ XFER	TrigSegmDataXfer- Req	TrigSegmData- XferRsp	Позволяет менеджеру инициировать передачу атрибута Fixed- Segment-Data сегмента PM- segment areнта

7.3 Сервисы отчетов о событиях доступа к объекту

Сервис отчета о событии (event report, см. таблицу 27) используется агентом для передачи его информации (например, измерений). Согласно настоящему стандарту, отчеты о событиях являются свойством системы медицинского прибора (см. таблицу 4), а также объекта PM-store (см. таблицу 25). Отчеты о событиях, используемые в настоящем стандарте, определены в стандарте IEEE 11073-20601-2014.

В соответствии с настоящим стандартом к агенту ССМ применяются следующие требования:

- Отчеты о событиях MDS должны использоваться в подтверждаемом режиме.
- Для передачи данных измерений должен поддерживаться режим, инициируемый агентом.
- Для передачи данных измерений может поддерживаться режим длительного хранения метрик.
- Для передачи данных измерений может поддерживаться режим, инициируемый менеджером.

Агент CGM, предназначенный для работы в среде, где данные могут собираться по нескольким лицам, может использовать один из стилей отчета о событиях по нескольким лицам для передачи всех данных от каждого лица в одном событии. Если такая функциональность не требуется, то агент может использовать стили отчета о событиях по одному лицу, которые имеют пониженную перегрузку.

Менеджер должен поддерживать отчеты о событиях и по одному лицу, и по нескольким лицам. Агент CGM может поддерживать один или оба типа отчетов о событиях (по одному лицу и по нескольким лицам). Форматы отчетов по одному лицу и нескольким лицам описаны в стандарте IEEE 11073-20601-2014.

8 Коммуникационная модель глюкометра непрерывного действия

8.1 Обзор

В этом разделе описаны общая коммуникационная модель, а также процедуры агента СGM в соответствии с определениями, приведенными в стандарте IEEE 11073-20601-2014. Поэтому соответствующие части стандарта IEEE 11073-20601-2014 не воспроизводятся; скорее будут указаны специфичные выборы и ограничения необязательных элементов (например, объектов, атрибутов и действий), а также специфичные расширения (например, номенклатурные термины).

Иллюстративный обзор различных транзакций передачи сообщений в процессе типичного сеанса измерений приведен для примера варианта использования в приложении D в форме диаграммы последовательности.

8.2 Характеристики коммуникации

В этом подразделе определены ограничения по размеру блока данных прикладного протокола (application protocol data unit, APDU), передаваемому или получаемому агентом CGM. Небольшие размеры позволяют упрощать реализации в терминах низких затрат и малой сложности.

Агент CGM, реализующий только специализацию данного прибора, не должен передавать какиелибо APDU длиннее Ntx и должен быть способен принимать любые APDU длиной вплоть до Nrx. В настоящем стандарте Ntx составляет 5120 октетов для реализаций, поддерживающих длительное хранение результатов измерений. При отсутствии свойства длительного хранения результатов измерений Ntx должно оставлять 896 октетов. Согласно настоящему стандарту Nrx должно оставлять 224 октета. Для агента CGM, реализующего функции для других специализаций прибора, оценка верхней границы длины APDU будет следующей: агент не должен передавать какие-либо APDU длиннее суммы Ntx всех реализованных специализаций прибора и должен быть способен получать любые APDU длиной вплоть до суммы Nrx всех реализованных специализаций прибора. Если эти числа выше максимального размера, определенного в стандарте IEEE 11073-20601-2014, то должен использоваться последний.

Если ограничение по размеру APDU не позволяет включать определенное количество нескольких ждущих обработки измерений, выполненных агентом, то они передаются с помощью нескольких отчетов о событиях. Максимальное число измерений, разрешенное для включения в один отчет о событии, см. в 8.5.3.

8.3 Процедура ассоциации

8.3.1 Общие положения

Если не заявлено иное, то в соответствии с настоящим стандартом процедура ассоциации агента и менеджера CGM выполняется, как это указано в стандарте IEEE 11073-20601-2014.

8.3.2 Процедура агента — запрос ассоциации

В запросе ассоциации, передаваемом агентом менеджеру:

- Версия процедуры ассоциации, используемая агентом, должна иметь значение assoc-version1
 (т. e. assoc-version = 0x80000000).
- Элемент структуры идентификатора протокола данных DataProtoList должен иметь значение data-proto-id-20601 (т. e. data-proto-id = 0x5079).
- Поле data-proto-info должно иметь структуру PhdAssociationInformation, которая должна содержать следующие значения параметров:
- Агент должен поддерживать protocol-version2. Поддержка любой другой версии может быть указана с помощью установки дополнительных битов. Когда используются протоколы выше protocolversion2, то агент должен продолжать использование только тех свойств, которые указаны в настоящем стандарте. Когда используются протоколы ниже protocol-version2, то агент должен использовать только свойства, определенные в этом протоколе.
- По меньшей мере должны поддерживаться правила кодирования MDER (т.е. encoding-rules = 0x8000).
- Версия используемой номенклатуры должна иметь значение nom-version1 (т.е. nomenclatureversion = 0x80000000).
- Поле functional-units может иметь установленными биты тестовой ассоциации, но не должно иметь каких-либо других установленных битов.
 - Поле system-type должно иметь значение sys-type-agent (т.е. system-type = 0x00800000).
- 6) Поле system-id должно иметь значение атрибута System-Id объекта системы медицинского прибора агента. Менеджер может использовать это поле для определения идентичности СGM, с которым он ассоциируется, а также необязательно для реализации простой политики ограничения доступа.
- Поле dev-config-id должно иметь значение атрибута Dev-Configuration-Id объекта системы медицинского прибора агента.
- Если агент поддерживает только специализацию CGM, то поле, указывающее режимы запроса данных (data-req-mode-capab), поддерживаемые агентом CGM, должно иметь значение data-req-suppinit-agent.
- Если агент поддерживает только специализацию СGM, то data-req-init-manager-count должен иметь значение 0, a data-req-init-agent-count — значение 1.

8.3.3 Процедура менеджера — ответ на запрос ассоциации

В сообщении ответа на запрос ассоциации, передаваемом менеджером:

- Поле result должно иметь значение соответствующего отклика из числа тех, что определены в стандарте IEEE 11073-20601-2014. Например, если все другие условия протокола ассоциации удовлетворены, то возвращается значение accepted, когда менеджер распознал идентификатор конфигурации dev-config-id arenta, и accepted-unknown-config в противном случае.
- В элементе структуры DataProtoList идентификатор протокола данных должен иметь значение data-proto-id-20601 (т.е. data-proto-id = 0x5079).
- Поле data-proto-info заполняется структурой PhdAssociationInformation, содержащей следующие значения параметров:

FOCT P 58501-2019

- Менеджер, следующий данной специализации, должен поддерживать protocol-version2. Менеджер может поддерживать дополнительные версии протокола и выбирать их, если агент их предлагает.
- Менеджер должен отвечать с помощью одного выбранного правила кодирования, которое поддерживается агентом и менеджером. Менеджер должен поддерживать по меньшей мере правила кодирования MDER.
- Версия используемой номенклатуры должна иметь значение nom-version1 (т. е. nomenclatureversion = 0x8000000).
- В поле functional-units все биты должны быть сброшены, кроме тех, что относятся к тестовой ассоциации.
 - Поле system-type должно иметь значение sys-type-manager (т. е. system-type = 0x80000000).
- Поле system-id должно содержать уникальный системный идентификатор менеджера, который должен быть действительным идентификатором типа EUI-64.
 - 7) Поле dev-config-id должно иметь значение manager-config-response (0).
 - 8) Поле data-reg-mode-capab должно иметь значение 0.
- Если агент поддерживает только специализацию CGM, то data-req-initagent-count должен иметь значение 1, a data-req-init-manager-count должен иметь значение 0.

8.4 Процедура конфигурирования

8.4.1 Общие положения

Агент переходит в состояние «Конфигурирующий» (Configuring), если получает ответ на запрос ассоциации accepted-unknown-config. В этом случае должна выполняться процедура конфигурирования, определенная в стандарте IEEE 11073-20601-2014. В подразделе 8.4.2 описаны сообщения уведомления о конфигурации и ответа для агента СGM, имеющего идентификатор стандартной конфигурации 2500 (0x09C4). Как правило, менеджер уже должен знать стандартную конфигурацию. Однако в данном примере предлолагается, что он ее не знает.

8.4.2 CGM — стандартная конфигурация (0x09C4)

8.4.2.1 Процедура агента

Агент выполняет процедуру конфигурирования, используя для отправки своей конфигурации менеджеру сообщение «Remote Operation Invoke | Confirmed Event Report» о событии MDC_NOTI_CONFIG (см. стандарт IEEE 11073-20601-2014). Для поля event-info используется структура ConfigReport (см. таблицу 4). Для агента CGM с идентификатором стандартной конфигурации 2500 (0х09С4) формат и содержание сообщения уведомления о конфигурации будут следующими:

0xE7	0x00			Тип APDU CHOICE (PrstApdu)
0x00	0x50			CHOICE.length = 80
0x00	0x4E			OCTET STRING.length = 78
0x00	0x02			invoke-id = 2 (начало DataApdu в кодировке. MDER)
0x01	0x01			CHOICE(Remote Operation Invoke Confirmed Event Report)
0x00	0x48			CHOICE.length = 72
0x00	0x00			obj-handle = 0 (объект MDS)
0xFF	0xFF	0xFF	0xFF	event-time (устанавливается равным 0xFFFFFFF, если RelativeTime не поддерживается)
0x0D	0x1C			event-type = MDC_NOTI_CONFIG
0x00	0x3E			event-info.length = 62 (начало ConfigReport)
0x09	0xC4			config-report-id (значение Dev-Configuration-Id)
0x00	0x01			config-obj-list.count = 1 будет «объявлен» объект Measurement
0x00	0x38			config-obj-list.length = 56
0x00	0x06			obj-class = MDC_MOC_VMO_METRIC_NU
0x00	0x01			obj-handle = 1 (1-е измерение — глюкоза)
0x00	0x05			attributes.count = 5
0x00	0x30			attributes.length = 48
0x09	0x2F			attribute-id = MDC_ATTR_ID_TYPE
0x00	0x04			attribute-value.length = 4
0x00	0x02	0x71	0xD4	MDC_PART_SCADA MDC_CONC_GLU_ISF

