ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ **ΓΟCT P** 8.972— 2019

Государственная система обеспечения единства измерений

РАСХОД И КОЛИЧЕСТВО ГАЗА

Методика измерений с помощью критических сопел

(ISO 9300:2005, NEQ)

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт расходометрии» (ФГУП «ВНИИР»), Обществом с ограниченной ответственностью «Научно-исследовательский институт природных газов и газовых технологий Газпром ВНИИГАЗ» (ООО «Газпром ВНИИГАЗ»)
- 2 ВНЕСЕН Управлением метрологии Федерального агентства по техническому регулированию и метрологии
- 3 УТВЕРЖДЕН и ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 12 сентября 2019 г. № 679-ст
- 4 Настоящий стандарт разработан с учетом основных нормативных положений международного стандарта ИСО 9300:2005 «Измерение расхода газа с помощью критических сопел Вентури» (ISO 9300:2003 «Measurement of gas flow by means of critical flow Venturi nozzles», NEQ)

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Содержание

1 Область применения	1
2 Нормативные ссылки	
3 Термины и определения	
4 Условные обозначения и сокращения	
5 Требования к показателям точности измерений	6
6 Принцип метода измерений	7
7 Требования безопасности	
8 Требования к условиям проведения измерений	8
9 Средства измерений, обработки, вспомогательные и дополнительные устройства	9
10 Методы расчета газодинамических параметров потока	21
11 Подготовка к выполнению измерений	21
12 Порядок выполнения измерений и обработка результатов измерений	22
13 Оценка неопределенности результата измерений	23
14 Контроль соблюдения требований методики измерений	29
Приложение А (рекомендуемое) Тест проверки отсутствия запирания сопла	30
Приложение Б (обязательное) Значения функции критического расхода для различных газов	31
Приложение В (обязательное) Метод расчета критического потока массы для природного газа	38
Приложение Г (обязательное) Методика расчета критического потока массы и функции	
критического расхода газа на основе уравнений состояния	42
Приложение Д (рекомендуемое) Рекомендуемая форма акта проверки состояния	
и применения средств измерений и соблюдения требований стандарта	47
Приложение Е (обязательное) Поправочный коэффициент для массового расхода	
атмосферного воздуха	49
Библиография	

Введение

Изложенная в настоящем стандарте методика измерений предусматривает возможность измерений массового расхода и массы газа, а также объемного расхода и объема газа при рабочих и приведенных к стандартным условиям с различными значениями показателей точности измерений.

В качестве показателя точности результатов измерений использована относительная расширенная неопределенность измерений (при коэффициенте охвата 2).

Необходимый уровень точности измерений определяется экономической целесообразностью и экономическим интересом, а также назначением результатов измерений с учетом соблюдения требований нормативных правовых актов Российской Федерации к показателям точности измерений.

Методика измерений, изложенная в настоящем стандарте, аттестована Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт расходометрии» (ФГУП «ВНИИР») и зарегистрирована в едином реестре методик измерений Федерального информационного фонда по обеспечению единства измерений.

В отличие от ИСО 9300:2005, в настоящий стандарт внесены дополнения, обусловленные необходимостью соблюдения требований, установленных в Российской Федерации, к разработке и оформлению методик измерений по ГОСТ Р 8.563—2009.

Государственная система обеспечения единства измерений

РАСХОД И КОЛИЧЕСТВО ГАЗА

Методика измерений с помощью критических сопел

State system for ensuring the uniformity of measurements. Flow rate and quantity of gas.

Procedure of measurements by means of critical nozzles

Дата введения — 2019—12—01

1 Область применения

- 1.1 Настоящий стандарт устанавливает методику (метод) измерений массового расхода и массы, а также объемного расхода и объема при рабочих и приведенных к стандартным условиям однокомпонентных и многокомпонентных газов, находящихся в однофазном состоянии, с помощью критических сопел.
- 1.2 Стандарт распространяется на критические сопла, в которых газ ускоряется до критической скорости (т. е. местной скорости звука) в горловине. При достижении критической скорости массовый расход газа в сопле является максимально возможным для существующих условий на входе в сопло. Критические сопла можно применять только при соблюдении определенных ограничений, например к относительному диаметру горловины сопла и/или к значению числа Рейнольдса в горловине сопла.
- 1.3 Стандарт распространяется на индивидуально калиброванные критические сопла, а также на критические сопла, для которых были проведены экспериментальные исследования, число и качество которых обеспечивает их применение с прогнозируемой неопределенностью их характеристик без индивидуальной калибровки.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие документы:

ГОСТ 8.566 Государственная система обеспечения единства измерений. Межгосударственная система данных о физических константах и свойствах веществ и материалов. Основные положения

ГОСТ 8.586.2 (ИСО 5167-2:2003) Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 2. Диафрагмы. Технические требования

ГОСТ 8.586.3 (ИСО 5167-3:2003) Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 3. Сопла и сопла Вентури. Технические требования

ГОСТ 17310 Газы. Пикнометрический метод определения плотности

ГОСТ 31370 (ИСО 10715:1997) Газ природный. Руководство по отбору проб

ГОСТ Р 8.563 Государственная система обеспечения единства измерений. Методики (методы) измерений

ГОСТ Р 54500.3/Руководство ИСО/МЭК 98-3:2008 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения

СП 12.13130.2009 Определение категорий помещений, зданий и наружных установок по взрыво-пожарной и пожарной опасности

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов (сводов правил) в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по [1], а также следующие термины с соответствующими определениями:

3.1 Средства измерений и обработки результатов измерений

- 3.1.1 система измерений расхода и количества газа: Совокупность средств измерительной техники (средств измерений, средств обработки результатов измерений, измерительных принадлежностей и устройств), вспомогательных и дополнительных устройств, которые предназначены для подготовки потока и среды, измерений и регистрации результатов измерений расхода и количества газа.
- 3.1.2 **средство обработки результатов измерений:** Вычислитель или измерительно-вычислительный комплекс, который преобразовывает выходные сигналы основных средств измерений и вычисляет объемный расход и объем газа, приведенные к стандартным условиям.

Примечания

- 1 Вычислитель является средством измерительной техники, которое преобразует выходные сигналы основных средств измерений и осуществляет обработку результатов измерений.
- 2 Измерительно-вычислительный комплекс функционально объединенная совокупность средств измерительной техники, которая измеряет все или некоторые необходимые параметры потока и среды и осуществляет обработку результатов измерений.
- 3.1.3 **основные средства измерений:** Средства измерений теплофизических характеристик и физико-химических параметров газа, используемых для вычисления массового расхода и массы, а также объемного расхода и объема газа при рабочих условиях и приведенных к стандартным условиям.
- 3.1.4 **дополнительные средства измерений:** Средства измерений, предназначенные для контроля работоспособности основных средств измерений, дополнительных устройств и выполнения требований к условиям измерений.

П р и м е ч а н и е — K дополнительным средствам измерений относятся, например, средства измерений перепада давления на фильтрах, устройстве подготовки потока.

3.1.5 показывающее устройство средства измерений: Совокупность элементов средства измерений, которые обеспечивают визуальное восприятие значений измеряемой величины или связанных с ней величин.

3.2 Вспомогательные и дополнительные устройства

3.2.1 вспомогательные устройства: Технические устройства, соединенные со средствами измерений и устройствами обработки результатов измерений, предназначенные для выполнения конкретных функций, непосредственно относящихся к преобразованию, передаче или отображению результатов измерений.

Примечания

- 1 К вспомогательным устройствам относятся, например, устройства повторной индикации, устройства печати, памяти, линии связи, адаптеры и межсетевые адаптеры.
- 2 Вспомогательные устройства могут быть интегрированы или входить в состав основных средств измерений либо средств обработки результатов измерений.
- 3.2.2 дополнительные устройства: Оборудование и устройства, предназначенные для подготовки потока и среды, обеспечивающие необходимые условия проведения измерений.

П р и м е ч а н и е — K дополнительным устройствам относятся, например, измерительные трубопроводы, фильтры, формирователи потока, байпасные линии, задвижки.

3.2.3 **измерительный трубопровод:** Участок трубопровода с установленным на нем критическим соплом, границы и геометрические характеристики которого, а также размещение на нем средств измерений и дополнительных устройств устанавливается настоящим стандартом и/или нормативными документами на конкретные средства измерений.

3.3 Измерение давления

3.3.1 давление торможения: Давление изоэнтропийно заторможенного потока газа.

Примечание — В настоящем стандарте используются только абсолютные значения давления торможения.

- 3.3.2 отверстие для отбора давления: Отверстие в стенке измерительного трубопровода, с помощью которого измеряют статическое давление газа в данной точке трубопровода.
- 3.3.3 статическое давление газа: Давление потока газа, которое можно измерить, подсоединив средство измерений давления к отверстию для отбора давления.

3.4 Измерение температуры

3.4.1 статическая температура газа: Температура потока газа, которая могла бы быть измерена средством измерений температуры при отсутствии торможения потока на его первичном преобразователе.

П р и м е ч а н и е — В настоящем стандарте используются только значения абсолютной (термодинамической температуры) газа.

3.4.2 температура торможения: Температура изоэнтропийно заторможенного потока газа.

П р и м е ч а н и е — В настоящем стандарте используются только значения абсолютной (термодинамической) температуры торможения газа.

3.5 Критические сопла

- 3.5.1 горловина: Часть отверстия сопла, имеющая минимальную площадь поперечного сечения.
- 3.5.2 **критическое сопло**: Сопло с такими геометрическими параметрами и условиями применения, при которых в его горловине расход является критическим.
- 3.5.3 **сопло**: Техническое устройство со сквозным отверстием, имеющее плавно сужающуюся часть на входе, переходящую в горловину и затем в плавно расширяющуюся часть на выходе.
- 3.5.4 относительный диаметр горловины: Отношение диаметра горловины сопла к внутреннему диаметру измерительного трубопровода перед соплом.
- 3.5.5 **стандартное критическое сопло:** Критическое сопло с цилиндрической или тороидальной горловиной, изготовленное в соответствии с требованиями настоящего стандарта.

3.6 Поток

3.6.1 газодинамические параметры потока: Параметры потока, характеризующие его газодинамические свойства.

П р и м е ч а н и е — В настоящем стандарте в качестве газодинамических параметров потока приняты температура и давление торможения, критический поток массы и функция критического расхода.

- 3.6.2 массовый расход газа: Масса газа, проходящего в единицу времени через сопло.
- 3.6.3 **коэффициент расхода**: Безразмерное отношение действительного расхода к идеальному расходу невязкого газа, которое бы имело место в случае одномерного изоэнтропического течения при тех же условиях торможения на входе в сопло.

П р и м е ч а н и е — Коэффициент расхода учитывает влияние вязкости и профиля скорости потока газа. Для каждого типа сопла и условий его установки значение коэффициента расхода является функцией числа Рейнольдса в горловине сопла.

- 3.6.4 критический поток массы: Произведение скорости звука на плотность газа в горловине критического сопла.
- 3.6.5 относительное противодавление: Отношение статического давления на выходе из сопла к давлению торможения перед соплом.

- 3.6.6 **критическое отношение давлений:** Отношение статического давления в горловине сопла к давлению торможения, при котором массовый расход газа равен критическому.
- 3.6.7 **критический расход:** Максимальный расход газа для конкретного сопла, который может существовать в зависимости от условий перед соплом.

П р и м е ч а н и е — При критическом расходе скорость в горловине сопла равняется местной скорости распространения звука.

3.6.8 объемный расход газа: Объем газа, проходящего через сопло в единицу времени.

П р и м е ч а н и е — В общем случае объемный расход рассчитывается для конкретных условий для определения объема (давление, температура и др.).

- 3.6.9 объемный расход газа, приведенный к стандартным условиям: Объем газа, проходящего через сопло в единицу времени, приведенный к условиям абсолютное давление $0,101325~\text{M}\Pi a$ и температура 20~°C.
- 3.6.10 показатель адиабаты газа: Отношение относительного изменения давления к соответствующему относительному изменению плотности газа в процессе изменения его состояния без теплообмена с окружающей средой, рассчитываемое по формуле

$$\kappa = \frac{\rho}{\rho} \cdot \left(\frac{\partial \rho}{\partial \rho} \right)_{s} = \frac{\rho \cdot c^{2}}{\rho},\tag{3.1}$$

где индекс s обозначает постоянство энтропии.

3.6.11 теплофизические характеристики газа: Величины, характеризующие теплофизические свойства газа.

П р и м е ч а н и е — В настоящем стандарте в качестве теплофизических характеристик газа приняты плотность газа при рабочих условиях, вязкость, фактор сжимаемости, скорость распространения звука, показатель адиабаты.

3.6.12 фактор сжимаемости: Поправочный коэффициент, который численно выражает отклонение поведения реального газа от закона идеального газа при данном давлении и температуре, рассчитываемый по формуле

$$Z = \frac{p \cdot M}{\rho \cdot R \cdot T}.\tag{3.2}$$

3.6.13 физико-химические параметры газа: Величины, характеризующие физико-химические свойства газа, применяемые для расчета теплофизических характеристик газа.

П р и м е ч а н и е — В настоящем стандарте в качестве физико-химических параметров газа приняты состав газа, плотность газа при стандартных условиях и молярная масса газа.

3.6.14 **функция критического расхода:** Безразмерная величина, характеризующая термодинамические свойства одномерного потока газа между входом в сопло и его горловиной при изоэнтропийном процессе.

П р и м е ч а н и е — Функция критического расхода зависит от теплофизических характеристик газа и условий торможения.

- 3.6.15 число Маха: Отношение средней осевой скорости потока газа к скорости распространения звука.
- 3.6.16 **число Рейнольдса в горловине сопла:** Безразмерный параметр, рассчитанный по значениям расхода газа и динамической вязкости газа при условии торможения газа на входе в сопло по формуле

$$Re_{nt} = \frac{4 \cdot q_m}{\pi \cdot \mu_0 \cdot d} = \frac{4 \cdot q_c \cdot \rho_c}{\pi \cdot \mu_0 \cdot d} = \frac{4 \cdot q_v \cdot \rho}{\pi \cdot \mu_0 \cdot d}.$$
 (3.3)

3.7 Точность измерений

Уровень точности измерений: Признак, обозначающий уровень качества измерений, выражаемый значением относительной расширенной неопределенности результата измерений.

3.8 Калибровка критического сопла

Калибровка критического сопла: Процедура экспериментального определения зависимости коэффициента расхода критического сопла или произведения коэффициента расхода критического сопла на площадь поперечного сечения его горловины от числа Рейнольдса.

4 Условные обозначения и сокращения

4.1 Условные обозначения

Основные условные обозначения, применяемые в настоящем стандарте, приведены в таблице 1.

Таблица 1

Обозначение	Наименование величины	Единица величины
A ₂	Площадь поперечного сечения на выходе из сопла	M ²
A _{nt}	Площадь поперечного сечения горловины сопла	м ²
C _{Kp}	Критический поток массы	м ⁻¹ · кг · с ⁻¹
C _{d'}	Коэффициент расхода	1
C_d	Произведение коэффициента расхода на площадь поперечного сечения горловины критического сопла, установленное в результате его калибровки	м ²
C_p	Удельная изобарная теплоемкость	Дж · кг ⁻¹ · К ⁻¹
C _{pir}	Безразмерная изобарная теплоемкость газа в идеально-газовом состоянии	1
C_T	Коэффициент, учитывающий влияние температуры газа на значение пло- щади поперечного сечения горловины критического сопла	1
C_V	Удельная изохорная теплоемкость	Дж · кг ⁻¹ · К ⁻¹
C*	Функция критического расхода газа	1
D	Диаметр измерительного трубопровода	М
d	Диаметр горловины сопла	М
Н	Удельная энтальпия	Дж · кг ^{–1}
М	Молярная масса	кг · моль ^{–1}
m	Масса газа	КГ
Ma ₁	Число Маха в сечении отбора давления на входе в сопло	1
Ma _{nt}	Число Маха в горловине сопла	1
p	Абсолютное давление газа	Па
<i>p</i> ₁	Абсолютное статическое давление газа на входе в сопло	Па
p_2	Абсолютное статическое давление газа на выходе из сопла	Па
p_0	Абсолютное давление торможения газа на входе в сопло	Па
p_{nt}	Абсолютное статическое давление газа в горловине сопла	Па
$q_{\rm c}$	Объемный расход газа, приведенный к стандартным условиям	м ³ · с ⁻¹
q_m	Массовый расход газа	кг · с ^{−1}
$q_{_{V}}$	Объемный расход газа	м ³ · с ⁻¹
R	Универсальная газовая постоянная: <i>R</i> = 8,3144598	Дж · моль ^{–1} · К ^{–1}
Re _{nt}	Число Рейнольдса в горловине сопла	1
r_c	Радиус кривизны входного участка сопла	М
r*	Критическое отношение давлений	1
Ra	Среднеарифметическое отклонение профиля шероховатости	М
S	Удельная энтропия	Дж · кг ⁻¹ · К ⁻¹
U' _y	Относительная расширенная неопределенность величины у	%
u_y'	Относительная стандартная неопределенность результата измерений величины <i>у</i>	%
u_y	Абсолютная стандартная неопределенность результата измерений величины у	Единица величины у
T	Абсолютная температура газа	К

FOCT P 8.972—2019

Окончание таблицы1

Обозначение	Наименование величины	Единица величинь
T ₁	Абсолютная температура газа на входе в сопло	К
T_0	Абсолютная температура торможения газа на входе в сопло	К
T _{nt}	Абсолютная статическая температура в горловине сопла	К
v	Скорость потока газа	м · с ⁻¹
v _{nt}	Скорость потока газа в горловине сопла	м · с ⁻¹
w	Скорость распространения звука	м · с ⁻¹
w _{nt}	Скорость распространения звука в горловине сопла	м · с ⁻¹
Z	Фактор сжимаемости газа	1
Z ₁	Фактор сжимаемости газа при p_1 и T_1	1
β	Относительный диаметр горловины	1
ϑ_y	Относительный коэффициент чувствительности значения расхода газа к изменению значения величины <i>у</i>	1
к	Показатель адиабаты	1
κ _i	Отношение удельных теплоемкостей	1
μ_0	Динамическая вязкость газа в условиях торможения на входе в сопло	Па·с
ρ	Плотность газа	кг · м ^{−3}
ρ ₀	Плотность газа в условиях торможения на входе в сопло	кг ⋅ м−3
ρ ₁	Плотность газа при p_1 и T_1	кг · м ⁻³
ρ _{nt}	Плотность газа в горловине сопла	кг · м ⁻³
	а н и е — Остальные обозначения указаны непосредственно в тексте.	