0x0A	0x61		attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES
0x00	0x08		attribute-value.length = 8
0x00	0x01		SupplementalTypeList.count = 1
0x00	0x04		SupplementalTypeList.length = 4
0x00	0x80	0x72 0x39	MDC_PART_PHD_DM MDC_CTXT_GLU_SAMPLELOCATION_SUB- CUTANEOUS
0x0A	0x46		attribute-id = MDC_ATTR_METRIC_SPEC_SMALL
0x00	0x02		attribute-value.length = 2
0xC0	0x42		mss-avail-intermittent, mss-avail-stored-data, mss-acc-agent-initiated, mss-cat-calculation
0x09	0x96		attribute-id = MDC_ATTR_UNIT_CODE
0x00	0x02		attribute-value.length = 2
0x08	0x52		MDC_DIM_ MILLI_G_PER_DL
0x0A	0x55		attribute-id = MDC_ATTR_ATTRIBUTE_VALUE_MAP
0x00	0x0C		attribute-value.length = 12
0x00	0x02		AttrValMap.count = 2
0x00	80x0		AttrValMap.length = 8
0x0A	0x4C	0x00 0x02	MDC_ATTR_NU_VAL_OBS_BASIC value length = 2
0x0A	0x82	0x00 0x08	MDC_ATTR_TIME_STAMP_BO value length = 8

8.4.2.2 Процедура менеджера

Менеджер должен ответить на сообщение уведомления о конфигурации, используя сообщение «Remote Operation Response | Confirmed Event Report» о событии MDC_NOTI_CONFIG, в котором поле event-info имеет структуру ConfigReportRsp (см.таблицу 4). В качестве отклика на сообщение уведомления о стандартной конфигурации, приведенное в 8.4.2.1, менеджер передает содержание сообщения ответа на уведомление о конфигурации в следующем формате:

0x00			APDU CHOICE Type (PrstApdu)
0x16			CHOICE.length = 22
0x14			OCTET STRING.length = 20
0x02			invoke-id (отличает это сообщение от любых других)
0x01			CHOICE (Remote Operation Response Confirmed Event Report)
0x0E			CHOICE.length = 14
0x00			obj-handle = 0 (объект MDS)
0x00	0x00	0x00	currentTime = 0
0x1C			event-type = MDC_NOTI_CONFIG
0x04			event-reply-info.length = 4
0xC4			ConfigReportRsp.config-report-id = 2500
0x00			ConfigReportRsp.config-result = accepted-config
	0x16 0x14 0x02 0x01 0x0E 0x00 0x00 0x1C 0x04 0xC4	0x16 0x14 0x02 0x01 0x0E 0x00 0x00 0x1C 0x04 0xC4	0x16 0x14 0x02 0x01 0x0E 0x00 0x00 0x1C 0x04 0xC4

8.5 Процедура выполнения

8.5.1 Общие положения

Данные измерений и информация о статусе поступают от агента CGM, находящегося в состоянии «Выполнение» (Operating). Если не заявлено иное, то согласно настоящему стандарту процедура выполнения у агента глюкометра должна соответствовать той, что указана в стандарте IEEE 11073-20601-2014.

8.5.2 Атрибуты сервиса GET системы медицинского прибора CGM

Краткий обзор сервиса GET см. в таблице 5.

Если менеджер оставляет поле attribute-id-list в сообщении сервиса roiv-cmip-get пустым, то агент CGM должен ответить сообщением сервиса rors-cmip-get, в котором attribute-list содержит список всех реализованных атрибутов объекта MDS.

Если менеджер запрашивает специфичные атрибуты объекта системы медицинского прибора, указанные в элементах поля attribute-id-list, и агент поддерживает эту возможность, то агент CGM отве-

FOCT P 58501-2019

чает сообщением сервиса rors-cmip-get, в котором поле attribute-list содержит список тех запрошенных атрибутов объекта системы медицинского прибора, которые реализованы. Не требуется, чтобы агент CGM поддерживал эту возможность. Если она не реализована, то агент CGM отвечает, как это указано в разделе стандарта IEEE 11073-20601-2014, посвященном атрибутам объекта системы медицинского прибора.

8.5.3 Передача данных измерений

Сводку сервисов отчетов по событиям, доступных для передачи данных измерений, см. в таблицах 4 и 25.

Чтобы ограничить количество данных, передаваемых в блоке APDU, агент CGM не должен включать в отчет об одном событии более 25 временно хранящихся измерений. Если для передачи имеются более 25 измерений, то они должны быть переданы с использованием отчетов о нескольких событиях. Если имеется несколько измерений глюкозы, то вплоть до 25 измерений следует передать в отчете об одном событии. Как альтернатива, они могут быть переданы, используя отчет об одном событии для каждого измерения глюкозы. Однако в целях уменьшения общей длины сообщений и расхода производительности рекомендуется использовать предыдущую стратегию.

8.6 Синхронизация времени

Синхронизация времени между CGM и менеджером может использоваться для координации часов, используемых в отчетах о физиологических событиях. Следует помнить, что механизм синхронизации агента с менеджером не входит в область применения настоящего стандарта. Если синхронизация времени используется, это должно сообщаться в атрибуте Mds-Time-Info объекта системы медицинского прибора.

9 Тестовые ассоциации

Тестовые ассоциации (Test Association) предоставляет изготовителю механизм тестирования или комплексной демонстрации свойств продукта. В этом разделе определяется поведение стандартного агента CGM в процессе тестовой ассоциации. Поддержка тестовой ассоциации не обязательна.

9.1 Поведение в стандартной конфигурации

Согласно настоящему стандарту агент или менеджер, входящий в состояние тестовой ассоциации с идентификатором стандартной конфигурации СGM, должен войти в состояние «Выполнение» (Operating) в тестовом режиме. Нахождение в тестовом режиме по возможности должно сопровождаться визуальной индикацией любому пользователю. Нормальная функциональность должна быть приостановлена, и любые генерируемые тестовые данные не должны обрабатываться прибором как физиологические данные.

В течение 30 с после входа в состояние «Выполнение» (Operating) агент должен передать одно имитируемое измерение глюкозы 999 мг/дл (значение, никогда не появляющееся при нормальной работе и находящееся за пределами диапазона нормы). Если атрибут measurement-status числового объекта реализован, то должен быть установлен бит test-data.

Тестовая ассоциация завершается в манере, согласующейся с нормальным поведением агента при завершении ассоциации.

9.2 Поведение в расширенных конфигурациях

Настоящая спецификация не определяет тестовую ассоциацию, использующую расширенную конфигурацию.

10 Соответствие

10.1 Применимость

Настоящий стандарт должен использоваться вместе со стандартом IEEE 11073-20601-2014.

Реализация или система может соответствовать следующим элементам настоящего стандарта:

 иерархии классов информационной модели предметной области и определениям объектов (атрибуты объектов, уведомления, методы и определения типа данных);

- значениям номенклатурных кодов;
- модели протоколов и сервисной модели;
- коммуникационной модели сервиса (ассоциация и конфигурация).

10.2 Спецификация соответствия

В настоящем стандарте предлагаются уровни соответствия по отношению к строгому соблюдению требований к стандартному прибору, а также к использованию следующих расширений:

- Информационная модель конкретного прибора
- Использование атрибутов, диапазонов значений и методов доступа

Поставщик должен указать уровень соответствия реализации, основанной на настоящем стандарте, и предоставить подробную информацию о способе применения определений настоящего стандарта, а также любых расширений.

Спецификации предоставляются в форме набора заявлений о соответствии реализации (implementation conformance statement, ICS), как это детализировано в 10.4.

Настоящий стандарт используется вместе со стандартом IEEE 11073-20601-2014. Рекомендуется, чтобы заявления о соответствии реализации настоящему стандарту создавались первыми, чтобы заявления о соответствии реализации, созданные для стандарта IEEE 11073-20601-2014, могли при возможности ссылаться на заявления о соответствии реализации настоящему стандарту.

10.3 Уровни соответствия

10.3.1 Общие положения

В настоящем стандарте определяются следующие уровни соответствия.

10.3.2 Уровень соответствия 1: базовое соответствие

В приложении используются элементы информационной модели, сервисной модели и коммуникационной модели (иерархия объекта, действия, отчеты о событиях, а также определения типов данных), а также номенклатурная схема, определенная в стандартах IEEE 11073-20601-2014 и ISO/IEEE 11073-104zz. Реализованы все обязательные свойства, приведенные в таблицах определений объектов, а также в таблице заявлений о соответствии реализации. Кроме того, любые условно обязательные, рекомендованные или необязательные реализованные свойства должны отвечать требованиям стандартов IEEE 11073-20601-2014 и ISO/IEEE 11073-104zz.

10.3.3 Уровень соответствия 2: расширенная номенклатура (ACH.1 и/или ISO/IEEE 11073-10101:2004 [B6])

Уровень соответствия 2 удовлетворяет уровню соответствия 1, но также использует или добавляет расширения по меньшей мере в одной из моделей (информационную, сервисную, коммуникационную, номенклатурную). Расширения номенклатурных кодов должны соответствовать положениям стандарта ИСО/ИИЭР 11073-10101:2004 [В6] и располагаться в диапазоне местных расширений номенклатуры (0xF000 — 0xFFFF).

Расширения информационной или сервисной модели должны быть полностью определены в нотации АСН.1, где это уместно, и их поведение должно быть полностью описано в соответствии с положениями стандарта IEEE 11073-20601-2014 и/или ISO/IEEE 11073-20101:2004 [В8]. Все расширения должны быть описаны и включать ссылки на определения расширений, а если открытая ссылка на расширение отсутствует, то определение расширения следует приложить к заявлению о соответствии.

10.4 Заявления о соответствии реализации

10.4.1 Общий формат

Заявления о соответствии реализации предоставляются как общий документ о соответствии, представляющий собой набор таблиц, формы которых приведены в виде шаблонов в следующих подразделах.

В каждой таблице Заявления о соответствии реализации имеются следующие графы:

Индекс	Свойство	Ссылка	Запрос/Статус	Поддержка	Комментарии	ſ
индакс	CBONCIBO	CCBITING	Sampocronaryo	поддаржка	комментарии	ı

Заголовки граф таблицы имеют следующее значение:

- индекс: идентификатор (например, метка) специфичного свойства.

ГОСТ Р 58501-2019

- Свойство: кратко описывает характеристики, для которых было сделано заявление о соответствии.
- Ссылка: на пункт/раздел настоящего документа, или на внешний источник с целью определения свойства (может быть не заполненной).
- Запрос/Статус: указывает требование о соответствии (например, обязательный или рекомендуемый) — в некоторых случаях в настоящем стандарте не указаны требования о соответствии, однако запрашивается статус конкретного предоставляемого свойства.
- Поддержка: указывает на наличие или отсутствие свойства и дает какое-либо описание характеристик свойства в реализации. Эта графа должна заполняться разработчиком.
- Комментарий: содержит любую дополнительную информацию о свойстве. Эта графа должна заполняться разработчиком.
 - В 10.4.2—10.4.6 указаны форматы конкретных таблиц Заявления о соответствии реализации.

10.4.2 Общее заявление о соответствии реализации

В общем заявлении о соответствии реализации указаны версии/редакции, поддерживаемые реализацией, и описано высокоуровневое поведение системы. Общие заявления о соответствии реализации приведены в таблице 28.

Таблица 28 — IEEE 11073-10425, таблица общих заявлений о соответствии реализации

Индекс ^а	Своиство	Ссылка	Запрос/Статус	Поддержка	Комментарии
GEN11073- 10425-1	Описание реализации		Идентификация прибора/ приложения. Описание функциональности		
GEN11073- 10425-2	Стандарты и их редакции, ко- торым следует реализация	(Документы стандартов)	(Набор существующих редакций)	(Набор поддерживаемых редакций)	
GEN11073- 10425-3	Используемый номенклатур- ный документ и его редакция	(Документы стандартов)	(Набор существующих редакций)	(Набор поддерживаемых редакций)	
GEN11073- 10425-4	Соблюдение соответствия — Уровень 1	См.10.3.3	Базовая декларация соответствия о том, что прибор выполняет следующие требования соответствия стандарту IEEE 11073-10425: а) Все обязательные требования должны быть реализованы. b) Если реализованы условно обязательные, рекомендуемые и необязательные требования, то они должны соответствовать стандарту	Да/Нет («Нет» не предпо- лагается, поскольку «Нет» подразуме- вает, что реализа- ция не соответству- ет требованиям)	
GEN11073- 10425-5	Соблюдение соответствия — Уровень 2	См. 6.3	В дополнение к GEN 11073- 10425-4, если прибор реа- лизует расширения и/или дополнения, то они должны соответствовать номенкла- турным кодам из АСН.1 и/или положениям стандар- та ISO/IEEE 11073-10101. Эти расширения также сле- дует определить в таблицах заявлений о соответствии реализации, указывая на их ссылки	Да/Нет	

Окончание таблицы 28

Индекс ^а	Свойство	Ссылка	Запрос/Статус	Поддержка	Комментари
GEN11073- 10425-6	Дерево вложенности объектов	См. 6.3	Предоставляет диаграмму вложенности объекта (Оb- ject Containment Diagram), показывающую отноше- ния между экземплярами объектов, используемыми приложением. Реализация, соответствующая стандарту, использует только отноше- ния объектов, определен- ные в информационной модели предметной области		
GEN11073- 10425-7	Используемый номенклатур- ный документ и его редакция	(Документы стандартов)	(Набор существующих редакций)	(Набор поддерживаемых редакций)	
GEN11073- 10425-8	Кодирование структур данных	_	-	Описание методов кодирования струк- тур данных АСН.1	
GEN11073- 10425-9	Использование местных объектов	-	Используются ли в реали- зации объекты, которые не определены в информаци- онной модели предметной области?	Да/Нет (Если «да», то объ- яснить в таблице 29)	
GEN11073- 10425-10	Использование местных расширений номенклатуры	_	Использует ли реализация местные расширения номенклатуры (т.е. коды 0хF000-0хFFFF из ISO/ IEEE 11073-10101:2004 [Вб])? Местные расширения номенклатуры разрешены лишь в том случае, если стандартная номенклатура не содержит специфичные термины, требуемые приложению	Да/Нет (Если «да»: объяснить в Таблице 32)	
GEN11073- 10425-11	Соответствие 11073-20601		Обеспечивает отчет по соответствию, требуемый стандартом IEEE 11073—20601:2014		

^а Префикс GEN11073-10425- используется как индекс в общей таблице заявлений о соответствии реализации.

10.4.3 Заявление о соответствии реализации управляемого класса объекта информационной модели предметной области

Заявление о соответствии реализации управляемого класса объекта информационной модели предметной области определяет, какие объекты реализованы. Информация по каждому объекту должна предоставляться отдельной строкой в шаблоне таблицы 29.

Таблица 29— Шаблон таблицы заявления о соответствии реализации управляемого класса объекта информационной модели предметной области

Индекс	Свойство	Ссылка	3anpoc/Ctatyc	Поддержка	Комментарии
MOC-n	Описание объекта	Ссылка на пункт стандарта или другое место, где определен объект.	Реализован	Указать ограничения, например, максималь- ное количество поддер- живаемых экэемпляров	

Буква п в графе «Индекс» должна быть дескриптором объекта для реализации, имеющей предварительно определенные объекты. В противном случае колонка «Индекс» должна просто быть уникальным номером (1..m).

Все местные объекты должны быть указаны и содержать либо ссылку на определение объекта, или, при отсутствии публично доступной ссылки, определение объекта должно быть добавлено к заявлению о соответствии.

Графа «Поддержка» должна указывать на любые ограничения на реализацию объекта.

Диаграмму включения объекта (диаграмму экземпляра класса) следует представить, как часть заявления о соответствии реализации управляемого класса объекта информационной модели предметной области.

10.4.4 Заявление о соответствии реализации атрибутов управляемых классов объектов

Заявление о соответствии реализации атрибутов управляемых классов объектов определяет, какие атрибуты, включая любые унаследованные атрибуты, используются/поддерживаются в каждом объекте реализации. Информация о каждом атрибуте объекта должна быть предоставлена в отдельной строке шаблона таблицы 30. Отдельное заявление о соответствии реализации атрибутов управляемых классов объектов должно предоставляться по каждому объекту.

Т а б л и ц а 30 — Шаблон таблицы заявления о соответствии реализации атрибутов управляемых классов объектов

Индекс	Свойство	Ссылка	Запрос/Статус	Поддержка	Комментарии
ATTR- n-x	Имя атрибута. Расширенные атрибуты также должны иметь идентификатор атрибута	Заполнить ссылку на структуру АСН.1, если атрибут не опре- делен в настоящем стандарте	М = Mandatory (обяза- тельный)/ С = Conditional (условно обязательный)/ R = Recommended (реко- мендуемый)/ О = Optional (необяза- тельный) (в соответствии с опре- делением в таблицах определений атрибутов)	Реализован? Да/Нет Статический/Динамический Указать ограничения (напри- мер, диапазоны значений). Описать, как осуществляется доступ к атрибуту (напри- мер, Get, Set, передается в отчете о событии кон- фигурирования, переда- ется в отчете о событии с данными). Описать любые специфичные ограничения	

Все местные атрибуты должны быть указаны и должны содержать ссылку на определение атрибута. При отсутствии публично доступной ссылки определение атрибута должно быть добавлено к заявлению о соответствии.

В графе «Поддержка» должно быть указано, реализован ли атрибут; а для расширенных атрибутов — является ли значение атрибута статическим или динамическим; любые диапазоны значений; ограничения по доступу к атрибуту или доступности атрибута; а также любая другая информация.

Буква n в графе «Индекс» обозначает идентификатор управляемого объекта, для которого предоставляется таблица (т. е. индекс управляемого объекта, указанный в заявлении о соответствии реализации управляемого класса объекта). Для каждого управляемого объекта имеется отдельная таблица.

Буква х в графе «Индекс» обозначает уникальный порядковый номер (1..m).

10.4.5 Заявление о соответствии реализации уведомлений управляемых классов объектов

В заявлении о соответствии реализации уведомлений управляемых классов объектов указываются все реализованные уведомления (как правило, в форме сервиса отчета о событии), выдаваемые

агентом. Таблица 31 задает используемый шаблон. Для каждого управляемого объекта, поддерживающего специальные объектные уведомления, должна предоставляться отдельная таблица.

Т а б л и ц а 31 — Шаблон таблицы заявления о соответствии реализации уведомлений управляемых классов объектов

Индекс	Свойство	Ссылка	Запрос/ Статус	Поддержка	Комментарии
NOTI-n-x	Имя и идентифи- катор уведом- ления	Ссылка на пункт стан- дарта или другое ме- сто, где определено событие		В графе «Поддержка» указывается, как пере- дается уведомление, а также приводятся лю- бые ограничения	

Буква n в графе «Индекс» обозначает идентификатор управляемого объекта, для которого предоставляется таблица (т. е. индекс управляемого объекта, указанный в заявлении о соответствии реализации управляемого класса объекта). Для каждого управляемого объекта, поддерживающего специальные уведомления (т. е. события), имеется отдельная таблица.

Буква х в графе «Индекс» обозначает уникальный порядковый номер (1..m).

Все местные уведомления должны быть указаны и должны содержать ссылку на определение уведомления. При отсутствии публично доступной ссылки определение уведомления должно быть добавлено к заявлению о соответствии.