Индексы, входящие в условные обозначения величин, обозначают следующее:

- 0 условия торможения потока;
- а атмосферное давление;
- в верхний предел измерений;
- и избыточное давление;
- н нижний предел измерений;
- с стандартные условия;
- min минимальное значение;
- тах максимальное значение.

4.2 Сокращения

В настоящем стандарте применены следующие сокращения:

- ИВК измерительно-вычислительный комплекс;
- ИТ измерительный трубопровод;
- ПД преобразователь давления или манометр;
- ПТ преобразователь температуры или термометр;
- СИ средство измерений;
- СИКГ система измерений расхода и количества газа;
- УОГ устройство для очистки газа;
- ФП формирователь потока.

5 Требования к показателям точности измерений

Относительная расширенная неопределенность измерений (при коэффициенте охвата 2) массового расхода и массы, а также объемного расхода и объема газа при рабочих условиях и приведенных к стандартным условиям по данной методике в зависимости от уровня точности измерений приведена в таблице 2.

Таблица 2

Уровень точности измерений	А	Б	В	Γ	Д
Относительная расширенная неопределенность, %	0,5	0,8	1,5	2,0	2,5

6 Принцип метода измерений

6.1 Измерения массового расхода, объемного расхода при рабочих условиях и объемного расхода, приведенного к стандартным условиям, газов выполняют методом динамических измерений с помощью критических сопел, в горловине которых газ ускоряется до критической скорости (т. е. местной скорости звука). При достижении критической скорости массовый расход газа в сопле является максимально возможным для существующих условий на входе в сопло и может быть рассчитан по теплофизическим характеристикам и физико-химическим параметрам газа по одной из формул:

$$q_{m} = \frac{A_{nt} \cdot C_{d'} \cdot C_{\star} \cdot \rho_{0}}{\sqrt{\left(\frac{R}{M}\right) \cdot T_{0}}},\tag{6.1}$$

$$q_m = \frac{A_{nt} \cdot C_{d'} \cdot C_* \cdot \rho_0}{\sqrt{\left(\frac{\rho_c}{\rho_c \cdot T_c \cdot Z_c}\right) T_0}},$$
(6.2)

$$q_m = A_{nt} \cdot C_{d'} \cdot C_{Kp}. \tag{6.3}$$

Связь массового расхода газа, объемного расхода газа при рабочих условиях и объемного расхода газа, приведенного к стандартным условиям, устанавливает формула

$$q_m = q_v \cdot \rho_1 = q_c \cdot \rho_c. \tag{6.4}$$

С учетом формул (6.1), (6.2), (6.3) и (6.4), объемный расход газа при статических значениях давления и температуры газа на входе в сопло и объемный расход газа, приведенный к стандартным условиям, рассчитывают по одной из формул:

$$q_{v} = A_{nt} \cdot C_{d'} \cdot C_{*} \cdot \frac{Z_{1} \cdot p_{0} \cdot T_{1}}{p_{1} \cdot \sqrt{T_{0}}} \cdot \sqrt{\left(\frac{R}{M}\right)}, \tag{6.5}$$

$$q_{V} = A_{nt} \cdot C_{d'} \cdot C_{\star} \cdot \frac{Z_{1} \cdot p_{0} \cdot T_{1}}{p_{1} \cdot \sqrt{T_{0}}} \cdot \sqrt{\left(\frac{p_{c}}{\rho_{c} \cdot T_{c} \cdot Z_{c}}\right)}, \tag{6.6}$$

$$q_{v} = A_{nt} \cdot C_{d'} \cdot C_{Kp} \cdot \frac{1}{\rho_{1}}, \tag{6.7}$$

$$q_{\rm c} = \frac{A_{nt} \cdot C_{d'} \cdot C_* \cdot \rho_0}{\rho_{\rm c} \cdot \sqrt{\left(\frac{R}{M}\right) \cdot T_0}},\tag{6.8}$$

$$q_{c} = \frac{A_{nt} \cdot C_{d'} \cdot C_{*} \cdot \rho_{0}}{\sqrt{\left(\frac{\rho_{c} \cdot \rho_{c}}{T_{c} \cdot Z_{c}}\right) \cdot T_{0}}},$$
(6.9)

$$q_{c} = A_{nt} \cdot C_{d'} \cdot C_{Kp} \cdot \frac{1}{\rho_{c}}.$$
 (6.10)

Если при калибровке критического сопла определена зависимость произведения коэффициента расхода критического сопла на площадь поперечного сечения его горловины от числа Рейнольдса, то в формулах (6.1)—(6.3) и (6.5)—(6.10) вместо значения $A_{nt} \cdot C_{d'}$ используют значение величины $C_T \cdot C_{d'}$

6.2 Теплофизические характеристики и физико-химические параметры газа, необходимые для выполнения расчета по формулам (6.1)—(6.3) и (6.5)—(6.10), определяют путем прямых измерений или

косвенными расчетными методами, изложенными в национальных или межгосударственных стандартах, либо приведенными в стандартных справочных данных категории СТД или СД (см. ГОСТ 8.566).

6.3 Массу, объем газа при рабочих условиях и объем газа, приведенный к стандартным условиям, определяют путем численного интегрирования соответствующих функций расхода от времени.

7 Требования безопасности

- 7.1 При выполнении измерений должны соблюдаться требования [2], [3] и [4] и других федеральных законов, нормативных правовых актов Российской Федерации, нормативных документов в области промышленной безопасности.
- 7.2 На опасных производственных объектах безопасность применяемого оборудования должна быть подтверждена сертификатом соответствия или декларацией о соответствии, либо заключением экспертизы промышленной безопасности в соответствии с [2].
- 7.3 Применяемые технические устройства и технологическое оборудование должны удовлетворять требованиям пожарной безопасности, установленным [5] и СП 12.13130.2009.
- 7.4 Соблюдение информационной безопасности должно обеспечиваться средствами используемой операционной системы и средствами специализированного программного обеспечения. Программное обеспечение должно предусматривать возможность контроля доступа пользователей к функциям и данным системы и иметь резервные архивные копии на внешних носителях информации.

8 Требования к условиям проведения измерений

8.1 Условия применения средств измерений, обработки результатов измерений и вспомогательных устройств

- 8.1.1 Условия проведения измерений (давление, температура и влажность окружающей среды) для СИ, средств обработки результатов измерений и вспомогательных устройств должны соответствовать требованиям, установленным их изготовителями.
- 8.1.2 Диапазон измерений применяемого СИ должен быть не менее диапазона измерений измеряемой величины.
- 8.1.3 Характеристики электроснабжения СИ, средств обработки результатов измерений и вспомогательных устройств должны соответствовать требованиям их эксплуатационной документации.

8.2 Параметры потока и среды

8.2.1 Измеряемой средой является однокомпонентный или многокомпонентный газ, находящийся в однофазном состоянии и однородный по физическим свойствам.

Примечания

- 1 Газ считается однородным, если его свойства (состав, плотность, давление и др.) изменяются в пространстве непрерывно.
 - 2 Газ считается однофазным, если все его составляющие части принадлежат газообразному состоянию.
- 8.2.2 При течении газа через критическое сопло его фазовое состояние не должно изменяться. Температура газа в горловине сопла должна быть выше точки росы по влаге и выше температуры конденсации газа или его компонентов в случае измерений многокомпонентного газа. Если измеряемой средой являются смеси углеводородных газов (например, природный или нефтяной газ), то должны отсутствовать условия для образования гидратов.
- 8.2.3 Для сопел, имеющих выходной конический участок длиной более d, при числах Re_{nt} более $2\cdot 10^5$ относительное противодавление должно быть не более значения, которое рассчитывают по формуле

$$\left(\frac{p_2}{p_0}\right)_{\text{max}} = 0.8 \cdot \left[\left(\frac{p_2}{p_0}\right)_i - r_*\right] + r_*,$$
(8.1)

где

$$r_{\star} = \left(\frac{2}{\kappa + 1}\right)^{\kappa} (\kappa - 1), \tag{8.2}$$

$$\left(\frac{p_2}{p_0}\right)_i = \left(1 + \frac{\kappa - 1}{2} \cdot Ma_2\right)^{-\frac{\kappa}{\kappa - 1}},\tag{8.3}$$

$$Ma_{2} = \frac{A_{2}}{A_{nt}} \cdot \left(\frac{2}{\kappa + 1}\right)^{\frac{\kappa - 3}{2 \cdot \kappa - 2}} \left\{ 1 - \sqrt{1 - 2 \cdot \left[\frac{A_{2}}{A_{nt}}\right]^{-2} \cdot \left(\frac{2}{\kappa + 1}\right)^{\frac{2}{\kappa - 1}}} \right\}.$$
(8.4)

Примечание — Формула (8.4) приведена в соответствии с [6].

Отношение площадей A_2/A_{nt} связано с размерами сопла по формулам:

- для сопел с тороидальной горловиной:

$$\frac{A_2}{A_{nt}} = \left[\frac{2 \cdot I \cdot \operatorname{tg}\theta}{d} + \frac{2 \cdot r_c}{d} (1 - \cos\theta) + 1\right]^2,\tag{8.5}$$

- для сопел с цилиндрической горловиной:

$$\frac{A_2}{A_{nt}} = \left(\frac{2 \cdot I \cdot \operatorname{tg}\theta}{d} + 1\right)^2,\tag{8.6}$$

где I — длина расширяющегося участка, м;

 θ — половина угла раскрытия расширяющегося участка, град.

Допускаются более высокие значения относительного противодавления по сравнению со значениями, рассчитанными по формуле (8.1), если можно доказать наличие критического расхода.

П р и м е ч а н и е — На отношение давлений $(p_2/p_0)_{\rm max}$ незначительное влияние оказывает удлинение конического участка до таких значений, когда площадь поперечного сечения на выходе из сопла в четыре раза превышает площадь горловины, т. е. длина диффузора достигает значения более 7 диаметров при половине угла конуса, равной 4° .

Для критических сопел, эксплуатируемых в диапазоне чисел Re_{nt} от $5 \cdot 10^4$ до $2 \cdot 10^5$, рекомендуется в качестве допустимого значения относительного противодавления принять значение, равное r_* , которое рассчитывают по формуле (8.2) или выполнить проверку на отсутствие запирания сопла в соответствии с процедурой, приведенной в приложении A.

Если число Re_{nt} менее $5 \cdot 10^4$, то рекомендуется поддерживать относительное противодавление менее 0,30 или выполнить проверку на отсутствие запирания сопла в соответствии с процедурой, приведенной в приложении A.

9 Средства измерений, обработки, вспомогательные и дополнительные устройства

9.1 Требования к составу средств измерений, обработки, вспомогательных и дополнительных устройств

9.1.1 Состав СИ, средств обработки, вспомогательных и дополнительных устройств определяется требуемым уровнем точности измерений и необходимой степенью автоматизации.

В общем случае при выполнении измерений применяют:

- основные СИ;
- средства обработки результатов измерений;
- дополнительные СИ;
- вспомогательные устройства;
- дополнительные устройства.
- 9.1.2 При необходимости передачи информации с СИКГ должны быть дополнительно предусмотрены средства и каналы передачи данных.

Состав основных СИ выбирают в соответствии с таблицей 3.

Таблица 3

Hamanaaan Cla	Необходимость применения СИ для газа:				
Наименование СИ	однокомпонентного	многокомпонентного			
СИ давления	+	+			
СИ температуры	+	+			
Критическое сопло	+	+			
Хроматограф	-	1)			
СИ плотности при стандартных условиях	-	1) _N 2)			
СИ плотности газа при рабочих условиях	см. 9.7	см. 9.7			

^{«-» —} СИ не требуется, «+» — наличие СИ обязательно.

9.1.3 Для обработки результатов измерений применяют вычислители или ИВК.

Средства обработки результатов измерений должны преобразовывать выходные сигналы основных СИ, автоматически определять объемный расход и/или объем газа, приведенные к стандартным условиям.

Средства обработки результатов измерений должны обеспечивать возможность периодического введения и регистрации значений условно-постоянных величин, например, плотности газа при стандартных условиях, компонентного состава газа, атмосферного давления, констант, применяемых взамен значений контролируемых параметров, в случае отказа СИ и прочее.

- 9.1.4 В состав дополнительных СИ могут входить:
- СИ перепада давления газа для контроля технического состояния УОГ и ФП;
- СИ давления газа после критического сопла для контроля относительного противодавления;
- СИ температуры точки росы по воде, а для углеводородсодержащих смесей газов в случае необходимости контроля за отсутствием выпадения конденсата в ИТ температуры точек росы по воде и углеводородам.

Вместо СИ перепада давления допускается для контроля технического состояния УОГ использовать стационарно установленные индикаторы перепада давления.

- 9.1.5 Состав применяемых вспомогательных устройств определяется требованиями к сервису, коммуникациям, надежности и безопасности при эксплуатации СИКГ и может включать в себя, например, устройства повторной индикации, устройства печати, блоки питания, барьеры искробезопасности, линии связи, преобразователи интерфейсов, межсетевые адаптеры и устройства памяти.
 - 9.1.6 Перечень дополнительных устройств и необходимость их применения приведены в таблице 4.

Таблица 4

Наименование дополнительного устройства	Необходимость применения
УОГ	Рекомендуется для загрязненных газов
ФΠ	Обязателен в случаях установки перед критическим соплом местных сопротивлений, создающих закрутку потока
Пробоотборный зонд	Обязателен при отборе проб газа на СИКГ

9.2 Требования к основным средствам измерений

9.2.1 Диапазоны измерений применяемых СИ должны перекрывать рабочий диапазон изменения значений измеряемого параметра потока и среды.

Если применение одного СИ не обеспечивает охват рабочего диапазона изменения значений измеряемого параметра или не обеспечивает необходимую точность во всем диапазоне измерений, то допускается использование нескольких СИ.

¹⁾ Наличие СИ на СИКГ не обязательно, если допускается использовать результаты анализов химико-аналитических лабораторий, полученных в результате отбора проб на СИКГ, либо результаты анализов химико-аналитических лабораторий или автоматизированных измерений в местах, установленных с применением кустового метода размещения аналитического оборудования.

²⁾ СИ не требуется при наличии хроматографа.

9.2.2 Основные СИ должны иметь унифицированный электрический выходной сигнал и/или цифровой выход.

Рекомендуется выбирать основные СИ с цифровым выходом. При выборе основных СИ с электрическим выходным сигналом следует отдавать предпочтение СИ с выходным сигналом силы постоянного тока от 4 до 20 мА.

9.2.3 Метрологические характеристики СИ выбирают с учетом необходимости соблюдения требований к значениям относительной расширенной неопределенности измерений, приведенных в таблице 2, в зависимости от уровня точности измерений и необходимого диапазона расходов газа.

Выбор СИ осуществляют путем расчета в соответствии с разделом 13 относительной расширенной неопределенности (при коэффициенте охвата 2) результатов измерений расхода при возможных сочетаниях измеряемых параметров потока и среды.

Относительная расширенная неопределенность измерений при любых сочетаниях не должна превышать относительную расширенную неопределенность измерений, установленную в разделе 5, для соответствующего уровня точности измерений.

9.2.4 Относительная погрешность вычислений, выполняемых средствами обработки по заданным теплофизическим характеристикам и физико-химическим параметрам газа, обусловленная алгоритмом вычислений и его программной реализацией, не должна превышать ±0,05 %.

9.3 Стандартные критические сопла

9.3.1 Общие требования

9.3.1.1 Материалы

Критические сопла должны изготавливаться из материалов, пригодных для проведения их чистовой обработки до требуемого состояния (некоторые материалы могут быть не пригодны для использования из-за раковин, полостей и других неоднородностей).

Критические сопла должны быть изготовлены из коррозионно-эрозионно-стойкого по отношению к среде материала, температурный коэффициент линейного расширения которого известен в диапазоне изменения температуры среды.

9.3.1.2 Чистовая обработка горловины сопла и входа в сопло

Поверхность горловины и тороидального входа до участка конического расширения сопла должна иметь значение Ra не более 15 × $10^{-6}d$.

Если шероховатость не может быть измерена, то критическое сопло должно быть индивидуально калибровано.

Горловина и тороидальный вход вплоть до участка расширения должны быть очищены от любых загрязнений и отложений.

Форма конического расширяющегося участка сопла должна выбираться так, чтобы любые уступы, неоднородности, неровности и отсутствие концентричности не превышали 1 % местного диаметра. Значение Ra внутренней поверхности диффузора не должно превышать $10^{-4}d$.

9.3.2 Конструкция критического сопла

9.3.2.1 Общие замечания

Настоящий стандарт устанавливает требования к геометрическим характеристикам критических сопел с цилиндрической или тороидальной горловиной.

Стандарт допускает применение других конструкций критических сопел, для которых проведена индивидуальная калибровка.

Относительный диаметр горловины критического сопла рассчитывают по формуле

$$\beta = \frac{d_{\text{M3}} \cdot \left[1 + \alpha \cdot \left(T_{nt}^* - T_{d\text{M3}}\right)\right]}{D_{\text{M3}} \cdot \left[1 + \alpha_{\text{T}} \cdot \left(T_1 - T_{D\text{M3}}\right)\right]},\tag{9.1}$$

где α , $\alpha_{\rm T}$ — средний температурный коэффициент линейного материала сопла и входного трубопровода, соответственно, 1/°C;

 $T_{ extit{du3}}, T_{ extit{Du3}}$ — температура, при которой измерялся внутренний диаметр горловины сопла и входного трубопровода, соответственно, K;

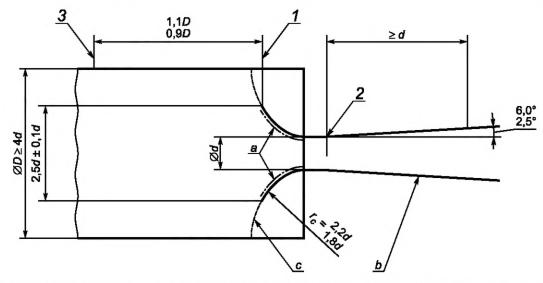
 $d_{\rm из}$ — внутренний диаметр горловины сопла при $T_{
m dus}$, м;

 $D_{
m us}$ — внутренний диаметр входного трубопровода при $T_{
m Dus}$, м;

 T_{nt}^{\star} — оценка значения температуры материала сопла при температуре газа на входе, равной T_1 , К.

Значение T_{nt}^* рассчитывают по формуле

$$T_{nt}^* = T_1 \cdot \frac{2}{\kappa + 1}.\tag{9.2}$$


Критические сопла, не имеющие выходного диффузора, не рекомендуются для применения.

П р и м е ч а н и е — Критические сопла, не имеющие выходного диффузора, имеют низкую рекуперацию давления и могут создавать существенные искажения структуры потока после сопла.

9.3.2.2 Критическое сопло с тороидальной горловиной

На рисунке 1 приведен разрез критического сопла с тороидальной горловиной в плоскости, проходящей через ось горловины.

Часть сопла, расположенная в трубе, является круглой. Сопло состоит из входной торцевой плоскости, перпендикулярной к осевой линии сопла, сужающейся части с закругленным профилем, и диффузора.

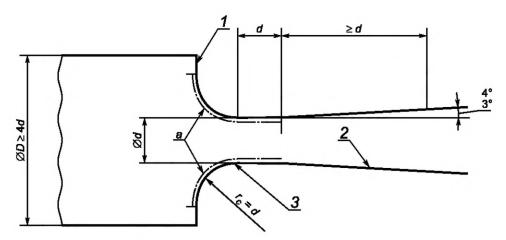
1 — входная торцевая плоскость; 2 — пересечение тороидальной поверхности с образующей диффузора; 3 — расположение устройства измерения давления; a — в данной области значение Ra не должно превышать 15 ·10⁻⁶d; b — в данной области значение Ra не должно превышать 10⁻⁴d; c — входная поверхность должна находиться снаружи относительно данного профиля

Рисунок 1 — Профиль критического сопла с тороидальной горловиной

Входная торцевая плоскость определяется как плоскость, перпендикулярная к оси симметрии и пересекающая сужающуюся часть сопла в сечении, диаметр которого равен $2.5d \pm 0.1d$. Поверхность входной торцевой плоскости снаружи ограничена окружностью диаметром D. Требование к кривизне входной торцевой поверхности ограничивается необходимостью обеспечения следующего условия: значения внутренних диаметров в каждом сечении торцевой поверхности должны быть не менее значения внутреннего диаметра расширяющейся части тороидального контура.

Поверхность сужающейся части сопла, расположенная между входной плоскостью и расширяющимся участком (см. рисунок 1), не должна отклоняться от формы тора более чем на ±0,001*d*.

Значение диаметра горловины d определяют как среднеарифметическое значение результатов измерений диаметра не менее чем в четырех направлениях, расположенных под приблизительно равными (визуально контролируемыми) углами друг к другу.


Радиус кривизны r_c с этой тороидальной поверхности в плоскости оси симметрии должен составлять от 1,8d до 2,2d.

Диффузор должен иметь форму усеченного конуса с половиной угла, равной от 2.5° до 6° . Длина диффузора должна быть не менее d.

Если требования к конструкции сопла не могут быть выполнены или проверены, то сопло должно быть индивидуально калибровано.

9.3.2.3 Критическое сопло с цилиндрической горловиной

На рисунке 2 приведен разрез критического сопла с цилиндрической горловиной в плоскости, проходящей через ось горловины.

1 — входная плоскость; 2 — поверхность диффузора, значение Ra которой не более $10^{-4}d$; 3 — область сопряжения; a — в данной области значение Ra не должно превышать $15 \cdot 10^{-6}d$, а профиль не должен отклоняться от формы тора и цилиндра более чем на $\pm 0,001d$.

Рисунок 2 — Профиль критического сопла с цилиндрической горловиной

Часть сопла, расположенная в трубе, является круглой. Сопло состоит из входной торцевой плоскости, перпендикулярной к осевой линии сопла, сужающейся части с закругленным профилем, цилиндрической горловины и диффузора.

Входная торцевая плоскость определяется как плоскость касательная к сужающейся части профилю сопла и перпендикулярная к оси симметрии. Поверхность входной торцевой плоскости снаружи ограничена окружностью диаметром *D*, изнутри окружностью ее касания с сужающейся частью сопла.

Поверхность сужающейся части сопла должна иметь форму четверти тора, которая с одной стороны направлена по касательной к входной торцевой поверхности, а с другой стороны — по касательной к цилиндрической горловине. Радиус кривизны $r_{\rm c}$ тора должен равняться диаметру горловины.

Поверхность сужающейся части сопла не должна отклоняться от формы тора более чем на $\pm 0,001 d$.

Длина цилиндрической горловины должна равняться d. Длина горловины не должна отклоняться от d более чем на $\pm 0,05d$.

Значение диаметра горловины определяют как среднеарифметическое значение результатов измерений диаметра не менее чем в четырех направлениях, расположенных под приблизительно равными (визуально контролируемыми) углами друг к другу, в плоскости выхода цилиндрической горловины.

Ни один диаметр не должен отклоняться от среднего диаметра более чем на ±0,001d.

Сопряжение между сужающейся частью сопла и цилиндрической горловиной необходимо проверить визуально и убедиться в отсутствии дефектов. Если заметны какие-либо дефекты сопряжения, то необходимо удостовериться, что местный радиус кривизны в плоскости оси симметрии составляет не менее 05d по всей входной поверхности (четверть тора и цилиндрическая горловина). Данное требование иллюстрируется на рисунке 3.

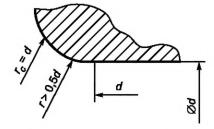


Рисунок 3 — Сопряжение между четвертью тора и цилиндрической горловиной (переходная область)

Поверхность сужающейся части сопла и горловины должна иметь значение Ra не более $15 \cdot 10^{-6}d$. Диффузор представляет собой усеченный конус с половиной угла, равной от 3° до 4° . Длина диффузора должна быть не менее d.

Сопряжение между цилиндрической горловиной и диффузором необходимо проверить визуально и убедиться в отсутствии дефектов.

Если требования к конструкции сопла не могут быть выполнены или проверены, то сопло должно быть индивидуально калибровано.

9.3.3 Требования к установке критических сопел

9.3.3.1 Общие положения

Стандарт определяет требования к установке сопел для следующих случаев:

- а) трубопровод перед соплом имеет круглое поперечное сечение и значение β не более 0,25;
- б) перед соплом имеется большое пространство (поток газа поступает в сопло из большой емкости).
- В случае а) сопло необходимо устанавливать с учетом требований 9.3.3.2, в случае б) с учетом требований 9.3.3.3.

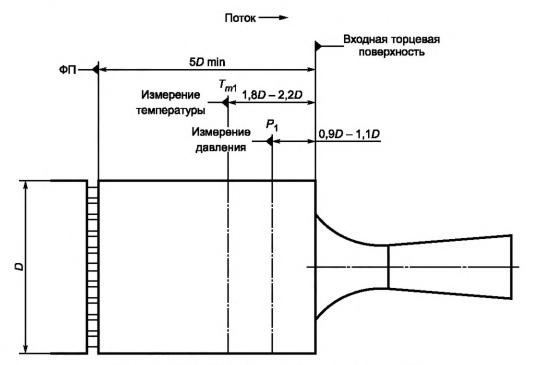


Рисунок 4 — Критическое сопло с установленным ФП

9.3.3.2 Участок трубопровода до сопла

Критическое сопло устанавливают в прямолинейном круглом трубопроводе, который должен быть соосным с осевой линией сопла в пределах ±0,02*D*.

Овальность участка трубопровода длиной 3D перед входной плоскостью сопла не должна превышать 1 %, а его внутренняя поверхность должна иметь значение Ra не более $10^{-4}D$.

Для формирования необходимой структуры потока перед соплом должен быть установлен прямолинейный участок трубопровода, минимальная необходимая длина которого может быть определена по ГОСТ 8.586.3. Допускается установка ФП на расстоянии $I_1 > 5D$ от входной плоскости сопла, как показано на рисунке 4. Конструкцию ФП и расстояние от него до местного сопротивления выбирают по ГОСТ 8.586.2.

Внутренний диаметр входного трубопровода должен быть не менее 4d для обеспечения значения $\beta \le 0.25$.

Диаметр D определяют как среднеарифметическое значение результатов измерений не менее чем в четырех диаметральных направлениях, расположенных приблизительно под одинаковым углом друг к другу, в плоскости размещения отверстия для отбора статического давления. При этом относительная неопределенность результата измерения, обусловленная измерительным инструментом, не должна превышать 0,1%.

9.3.3.3 Большое пространство перед соплом (большая емкость)

Наличие большого пространства перед соплом обеспечивается в том случае, когда на расстоянии не менее 5*d* от оси сопла и 15*d* от его входной плоскости отсутствуют какие-либо стенки.

9.3.3.4 Дренажные отверстия

Трубопровод может иметь необходимые дренажные отверстия для удаления конденсата или других посторонних сред, возникающих при эксплуатации в некоторых условиях. Необходимо обеспечить

герметичность этих отверстий при измерении расхода. Если есть необходимость в таких отверстиях, то они должны располагаться выше по потоку от сопла перед отверстием для отбора давления. Диаметр дренажных отверстий должен составлять менее 0,06D. Осевое расстояние от дренажного отверстия до плоскости верхнего по потоку отверстия для отбора давления должно быть больше D, а само отверстие должно располагаться в осевой плоскости, не совпадающей с плоскостью отверстия для отбора давления.

9.3.3.5 Участок трубопровода после сопла

Участок трубопровода после сопла должен иметь конструкцию, которая не должна ограничивать реализацию критического расхода в сопле.

9.3.3.6 Площадь отверстия горловины сопла

Площадь отверстия горловины сопла при температуре газа в горловине сопла рассчитывают по формулам:

$$A_{nt} = A_{N3} \cdot C_T, \tag{9.3}$$

$$C_T = [1 + 2 \cdot \alpha \cdot (T^*_{nt} - T_{N3})],$$
 (9.4)

$$T_{nt}^* = T_0 \cdot \frac{2}{\kappa + 1},\tag{9.5}$$

где $A_{\rm из}$ — площадь отверстия горловины сопла, рассчитанная по значению среднего диаметра горловины при температуре $T_{\rm из}$, м 2 ;

α — средний температурный коэффициент линейного материала сопла, 1/°C;

 $T_{\rm из}$ — температура, при которой выполнялось измерение диаметра горловины сопла или выполнялась калибровка сопла, К.

9.3.4 Коэффициент расхода

9.3.4.1 Коэффициент расхода для критических сопел рассчитывают по формуле

$$C_{d'} = a - b \cdot \operatorname{Re}_{nt}^{-n}. \tag{9.6}$$

Коэффициенты a, b и n приведены в таблице 5 для каждого типа сопла и диапазона чисел Re_{nt} , при которых они могут использоваться.

Таблица 5

Сопло с тороидал	ьной горловиной
$2.1 \times 10^4 < \text{Re}_{nt} < 3.2 \times 10^7$	a = 0,9959 b = 2,720 n = 0,5
Сопло с цилиндрич	неской горловиной
$3.5 \times 10^5 < \text{Re}_{nt} < 1.1 \times 10^7$	a = 0,9976 b = 0,1388 n = 0,2

9.3.4.2 Относительная стандартная неопределенность коэффициентов расхода, рассчитанных по формуле (9.6), для сопел с тороидальной и цилиндрической горловиной составляет 0,15 %.

9.4 Средства измерений статического давления

9.4.1 Абсолютное давление газа измеряют непосредственно с помощью СИ абсолютного давления либо определяют путем суммирования измеренных значений избыточного и атмосферного давлений.

Абсолютное, избыточное и атмосферное давление газа измеряют с помощью ПД любого принципа действия.

Для уровней точности измерений А, Б и В рекомендуется выбирать ПД, у которых стабильность показаний не хуже 0,1 % за год.

ПД должен обеспечивать в диапазоне рабочих давлений соблюдение требований к значениям допускаемой относительной расширенной неопределенности измерений абсолютного давления газа для соответствующего уровня точности измерений (см. 9.2.1.3).

При эксплуатации ПД необходимо учитывать, что данные СИ чувствительны к температуре окружающей среды. С целью минимизации влияния температуры окружающей среды на результаты изме-

рения давления, для уровней точности измерений A, Б и B рекомендуется ПД устанавливать в помещении или в утепленном обогреваемом шкафу с температурой (20 ± 10) °C.

9.4.2 В качестве запорной арматуры на соединительных трубках применяют игольчатые клапаны (вентили) или шаровые краны.

При монтаже ПД рекомендуется применение двухвентильных блоков, которые обеспечивают подключение ПД к соединительным трубкам, блокировку и сброс давления в соединительных трубках, подсоединение эталонных СИ для контроля метрологических характеристик ПД.

- 9.4.3 Если монтаж сопла выполнен в соответствии с требованиями 9.3.3.2, то статическое давление перед соплом рекомендуется измерять на расстоянии от 0.9D до 1.1D от входной плоскости сопла (см. рисунок 4).
- 9.4.4 Если перед соплом имеется большое пространство (см. 9.3.3.3), то верхнее по потоку отверстие для отбора давления рекомендуется располагать в стенке, которая перпендикулярна к входной плоскости сопла, на расстоянии $10d \pm 1d$ от этой плоскости.
- 9.4.5 Осевая линия отверстия для отбора давления должна пересекаться с осевой линией сопла и находиться под требуемым углом к данной линии. Отверстие для отбора давления должно иметь круглое поперечное сечение. Кромка отверстия, показанная на рисунке 5, должна быть острой. Чтобы гарантировать устранение зазубрин или заусенцев на кромке, разрешается минимальное ее закругление, радиус которого должен быть меньше одной десятой диаметра отверстия для отбора давления. На внутренней поверхности отверстия для отбора давления и вблизи него должны отсутствовать неровности.

В горизонтальных и наклонных трубопроводах отверстия для отбора давления размещают в верхней части ИТ или корпусе сопла с отклонением от вертикальной плоскости, проходящей через ось трубы, не более 90°.

Необходимо визуально убедиться, что отверстия для отбора давления удовлетворяют установленным требованиям.

Если монтаж сопла выполнен в соответствии с требованиями 9.3.3.2, то диаметр отверстия для отбора давления должен быть:

- 1,3 \pm 0,3 мм при *D* ≤ 16 мм;
- менее 0,08D и не более 12,7 мм при D > 16 мм.

Отверстие для отбора давления должно иметь цилиндрическую форму, причем длина этого цилиндрического участка должна быть не менее двух диаметров отверстия.

Рисунок 5 — Схема отверстия для отбора давления газа

9.4.6 Соединительная трубка для передачи давления от ИТ к ПД должна иметь уклон к горизонтали не менее 1:12.

При применении соединительных трубок, составленных из отдельных секций, диаметр условного прохода этих секций должен быть одинаковым.

Материал соединительных трубок должен быть коррозионностойким по отношению к измеряемому газу, его конденсату и сопутствующим компонентам (метанол, гликоль и др.).