10.4.6 Заявление о соответствии номенклатуры управляемых классов объектов

Заявление о соответствии номенклатуры управляемых классов объектов указывает все нестандартные номенклатурные коды, используемые агентом. Таблица 32 задает используемый шаблон. Для каждого элемента номенклатуры должна использоваться одна строка таблицы.

Таблица 32 — Шаблон для таблицы заявления о соответствии номенклатуры управляемых классов объектов

Индекс	Свояство	Ссылка	Запрос/Статус	Поддержка	Комментарии
NOME-n	Имя и значение номенклатуры	Ссылка на пункт стандарта или другое место, где определена или использована но- менклатура		Описывает, как ис- пользуется номен- клатура. Описывает любые специфичные ограничения	

Буква п в колонке «Индекс» обозначает уникальный порядковый номер (1..m).

Приложение А (справочное)

Библиография

Библиографические ссылки являются ресурсами, предоставляющими дополнительный или полезный материал, но не требующие понимания или использования с целью реализации настоящего стандарта. Ссылки на эти ресурсы даны только с целью информирования.

- [B1] IEC 60601-1:2005, Ed. 3, Medical electrical equipment Part 1: General requirements for basic safety and essential performance (Из. 3, Изделия медицинские электрические. Часть 1. Общие требования безопасности с учетом основных функциональных характеристик)¹
- [B2] IEC 60601-2, Medical efectrical equipment Part 2: Particular requirements for the basic safety and essential performance for specific device (See the entire series of standards, Part 2-1 through Part 2-51) (Изделия медицинские электрические. Часть 2. Частные требования к безопасности с учетом основных функциональных характеристик специального оборудования (См. всю серию стандартов, Часть 2-1 до Часть 2-51))
- [B3] IEC 62304:2006/EN 62304:2006, Medical device software Software life cycle processes (Изделия медицинские. Программное обеспечение. Процессы жизненного цикла)²
- [B4] IEC 80001-1:2010, Application of risk management for IT-networks incorporating medical devices Part 1: Roles, responsibilities, and activities (Информатизация здоровья. Менеджмент рисков в информационно-вычислительных сетях с медицинскими приборами. Часть 1. Роли, ответственности и действия)
- [B5] ISO 14971:2007, Medical devices Application of risk management to medical devices (Изделия медицинские. Применение менеджмента риска к медицинским изделиям)³
- [B6] ISO/IEEE 11073-10101:2004, ISO/IEEE 11073-10101:2004, Health informatics Point-of-care medical device communication — Part 10101: Nomenclature (Информатизация здоровья. Информационное взаимодействие с персональными медицинскими приборами. Часть 10101. Номенклатура)
- [B7] ISO/IEEE 11073-10201:2004, Health informatics Point-of-care medical device communication Part 10201: Domain information model (Информатизация здоровья. Информационное взаимодействие с персональными медицинскими приборами. Часть 10201. Информационная модель предметной области)
- [B8] ISO/IEEE 11073-20101:2004, Health Informatics Point-of-care medical device communication Part 20101: Application profiles — Base standard (Информационное взаимодействие с персональными медицинскими приборами. Часть 20101. Прикладные профили. Базовый стандарт)
- [B9] ITU-T Rec. X.680-2002, Information technology Abstract Syntax Notation One (ASN.1): Specification of basic notation (Информационная технология. Абстрактная синтаксическая нотация версии один (АСН.1). Спецификация основной нотации)

⁸⁾ Публикации МЭК ЕСможно получить в Международной электротехнической комиссии (http://www.iec.ch/). Публикации МЭК также можно получить в США в Американском национальном институте стандартов (http://www.ansi.org/).

⁹⁾ Публикации ЕН по европейским стандартам можно получить в Европейском комитете по стандартизации (СЕН) (http://www.cen.eu/).

¹⁰⁾ Публикации ИСО можно получить в Центральном секретариате ИСО (http://www.iso.org/). Публикации ИСО также можно получить в США в Американском национальном институте стандартов ((http://www.ansi.org/).

¹¹⁾ Публикации ISO/IEEE можно получить в Центральном секретариате ИСО, 1, ch. de la Voie-Creuse, Case Postale 56, CH-1211, Geneva 20, Switzerland (http://www.iso.ch/). Публикации ISO/IEEE также можно получить в Институте инженеров по электротехнике и радиоэлектронике (http://standards.ieee.org/).

¹²⁾ Публикации МСЭ можно получить в Международном союзе электросвязи (http://www.itu.int/). Данную спецификацию можно найти по адресу http://www.itu.int/TU-T/studygroups/com17/languages/X.680-0207.pdf.

Приложение В (обязательное)

Дополнительные определения АСН.1

В.1 Статус PHD DM, статус CGM, а также отображения битов статуса измерений

Расширение класса перечислений для статуса PHD DM требует следующего определения структуры в нотации ACH.1:

```
PHDDMStat ::= BITS-32 (
   device-status-undetermined (0),
   device-status-reset (1).

    зарезервирован для будущего расширения (2),

    зарезервирован для будущего расширения (3),

    зарезервирован для будущего расширения (4),

   device-status-error (5),
   device-status-error-mechanical (6),
   device-status-error-electronic (7),
   device-status-error-software (8).
   device-status-error-battery (9),

    зарезервирован для будущего расширения (10),

    зарезервирован для будущего расширения (11),

    зарезервирован для будущего расширения (12),

    зарезервирован для будущего расширения (13),

    зарезервирован для будущего расширения (14),

   device-status-service (15),
   device-status-service-time-sync-required (16)
   device-status-service-calibration-required (17),
   device-status-service-replenishment-required (18),

    зарезервирован для будущего расширения (19).

    зарезервирован для будущего расширения (20),

    зарезервирован для будущего расширения (21),

    зарезервирован для будущего расширения (22),

    зарезервирован для будущего расширения (23),

    зарезервирован для будущего расширения (24),

   device-status-battery-low (25),
   device-status-battery-depleted (26),
   device-status-battery-replaced (27),
   device-status-battery-interrupted (28),

    зарезервирован для будущего расширения (29),

    зарезервирован для будущего расширения (30),

    зарезервирован для будущего расширения (31)

Объект перечисления для статуса CGM требует следующего определения структуры в нотации АСН.1:
CGMStat ::= BITS-32 {
sensor-session-stopped(0).
sensor-type-incorrect(2),
sensor-malfunction(3),
device-specific-alert(4),
sensor-calibration-not-allowed(7),
sensor-calibration-recommended(8),
sensor-calibration-required(9).
sensor-temp-too-high(10),
sensor-temp-too-low(11),
sensor-result-below-patient-low(12),
sensor-result-above-patient-high(13),
```

FOCT P 58501-2019

```
sensor-low-hypo(14),
     sensor-high-hyper(15),
     sensor-rate-decrease-exceeded(16),
     sensor-rate-increase-exceeded(17),
     sensor-result-too-low(18),
     sensor-result-too-high(19),
     sensor-com-out-of-range(20)
     Расширение атрибута Metric Measurement-Status требует следующего определения структуры в нотации
ACH.1:
     MeasurementStatus ::= BITS-16 {
     invalid(0).
     questionable(1),
     not-available(2),
     calibration-ongoing(3),
     test-data(4),
     demo-data(5).
     validated-data(8),
     early-indication(9),
     msmt-ongoing(10),
     msmt-state-in-alarm(14),
     msmt-state-al-inhibited(15)
     В.2 Числовое расширение для доверия к измерению
     Расширения объекта глюкозы, характеризующие доверие к измерению, требуют следующего определения
структуры в нотации АСН.1:
     -- Атрибут Measurement-Confidence-95 определяет нижнюю и верхнюю границы диапазона,

    в котором изготовитель на 95 % уверен, что значения измерений действительны

    Примечание — Единица измерения для нижних и верхних границ та же, что и для измерений.

     MeasurementConfidence95 ::= SEQUENCE {
     lower-bound SFLOAT-type.
     upper-bound SFLOAT-type
```

Приложение С (обязательное)

Присвоение идентификаторов

С.1 Общие положения

В этом приложении приведены номенклатурные коды, используемые в настоящем документе и отсутствующие в стандарте IEEE 11073-20601-2014. Нормативные определения, отсутствующие в данном приложении, можно найти в стандарте IEEE 11073-20601-2014.

йти в стандарте IEEE 11073-20601-2014. С.2 Определение терминов и кодов Использованная ниже форма позаимствована из стандарта IS6	D/IEEE 1107	3-10101:2004 [B6].
* Из блока «Коммуникационная инфраструктура» (MDC_PART	INFRA)	
#define MDC_DEV_SPEC_PROFILE_CGM 4122 /* рывного действия*/		специализации глюкометра непре-
* Из блока «Медицинское диспетчерское управление и сбор да	нных» (МD	C_PART_SCADA)
#define MDC_CONC_GLU_CAPILLARY_WHOLEBLOOD	29112	/* Концентрация глюкозы
в капиллярной цельной крови */		
#define MDC_CONC_GLU_CAPILLARY_PLASMA в капилярной плазме */	29116	/* Концентрация глюкозы
#define MDC_CONC_GLU_VENOUS_WHOLEBLOOD в венозной цельной крови */	29120	/* Концентрация глюкозы
#define MDC_CONC_GLU_VENOUS_ PLASMA в венозной плазме */	29124	/* Концентрация глюкозы
#define MDC_CONC_GLU_ARTERIAL_WHOLEBLOOD в артериальной цельной крови */	29128	/* Концентрация глюкозы
#define MDC_CONC_GLU_ARTERIAL_ PLASMA	29132	/* Концентрация глюкозы
в артериальной плазмё */		
#define MDC_CONC_GLU_CONTROL	29136	/* Концентрация глюкозы
в контрольном растворе */ #define MDC_CONC_GLU_ISF в тканевой жидкости*/	29140	/* Концентрация глюкозы
#define MDC_CONC_GLU_UNDETERMINED_WHOLEBLOOD в не определенной цельной крови */	29292	/* Концентрация глюкозы
#define MDC_CONC_GLU_UNDETERMINED_ PLASMA	29296	/* Концентрация глюкозы
в не определенной плазме */		
/*****************************		
* Из блока «Управление заболеванием с помощью персональног DM)		
#define MDC PHD DM DEV STAT	20000	/* Общее управление
заболеванием с помощью ПМП. Статус прибора */ #define MDC CTXT GLU SAMPLELOCATION UNDETERMINED	29237	/* Контекст измерения
глюкозы, указывающий, что место образца не определено */	20222	
#define MDC_CTXT_GLU_SAMPLELOCATION_OTHER глюкозы, указывающий, что место образца другое (не совпадает	29238	/* Контекст измерения мися вариантами) */
определить DC_CTXT_GLU_SAMPLELOCATION_FINGER глюкозы, указывающий, что место взятия проб — палец*/	29240	/* Контекст измерения