- 9.4.7 Для проверки обеспечения критического расхода газа измеряют давление газа после сопла. Отверстие для отбора указанного давления выполняют в трубопроводе на расстоянии не более 0,5 диаметра трубопровода от выходной плоскости диффузора.
- 9.4.8 Давление после сопла не измеряют, если выход газа из сопла осуществляется непосредственно в атмосферу или другую область с известным давлением.

9.5 Средства измерений статической температуры

9.5.1 Температуру газа измеряют ПТ любого принципа действия.

Термодинамическую температуру газа определяют по формуле

$$T = 273,15 + t. (9.7)$$

При выборе ПТ следует руководствоваться следующими рекомендациями:

- ПТ должен иметь метрологические характеристики, обеспечивающие соблюдение требований к значениям допускаемой относительной расширенной неопределенности измерений температуры газа для соответствующего уровня точности измерений (см. 9.2.1.3);
 - диапазон измерений ПТ должен быть минимально достаточным;
- тип компенсационного кабеля для подключения ПТ к вторичному прибору и схему подключения (трех- или четырехпроводную) для подключения термометра сопротивления выбирают с учетом условий эксплуатации и места размещения нормирующего и вторичного преобразователя.

При выборе вторичного прибора следует учитывать номинальную статическую характеристику применяемого ПТ.

9.5.2 Статическую температуру газа измеряют с помощью одного или нескольких ПТ, расположенных перед соплом.

Если монтаж сопла выполнен в соответствии с требованиями 9.3.3.2, то ПТ располагают на расстоянии от 1.8D до 2.2D выше по потоку от входной плоскости сопла. Диаметр чувствительного элемента ПТ или гильзы (при ее наличии) должен быть не более 0.04D. ПТ не должен располагаться на одной линии с отверстием для отбора давления в направлении потока.

Если монтаж сопла выполнен в соответствии с 9.3.3.3, то допускается использовать ПТ или гильзу (при ее наличии) с наружным диаметром более 0,04*D*. В этом случае ПТ должен располагаться таким образом, чтобы можно было удостовериться в том, что он или его гильза (при ее наличии) не оказывает влияния на измерение давления.

Глубина погружения ПТ должна быть равна длине его монтажной части, установленной изготовителем для конкретного типа ПТ.

П р и м е ч а н и е — С уменьшением скорости газа температура наружной стенки ИТ и, следовательно, температура ПТ или защитной гильзы (при ее наличии) в месте ее соединения со стенкой ИТ приближается к температуре атмосферного воздуха. В связи с этим при увеличении разности температуры воздуха и газа возрастает неопределенность измерения температуры. Данный эффект возрастает с увеличением ветра и уменьшением внутреннего диаметра ИТ и давления газа.

С целью снижения методической неопределенности измерений температуры рекомендуется:

- применять термоприемники с гладкой блестящей поверхностью;
- наряду с общей тепловой изоляцией ИТ выполнить изоляцию бобышки, в которой закреплен ПТ. Для снижения задержки (времени) реакции ПТ следует принять следующие меры:
- стенка гильзы должна обладать умеренно высокой теплопроводностью, а поверхность стенки, соприкасающаяся с газом, должна быть чистой;
- при установке ПТ в гильзу между ними должен быть обеспечен надежный тепловой контакт путем минимизации зазора между корпусами гильзы и ПТ, а также заполнением данного зазора теплопроводной пастой или маслом;
- термочувствительный элемент термометра должен иметь малый размер, малую массу и низкую теплоемкость.

9.6 Средства измерений и методы определения плотности газа при стандартных условиях

- 9.6.1 Для определения плотности газа при стандартных условиях применяют один из следующих методов:
 - а) косвенный метод;
 - б) прямой метод с помощью пикнометров по ГОСТ 17310;
 - в) прямой метод с помощью потокового плотномера.
- 9.6.2 При применении косвенного метода плотность газа при стандартных условиях рекомендуется рассчитывать по формуле

$$\rho_{\rm c} = \frac{M \cdot p_{\rm c}}{R \cdot T_{\rm c} \cdot Z_{\rm c}}.\tag{9.8}$$

Молярную массу многокомпонентного газа вычисляют по формуле

$$M = \sum_{i=1}^{N} (x_i \cdot M_i), \qquad (9.9)$$

где M_i — молярная масса i-го компонента, кг · моль $^{-1}$;

N — число компонентов газа.

Компонентный состав газа измеряют с помощью потокового хроматографа, либо лабораторного хроматографа в химико-аналитических лабораториях.

Потоковые хроматографы рекомендуется применять при невозможности обеспечения необходимой частоты определения компонентного состава газа в химико-аналитических лабораториях.

Необходимое число проб за отчетный период времени определяют в соответствии с ГОСТ 31370.

При выборе хроматографа следует учитывать, что неопределенность измерения молярной или объемной доли компонентов газа должна обеспечивать выполнение требований к допускаемой неопределенности определения расхода и количества газа для соответствующего уровня точности измерений (см. 9.2.1.3).

При определении места отбора проб руководствуются требованиями ГОСТ 31370 и следующими дополнительными рекомендациями:

- расстояния между ПЗ и любым ближайшим местным сопротивлением должны быть не менее 2D при размещении ПЗ перед местным сопротивлением и 5D при размещении ПЗ после местного сопротивления;
- если ПЗ размещен после сопла, то рекомендуется точку отбора пробы располагать на расстоянии не менее 3D от сопла.

Место отбора проб газа должно быть оборудовано в соответствии с требованиями ГОСТ 31370.

Измерение компонентного состава должно осуществляться с применением аттестованных методик измерений.

9.6.3 При определении плотности газа прямым методом (с помощью пикнометров по ГОСТ 17310 или потокового плотномера) изменение плотности газа при стандартных условиях отслеживают, создавая поток газа через пикнометры или чувствительный элемент плотномера путем ответвления части общего потока. Поток газа, проходящий через чувствительный элемент плотномера, должен быть достаточным для обеспечения реакции на изменения состава газа. Проба газа должна быть чистой, не содержать частиц и быть однофазной.

С целью исключения попадания механических примесей и конденсата в камеры потоковых плотномеров при их подключении к ИТ необходимо в соединительных линиях использовать фильтры и отстойные камеры. При определении места отбора проб для потокового плотномера руководствуются требованиями, установленными в 9.6.2 к месту отбора проб для хроматографов.

Метод измерения плотности газа при стандартных условиях с использованием потокового плотномера или расчета по компонентному составу, измеренному потоковым хроматографом, рекомендуется применять при невозможности обеспечения необходимой частоты определения компонентного состава газа в химико-аналитических лабораториях.

9.7 Средства измерений и методы определения плотности газа при рабочих условиях

9.7.1 Для определения плотности газа ρ_1 допускается применение потоковых плотномеров любого типа, если допускаемая относительная расширенная неопределенность измерений плотности газа при рабочих условиях, установленная в соответствии с требованиями 9.2.1.3 для соответствующего уровня точности, не менее значения, рассчитанного по формуле

$$U'_{p_1} = U'_{p_n} + 100 \cdot \left| 1 - \frac{1 - (p_1 - p_\Pi) / p_1}{1 - (T_1 - T_\Pi) / T_1} \right|, \tag{9.10}$$

где $U_{
ho_0}^\prime$ — относительная расширенная неопределенность измерений плотности газа в месте установки чувствительного элемента плотномера (показания плотномера);

 T_1 , p_1 — температура, K, и абсолютное давление газа перед соплом, Па, соответственно; T_n , p_n — температура, K, и абсолютное давление газа в месте установки чувствительного элемента плотномера, Па, соответственно.

При установке плотномера необходимо обеспечить следующее:

- проба газа должна быть чистой, однофазной и не содержать каких-либо частиц;

- поток газа, проходящий через чувствительный элемент плотномера, должен быть достаточным для обеспечения реакции на изменения состава, давления и температуры;
- устройства, применяемые на входе плотномеров для очистки проб от примесей (фильтры и осушители), не должны изменять основной состав измеряемого газа.

Плотномер должен устанавливаться выше по потоку от сопла, отверстия для отбора давления и ПТ.

Чувствительный элемент плотномера или ПЗ может быть установлен непосредственно в ИТ либо в байпасную линию для отбора проб. Допускается осуществлять подачу газа в плотномер, смонтированный в гильзе, установленной в ИТ. В этом случае точку отбора пробы располагают в области высокого давления газа, а точку возврата пробы — в области низкого давления газа.

Для измерения температуры и давления газа в месте размещения чувствительного элемента плотномера используют его штатные СИ давления и температуры.

9.7.2 Плотность газа при рабочих условиях может быть рассчитана для однокомпонентных газов по значениям температуры и давления и дополнительно по составу — для многокомпонентных газов. Неопределенность метода расчета должна быть не более неопределенности измерений с помощью плотномера.

9.8 Средства обработки результатов измерений

- 9.8.1 Программное обеспечение средств обработки результатов измерений должно реализовывать обработку измерительной информации по соответствующим формулам, приведенным в разделе 6.
- 9.8.2 Средство обработки результатов измерений должно иметь дисплей, у которого табло для отображения числовой информации содержит не менее восьми знакомест, и обеспечивать возможность отображения на дисплее результатов измерений:
 - абсолютного (избыточного) давления газа;
 - температуры газа;
- расхода и количества газа (массы, объема газа при рабочих условиях или объема газа, приведенного к стандартным условиям), прошедшего через сопло.
- 9.8.3 На дисплей могут выдаваться промежуточные значения вычислений и данные архива, например, условно-постоянные величины, константы, зарегистрированные нештатные ситуации и т. п.
- 9.8.4 Средства обработки результатов измерений должны обеспечивать хранение результатов измерений и предусматривать возможность ведения архивов: результатов вычислений осредненных параметров газа; регистрации нештатных ситуаций; изменений параметров конфигурирования и корректировки условно постоянных величин.
- 9.8.5 Средства обработки результатов измерений должны быть защищены от несанкционированного вмешательства, которое может повлиять на результаты измерений расхода и объема газа, а также на процесс формирования и сохранения архивов.
- 9.8.6 Средство обработки результатов измерений должно обеспечивать возможность распечатки архивной и итоговой информации на принтере непосредственно или через устройство приема/передачи информации (переносного устройства сбора информации, компьютера и т. п.).
- 9.8.7 Память средства обработки результатов измерений, предназначенная для хранения архивов и параметров его конфигурирования, должна быть энергонезависимой.

9.9 Требования к дополнительным средствам измерений

9.9.1 Средства измерений перепада давления

9.9.1.1 СИ перепада давления применяют:

- для контроля технического состояния УОГ (целостности фильтрующего элемента, степени его засорения), а также для контроля режима его эксплуатации, при котором обеспечивается очистка газа без уноса твердых частиц и фильтрующего материала;
 - для проверки чистоты внутренней поверхности элементов ФП.

Для контроля технического состояния УОГ и контроля над режимом его эксплуатации применяют стационарно установленные СИ перепада давления или индикаторы.

Для проверки чистоты внутренней поверхности элементов ФП применяют стационарно установленные или переносные СИ перепада давления, устанавливаемые на время контроля технического состояния ФП.

9.9.1.2 Относительная расширенная неопределенность измерений (при коэффициенте охвата 2) перепада давления для проверки технического состояния УОГ и ФП (не оснащенного индикатором) не должна превышать 5 % при максимальном рабочем расходе газа.

- 9.9.1.3 Если конструкция УОГ и ФП не предусматривает отверстий для измерений перепада давления и в их эксплуатационной документации отсутствует информация о месте их расположения, то отборы давления располагают на расстоянии от 1D до 3D до и после этих устройств.
- 9.9.1.4 Схема обвязки СИ перепада давления, применяемых на УОГ и ФП (не оснащенного индикатором), должна предусматривать возможность продувки импульсных трубок и обнуления перепада давления.

9.9.2 Средства измерений для контроля влажности газа и условий применения основных средств измерений

9.9.2.1 Контроль влажности газа осуществляют в следующих случаях:

- температура газа близка к температуре точек росы (относительная влажность близка к единице);
- необходимость учета влияния влажности газа на теплофизические характеристики и физико-химические параметры газа.

Для контроля влажности газа применяют стационарные или переносные СИ, обеспечивающие измерение относительной влажности или температуры точки росы по воде, а для углеводородсодержащих смесей газов — температуры точек росы по воде и углеводородам.

При выборе СИ влажности учитывают тип, температуру и давление газа, требования к диапазону измерений и к исполнению по взрывозащите.

Рекомендуется выбирать СИ влажности газа, которые обеспечивают измерения температуры точек росы с абсолютной погрешностью не более 1 °C.

9.9.2.2 Для контроля за условиями применения основных СИ и средств обработки результатов измерений могут применяться показывающие или регистрирующие СИ температуры окружающего воздуха, атмосферного давления и влажности воздуха. Данные СИ могут быть любого принципа действия. Рекомендуется для измерений температуры воздуха применение СИ, предел допускаемой абсолютной погрешности которых не превышает 0,5 °C, для измерений абсолютного давления — 0,5 кПа и относительной влажности воздуха — 5 %.

9.10 Требования к выбору и монтажу дополнительных устройств

9.10.1 Для очистки газа могут быть использованы УОГ следующих типов:

- пылеуловители;
- фильтры-сепараторы;
- фильтры.

Допускается совместное использование УОГ разных типов.

Для защиты критического сопла от содержащихся в газе смолистых веществ, пыли, песка, металлической окалины, ржавчины и других твердых частиц следует применять газовые фильтры, а при наличии в потоке газа наряду с механическими примесями капельной жидкости — фильтры-сепараторы.

При выборе фильтров и фильтров-сепараторов необходимо убедиться, что используемый в нем фильтрующий материал химически инертен к газу и не будет разрушаться под воздействием потока газа.

Для обеспечения достаточной степени очистки газа без уноса частиц и фильтрующего материала выбор типоразмера и вида фильтра осуществляют с учетом необходимой пропускной способности фильтра и допускаемого перепада давления на нем.

9.10.2 В качестве ФП предпочтительно применение перфорированных дисковых ФП.

Геометрические характеристики ФП рассчитывают по измеренному значению внутреннего диаметра участка ИТ, расположенного перед критическим соплом.

Условные внутренние диаметры участков ИТ до и после ФП должны быть равными.

Конструкция ФП должна предусматривать возможность их демонтажа с целью проведения периодических осмотров проточной части и ее очистки.

Осмотр технического состояния ФП может быть осуществлен с помощью эндоскопа. Допускается контроль технического состояния ФП осуществлять путем контроля перепада давления на них.

9.10.3 В случаях недопустимости прерывания потока газа при проведении работ, связанных с отключением или демонтажем критического сопла при пусконаладочных работах, при отсутствии резервной ИТ, трубопровод оборудуют байпасной линией.

10 Методы расчета газодинамических параметров потока

10.1 Расчет давления и температуры торможения

В случае установки критического сопла в соответствии с требованиями 9.3.3.2 значения давления и температуры торможения рассчитывают по формулам:

$$\rho_0 = \rho_1 \cdot \left[1 + \frac{1}{2} \cdot (\kappa - 1) \cdot M a_1^2 \right]^{\kappa (\kappa - 1)}, \tag{10.1}$$

$$T_0 = T_{m1} \cdot \left[1 + \frac{1}{2} \cdot (\kappa - 1) \cdot Ma_1^2 \cdot (1 - R_f) \right],$$
 (10.2)

$$\textit{Ma}_{1} = \frac{1}{\beta^{2}} \cdot \left(\frac{2}{\kappa + 1}\right)^{(\kappa - 3)/(2 \cdot \kappa - 2)} \left[1 - \sqrt{1 - 2 \cdot \beta^{4} \cdot \left(\frac{2}{\kappa + 1}\right)^{2/(\kappa - 1)}}\right], \tag{10.3}$$

$$R_f = \frac{T_{m1} - T_1}{T_0 - T_1},\tag{10.4}$$

где T_{m1} — измеренная температура газа на входе в сопло, К;

 R_f — коэффициент восстановления.

Примечание — Формулы (10.2)—(10.4) приведены в соответствии с [6].

При отсутствии информации о значении параметра R_f рекомендуется принять его равным 0,75.

Если перед соплом имеется большая емкость (см. 9.3.3.3), то число Ma_1 принимается равным нулю, а значения давления и температуры торможения — равными статическим значениям давления и температуры.

10.2 Методы расчета функции критического расхода и критического потока массы

Значения функции критического расхода C_* для различных газов приведены в приложении Б. Относительная стандартная неопределенность значений C_* , приведенных в приложении Б, составляет 0,05 %.

В приложении В приведен метод расчета критического потока массы $C_{\rm kp}$ для природного газа.

Относительная стандартная неопределенность значений $C_{\rm kp}$, рассчитанных в соответствии с приложением B, составляет 0,05 %.

В приложении Γ приведена методика расчета значений критического потока массы $C_{\rm kp}$ и функции критического расхода C_* газов, уравнение состояния которых представлено в виде Z = Z(p; T) или Z = Z(p; T).

Относительная стандартная неопределенность значений $C_{\rm kp}$ и $C_{\rm *}$, рассчитанных в соответствии с приложением Γ , составляет 0,025 %.

11 Подготовка к выполнению измерений

- 11.1 Перед началом измерений проверяют соответствие условий выполнения измерений требованиям раздела 8.
- 11.2 Основные и дополнительные СИ, средства обработки результатов измерений, дополнительные и вспомогательные устройства приводят в рабочее состояние в соответствии с их эксплуатационной документацией.
 - 11.3 Устанавливают регламент и критерии корректировки условно-постоянных величин.
- В случае применения потокового хроматографа должны быть установлены алгоритмы усреднения данных хроматографа с контролем достоверности данных.