ГОСТ Р 58501-2019

#define MDC_CTXT_GLU_SAMPLELOCATION_SUBCUTANEOUS глюкозы, указывающий, что место взятия проб — подкожное*/	29241	/* Контекст измерения
#define MDC_CTXT_GLU_SAMPLELOCATION_AST глюкозы, указывающий, что место взятия проб — альтернативное */	29244	/* Контекст измерения
#define MDC_CTXT_GLU_SAMPLELOCATION_EARLOBE глюкозы, указывающий, что место взятия проб — мочка уха*/	29248	/* Контекст измерения
#define MDC_CTXT_GLU_SAMPLELOCATION_CTRLSOLUTION глюкозы, указывающий, что место взятия проб — контрольный раствор */	29252	/* Контекст измерения
#define MDC_CONC_GLU_TREND концентрации глюкозы */	29400	/* Выявление тренда
#define MDC_CONC_GLU_PATIENT_THRESHOLDS_LOW_HIGH пороговое значение концентрации глюкозы для пациента */	29404	/* Нижнее и верхнее
#define MDC_CONC_GLU_PATIENT_THRESHOLD_LOW значение концентрации глюкозы для пациента */	29405	/* Нижнее пороговое
#define MDC_CONC_GLU_PATIENT_THRESHOLD_HIGH значение концентрации глюкозы для пациента */	29406	/* Верхнее пороговое
#define MDC_CONC_GLU_THRESHOLDS_HYPO_HYPER диапазон концентрации глюкозы */	29408	/* Критичный
#define MDC_CONC_GLU_THRESHOLD_HYPO критичное значение концентрации глюкозы*/	29409	/* Нижнее
#define MDC_CONC_GLU_THRESHOLD_HYPER критичное значение концентрации глюкозы*/	29410	/* Верхнее
#define MDC_CONC_GLU_RATE_THRESHOLDS скорости изменения концентрации глюкозы*/	29412	/* Пороговые значения
#define MDC_CONC_GLU_RATE_THRESHOLD_INCREASE скорости возрастания концентрации глюкозы */	29413	/* Пороговое значение
#define MDC_CONC_GLU_RATE_THRESHOLD_DECREASE скорости убывания концентрации глюкозы */	29414	/* Пороговое значение
#define MDC_CGM_SENSOR_CALIBRATION непрерывного мониторинга концентрации глюкозы*/	29428	/* Калибровка датчика
#define MDC_CGM_SENSOR_RUN_TIME датчика непрерывного мониторинга концентрации глюкозы*/	29432	/* Срок службы
#define MDC_CGM_SENSOR_SAMPLE_INTERVAL	29436	/* Интервал отбора
проб датчиком непрерывного мониторинга концентрации глюкозы	ı*/	
#define MDC_CGM_DEV_STAT непрерывного мониторинга концентрации глюкозы */	29452	/* Статус прибора
#define MDC_CGM_DEV_TYPE_SENSOR прибора мониторинга */	29460	/* Тип датчика
#define MDC_CGM_DEV_TYPE_TRANSMITTER прибора мониторинга */	29461	/* Тип передатчика
#define MDC_CGM_DEV_TYPE_RECEIVER прибора мониторинга */	29462	/* Тип приемника
#define MDC_CGM_DEV_TYPE_OTHER	29463	/* Другой тип
прибора мониторинга (не совпадает с имеющимися вариантами) */		
j	*******	*********
* Из блока «Инфраструктура объекта» (MDC_PART_OBJ)	*********	***************************************
#define MDC_ATTR_THRES_NOTIF_TEXT_STRING	2696	/* Атрибут числового
объекта — текстовая строка уведомления о пороговом значении $^{*/}$		

#define MDC_ATTR_MSMT_CONFIDENCE_95 объекта — доверие к измерению */	2700	/* Атрибут числового
* Из блока «Размерности» (MDC_PART_DIM)		
#define MDC_DIM_ MILLI_G_PER_DL mr/дл */	2130	/* Общая размерность
#define MDC_DIM_MfLLI_MOLE_PER_L мкмоль/л */	4722	/* Общая размерность
#define MDC_DIM_HR	2240	/* Общая размерность
#define MDC_DIM_MIN минута */	2208	/* Общая размерность
#define MDC_DIM_MILLI_G_PER_DL_PER_MIN Mr/дл в минуту */	4724	/* Общая размерность
#define MDC_DIM_MILLI_MOLE_PER_L_PER_MIN мк моль/л в минуту */	4728	/* Общая размерность

С.3 Систематическое создание терминов и кодов

Систематическое создание терминов и кодов описано в таблице С.1.

Таблица С.1 — Систематическое создание терминов и кодов

Систематическое имя	Общий термин	Обозначение	Описание/ определение	Ю ссылки	Код
Disease Man- agement Device Status Personal Health Device	Статус PHD DM		Объект, содержащий общий статус прибора при управлении за- болеванием с помощью ПМП	MDC_PHD_DM_DEV_STAT	20000
Glucose Concen- tration Trend	Тренд глюкозы		Объект, содержащий тренд концентрации глюкозы	MDC_CONC_GLU_TREND	29400
Glucose Concentration Thresholds Patient Low High	Нижнее и верхнее поро- говое значение глюкозы для пациента		Объект, содержащий нижнее и верхнее пороговое значение концентрации глюкозы для пациента	MDC_CONC_GLU_PA- TIENT_THRESHOLDS_ LOW_HIGH	29404
Glucose Concen- tration Threshold Patient Low			Нижнее пороговое значение концентрации глюкозы для пациента	MDC_CONC_GLU_PA- TIENT_THRESHOLD_LOW	29405
Glucose Concen- tration Threshold Patient High	Верхнее поро- говое значение глюкозы для пациента		Верхнее пороговое значение концентрации глюкозы для пациента	MDC_CONC_GLU_PA- TIENT_THRESHOLD_HIGH	29406
Glucose Concen- tration Thresh- olds Hypo Hyper	Критичный диапазон концентрации глюкозы		Объект, содержащий гипогликемические и гипергликемические пороговые значения концентрации глюкозы	MDC_CONC_GLU_ THRESHOLDS_HYPO_HY- PER	29408
Glucose Concen- tration Threshold Hypo	Нижний предел критичного диа- пазона концен- трации глюкозы		Гипогликемическое пороговое значение концентрации глюкозы	MDC_CONC_GLU_ THRESHOLD_HYPO	29409

ГОСТ Р 58501-2019

Продолжение таблицы С.1

Систематическое имя	Общий термин	Обозначение	Описание/ определение	JD ссылки	Код
Glucose Concen- tration Threshold Hyper	Верхний предел критичного диа- пазона концен- трации глюкозы		Гипергликемическое пороговое значение концентрации глюкозы	MDC_CONC_GLU_ THRESHOLD_HYPER	29410
Glucose Con- centration Rate Thresholds	Пороговые значения скоро- сти изменения глюкозы		Объект, содержащий пороговые значения скорости изменения концентрации глюкозы.	MDC_CONC_GLU_RATE_ THRESHOLDS	29412
Glucose Con- centration Rate Threshold Increase	Пороговое значение скорости повышения глюкозы		Пороговое значение скорости повышения концентрации глюкозы	MDC_CONC_GLU_RATE_ THRESHOLD_INCREASE	29413
Glucose Con- centration Rate Threshold понижения decrease глюкозы			Пороговое значение скорости понижения концентрации глюкозы	MDC_CONC_GLU_RATE_ THRESHOLD_DECREASE	29414
CGM Sensor Calibration	Калибровка датчика CGM		Объект, содержащий характеристику кали- бровки датчика CGM	MDC_CGM_SENSOR_CAL- IBRATION	29428
CGM Sensor Run Time	Срок службы датчика CGM		Объект, содержащий срок службы датчика CGM	MDC_CGM_SENSOR_ RUN_TIME	29432
CGM Sensor Sampling Interval	Интервал отбо- ра проб датчика ССМ		Объект, содержащий интервал отбора проб датчика CGM	MDC_CGM_SENSOR_ SAMPLE_INTERVAL	29436
CGM Device Status	Статус прибора CGM		Объект, содержащий статус прибора CGM	MDC_CGM_DEV_STAT	29452
CGM Device Type Sensor	Датчик CGM		Тип датчика прибора СGM	MDC_CGM_DEV_TYPE_ SENSOR	29460
CGM Device Type Transmitter	Передатчик CGM		Тип передатчика прибора CGM	MDC_CGM_DEV_TYPE_ TRANSMITTER	29461
CGM Device Type Receiver	Приемник CGM		Тип приемника прибора CGM	MDC_CGM_DEV_TYPE_ RECEIVER	29462
CGM Device Type Other	Иной тип прибора CGM		Иной тип прибора ССВМ. Используется, когда тип прибора не совпа- дает с имеющимися вариантами	MDC_CGM_DEV_TYPE_ OTHER	29463
Attribute Thresh- old Notification	Текстовая стро- ка уведомления о пороговом значении		Атрибут числового объекта, содержащий описательную тексто- вую строку, сопрово- ждающую уведомление о пороговом значении	MDC_ATTR_THRES_NO- TIF_TEXT_STRING	2696

Окончание таблицы С.1

Систематическое имя	Общий термия	Обозначение	Описание/ определение	ID ссылки	Код
Attribute Meas- urement Confi- dence	Границы 95 %-ного доверия к измерению		Атрибут числового объекта, содержащий ниж- нюю и верхнюю границу- диапазона, в котором изготовитель на 95 % уверен в действитель- ности фактического значения измерения		2700

Приложение D (справочное)

Примеры последовательности сообщений

На рисунке D.1 показана диаграмма последовательности процедуры обмена сообщениями, соответствующей следующему варианту использования. Пользователь агента прибора CGM намерен впервые подсоединить его к менеджеру. CGM способен измерять глюкозу.