Периодичность отбора проб и корректировки условно-постоянных значений компонентного состава и плотности газа при стандартных условиях может быть рассчитана согласно ГОСТ 31370.

11.4 В память средств обработки результатов измерений вводят необходимую информацию о параметрах и характеристиках СИ, ИТ, а также значения условно-постоянных величин в зависимости от применяемой формулы (см. раздел 6).

- 11.5 Для автоматической компенсации систематических составляющих погрешности основных СИ в память средства обработки результатов измерений могут вводиться поправочные коэффициенты или кривая погрешности, или градуировочная характеристика СИ.
- 11.6 После заполнения ИТ газом проверяют герметичность всех узлов и элементов оборудования, находящихся под давлением, фланцевых и резьбовых соединений, запорной арматуры, соединительных трубок. Места утечек определяют путем обмыливания поверхностей или с помощью течеискателя.

Обнаруженные утечки должны быть устранены на разгруженном по давлению оборудовании.

11.7 Контролируют отсутствие предупреждений и сигнализации о сбоях и коммуникационных ошибках на показывающем устройстве.

12 Порядок выполнения измерений и обработка результатов измерений

12.1 Расчет расхода газа выполняют в автоматическом режиме с помощью средства обработки результатов измерений.

Процедура расчета расхода газа зависит от типа газа, применяемых формул (см. раздел 6) и состава применяемых СИ.

- 12.2 Расчет расхода газа в общем случае выполняют в последовательности:
- а) с помощью средства обработки результатов измерений проводят регистрацию и обработку показаний СИ:
 - давления (см. 9.4) и температуры газа (см. 9.5);
 - состава газа (см. 9.6.2), если газ является многокомпонентной средой;
- плотности газа при стандартных условиях, если для ее определения предусмотрен пикнометрический метод по ГОСТ 17310 или метод измерений с помощью потокового плотномера (см. 9.6);
- плотности газа при условиях на входе в сопло, если для ее определения предусмотрен потоковый плотномер (см. 9.7) и расход газа определяют по формуле (6.7);
- б) по измеренным значениям температуры и давления газа, а также, если газ является многокомпонентной средой, компонентного состава газа, вычисляют показатель адиабаты газа (см. 6.2);
- в) в случае установки критического сопла в соответствии с требованиями 9.3.3.2 по формуле (9.1) рассчитывают значение β;
- г) если установка критического сопла выполнена в соответствии с требованиями 9.3.3.2, в соответствии с разделом 10 рассчитывают значения давления и температуры торможения. Если перед соплом имеется большая емкость (см. 9.3.3.3), то значения давления и температуры торможения принимают равными их статическим значениям;
- д) в соответствии с 9.3.3.6 рассчитывают значение C_T . Если сопло не калибровалось с определением величины C_d , то рассчитывают площадь поперечного сечения горловины сопла A_{nt} при температуре газа T_{nt} [см. формулу (9.3)];
- е) рассчитывают неизмеряемые физико-химические параметры, теплофизические характеристики газа и потока, перечень которых в зависимости от применяемой формулы расчета расхода газа (см. раздел 6) приведен в таблице 6;

Таблица 6

		Метод расчета для:			
Наименование параметра	Номер формулы для расчета расхода	однокомпонентного газа	многокомпонентного газа		
Молярная масса	(6.1); (6.5); (6.8)	См. 6.2	Формула (9.9)		
Фактор сжимаемости при стандартных условиях	(6.2); (6.6); (6.9)	См. 6.2	См. 6.2		
Фактор сжимаемости при рабочих условиях	(6.5); (6.6)	См. 6.2	См. 6.2		
Плотность газа при стандартных условиях	(6.2); (6.6); (6.8); (6.9); (6.10)	См. 6.2	См. 6.2		
Плотность газа при давлении и температуре газа на входе в сопло	(6.7)	См. 6.2	См. 6.2		

Окончание таблицы 6

	Haven then way a page necessary	Метод расчета для:			
Наименование параметра	Номер формулы для расчета расхода	однокомпонентного газа	многокомпонентного газа		
Функция критического расхода	(6.1); (6.2); (6.5); (6.6); (6.8); (6.9)	Приложение Б Приложение Г	Приложение Г		
Критический поток массы	(6.3); (6.7); (6.10)	Приложение Г	Приложение В Приложение Г		

- ж) рассчитывают динамическую вязкость газа в условиях его торможения на входе в сопло в соответствии с 6.2;
- и) по соответствующей формуле (см. раздел 6) рассчитывают расход газа при $C_{d'}$ = 1. Если критическое сопло калибровалось путем определения величины $C_{d'}$, то расход газа рассчитывают при наибольшем его значении:
 - к) рассчитывают по формуле (3.3) первое приближение числа Rent
- л) рассчитывают по формуле (9.6) первое приближение значения коэффициента расхода $C_{d'}$. Если критическое сопло калибровалось путем определения величины $C_{d'}$, то рассчитывают его первое приближение, используя функцию калибровочной зависимости от числа $Re_{nt'}$.
- м) по соответствующей формуле (см. раздел 6) рассчитывают расход газа при первом приближении значения коэффициента расхода $C_{d'}$ или $C_{d'}$, если критическое сопло калибровалось путем определения величины $C_{d'}$;
- н) рассчитывают по формуле (3.3) второе приближение числа Re_{nt} и рассчитывают по формуле (9.6) второе приближение значения коэффициента расхода $C_{d'}$. Если критическое сопло калибровалось путем определения величины $C_{d'}$, то рассчитывают его второе приближение, используя функцию калибровочной зависимости от числа $Re_{nt'}$.
 - п) процесс уточнения значений Re_{nt} проводят до выполнения условия:

$$\frac{\left(\text{Re}_{nt}\right)_{n} - \left(\text{Re}_{nt}\right)_{n-1}}{\left(\text{Re}_{nt}\right)_{n}} \le 0,005,$$
(12.1)

где $(Re_{nt})_n$ — n-е приближение числа Re_{nt}

 $(Re_{nt})_{n-1}$ — (n-1)-е приближение числа Re_{nt}

Найденное значение (Re_{nt})_n принимают за искомое значение Re_{nt} ;

р) по соответствующей формуле (см. раздел 6) рассчитывают расход газа, используя найденное значение Re_{nt} для вычисления коэффициента расхода $C_{d'}$ или C_{d} , если критическое сопло калибровалось путем определения величины $C_{d'}$.

Рассчитанное значение расхода принимают за его определяемое значение.

12.3 Массу газа, объем газа при рабочих условиях и объем газа, приведенный к стандартным условиям, определяют в автоматическом режиме с помощью средства обработки результатов измерений путем численного интегрирования соответствующей функции расхода газа от времени по результатам циклического вычисления и измерения необходимых физико-химических параметров, теплофизических характеристик газа и потока.

Алгоритм расчета на одном цикле вычислений аналогичен процедуре, изложенной в 12.2.

13 Оценка неопределенности результата измерений

13.1 Общие положения

13.1.1 Относительную расширенную неопределенность результатов измерений оценивают с целью подтверждения правильности выбора СИ и соблюдения требований к точности измерений.

Относительная расширенная неопределенность измерений при любых сочетаниях измеряемых параметров потока и среды не должна превышать относительную расширенную неопределенность измерений, установленную в разделе 5, для соответствующего уровня точности измерений.

13.1.2 В настоящем разделе приведена методика оценки относительной суммарной стандартной и относительной расширенной неопределенностей результатов измерений на основе ГОСТ Р 54500.3.

13.1.3 Относительную расширенную неопределенность (при коэффициенте охвата 2) результата измерений расхода газа рассчитывают по формуле

$$U'_{a} = 2 \cdot u'_{a}, \tag{13.1}$$

где u'_q — относительная суммарная стандартная неопределенность результата измерений расхода

Относительная расширенная неопределенность должна быть представлена двумя значащими

13.1.4 Относительную стандартную неопределенность измерений величины у рассчитывают по формулам:

- при использовании измерительного канала, состоящего из цепи последовательно соединенных СИ

$$u'_{y} = \frac{y_{1B} - y_{1H}}{y_{1}} \left\{ \sum_{i=1}^{l} \left[\frac{y_{i}}{y_{iB} - y_{iH}} \cdot u'_{yi} \right]^{2} \right\}^{0.5},$$
 (13.2)

$$u'_{yi} = \left(u'_{0yi}^2 + \sum_{j=1}^{n_i} u'_{D_jyij}^2\right)^{0.5},$$
(13.3)

где y_i — значение входной величины i-го СИ измерительного канала;

 $y_{i_{\rm B}}$ — верхний предел измерений *i-*го СИ измерительного канала;

 $y_{i ext{H}}$ — нижний предел измерений $i ext{-ro}$ СИ измерительного канала;

 u'_{ovi} — основная составляющая относительной стандартной неопределенности результата измерений величины y_i по входному сигналу, %;

измерений величины y_i от j-й влияющей величины по входному сигналу;

- при использовании измерительного канала с нормированными метрологическими характеристиками

$$u_y' = \left(u_{0y}'^2 + \sum_{j=1}^n u_{\mu yj}'^2\right)^{0,5},\tag{13.4}$$

где u'_{ov} — основная составляющая относительной стандартной неопределенности результата измерений величины y по входному сигналу, %;

 $u'_{\,{
m D}\!\!{
m I}\!\!{
m J}}$ — дополнительная составляющая относительной стандартной неопределенности результата измерений величины y от j-й влияющей величины по входному сигналу, %.

Если погрешность измерительного преобразователя или погрешность преобразования входного сигнала вычислительного устройства (корректора) нормирована по выходу, то следует рассчитать их погрешность по входному сигналу по формуле

$$u'_{\dot{y}} = \frac{r_i \cdot (y_{iB} - y_{iH})}{y_i \cdot (r_{iB} - r_{iH})} \cdot \left(u'_{ori}^2 + \sum_{j=1}^{n_i} u'_{drij}^2 \right)^{0.5},$$
(13.5)

где r_i — значение измеряемой величины i-го преобразователя измерительного канала по выходу;

 n_i — число влияющих величин на неопределенность результата измерений величины r_i ; $u'_{\text{or}i}$ — основная составляющая относительной стандартной неопределенности результата измерений величины r_i , %;

 u'_{nrii} — дополнительная составляющая относительной стандартной неопределенности результата измерений величины r_i от j-й влияющей величины, %.

13.1.5 Если для измерительного канала или компонента измерительного канала нормирована основная погрешность, то значения u'_{oy} и u'_{oyi} рассчитывают по формулам:

- при известной основной абсолютной погрешности:

$$u'_{\text{o}y} = 50 \cdot \frac{\Delta_y}{y},\tag{13.6}$$

$$u'_{oyi} = 50 \cdot \frac{\Delta_{y_i}}{y_i},\tag{13.7}$$

где $\Delta_{_{V}}$ — абсолютная погрешность измерительного канала;

 $\Delta_{\it vi}$ — абсолютная погрешность $\it i$ -го компонента измерительного канала;

- при известной основной относительной погрешности:

$$u'_{oy} = 0.5 \cdot \delta_{oy}, \tag{13.8}$$

$$u'_{\text{o}\gamma i} = 0.5 \cdot \delta_{\text{o}\gamma i},\tag{13.9}$$

где δ_{ov} — основная относительная погрешность измерительного канала;

 $\delta_{{
m o}yi}$ — основная относительная погрешность i-го компонента измерительного канала;

- при известной приведенной основной погрешности:

$$u'_{\text{o}y} = 0.5 \cdot \gamma_{\text{o}} \cdot \frac{y_{\text{B}} - y_{\text{H}}}{y},\tag{13.10}$$

$$u'_{0yi} = 0.5 \cdot \gamma_{0i} \cdot \frac{y_{iB} - y_{iH}}{y_i},$$
 (13.11)

где γ_0 — приведенная основная погрешность измерительного канала;

 γ_{oi} — приведенная основная погрешность *i*-го компонента измерительного канала.

- 13.1.6 Дополнительную составляющую относительной стандартной неопределенности результата измерений величины *y*, вызванную внешней влияющей величиной, рассчитывают по следующим формулам:
- при нормировании пределов допускаемых значений погрешности СИ при наибольших отклонениях внешней влияющей величины от нормального значения:

$$u'_{\text{A}y} = \frac{1}{\sqrt{3}} \cdot \delta_{\text{A}},\tag{13.12}$$

$$u'_{AY} = \frac{100}{\sqrt{3}} \cdot \frac{\Delta_A}{y},\tag{13.13}$$

$$u'_{AY} = \frac{1}{\sqrt{3}} \cdot \gamma_A \cdot \frac{y_B - y_H}{y},\tag{13.14}$$

где $\delta_{\rm д}$, $\Delta_{\rm g}$, $\gamma_{\rm g}$ — относительная, абсолютная и приведенная дополнительные погрешности, соответственно;

- при нормировании пределов допускаемых значений коэффициентов влияния: если заданы значения влияющих величин:

$$u'_{\text{Д}y} = \frac{1}{\sqrt{3}} \cdot \delta_{\text{ПД}} \cdot \frac{\Delta x}{\Delta x_{\text{H}}},\tag{13.15}$$

$$u'_{\text{DY}} = \frac{100}{\sqrt{3}} \cdot \frac{\Delta_{\text{DQ}}}{y} \cdot \frac{\Delta x}{\Delta x_{\text{H}}},\tag{13.16}$$

$$u'_{\rm Jy} = \frac{1}{\sqrt{3}} \cdot \gamma_{\rm nd} \cdot \frac{\Delta x}{\Delta x_{\rm H}} \cdot \frac{y_{\rm B} - y_{\rm H}}{y},\tag{13.17}$$

где $\delta_{\rm ng}$ — предел допускаемых значений дополнительной относительной погрешности при отклонении влияющей величины на $\Delta x_{\rm H}$;

 $\Delta_{\sf пд}$ — предел допускаемых значений дополнительной абсолютной погрешности при отклонении влияющей величины на $\Delta x_{\sf u}$;

 $\gamma_{\rm ng}$ — предел допускаемых значений дополнительной приведенной погрешности при отклонении влияющей величины на $\Delta x_{\rm H}$, нормированный от диапазона измерений;

 Δx — отклонение заданного значения внешней влияющей величины от нормального значения.

Если заданы наименьшие и наибольшие значения влияющих величин, соответствующие реальным условиям эксплуатации СИ:

$$u'_{\text{Aly}} = \frac{1}{\sqrt{3}} \cdot \delta_{\text{nA}} \cdot \left[\left(\frac{\Delta \overline{x}}{\Delta x_{\text{H}}} \right)^2 + 0.25 \cdot \left(\frac{x_{\text{max}} - x_{\text{min}}}{\Delta x_{\text{H}}} \right)^2 \right]^{0.5}, \tag{13.18}$$

$$u'_{\text{Ay}} = \frac{100}{\sqrt{3}} \cdot \frac{\Delta_{\text{n}\text{A}}}{y} \cdot \left[\left(\frac{\Delta \overline{x}}{\Delta x_{\text{H}}} \right)^{2} + 0.25 \cdot \left(\frac{x_{\text{max}} - x_{\text{min}}}{\Delta x_{\text{H}}} \right)^{2} \right]^{0.5}, \tag{13.19}$$

$$u'_{\text{Д}y} = \frac{1}{\sqrt{3}} \cdot \gamma_{\text{ПД}} \cdot \left[\left(\frac{\Delta \overline{x}}{\Delta x_{\text{H}}} \right)^{2} + 0.25 \cdot \left(\frac{x_{\text{max}} - x_{\text{min}}}{\Delta x_{\text{H}}} \right)^{2} \right]^{0.5} \cdot \frac{y_{\text{B}} - y_{\text{H}}}{y}, \tag{13.20}$$

где $\Delta \overline{x}$ — отклонение среднего значения внешней влияющей величины от нормального значения;

 $x_{
m max}, x_{
m min}$ — наибольшее и наименьшее значения внешней влияющей величины, соответствующие реальным условиям эксплуатации СИ.