- а) Когда пользователь подсоединяет СGM, то менеджер не распознает конфигурацию агента и передает ответ на запрос ассоциации, поступивший от агента, с результатом accepted-unknown-config.
- b) В связи с этим агент передает менеджеру информацию о своей конфигурации. После получения подтверждения от менеджера о приеме конфигурации агента, прибор агента готов передавать измерения. Оба прибора переходят в состояние «Выполнение» (Operating).
- с) После этого менеджер может запросить атрибуты объекта системы медицинского прибора агента, отправив сообщение с данными, содержащими команду «Remote Operation Invoke | Get» (вызов удаленной операции | получить). Следует помнить, что менеджер может запросить атрибуты объекта системы медицинского прибора, как только агент перейдет в состояние «Ассоциирован» (Associated), включая подсостояния «Конфигурирующий» (Configuring) и «Выполнение» (Operating). В качестве ответа агент передает менеджеру свои атрибуты объекта системы медицинского прибора, используя сообщение с данными, содержащими команду «Remote Operation Response | Get».
- d) На следующем шаге пользователь прибора агента выполняет несколько измерений в течение определенного времени. Данные измерений передаются менеджеру, используя не подтверждаемые отчеты о событиях.
- е) Пользователь завершает сеанс измерений (например, нажимая соответствующую кнопку на приборе или просто не используя прибор дольше определенного периода времени). В результате агент прекращает ассоциацию с менеджером, посылая запрос на завершение ассоциации. Менеджер возвращает ответ на завершение ассоциации.
- f) Когда агент запрашивает установление ассоциации с менеджером в следующем сеансе измерений (например, на следующий день), то результатом в ответе менеджера будет accepted, поскольку он уже знает конфигурацию агента из предыдущего сеанса измерений. Оба прибора переходят непосредственно в состояние «Выполнение».
- д) В заключение, два последних показанных шага аналогичны шагу пункта d) и пункта e). Пользователь выполняет несколько неподтверждаемых измерений, за которыми следует разъединение связи.

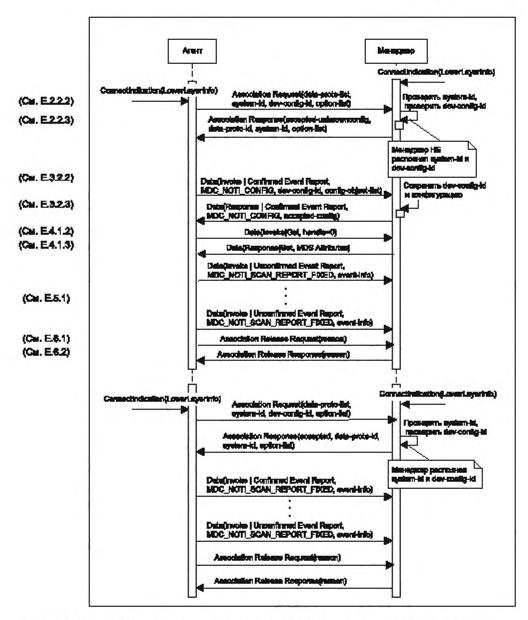


Рисунок D.1 — Диаграмма последовательности для примера варианта использования глюкометра непрерывного действия

Приложение Е (справочное)

Примеры блока данных протокола

Е.1 Общие положения

В этом приложении показаны двоичные примеры сообщений, которыми обмениваются агент ССМ и менеджер. Три различных сценария, описывающих обмены информацией об ассоциации и конфигурации, представлены в Е.2 и Е.2.4. Первый сценарий иллюстрирует вариант, когда агент намеревается работать с использованием расширенной конфигурации. При этом у менеджера нет конфигурации, объявленной агентом при предыдущей ассоциации. Во втором сценарии показано, что агента представляет менеджеру ту же самую расширенную конфигурацию, а у менеджера сохранилась ранее переданная конфигурация. В последнем сценарии агент представляет менеджеру стандартную конфигурацию, и менеджер располагает этой конфигурацией, поскольку она была у него заранее запрограммирована.

Е.2 Обмен информацией об ассоциации

Е.2.1 Общие положения

Когда установлено транспортное соединение между менеджером и агентом, то они оба переходят в состояние «Не ассоциирован (Unassociated). Когда агент передает запрос ассоциации, то менеджер и агент переходят в состояние «Ассоциирующий» (Associating).

Е.2.2 Расширенная конфигурация

Е.2.2.1 Общие положения

В этом обмене агент посылает запрос ассоциации, намереваясь использовать расширенную конфигурацию в процессе передачи измерений. Однако у менеджера нет этой конфигурации.

Е.2.2.2 Запрос ассоциации

Arent CGM посылает следующее сообщение менеджеру. Агент собирается ассоциироваться с использованием расширенной конфигурации.

0xE2	0x00			APDU CHOICE Type (AarqApdu)
0x00	0x32			CHOICE.length = 50
0x80	0x00	0x00	0x00	assoc-version
0x00	0x01	0x00	0x2A	data-proto-list.count = 1 length = 42
0x50	0x79			data-proto-id = data-proto-id-20601
0x00	0x26			data-proto-info length = 38
0x80	0x00	0x00	0x00	protocolVersion
0x80	0x00			правила кодирования = MDER
0x80	0x00	0x00	0x00	nomenclatureVersion
0x00	0x00	0x00	0x00	functionalUnits — возможность тестовой ассоциации отсутствует
0x00	0x80	0x00	0x00	systemType = sys-type-agent
0x00	80x0			system-id length = 8 и значение (специфичны для изготовителя и прибора)
0x11	0x22	0x33	0x44	0x55 0x66 0x77 0x88
0x40	0x00			dev-config-id — расширенная конфигурация
0x00	0x01			data-req-mode-flags
0x01	0x00			data-req-init-agent-count = 1 data-req-init-manager-count = 0
0x00	0x00	0x00	0x00	optionList.count = 0 optionList.length = 0

Е.2.2.3 Ответ на запрос ассоциации

Менеджер отвечает агенту, что он может ассоциироваться, но не имеет расширенной конфигурации CGM (т. е. агенту необходимо послать свою конфигурацию).

0xE3	0x00	APDU CHOICE Type (AareApdu)
0x00	0x2C	CHOICE.length = 44
0x00	0x03	result = accepted-unknown-config
0x50	0x79	data-proto-id = 20601

0x00	0x26				data-prot	o-info ler	igth = 38			
08x0	0x00	0x00	0x0	0	protocolV	ersion				
0x80	0x00				правила	кодиров	ания = MDER			
0x80	0x00	0x00	0x00		nomencla	nomenclatureVersion				
0x00	0x00	0x00	0x0	0	functiona	IUnits -	нормальная ассоциация			
0x80	0x00	0x00	0x0	0	systemTy	pe = sys	-type-manager			
0x00	0x08				system-ic бора)	length :	= 8 и значение (специфичны для изготовителя и при-			
0x88	0x77	0x66	0x55	0x44	0x33	0x22	0x11			
0x00	0x00				Ответ ме	неджера	а на config-id всегда 0			
0x00	0x00	0x00	0x00		Ответ ме	неджера	я на data-req-mode-сар всегда 0			
0x00	0x00	0x00	0x0	0	optionLis	t.count =	0 optionList length = 0			

Е.2.3 Ранее известная расширенная конфигурация

Е.2.3.1 Общие положения

Данный обмен иллюстрирует транзакцию, имеющую место после сеанса, начатого обменом наподобие описанного в E.2.2.

Е.2.3.2 Запрос ассоциации

Arent CGM посылает следующее сообщение менеджеру, Arent собирается ассоциироваться с использованием расширенной конфигурации.

0xE2	0x00			APDU CHOICE Type (AarqApdu)				
0x00	0x32			CHOICE.length = 50				
0x80	0x00	0x00	0x00	assoc-version				
0x00	0x01	0x00	0x2A	data-proto-list.count = 1 length = 42				
0x50	0x79			data-proto-id = data-proto-id-20601				
0x00	0x26			data-proto-info length = 38				
0x80	0x00	0x00	0x00	protocolVersion				
08x0	0x00			правила кодирования = MDER				
0x80	0x00	0x00	0x00	nomenclatureVersion				
0x00	0x00	0x00	0x00	functionalUnits — отсутствует возможность тестовой ассоциации				
0x00	0x80	0x00	0x00	systemType = sys-type-agent				
0x00	0x08			system-id length = 8 и значение (специфичны для изготовителя и прибора)				
0x11	0x22	0x33	0x44 (x55 0x66 0x77 0x88				
0x40	0x00			dev-config-id — расширенная конфигурация				
0x00	0x01			data-req-mode-flags				
0x01	0x00			data-req-init-agent-count = 1 data-req-init-manager-count = 0				
0x00	0x00	0x00	0x00	optionList.count = 0 optionList.length = 0				

Е.2.3.3 Ответ на запрос ассоциации

Менеджер отвечает агенту, что он может ассоциироваться, распознает, принимает и имеет расширенную конфигурацию CGM (т.е. агенту не нужно передавать свою конфигурацию).