13.2 Формулы расчета относительной суммарной стандартной неопределенности измерений

- 13.2.1 Относительную суммарную стандартную неопределенность измерений массового расхода газа, объемного расхода при статических значениях давления и температуры газа на входе в сопло, объемного расхода, приведенного к стандартным условиям, рассчитывают по формулам:
- при расчете расхода по формуле (6.1) или формуле (6.2) при расчетном методе определения плотности газа при стандартных условиях

$$u'_{q_{m}} = \left(u'_{A_{nt}}^{2} + u'_{C_{d'}}^{2} + u'_{C_{*}}^{2} + \vartheta_{p}^{2} \cdot u'_{p}^{2} + \vartheta_{T}^{2} \cdot u'_{T}^{2} + \sum_{i=1}^{N} \left[\vartheta_{x_{i}} \cdot u'_{x_{i}}\right]^{2}\right)^{0.5},$$
(13.21)

- при расчете расхода по формуле (6.2) и измерении плотности газа при стандартных условиях

$$u'_{q_{m}} = \left(u'_{A_{nt}}^{2} + u'_{C_{d'}}^{2} + u'_{C_{*}}^{2} + \vartheta_{p}^{2} \cdot u'_{p}^{2} + \vartheta_{T}^{2} \cdot u'_{T}^{2} + 0,25 \cdot u'_{\rho_{c}}^{2} + 0,25 \cdot u'_{Z_{c}}^{2} + \sum_{i=1}^{N} \left[\vartheta_{X_{i}} \cdot u'_{X_{i}}\right]^{2}\right)^{0.5}, \quad (13.22)$$

- при расчете расхода по формуле (6.3)

$$u'_{q_{m}} = \left(u'_{A_{nt}}^{2} + u'_{C_{d'}}^{2} + u'_{C_{sp}}^{2} + \vartheta_{p}^{2} \cdot u'_{p}^{2} + \vartheta_{T}^{2} \cdot u'_{T}^{2} + \sum_{i=1}^{N} \left[\vartheta_{x_{i}} \cdot u'_{x_{i}}\right]^{2}\right)^{0.5},$$
(13.23)

- при расчете расхода по формуле (6.5) и формуле (6.6) при расчетном методе определения плотности газа при стандартных условиях

$$u'_{q_{v}} = \left(u'_{A_{nt}}^{2} + u'_{C_{d'}}^{2} + u'_{C_{*}}^{2} + \vartheta_{p}^{2} \cdot u'_{p}^{2} + \vartheta_{T}^{2} \cdot u'_{T}^{2} + u'_{Z}^{2} + \sum_{i=1}^{N} \left[\vartheta_{x_{i}} \cdot u'_{x_{i}}\right]^{2}\right)^{0.5},$$
(13.24)

- при расчете расхода по формуле (6.6) и измерении плотности газа при стандартных условиях

$$u'_{q_{v}} = \left(u'_{A_{nt}}^{2} + u'_{C_{d'}}^{2} + u'_{C_{+}}^{2} + \vartheta_{p}^{2} \cdot u'_{p}^{2} + \vartheta_{T}^{2} \cdot u'_{T}^{2} + 0,25 \cdot u'_{\rho_{c}}^{2} + 0,25 \cdot u'_{Z_{c}}^{2} + \sum_{i=1}^{N} \left[\vartheta_{X_{i}} \cdot u'_{X_{i}}\right]^{2}\right)^{0,5}, \quad (13.25)$$

- при расчете расхода по формуле (6.7)

$$u_{q_{v}}' = \left(u_{A_{nt}}'^{2} + u_{C_{d'}}'^{2} + u_{C_{kp}}'^{2} + \vartheta_{\rho}^{2} \cdot u_{\rho}'^{2} + u_{\rho_{1}}'^{2} + \vartheta_{T}^{2} \cdot u_{T}'^{2} + \sum_{i=1}^{N} \left[\vartheta_{x_{i}} \cdot u_{x_{i}}'\right]^{2}\right)^{0.5}.$$
 (13.26)

П р и м е ч а н и е — Если плотность газа рассчитывалась, то значение u_{ρ_1}' следует заменить на значение величины $u_{\rho_1}^*$.

- при расчете расхода по формуле (6.8) и формуле (6.9) при расчетном методе определения плотности газа при стандартных условиях

$$u_{q_{c}}' = \left(u_{A_{nt}}'^{2} + u_{C_{a'}}'^{2} + u_{C_{c}}'^{2} + \vartheta_{p}^{2} \cdot u_{p}'^{2} + \vartheta_{T}^{2} \cdot u_{T}'^{2} + u_{\rho_{c}}'^{2} + \sum_{i=1}^{N} \left[\vartheta_{x_{i}} \cdot u_{x_{i}}'\right]^{2}\right)^{0.5},$$
(13.27)

П р и м е ч а н и е — Если плотность газа при стандартных условиях рассчитывалась, то значение u'_{pc} следует заменить на значение величины u'_{pc} .

- при расчете расхода по формуле (6.9) и измерении плотности газа при стандартных условиях

$$u'_{q_{c}} = \left(u'_{A_{nt}}^{2} + u'_{C_{d'}}^{2} + u'_{C_{*}}^{2} + \vartheta_{\rho}^{2} \cdot u'_{\rho}^{2} + \vartheta_{T}^{2} \cdot u'_{T}^{2} + 0,25 \cdot u'_{\rho_{c}}^{2} + 0,25 \cdot u'_{Z_{c}}^{2} + \sum_{i=1}^{N} \left[\vartheta_{X_{i}} \cdot u'_{X_{i}}\right]^{2}\right)^{0,5}, \quad (13.28)$$

- при расчете расхода по формуле (6.10)

$$u'_{q_{v}} = \left(u'_{A_{nt}}^{2} + u'_{C_{d'}}^{2} + u'_{C_{kp}}^{2} + \vartheta_{p}^{2} \cdot u'_{p}^{2} + \vartheta_{T}^{2} \cdot u'_{T}^{2} + u'_{\rho_{c}}^{2} + \sum_{i=1}^{N} \left[\vartheta_{X_{i}} \cdot u'_{X_{i}}\right]^{2}\right)^{0.5},$$
(13.29)

П р и м е ч а н и е — Если плотность газа при стандартных условиях рассчитывалась, то значение u'_{ρ_c} следует заменить на значение величины u'_{ρ_c} .

где $u'_{A_{nt}}$ — относительная стандартная неопределенность измерений площади поперечного сечения горловины сопла, %;

 $u'_{C_{c'}}$ — относительная стандартная неопределенность коэффициента расхода сопла, %;

 u_{C*}^{r} — методическая относительная стандартная неопределенность расчета функции критического расхода газа, %;

 $u'_{\mathsf{C}_{\mathsf{KP}}}$ — методическая относительная стандартная неопределенность расчета критического потока массы, %:

 $\vartheta_{p},\ \vartheta_{T}$ — относительные коэффициенты чувствительности расхода газа к изменению давления и температуры, соответственно;

 u_p', u_T' — относительная стандартная неопределенность измерений абсолютного давления и температуры газа, соответственно, %;

 $u_{
ho_c}', u_{
ho_c}^*$ — относительная стандартная неопределенность измерений и методическая относительная стандартная неопределенность расчета плотности газа при стандартных условиях, соответственно. %:

 $u_{\rho_1}', u_{\rho_1}'^*$ — относительная стандартная неопределенность измерений и методическая относительная стандартная неопределенность расчета плотности газа при условиях на входе в сопло, соответственно, %;

 u'_{Z_c} , u'_Z — методическая относительная стандартная неопределенность расчета фактора сжимаемости при стандартных условиях и условиях на входе в сопло, соответственно, %;

 ϑ_{x_i} — относительный коэффициент чувствительности расхода газа к изменению мольной доли *i*-го компонента газа:

 u'_{x_i} — относительная стандартная неопределенность измерений мольной доли *i*-го компонента газа, %.

13.2.2 Если при проведении калибровки критического сопла определялось C_d , то в формулах (13.21)—(13.29) значение величины ($u_{A_{nt}}^{\prime 2}+u_{C_d'}^{\prime 2}$) заменяют квадратом относительной стандартной неопределенностью калибровки $u_{C_d'}^{\prime 2}$.

13.2.3 Составляющие суммарной относительной стандартной неопределенности результатов измерений расхода газа, обусловленные определением компонентного газа, входящие в формулы (13.21)—(13.29), учитывают только для многокомпонентных газов.

13.3 Формулы расчета составляющих относительной суммарной стандартной неопределенности измерений

13.3.1 Значение величины $u'_{A_{nt}}$ рассчитывают по формуле

$$u'_{A_{nt}} = \frac{2 \cdot \delta_d}{\sqrt{3}},\tag{13.30}$$

где δ_d — относительная погрешность СИ внутреннего диаметра горловины сопла, %.

13.3.2 Значение величины $u'_{C_{d'}}$ определяют:

- для стандартных критических сопел в соответствии с 9.3.4.2;
- для индивидуально калиброванных сопел в соответствии с их методикой калибровки.
- 13.3.3 Методическую относительную стандартную неопределенность расчета функции критического расхода газа u'_{C^*} и критического потока массы $u'_{C_{\rm KD}}$ определяют в соответствии с разделом 10.

13.3.4 Относительные коэффициенты чувствительности расхода газа к изменению давления и температуры и состава газа $(\vartheta_{\mathcal{D}},\,\vartheta_{\mathcal{T}})$ рассчитывают по общей формуле

$$\vartheta_{y} = f_{y}' \cdot \frac{y}{q},\tag{13.31}$$

где f_y' — частная производная функции расхода по y; y — значение величины, для которой определяют коэффициент чувствительности газа;

д — значение расхода.

Если дифференцирование функции расхода газа по у затруднено, то значение частной производной f_{ν}' рассчитывают по формуле

$$f_y' = \frac{f(y + \Delta y) - f(y)}{\Delta y},\tag{13.32}$$

где Δy — приращение величины y.

Значение приращения Δy рекомендуется выбирать не более абсолютной неопределенности измерений величины у.

Коэффициенты чувствительности ϑ_{x_i} рассчитывают по формуле

$$\vartheta_{x_i} = \frac{q^* - q}{x_i^* - x_i} \cdot \frac{x_i}{q},\tag{13.33}$$

где q — расход газа, рассчитанный при заданном мольном составе газа;

 q^* — расход газа, рассчитанный при заданном составе газа с приращением мольной доли i-го компонента газа, и нормализованном с помощью формулы

$$x_{i}^{*} = \begin{cases} \frac{x_{i}}{1 + \Delta x_{j}} & \text{при } j \neq i; \\ \frac{x_{i} + \Delta x_{j}}{1 + \Delta x_{j}} & \text{при } j = i. \end{cases}$$
 (13.34)

13.3.5 Относительную стандартную неопределенность измерений абсолютного давления газа при применении преобразователей абсолютного давления рассчитывают по формуле (13.2).

При применении преобразователей избыточного давления относительную стандартную неопределенность измерений абсолютного давления газа рассчитывают по формуле

$$u_{p}' = \left\{ \left(\frac{p_{\mathsf{M}}}{p} \right)^{2} \cdot \sum_{j=1}^{l} \left[u_{p_{\mathsf{M}j}}' \right]^{2} + \left(\frac{p_{\mathsf{a}}}{p} \right)^{2} \cdot u_{p_{\mathsf{a}}}'^{2} \right\}^{0,5}. \tag{13.35}$$

При принятии атмосферного давления условно-постоянной величиной относительную стандартную неопределенность измерений абсолютного давления газа рассчитывают по формуле

$$u_{p}' = \left[\left(\frac{p_{\text{M}}}{p} \right)^{2} \cdot \sum_{i=1}^{l} \left[u_{p_{\text{M}i}}' \right]^{2} + \frac{1}{6} \cdot \left(\frac{p_{\text{a}}}{p} \right)^{2} \cdot \left(\frac{p_{\text{amax}} - p_{\text{amin}}}{p_{\text{amax}} + p_{\text{amin}}} \cdot 100 \right)^{2} \right]^{0.5}, \tag{13.36}$$

где p_{μ} — избыточное давление;

- $\stackrel{\cdot \cdot }{p_a}$ атмосферное давление; u_{p_a}' относительная стандартная неопределенность измерения атмосферного давления с учетом дополнительных составляющих неопределенности, вызванных внешними влияющими вели-
- $u_{p_{ui}}^{\prime}$ составляющая относительной стандартной неопределенности измерения избыточного давления газа, вносимая *i*-м компонентом, входящим в состав измерительного канала, с учетом дополнительных составляющих неопределенности, вызванных внешними влияющими вели-
- I число последовательно соединенных компонентов измерительного канала, используемых для измерения давления.

13.3.6 Относительную стандартную неопределенность результата измерений температуры газа рассчитывают по формуле

$$u_T' = \frac{100 \cdot (t_{\rm B} - t_{\rm H})}{273,15 + t} \left\{ \sum_{i=1}^{l} \left[\frac{u_{y_i}}{y_{\rm B}i - y_{\rm H}i} \right]^2 \right\}^{0,5},$$
(13.37)

- где / число последовательно соединенных компонентов измерительного канала, используемых для измерения температуры;
 - u_{y_i} составляющая стандартная неопределенность измерения температуры, вносимая i-м компонентом, входящим в состав измерительного канала, с учетом дополнительных составляющих неопределенности, вызванных внешними влияющими величинами.
- 13.3.7 Относительную стандартную неопределенность измерений плотности газа при стандартных и рабочих условиях рассчитывают в соответствии с требованиями 13.1.4—13.1.6.

14 Контроль соблюдения требований методики измерений

14.1 Проверка реализуемости методики измерений

- 14.1.1 Проверку реализуемости методики измерений осуществляют перед ее внедрением в практику.
- 14.1.2 При проведении проверки реализуемости методики измерений устанавливают:
- наличие акта измерений геометрических характеристик ИТ;
- наличие акта контроля геометрических характеристик критического сопла;
- наличие необходимой эксплуатационной документации СИ;
- соответствие условий проведения измерений требованиям раздела 8;
- наличие протокола калибровки критического сопла (для индивидуально калибруемых сопел);
- соответствие монтажа и условий эксплуатации СИ, вспомогательных и дополнительных устройств требованиям эксплуатационной документации и раздела 9;
 - соответствие процедур обработки результатов измерений требованиям настоящего стандарта;
 - соблюдение требований к точности измерений.
- 14.1.3 По результатам проверки составляют акт проверки состояния и применения СИ и соблюдения требований настоящего стандарта в соответствии с приложением Д.
- 14.1.4 Относительную расширенную неопределенность результата измерения объемного расхода и объема газа, приведенных к стандартным условиям, по каждой реализации методики измерений, изложенной в настоящем стандарте, устанавливают на основании расчетов, выполненных в соответствии с разделом 13. Результаты расчета являются неотъемлемым приложением акта (см. 14.1.3) и заверяются подписью лица, проводившего расчеты.

14.2 Контроль точности результатов измерений

- 14.2.1 В процессе применения на практике методики измерений, изложенной в настоящем стандарте, должен быть обеспечен контроль соблюдения и выполнения требований настоящего стандарта.
- 14.2.2 При выполнении измерений, относящихся к сфере государственного регулирования обеспечения единства измерений, применяют основные СИ и средства обработки результатов измерений утвержденных типов, прошедшие поверку.

При выполнении измерений, не относящихся к сфере государственного регулирования обеспечения единства измерений, основные СИ и средства обработки результатов измерений должны подвергаться калибровке или в добровольном порядке поверке.

Дополнительные СИ подлежат калибровке или в добровольном порядке поверке.

Периодичность поверки СИ должна соответствовать интервалу между поверками, установленному при утверждении типа СИ.

Приложение A (рекомендуемое)

Тест проверки отсутствия запирания сопла

Проведение теста рекомендуется для определения максимального относительного противодавления для сопел, конструкция которых отлична от установленной настоящим стандартом.

Если критическое сопло будет работать в широком диапазоне чисел Рейнольдса, то следует тест проводить при наименьшем его значении.

На рисунке А.1 показана предпочтительная схема монтажа оборудования для проведения теста.

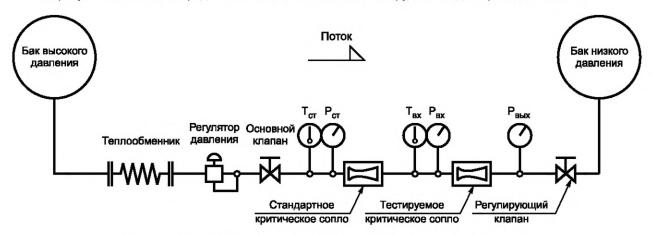


Рисунок А.1 — Схема размещения оборудования для проведения теста

Стандартная версия критического сопла используется для обеспечения стабильного массового расхода в тестируемом критическом сопле. Регулятор давления, расположенный ниже тестируемого критического сопла, используется для задания различных значений относительного противодавления.

Для выполнения теста можно выполнить следующие шаги:

- Шаг 1: Используя верхний регулятор давления, устанавливают постоянное входное давление на стандартном критическом сопле, обеспечивая стабильный известный массовый поток через тестируемое критическое сопло.
 - Шаг 2: Открывают нижний регулирующий клапан, чтобы минимизировать давление $ho_{ ext{вых}}$.
- Шаг 3: Как только условия стабилизируются, фиксируют значение массового расхода через критическое сопло, температуру и давление на входе в тестируемое критическое сопло. Вычисляют C_d для тестируемого сопла.
- Шаг 4: Поддерживая тот же массовый расход, используя регулирующий клапан ниже по потоку, увеличивают $\rho_{\text{вых}}$. После стабилизации условий, фиксируют значения массового расхода, температуры и давления, а затем пересчитывают новое значение C_{cl} .
 - Шаг 5: Повторяют шаг 4 несколько раз, медленно увеличивая диапазон относительного противодавления.
- Шаг 6: Строят график зависимости C_d от относительного противодавления. Критическое сопло считается запертым в области линейной части графика (при нулевом наклоне). Уменьшение C_d , которое является значительным по сравнению с неопределенностью C_d , указывает на то, что в критическом сопле отсутствует запирание потока.

П р и м е ч а н и е — Значения максимального относительного противодавления колеблются от 0,528 до 0,98. Для критических сопел, длина диффузора которых менее 7d, и числа ниже 50 000, может проявляться нежелательное падение C_d при относительном противодавлении в пределах от 0,35 до 0,5, поэтому для данных условий рекомендуется увеличить число измерений.

Приложение Б (обязательное)

Значения функции критического расхода для различных газов

Б.1 Общие замечания

Б.1.1 В данном приложении приводится информация, необходимая для расчета функции критического расхода для азота, аргона, метана, диоксида углерода, кислорода и водяного пара и сухого воздуха, не содержащего диоксид углерода, с помощью эмпирических уравнений и табулированных значений функции критического расхода, приведенных в [7].

Б.1.2 Значения С. для азота, аргона, метана, сухого воздуха, не содержащего диоксид углерода, рассчитывают с помощью эмпирического уравнения:

$$C_{\star} = \sum \left(a_i \cdot \pi^{b_i} \cdot \tau^{c_i} \right), \tag{5.1}$$

$$\pi = \frac{p_0}{p_{\kappa}} \text{ if } \tau = \frac{T_0}{T_{\kappa}},$$

где $a_{i},\,b_{i},\,c_{i}$ — коэффициенты, зависящие от типа газа;

 $T_{\rm K}^{p'}$, $T_{\rm K}^{p'}$ критические давление и температура газа, соответственно, зависящие от типа газа. Значения коэффициентов α_i , b_i , c_i и критических параметров $\rho_{\rm K}$, $T_{\rm K}$ приведены для каждого газа отдельно в таблицах Б.2, Б.4, Б.6 и Б.8.

Табличные значения С₊ для азота, аргона, сухого воздуха, не содержащего диоксид углерода, и метана (см. таблицы Б.1, Б.3, Б.5, Б.7), приведены для проверки расчетов, выполненных по эмпирическому уравнению (Б.1).

Б.1.3 Значения С₊ для диоксида углерода, кислорода и водяного пара рассчитывают путем интерполирования их табулированных значений, приведенных в таблицах Б.9, Б.10 и Б.11.

Б.1.4 Значения С₄ для сухого воздуха, представленные в таблице Б.5 (или рассчитанные по уравнению (Б.1) с помощью коэффициентов из таблицы Б.6 для сухого воздуха), действительны только для сухого воздуха без диоксида углерода. Если сопло работает на невысушенном атмосферном воздухе, то необходимо воспользоваться поправочным коэффициентом, который рассчитывают по методике, изложенной в приложения Е.

Б.2 Таблицы значений параметров эмпирического уравнения и значений функции критического расхода

Таблица Б.1 — Значения С∗ для азота

т _о ,						<i>р</i> ₀ , МПа					
K	0,1	2	4	6	8	10	12	14	16	18	20
200	0,68561	0,70367	0,72497	0,74845	0,77343	0,79856	0,82204	0,8423	0,85842	0,87023	0,87809
220	0,68538	0,69867	0,7136	0,72928	0,7453	0,76109	0,77599	0,78938	0,80081	0,81006	0,8171
240	0,68522	0,69521	0,70608	0,71714	0,72816	0,73884	0,74889	0,75803	0,76604	0,7728	0,77825
260	0,6851	0,69272	0,70083	0,7089	0,71679	0,72434	0,7314	0,73782	0,74352	0,7484	0,75244
280	0,685	0,69088	0,69702	0,70303	0,70882	0,7143	0,71938	0,72399	0,72808	0,7316	0,73455
300	0,68492	0,68948	0,69417	0,6987	0,703	0,70703	0,71074	0,71408	0,71703	0,71956	0,72168
320	0,68485	0,68839	0,69198	0,6954	0,69862	0,7016	0,70431	0,70673	0,70885	0,71065	0,71213
340	0,68478	0,68752	0,69026	0,69285	0,69524	0,69744	0,69941	0,70114	0,70263	0,70387	0,70486
360	0,6847	0,68681	0,68889	0,69082	0,69258	0,69417	0,69558	0,69679	0,6978	0,69861	0,69922
380	0,68462	0,68621	0,68776	0,68918	0,69045	0,69157	0,69253	0,69333	0,69397	0,69444	0,69475
400	0,68452	0,6857	0,68682	0,68783	0,68871	0,68945	0,69007	0,69054	0,69088	0,69109	0,69116
420	0,68441	0,68525	0,68603	0,6867	0,68726	0,68771	0,68804	0,68826	0,68836	0,68835	0,68824
440	0,68428	0,68484	0,68533	0,68573	0,68604	0,68624	0,68635	0,68636	0,68627	0,68609	0,68582
460	0,68413	0,68445	0,68471	0,68489	0,68498	0,68499	0,68491	0,68475	0,68451	0,68419	0,68379
480	0,68395	0,68409	0,68415	0,68415	0,68407	0,68391	0,68368	0,68338	0,68301	0,68258	0,68207

ГОСТ Р 8.972—2019

Окончание таблицы Б.1

T ₀ ,		<i>р</i> ₀ , МПа									
ĸ	0,1	2	4	6	8	10	12	14	16	18	20
500	0,68376	0,68373	0,68364	0,68348	0,68325	0,68296	0,68261	0,6822	0,68172	0,68119	0,6806
520	0,68355	0,68338	0,68315	0,68286	0,68252	0,68212	0,68166	0,68115	0,68059	0,67998	0,67932
540	0,68331	0,68303	0,68269	0,68229	0,68185	0,68135	0,68081	0,68022	0,67959	0,67892	0,6782
560	0,68305	0,68268	0,68224	0,68175	0,68122	0,68065	0,68004	0,67939	0,6787	0,67797	0,67721
580	0,68278	0,68232	0,6818	0,68124	0,68064	0,68001	0,67934	0,67863	0,67789	0,67712	0,67632
600	0,68249	0,68196	0,68138	0,68075	0,6801	0,67941	0,67868	0,67793	0,67715	0,67635	0,67551

Таблица Б.2 — Коэффициенты уравнения (Б.1) для азота

i	a _i	b_i	c_i
1	5,205 142 20 × 10 ⁻³	0	-4
2	6,814 027 97 × 10 ⁻¹	0	0
3	2,377 461 61 × 10 ⁻³	0	1
4	-4,519 510 40 × 10 ⁻⁴	0	2
5	-1,374 006 43 × 10 ⁻¹	1	-7
6	1,499 853 26 × 10 ⁻¹	1	-3
7	-2,290 164 23 × 10 ⁻³	1	0
8	3,299 637 65 × 10 ⁻⁸	1	5
9	-2,026 516 12 × 10 ⁻³	1,5	-1
10	3,024 106 16 × 10 ⁻⁴	1,5	0
11	2,837 231 67 × 10 ⁻¹	2,5	-8
12	-1,129 149 85 × 10 ⁻¹	3	-8
13	-2,531 933 90 × 10 ⁻³	3	-4
14	2,222 006 17 × 10 ⁻⁵	3,5	-2
15	1,190 308 45 × 10 ⁻³	4	-6

Примечания

Т а б л и ц а Б.3 — Значения C_* для аргона

τ ₀ ,	<i>р</i> ₀ , МПа										
ĸ	0,1	2	4	6	8	10	12	14	16	18	20
200	_	_	_	_	_		_	_	_	_	_
220	0,72719	0,74757	0,77178	0,79909	0,82951	0,86253	0,89682	0,93035	0,96092	0,98687	1,00746
240	0,72698	0,74275	0,76074	0,78016	0,80086	0,82248	0,84448	0,86612	0,88659	0,90515	0,92129
260	0,72682	0,73926	0,75308	0,76756	0,78256	0,79787	0,81320	0,82821	0,84253	0,85583	0,86783
280	0,72670	0,73667	0,74752	0,75866	0,76998	0,78135	0,79261	0,80355	0,81401	0,82382	0,83281
300	0,72660	0,73469	0,74335	0,75211	0,76090	0,76961	0,77816	0,78643	0,79432	0,80174	0,80860
320	0,72653	0,73314	0,74015	0,74715	0,75409	0,76092	0,76757	0,77397	0,78006	0,78579	0,79111
340	0,72647	0,73192	0,73764	0,74330	0,74886	0,75430	0,75955	0,76459	0,76937	0,77387	0,77804

¹ Критические параметры: $\rho_{\rm K}$ = 3,3958 МПа; $T_{\rm K}$ =126,129 К. 2 Для азота уравнение (Б.1) можно применять в диапазоне температур 250—600 К при давлениях до 20 МПа. См. [8] и [9].

Окончание таблицы Б.3

T_0 ,						ρ_0 , МПа			i v		
K	0,1	2	4	6	8	10	12	14	16	18	20
360	0,72642	0,73094	0,73563	0,74025	0,74476	0,74913	0,75333	0,75734	0,76114	0,76470	0,76801
380	0,72638	0,73014	0,73402	0,73780	0,74148	0,74502	0,74841	0,75163	0,75467	0,75751	0,76014
400	0,72635	0,72948	0,73269	0,73581	0,73882	0,74170	0,74445	0,74704	0,74948	0,75176	0,75385
420	0,72632	0,72893	0,73160	0,73417	0,73664	0,73899	0,74122	0,74331	0,74527	0,74709	0,74876
440	0,72630	0,72848	0,73069	0,73281	0,73483	0,73674	0,73855	0,74024	0,74181	0,74326	0,74459
460	0,72628	0,72809	0,72992	0,73166	0,73332	0,73488	0,73633	0,73769	0,73894	0,74009	0,74112
480	0,72627	0,72777	0,72927	0,73070	0,73204	0,73330	0,73447	0,73555	0,73654	0,73743	0,73823
500	0,72625	0,72749	0,72872	0,72988	0,73097	0,73197	0,73290	0,73374	0,73451	0,73519	0,73579
520	0,72624	0,72725	0,72825	0,72918	0,73004	0,73084	0,73156	0,73221	0,73279	0,73329	0,73372
540	0,72623	0,72704	0,72784	0,72858	0,72925	0,72987	0,73041	0,73089	0,73131	0,73167	0,73196
560	0,72622	0,72687	0,72749	0,72806	0,72857	0,72903	0,72943	0,72977	0,73005	0,73027	0,73044
580	0,72621	0,72671	0,72719	0,72761	0,72799	0,72831	0,72857	0,72879	0,72896	0,72907	0,72913
600	0,72621	0,72658	0,72692	0,72722	0,72747	0,72768	0,72784	0,72795	0,72801	0,72803	0,72800

Таблица Б.4 — Коэффициенты уравнения (Б.1) для аргона

		·	
i	a _i	b _i	c_i
1	7,261 844 00 × 10 ⁻¹	0	0
2	−1,173 389 76 × 10 ^{−1}	1	-4
3	2,334 785 17 × 10 ⁻¹	1	-3
4	−2,250 904 86 × 10 ^{−3}	1	0
5	3,571 311 67 × 10 ^{−2}	1,5	-4
6	9,236 691 04 × 10 ⁻²	2	-9
7	−7,882 951 14 × 10 ^{−3}	2	-3
8	-4,050 612 00 × 10 ⁻³	2	-2
9	9,893 033 93 × 10 ⁻⁵	2	0
10	−1,502 565 89 × 10 ^{−1}	2,5	-8
11	3,551 149 94 × 10 ⁻¹	3	-8
12	1,400 857 98 × 10 ⁻²	3	-4
13	−1,511 223 06 × 10 ^{−1}	3,5	-8
14	–2,569 959 78 × 10 ^{−2}	3,5	-5
15	1,570 106 43 × 10 ⁻²	4	-6

Примечания

Т а б л и ц а Б.5 — Значения C_* для сухого воздуха

<i>T</i> ₀ ,		$ ho_0^{},$ МПа												
K	0,1	2	4	6	8	10	12	14	16	18	20			
200	0,68590	0,70514	0,72811	0,75414	0,78277	0,81251	0,84106	0,86613	0,88630	0,90124	0,91132			
220	0,68566	0,69986	0,71594	0,73315	0,75119	0,76946	0,78713	0,80337	0,81752	0,82920	0,83833			
240	0,68548	0,69622	0,70795	0,72005	0,73236	0,74459	0,75636	0,76732	0,77716	0,78565	0,79271			

¹ Критические параметры: $p_{\rm K}$ = 4,863 МПа; $T_{\rm K}$ = 150,687 К. 2 Для аргона уравнение (Б.1) можно применять в диапазоне температур 250—600 К при давлениях до 20 МПа. См. [8] и [10].

Окончание таблицы Б.5

T ₀ ,						<i>р</i> ₀ , МПа					
K	0,1	2	4	6	8	10	12	14	16	18	20
260	0,68534	0,69360	0,70238	0,71122	0,72002	0,72863	0,73688	0,74457	0,75155	0,75770	0,76296
280	0,68521	0,69164	0,69834	0,70495	0,71143	0,71769	0,72364	0,72918	0,73423	0,73872	0,74261
300	0,68509	0,69013	0,69529	0,70032	0,70517	0,70981	0,71419	0,71825	0,72194	0,72524	0,72810
320	0,68497	0,68893	0,69294	0,69679	0,70046	0,70393	0,70718	0,71018	0,71289	0,71531	0,71740
340	0,68485	0,68796	0,69108	0,69403	0,69681	0,69942	0,70184	0,70404	0,70603	0,70778	0,70929
360	0,68471	0,68715	0,68957	0,69183	0,69393	0,69587	0,69766	0,69927	0,70070	0,70194	0,70299
380	0,68455	0,68646	0,68831	0,69002	0,69159	0,69303	0,69432	0,69546	0,69646	0,69731	0,69800
400	0,68438	0,68585	0,68725	0,68852	0,68967	0,69070	0,69160	0,69238	0,69304	0,69357	0,69398
420	0,68419	0,68529	0,68633	0,68725	0,68806	0,68876	0,68935	0,68984	0,69023	0,69051	0,69069
440	0,68397	0,68478	0,68552	0,68615	0,68668	0,68712	0,68746	0,68772	0,68789	0,68797	0,68796
460	0,68374	0,68430	0,68479	0,68518	0,68549	0,68571	0,68585	0,68591	0,68590	0,68582	0,68566
480	0,68349	0,68384	0,68412	0,68432	0,68443	0,68448	0,68445	0,68436	0,68421	0,68399	0,68370
500	0,68322	0,68339	0,68350	0,68353	0,68349	0,68339	0,68323	0,68301	0,68273	0,68240	0,68202
520	0,68293	0,68296	0,68292	0,68281	0,68265	0,68242	0,68215	0,68182	0,68144	0,68102	0,68055
540	0,68262	0,68253	0,68237	0,68215	0,68187	0,68154	0,68117	0,68076	0,68030	0,67980	0,67926
560	0,68230	0,68210	0,68184	0,68152	0,68115	0,68074	0,68029	0,67980	0,67927	0,67871	0,67811
580	0,68197	0,68168	0,68133	0,68093	0,68049	0,68000	0,67948	0,67893	0,67835	0,67773	0,67709
600	0,68163	0,68127	0,68084	0,68037	0,67986	0,67932	0,67874	0,67814	0,67751	0,67685	0,67616

Таблица Б.6 — Коэффициенты уравнения (Б.1) для сухого воздуха

i	a_i	b_i	c _i
1	1,967 947 91 × 10 ⁻²	0	-3
2	–2,774 414 35 × 10 ^{−2}	0	-1
3	7,031 906 83 × 10 ⁻¹	0	0
4	−3,448 411 43 × 10 ^{−3}	0	1
5	−1,135 939 77 × 10 ^{−1}	1	-7
6	1,507 325 95 × 10 ^{−1}	1	-3
7	−2,403 454 97 × 10 ^{−3}	1	0
8	1,224 631 76 × 10 ⁻⁶	1	3
9	−3,064 388 30 × 10 ^{−3}	2	-2
10	2,116 285 54 × 10 ⁻¹	2,5	-8
11	5,128 802 07 × 10 ⁻⁵	2,5	0
12	−1,666 687 29 × 10 ^{−6}	3	1
13	-6,554 052 14 × 10 ⁻²	3,5	-8
14	1,390 831 40 × 10 ⁻²	4	-8

Примечания 1 Критические параметры: $\rho_{\rm K}$ = 3,786 МПа; $T_{\rm K}$ = 132,5306 К. 2 Для сухого воздуха уравнение (Б.1) можно применять в диапазоне температур 250—600 К при давлениях до 20 МПа. См. [8] и [11].