0xE3	0x00			APDU CHOICE Type (AareApdu)
0x00	0x2C			CHOICE.length = 44
0x00	0x00			result = accepted
0x50	0x79			data-proto-id = 20601
0x00	0x26			data-proto-info length = 38
0x80	0x00	0x00	0x00	protocolVersion
0x80	0x00			правила кодирования = MDER
08x0	0x00	0x00	0x00	nomenclatureVersion
0x00	0x00	0x00	0x00	functionalUnits — нормальная ассоциация
0x80	0x00	0x00	0x00	systemType = sys-type-manager
0x88	0x77	0x66	0x55 0x44	0x33 0x22 0x11
0x00	0x00			Ответ менеджера на config-id всегда 0
0x00	0x00	0x00	0x00	Ответ менеджера на data-req-mode-cap всегда 0
0x00	0x00	0x00	0x00	optionList.count = 0 optionList.length = 0

Е.2.4 Стандартная конфигурация

Е.2.4.1 Общие положения

Данная транзакция может произойти, если агент представит запрос ассоциации, содержащий идентификатор dev-config-id, соответствующий стандартной конфигурации. Менеджер имеет конфигурацию, поскольку он запрограммирован на эту конфигурацию в соответствии с информацией, представленной в настоящем стандарте.

Е.2.4.2 Запрос ассоциации

Агент CGM посылает следующее сообщение менеджеру. Агент собирается ассоциироваться с использованием стандартной конфигурации. Агент хочет войти в тестовую ассоциацию, как указано в разделе 9.

0xE2	0x00			APDU CHOICE Type (AarqApdu)
0x00	0x32			CHOICE.length = 50
0x80	0x00	0x00	0x00	assoc-version
0x00	0x01	0x00	0x2A	data-proto-list.count = 1 length = 42
0x50	0x79			data-proto-id = 20601
0x00	0x26			data-proto-info length = 38
0x80	0x00	0x00	0x00	protocolVersion
0x80	0x00			правила кодирования = MDER
0x80	0x00	0x00	0x00	nomenclatureVersion
0x80	0x00	0x00	0x00	functionalUnits = может войти в тестовую ассоциацию
0x00	0x80	0x00	0x00	systemType = sys-type-agent
0x00	0x08			system-id length = 8 и значение (специфичны для изготовителя и при- бора)
0x11	0x22	0x33	0x44	0x55 0x66 0x77 0x88
0x09	0xC4			dev-config-id ; 2500
0x00	0x01			data-req-mode-flags
0x01	0x00			data-req-init-agent-count = 1 data-req-init-manager-count=0
0x00	0x00	0x00	0x00	optionList.count = 0 optionList.length = 0

Е.2.4.3 Ответ на запрос ассоциации

Менеджер отвечает агенту, что может ассоциироваться, распознает, принимает и имеет стандартную конфигурацию CGM (т.е. агенту не нужно передавать свою конфигурацию). Менеджер не начинает тестовую ассоциацию.

0xE3	0x00				APDU CHO	ICE Ty	pe (AareApdu)
0x00	0x2C				CHOICE.ler	ngth = 4	14
0x00	0x00				result = acc	epted	
0x50	0x79				data-proto-i	d = 206	801
0x00	0x26				data-proto-i	nfo len	gth = 38
0x80	0x00	0x00	0x00		protocolVers	sion	
0x80	0x00				правила ко,	дирова	ания = MDER
0x80	0x00	0x00	0x00		nomenclatu	reVersi	on
0x00	0x00	0x00	0x00		functionalUr	nits —	нормальная ассоциация
0x80	0x00	0x00	0x00		systemType	= sys-	type-manager
0x00	0x08				system-id le 6opa)	ength =	8 и значение (специфичны для изготовителя и при-
0x88	0x77	0x66	0x55	0x44	0x33 0	0x22	0x11
0x00	0x00				Ответ мене	эджера	на config-id всегда 0
0x00	0x00	0x00	0x0	00	Ответ мене	эджера	на data-req-mode-cap всегда 0
0x00	0x00	0x00	0x00		optionList.co	ount =	0 optionList.length = 0

Е.3 Обмен информацией о конфигурации

Е.3.1 Общие положения

Если ассоциация не отклонена или не прекращена, то агент и менеджер переходят из состояния «Ассоциирующий» (Associating) в одно из двух состояний. Если менеджер возвращает код результата ассоциирования «ассерted», то агент и менеджер переходят в состояние «Выполнение» (Operating). Если менеджер возвращает код результата ассоциирования «ассерted-unknown-config», то агент и менеджер переходят в состояние «Конфигурирующий» (Configuring).

Е.3.2 Расширенная конфигурация

Е.3.2.1 Общие положения

Данный обмен имеет место, когда менеджер возвращает код результата ассоциирования «accepted-unknownconfig». Агент предоставляет описание своей конфигурации, соответствующей идентификатору dev-config-id, который он представил в запросе ассоциации.

Е.3.2.2 Вызов удаленной операции события отчета о конфигурации

Arent CGM передает описание своей расширенной конфигурации. Он делает это с помощью передачи подтверждаемого отчета о событии типа MDC_NOTI_CONFIG.

0xE7	0x00			APDU CHOICE Type (PrstApdu)
0x00	0x9C			CHOICE.length = 156
0x00	0x9A			OCTET STRING.length = 154
0x43	0x21			invoke-id = 0x4321 (начало DataApdu, кодировка MDER)
0x01	0x01			CHOICE(Remote Operation Invoke Confirmed Event Report)
0x00	0x96			obj-handle = 0 (объект MDS)
0x00	0x00			event-time = 0xFFFFFFFF
0xFF	0xFF	0xFF	0xFF	event-type = MDC_NOTI_CONFIG
0x0D	0x1C	****		event-info.length = 142 (начало ConfigReport)
0x00	0x8E			config-report-id = идентификатор расширенной конфигурации
0x40	0x00			config-obj-list.count = 3 Объекты измерений будут «объявлены»
0x00	0x03			config-obj-list.length = 138
0x00	A8x0			config-obj-list.length = 138
0x00	0x06			obj-class = MDC MOC VMO METRIC NU
0x00	0x01			obj-handle = 1 (1-е измерение — глюкоза)
0x00	0x05			attributes.count = 5
0x00	0x30			attributes.length = 48
0x09	0x2F			attribute-id = MDC ATTR ID TYPE
0x00	0x04			attribute-value.length = 4
0x00	0x02	0x71	0xD4	MDC_PART_SCADA MDC_CONC_GLU_ISF
0x0A	0x61			attribute-id = MDC_ATTR_SUPPLEMENTAL_TYPES
0x00	0x08			attribute-value.length = 8
0x00	0x01			SupplementalTypeList.count = 1
0x00	0x04			SupplementalTypeList.length = 4
0x00	0x80	0x72	0x39	MDC_PART_PHD_DM MDC_CTXT_GLU_SAMPLELOCATION_SUBCUTA- NEOUS
0x0A	0x46			attribute-id = MDC_ATTR_METRIC_SPEC_SMALL
0x00	0x02			attribute-value.length = 2
0xC0	0x42			mss-avail-intermittent, mss-avail-stored-data, mss-acc-agent-initiated, mss- cat-calculation
0x09	0x96			attribute-id = MDC_ATTR_UNIT_CODE
0x00	0x02			attribute-value.length = 2
0x08	0x52			MDC_DIM_MILLI_G_PER_DL
0x0A	0x55			attribute-id = MDC_ATTR_ATTRIBUTE_VALUE_MAP
0x00	0x0C			attribute-value.length = 12
0x00	0x02			AttrValMap.count = 2
0x00	0x08			AttrValMap.length = 8
0x0A	0x4C	0x00	0x02	MDC_ATTR_NU_VAL_OBS_BASIC длина значения = 2
0x0A	0x82	0x00	80x0	MDC_ATTR_TIME_STAMP_BO длина значения = 8
0x00	0x06			obj-class = MDC_MOC_VMO_METRIC_NU
0x00	0x02			obj-handle = 2 (2-е измерение — калибровка датчика)
0x00	0x04			attributes.count = 4
0x00	0x24			attributes.length = 36
0x09	0x2F			attribute-id = MDC_ATTR_ID_TYPE
0x00	0x04			attribute-value.length = 4
0x00	0x80	0x72	0xF0	MDC_PART_PHD_DM MDC_CGM_SENSOR_CALIBRATION

ГОСТ P 58501-2019

0x0A	0x46			attribute-id = MDC_ATTR_METRIC_SPEC_SMALL
0x00	0x02			attribute-value.length = 2
0x60	0x4C			mss-avail-stored-data, mss-upd-aperiodic, mss-acc-agent-initiated, mss_cat_ manual, mss_cat_setting
0x09	0x96			attribute-id = MDC_ATTR_UNIT_CODE
0x00	0x02			attribute-value.length = 2
0x08	0x52			MDC_DIM_MILLI_G_PER_DL
0x0A	0x55			attribute-id = MDC_ATTR_ATTRIBUTE_VAL_MAP
0x00	0x0C			attribute-value.length = 12
0x00	0x02			AttrValMap.count = 2
0x00	0x08			AttrValMap.length = 8
0x0A	0x4C	0x00	0x02	MDC_ATTR_NU_VAL_OBS_BASIC длина значения = 2
0x0A	0x82	0x00	0x08	MDC_ATTR_TIME_STAMP_BO длина значения = 8
0x00	0x05			obj-class = MDC_MOC_VMO_METRIC_ENUM
0x00	0x03			obj-handle = 3 (3-е измерение — статус CGM)
0x00	0x03			attributes.count = 3
0x00	0x1E			attributes.length = 30
0x09	0x2F			attribute-id = MDC_ATTR_ID_TYPE
0x00	0x04			attribute-value.length = 4
0x00	0x80	0x72	0xE4	MDC_PART_PHD_DM MDC_CGM_DEV_STAT
0x0A	0x46			attribute-id = MDC_ATTR_METRIC_SPEC_SMALL
0x00	0x02			attribute-value.length = 2
0xF0	0x40			mss-avail-intermittent, mss-avail-stored-data, mss-upd-aperiodic, mss-msmt- aperiodic, mss-acc-agent-initiated
0x0A	0x55			attribute-id = MDC_ATTR_ATTRIBUTE_VAL_MAP
0x00	0x0C			attribute-value.length = 12
0x00	0x02			AttrValMap.count = 2
0x00	80x0			AttrValMap.length = 8
0x0A	0x82	0x00	0x08	MDC_ATTR_TIME_STAMP_BO длина значения = 8
0x0A	0x66	0x00	0x04	MDC_ATTR_ENUM_OBS_VAL_BASIC_BIT_STR длина значения = 4

Е.3.2.3 Ответ на удаленную операцию события отчета о конфигурации

Менеджер отвечает, что может использовать конфигурацию агента. Менеджер выполняет это с помощью передачи ответа на подтверждаемый отчет о событии, в котором поле config-result имеет значение «accepted-config».

0xE7	0x00			APDU CHOICE Type (PrstApdu)
0x00	0x16			CHOICE.length = 22
0x00	0x14			OCTET STRING.length = 20
0x43	0x21			invoke-id = 0x4321 (зеркально отражается из вызова)
0x02	0x01			CHOICE (Remote Operation Response Confirmed Event Report)
0x00	0x0E			CHOICE.length = 14
0x00	0x00			obj-handle = 0 (объект MDS)
0x00	0x00	0x00	0x00	currentTime = 0
0x0D	0x1C			event-type = MDC_NOTI_CONFIG
0x00	0x04			event-reply-info.length = 4
0x40	0x00			ConfigReportRsp.config-report-id = 0x4000
0x00	0x00			ConfigReportRsp.config-result = accepted-config

Е.3.3 Известная конфигурация

Е.3.3.1 Общие положения

Данный обмен имеет место, когда менеджер возвращает код результата ассоциирования «accepted», поскольку менеджер ранее получил и обработал конфигурацию, соответствующую идентификатору dev-config-id, переданному агентом. В этом случае обмен информацией о конфигурации отсутствует, и менеджер с агентом переходят в состояние «Выполнение» (Operating).

Е.3.3.2 Вызов удаленной операции события отчета о конфигурации

Поскольку менеджеру уже известна конфигурации агента, то состояние «Конфигурирующий» (Configuring) пропущено, и агент не инициирует отчет о событии.

Е.3.3.3 Ответ на удаленную операцию события отчета о конфигурации

Состояние «Конфигурирующий» (Configuring) было пролущено. Агентом не инициировал отчет о событии, поэтому менеджер не генерирует никакого ответа.

Е.3.4 Стандартная конфигурация

Е.3.4.1 Общие положения

Данный обмен имеет место, когда менеджер возвращает код результата ассоциирования «accepted», поскольку менеджер был запрограммирован с документированной стандартной конфигурацией, соответствующей идентификатору dev-config-id, переданному агентом. В этом случае отсутствует обмен информацией о конфигурации, и менеджер с агентом переходят в состояние «Выполнение» (Operating).

Е.3.4.2 Вызов удаленной операции события отчета о конфигурации

Поскольку конфигурация агента была запрограммирована в менеджере, то состояние «Конфигурирующий» (Configuring) пропущено, и агент не инициирует отчет о событии.

Е.3.4.3 Ответ на удаленную операцию события отчета о конфигурации

Состояние «Конфигурирующий» (Configuring) было пропущено. Агентом не инициировал отчет о событии, поэтому менеджер не генерирует никакого ответа.

E.4 Сервис GET для получения атрибутов MDS

Е.4.1.1 Общие положения

Сервис GET для получения атрибутов MDS вызывается в любое время, пока агент находится в состоянии «Ассоциирован» (Associated).

Е.4.1.2 Запрос на получение всех атрибутов системы медицинского прибора

Менеджер запрашивает у агента атрибуты его объекта MDS.

0xE7	0x00	APDU CHOICE Type (PrstApdu)
0x00	0x0E	CHOICE.length = 14
0x00	0x0C	OCTET STRING.length = 12
0x34	0x56	invoke-id = 0x3456 (начало DataApdu, кодировка MDER)
0x01	0x03	CHOICE (Remote Operation Invoke Get)
0x00	0x06	CHOICE,length = 6
0x00	0x00	handle = 0 (MDS object)
0x00	0x00	attribute-id-list.count = 0 (все атрибуты)
0x00	0x00	attribute-id-list.length = 0

E.4.1.3 Ответ сервиса GET на запрос всех атрибутов MDS

Агент ССМ возвращает менеджеру свои атрибуты. Кроме того, сообщаются некоторые необязательные поля.

0xE7	0x00	APDU CHOICE Type (PrstApdu)
0x00	0x6A	CHOICE.length = 106
0x00	0x68	OCTET STRING.length = 104
0x34	0x56	invoke-id = 0x3456 (зеркально отражается из запроса)
0x02	0x03	CHOICE (Remote Operation Response Get)
0x00	0x62	CHOICE.length = 98
0x00	0x00	handle = 0 (объект MDS)
0x00	0x06	attribute-list.count = 6
0x00	0x5C	attribute-list.length = 92
0x0A	0x5A	attribute id = MDC_ATTR_SYS_TYPE_SPEC_LIST
0x00	0x08	attribute-value.length = 8
0x00	0x01	system-type-spec-list.count = 1
0x10	0x04	system-type-spec-list.length = 4
0x10	0x1A	type = MDC_DEV_SPEC_PROFILE_CGM
0x00	0x01	version = версия 1 специализации
0x09	0x28	attribute id = MDC_ATTR_ID_MODEL

ГОСТ Р 58501-2019

0x00	0x16				attribute-value.length = 22
0x00	0x0A	0x54	0x68		string length = 10 «TheCompany»
0x65	0x43	0x6F	0x6D		
0x70	0x61	0x6E	0x79		
0x00	80x0	0x54	0x68		string length = 8 «TheCGMX\0»
0x65	0x43	0x47	0x4D	0x58	0x00
0x09	0x84				attribute-id = MDC_ATTR_SYS_ID
0x00	0x0A				attribute-value.length = 10
0x00	80x0	88x0	0x77		octet string length = 8 EUI-64
0x66	0x55	0x44	0x33	0x22	0x11
0x0A	0x44				attribute-id = MDC_ATTR_DEV_CONFIG_ID
0x00	0x02				attribute-value.length = 2
0x40	0x00				dev-config-id = 0x4000 (extended-config-start)
0x09	0x2D				attribute id = MDC_ATTR_ID_PROD_SPECN
0x00	0x12				attribute-value.length = 18
0x00	0x01				ProductionSpec.count = 1
0x00	0x0E				ProductionSpec.length = 14
0x00	0x01				ProdSpecEntry.spec-type = 1 (serial-number)
0x00	0x00				ProdSpecEntry.component-id = 0
0x00	80x0	0x44	0x45		
0x31	0x32	0x34	0x35		
0x36	0x37				
0x0A	0x81				attribute id = MDC_ATTR_TIME_BO
0x00	0x08				attribute-value.length = 8
0x51	0x3F	0x46	0x38		Base-Offset-Time-Stamp = 2013-03-12T15:14:00.00
0x00	0x00	0x00	0x00		

Е.5 Предоставление данных

Е.5.1 Не подтверждаемая передача данных измерений

Агент передает менеджеру спонтанный отчет о событии с измеренными наблюдениями.

0xE7	0x00			APDU CHOICE Type (PrstApdu)
0x00	0x28			CHOICE.length = 40
0x00	0x26			OCTET STRING.length = 38
0x12	0x36			invoke-id = 0x1236
0x01	0x01			CHOICE(Remote Operation Invoke Confirmed Event Report)
0x00	0x20			CHOICE.length = 32
0x00	0x00			obj-handle = 0 (объект MDS)
0xFF	0xFF	0xFF	0xFF	event-time = 0xFFFFFFF
0x0D	0x1D			event-type = MDC_NOTI_SCAN_REPORT_FIXED
0x00	0x16			event-info.length = 22
0xF0	0x00			ScanReportInfoFixed.data-req-id = 0xF000 (agent-initiated)
0x00	0x00			ScanReportInfoFixed.scan-report-no = 0

0x00	0x01			ScanReportInfoFixed.obs-scan-fixed.count = 1
0x00	0x0E			ScanReportInfoFixed.obs-scan-fixed.length = 14
0x00	0x01			ScanReportInfoFixed.obs-scan-fixed.value[0].obj-handle = 1
0x00	0x0A			ScanReportInfoFixed.obs-scan-fixed.value[0].obs-val-data.length = 10
0x4D	0x66			Basic-Nu-Observed-Value = 6.7 mmol/L
0x52	0x9C	0xA3	0xB8	Base-Offset-Time-Stamp = 2013-03-12T15:14:00.00
0x00	0x00	0x00	0x00	

Е.6 Завершение ассоциации

Е.б.1 Запрос на завершение ассоциации

Areнт CGM посылает менеджеру следующее сообщение.

0xE4	0x00	APDU CHOICE Type (RlrqApdu)
0x00	0x02	CHOICE.length = 2
0.00	DvOO	TOWNING = HODMODLING

Е.6.2 Ответ на запрос завершения ассоциации

Менеджер отвечает агенту, что он может завершить ассоциацию.

0xE5	0x00	APDU CHOICE Type (RireApdu)	
0x00	0x02	CHOICE.length = 2	
0x00	0x00	причина = нормальная	

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов национальным и межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего национального/межгосударственного стандарта
ISO/IEEE 11073-20601:2010	_	•
IEEE 11073-20601a-2010	-	*

^{*} Соответствующий национальный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного международного стандарта.

УДК 004:61:006.354 QKC 35.240.80

Ключевые слова: здравоохранение, информатизация здоровья, персональные медицинские приборы, обмен данными

БЗ 10-2019/131

Редактор П.К. Одинцов Технический редактор И.Е. Черепкова Корректор И.А. Королева Компьютерная верстка А.Н. Золотаревой

> Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31. к. 2. www.gostinfo.ru info@gostinfo.ru