Т а б л и ц а Б.7 — Значения С $_{\star}$ для метана

T ₀ ,						<i>р</i> ₀ , МПа	4	<u></u>			
K	0,1	2	4	6	8	10	12	14	16	18	20
200	_	_	_	_	_	_	_	_	_	_	_
220	0,67404	0,70710	0,75733	0,84096	0,99220	1,16338	_	-	_	_	_
240	0,67323	0,69796	0,73118	0,77554	0,83585	0,91211	0,98936	1,04930	1,08802	1,10975	1,11953
260	0,67229	0,69135	0,71515	0,74381	0,77822	0,81818	0,86109	0,90206	0,93653	0,96260	0,98060
280	0,67119	0,68619	0,70403	0,72426	0,74703	0,77203	0,79839	0,82459	0,84887	0,86983	0,88678
300	0,66992	0,68189	0,69566	0,71068	0,72691	0,74413	0,76192	0,77964	0,79656	0,81200	0,82546
320	0,66850	0,67815	0,68898	0,70049	0,71259	0,72513	0,73788	0,75051	0,76268	0,77403	0,78430
340	0,66696	0,67480	0,68344	0,69243	0,70172	0,71118	0,72067	0,73002	0,73904	0,74754	0,75536
360	0,66532	0,67173	0,67869	0,68582	0,69308	0,70039	0,70764	0,71475	0,72159	0,72806	0,73406
380	0,66363	0,66889	0,67454	0,68025	0,68600	0,69173	0,69737	0,70287	0,70815	0,71314	0,71779
400	0,66193	0,66626	0,67085	0,67546	0,68005	0,68459	0,68903	0,69333	0,69745	0,70134	0,70497
420	0,66025	0,66381	0,66756	0,67129	0,67497	0,67859	0,68211	0,68550	0,68873	0,69178	0,69463
440	0,65860	0,66153	0,66459	0,66761	0,67058	0,67347	0,67627	0,67895	0,68149	0,68389	0,68611
460	0,65700	0,65940	0,66190	0,66435	0,66673	0,66905	0,67127	0,67339	0,67539	0,67727	0,67900
480	0,65547	0,65743	0,65946	0,66144	0,66335	0,66519	0,66695	0,66862	0,67018	0,67164	0,67298
500	0,65401	0,65561	0,65724	0,65882	0,66035	0,66180	0,66318	0,66449	0,66570	0,66682	0,66784
520	0,65262	0,65391	0,65521	0,65647	0,65767	0,65881	0,65988	0,66088	0,66180	0,66264	0,66339
540	0,65131	0,65233	0,65336	0,65434	0,65527	0,65614	0,65696	0,65770	0,65839	0,65900	0,65953
560	0,65007	0,65087	0,65166	0,65241	0,65311	0,65376	0,65436	0,65490	0,65538	0,65580	0,65615
580	0,64891	0,64951	0,65010	0,65066	0,65116	0,65163	0,65204	0,65240	0,65271	0,65297	0,65318
600	0,64780	0,64824	0,64866	0,64905	0,64939	0,64970	0,64996	0,65017	0,65034	0,65046	0,65054

Таблица Б.8 — Коэффициенты уравнения (Б.1) для метана

i	a_i	b_i	c_i
1	-4,720 546 92 × 10 ⁻²	0	-1
2	7,648 102 27 × 10 ⁻¹	0	0
3	−5,034 818 10 × 10 ^{−2}	0	1
4	5,707 154 95 × 10 ⁻³	0	2
5	−8,628 216 22 × 10 ^{−2}	0,5	-7
6	2,310 287 94 × 10 ⁻³	0,5	-4
7	7,445 647 54 × 10 ⁻¹	1	-9
8	−4,276 642 05 × 10 ^{−1}	1	-6
9	3,289 116 00 × 10 ⁻¹	1	-4
10	-2,068 296 47 × 10 ⁻³	1	0
11	−8,178 634 39 × 10 ^{−1}	1,5	-10
12	1,868 520 89 × 10 ⁻⁴	1,5	-1
13	3,835 357 66 × 10 ⁻¹	2	-9
14	−2,429 634 03 × 10 ^{−3}	3	-4
15	2,802 359 69 × 10 ⁻¹	4	-15
16	-1,226 295 45 × 10 ⁻¹	5	-15

Окончание таблицы Б.8

i	a _i	b _i	c _i
17	1,706 268 70 × 10 ⁻⁴	5	-6
18	1,582 014 74 × 10 ⁻²	6	-14
19	−3,733 935 09 × 10 ^{−3}	6	-12

Примечания

Т а б л и ц а Б.9 — Значения C_* для диоксида углерода

T ₀ ,						<i>р</i> ₀ , МПа					
ĸ	0,1	2	4	6	8	10	12	14	16	18	20
240	_	_	_	_	_	_	_	_	_	_	_
260	0,67318	_		_	_	_	_		_	_	_
280	0,67066	0,71519	_	_	_	_	_	_	_	_	_
300	0,66843	0,70188	0,75514	-	_	_	_	_	_	_	_
320	0,66646	0,69245	0,72920	0,78419	_	-	_	-	_	_	_
340	0,66470	0,68539	0,71256	0,74821	0,79797	I	_	1	_	_	_
360	0,66313	0,67989	0,70083	0,72633	0,75813	0,79864	0,85046	0,91390	0,98271	1,04585	1,09634
380	0,66171	0,67550	0,69209	0,71134	0,73388	0,76041	0,79155	0,82736	0,86673	0,90711	0,94522
400	0,66042	0,67189	0,68532	0,70038	0,71729	0,73631	0,75756	0,78099	0,80620	0,83239	0,85844
420	0,65926	0,66889	0,67993	0,69199	0,70518	0,71954	0,73511	0,75179	0,76939	0,78755	0,80580
440	0,65819	0,66634	0,67553	0,68538	0,69592	0,70716	0,71908	0,73160	0,74461	0,75791	0,77128
460	0,65721	0,66416	0,67188	0,68003	0,68862	0,69763	0,70703	0,71677	0,72677	0,73692	0,74708
480	0,65631	0,66226	0,66880	0,67562	0,68272	0,69007	0,69765	0,70542	0,71332	0,72128	0,72922
500	0,65548	0,66060	0,66618	0,67193	0,67786	0,68394	0,69015	0,69645	0,70282	0,70920	0,71554
520	0,65471	0,65913	0,66391	0,66880	0,67379	0,67887	0,68402	0,68921	0,69442	0,69961	0,70475
540	0,65399	0,65782	0,66193	0,66611	0,67034	0,67462	0,67892	0,68324	0,68755	0,69183	0,69605
560	0,65332	0,65665	0,66019	0,66377	0,66738	0,67100	0,67463	0,67825	0,68185	0,68540	0,68890
580	0,65269	0,65558	0,65865	0,66173	0,66482	0,66790	0,67097	0,67402	0,67704	0,68001	0,68293
600	0,65210	0,65462	0,65728	0,65993	0,66258	0,66521	0,66782	0,67040	0,67295	0,67545	0,67789

Т а б л и ц а Б.10 — Значения С $_{*}$ для кислорода

T ₀ ,		ρ ₀ , ΜΠα												
ĸ	0	0,5	1	2	3	4	5	6	7	8	9	10		
223,15	0,68460	0,68860	0,69270	0,70130	0,71040	0,72010	0,73040	0,74130	0,75280	0,76500	0,77790	0,79140		
248,15	0,68450	0,68750	0,69050	0,69660	0,70300	0,70960	0,71640	0,72340	0,73070	0,73810	0,74570	0,75350		
273,15	0,68440	0,68660	0,68890	0,69340	0,69810	0,70280	0,70760	0,71250	0,71750	0,72250	0,72760	0,73260		
298,15	0,68420	0,68590	0,68760	0,69110	0,69460	0,69810	0,70160	0,70520	0,70870	0,71230	0,71590	0,71940		
323,15	0,68390	0,68520	0,68650	0,68920	0,69190	0,69450	0,69720	0,69990	0,70250	0,70510	0,70780	0,71030		
348,15	0,68350	0,68450	0,68550	0,68760	0,68970	0,69170	0,69380	0,69580	0,69780	0,69980	0,70170	0,70370		
373,15	0,68290	0,68370	0,68450	0,68610	0,68770	0,68930	0,69090	0,69250	0,69400	0,69550	0,69700	0,69840		

¹ Критические параметры: $\rho_{\rm K}$ = 4,5922 МПа; $T_{\rm K}$ = 190,564 К. 2 Для метана уравнение (Б.1) можно применять в диапазоне температур 270—600 К при давлениях до 20 МПа. См. [8] и [12].

Т а б л и ц а Б.11 — Значения С₊ для водяного пара (однофазного газа)

<i>T</i> ₀ , K						р ₀ , МПа					
7 ₀ , K	0,1	2	4	6	8	10	12	14	16	18	20
420	0,67338	_	_	_	_	_	_	_	_	_	_
440	0,67272	_	_	_	_	_	_	_	_	_	_
460	0,67209	-	_	_	_	_	_	_	-	_	_
480	0,67149	_	_	_	_	_	_	_	_	_	-
500	0,67091	_	_	_	_	_	_	-	_	_	_
520	0,67035	_	_	_	_	_	_	_	_	_	_
540	0,66982	0,68977	_	_	_	_	_	_	_	_	_
560	0,66930	0,68641	_	_	_	_	_	_	_	_	_
580	0,66879	0,68358	0,70247	_	_		_	_	_	_	_
600	0,66830	0,68119	0,69715	0,71639	_	_	_	_	_	_	_
620	0,66781	0,67913	0,69278	0,70875	0,72778	0,75102	_	_	_	-	_
640	0,66734	0,67732	0,68914	0,70260	0,71817	0,73649	0,75852	_	_	_	_
660	0,66687	0,67573	0,68604	0,69757	0,71057	0,72541	0,74260	0,76288	0,78738	_	_
680	0,66642	0,67431	0,68338	0,69335	0,70440	0,71673	0,73061	0,74642	0,76467	0,78609	0,81177
700	0,66597	0,67302	0,68105	0,68977	0,69928	0,70972	0,72123	0,73402	0,74834	0,76453	0,78302
720	0,66552	0,67186	0,67900	0,68667	0,69495	0,70392	0,71365	0,72428	0,73592	0,74877	0,76301
740	0,66508	0,67079	0,67717	0,68397	0,69124	0,69902	0,70738	0,71637	0,72609	0,73661	0,74804
760	0,66465	0,66980	0,67553	0,68159	0,68801	0,69484	0,70209	0,70981	0,71806	0,72688	0,73633
780	0,66422	0,66889	0,67405	0,67947	0,68518	0,69121	0,69756	0,70427	0,71137	0,71889	0,72686
800	0,66380	0,66804	0,67270	0,67757	0,68268	0,68803	0,69364	0,69952	0,70570	0,71219	0,71902
820	0,66338	0,66724	0,67146	0,67586	0,68044	0,68522	0,69020	0,69540	0,70083	0,70649	0,71241
840	0,66296	0,66648	0,67032	0,67430	0,67843	0,68272	0,68717	0,69179	0,69659	0,70157	0,70675
860	0,66255	0,66577	0,66927	0,67288	0,67661	0,68048	0,68447	0,68860	0,69287	0,69729	0,70185
880	0,66215	0,66509	0,66828	0,67157	0,67496	0,67845	0,68205	0,68576	0,68958	0,69351	0,69757
900	0,66175	0,66445	0,66737	0,67037	0,67345	0,67661	0,67987	0,68321	0,68664	0,69017	0,69379
920	0,66135	0,66383	0,66651	0,66925	0,67206	0,67494	0,67789	0,68091	0,68401	0,68718	0,69043
940	0,66096	0,66324	0,66569	0,66821	0,67077	0,67340	0,67608	0,67883	0,68163	0,68450	0,68742
960	0,66057	0,66267	0,66493	0,66723	0,66958	0,67198	0,67443	0,67693	0,67947	0,68207	0,68472
980	0,66019	0,66213	0,66420	0,66632	0,66848	0,67067	0,67291	0,67519	0,67751	0,67987	0,68227
1000	0,65981	0,66160	0,66351	0,66546	0,66744	0,66946	0,67151	0,67359	0,67571	0,67786	0,68004

Приложение В (обязательное)

Метод расчета критического потока массы для природного газа

В.1 Общие замечания

В приложении приводится необходимая информация в соответствии с [7] для расчета значения критического потока массы $C_{\text{кp}} = w_{nt} \cdot \rho_{nt}$, которое применяется в формулах (6.2), (6.8) и (6.11).

Формулы для расчета значений критического потока массы зависят от молярной доли этана, содержащегося в природном газе.

Природный газ в зависимости от содержания молярной доли этана имеет три разновидности:

от 0,01 до 0,045 (диапазон 1);

от 0,045 до 0,08 (диапазон 2);

от 0,08 до 0,115 (диапазон 3).

Рекомендуемые значения молярных долей компонентов природного газа, для которых можно применять метод расчета, представлены в таблице В.1.

Таблица В.1 — Рекомендуемые пределы по молярной доле компонентов

Компонент	Диапазон 1	Диапазон 2	Диапазон 3
Метан	0,89—0,98	0,84—0,93	0,79—0,88
Этан	0,01—0,045	0,045—0,08	0,08—0,115
Пропан	0,002—0,02	0,008—0,03	0,015—0,04
Бутан	0,0—0,005	0,002—0,01	0,003—0,015
Пентан	0,0-0,002	0,0-0,004	0,0—0,005
Гексан+	0,0—0,0015	0,0-0,002	0,0—0,003
Азот	0,0—0,03	0,0—0,03	0,0—0,015
Диоксид углерода	0,0-0,025	0,0—0,025	0,01—0,025

Метод расчета критического потока массы для природного газа может быть применен, если его температура находится в диапазоне 270—320 К при давлении до 12 МПа. Сумма молярных долей должна равняться единице.

Если природный газ не относится ни к одной из трех приведенных выше групп, то рекомендуется относить ее к наиболее близкой по составу группе. В таких случаях относительная стандартная неопределенность расчета значения критического потока массы возрастает с 0,05 % до 0,075 %.

В.2 Формулы для расчета критического потока массы

$$C_{KD} = q_{ref} + S \cdot f, \tag{B.1}$$

где q_{ref} — поток массы опорного газа;

S — чувствительность потока массы к изменению состава;

f — коэффициент, зависящий от состава.

Поток массы опорного газа q_{ref} чувствительность потока массы к изменению состава S и коэффициент, зависящий от состава f, рассчитывают по формулам:

$$q_{ref} = \sum_{i} \left(a_{i} \cdot \pi^{\alpha_{i}} \cdot \tau^{\varphi_{i}} \right), \tag{B.2}$$

$$S = \sum_{i} \left(b_{i} \cdot \pi^{\gamma_{i}} \cdot \tau^{\delta_{i}} \right), \tag{B.3}$$

$$f = X_{C_2} + \sum_{i=C_3}^{C_6} (A_i X_i) + \left[A_{N_2} - (B_{N_2} - C_{N_2} \tau) \pi \right] X_{N_2} + \left[A_{CO_2} - (B_{CO_2} - C_{CO_2} \tau) \pi \right] - A_{ref},$$
 (B.4)

где

$$\pi = \frac{p_0}{p_{ref}}$$
, $\tau = \frac{T_0}{T_{ref}}$, $p_{ref} = 5$ M Π a, $T_{ref} = 200$ K.

Коэффициенты для расчета q_{ref} и S для трех разновидностей состава приводятся в таблицах В.2, В.3 и В.4. Коэффициенты для расчета f для трех разновидностей состава приводятся в таблице В.5.

Т а б л и ц а $\,$ В.2 — Коэффициенты для расчета $q_{\rm ref}$ и $\,$ В для первой разновидности состава (диапазон 1)

i	а	α	φ	b	γ	δ
1	0,108 244 635 × 10 ⁵	1	-0,5	0,484 093 947 × 10 ⁴	1	-4,5
2	-0,736 494 058 × 10 ²	1	1,5	-0,136 051 287 × 10 ⁵	1	-2,5
3	-0,287 636 821 × 10 ⁴	2	-9,5	0,132 819 568 × 10 ⁵	1	-1,5
4	0,293 505 438 × 10 ⁴	2	-4,5	0,124 742 840 × 10 ³	1,5	-0,5
5	0,213 321 640 × 10 ³	2,5	-3,5	0,270 400 184 × 10 ⁴	2	-4,5
6	0,470 680 038 × 10 ⁴	3,5	-12,5	0,465 931 801 × 10 ⁴	2,5	-5,5
7	-0,113 603 383 × 10 ¹	5	-0,5	$-0,522\ 305\ 671\times 10^5$	3,5	-15,5
8	-0,949 791 998 × 10 ¹	9	-15,5	0,728 305 715 × 10 ⁵	4	-15,5
9	_	_	_	0,626 536 557 × 10 ¹	4	-0,5
10	_	_	_	0,863 837 290 × 10 ¹	6	-8,5
11	_	_	_	-0,218 148 488 × 10 ¹	6	-0,5
12	_	_	_	-0,205 507 321 × 10 ³	9	-15,5
13	_	_	_	0,172 829 796 × 10 ¹	11	-10,5
14	_	_	_	0,366 195 951 × 10 ⁻²	16	-10,5

Т а б л и ц а $\,$ В.3 — Коэффициенты для расчета $q_{\rm ref}$ и $\,$ 8 для второй разновидности состава (диапазон 2)

i	а	α	φ	b	γ	δ
1	0,110 966 325 × 10 ⁵	1	-0,5	0,598 807 893 × 10 ⁰	0	-0,5
2	-0,812 543 416 × 10 ²	1	1,5	0,618 961 744 × 10 ³	1	-1,5
3	-0,297 016 307 × 10 ⁴	2	-6,5	0,302 809 257 × 10 ⁴	1	-0,5
4	0,433 774 605 × 10 ⁴	2	-4,5	0,134 089 681 × 10 ⁴	1,5	-3,5
5	0,148 426 025 × 10 ⁴	3	-7,5	0,523 229 697 × 10 ³	2	-1,5
6	0,704 694 512 × 10 ⁴	4	-15,5	-0,862 689 783 × 10 ⁴	3	-8,5
7	-0,254 996 358 × 10 ¹	4,5	-0,5	0,235 424 200 × 10 ⁵	3	-7,5
8	-0,224 612 799 × 10 ²	9	-15,5	-0,767 928 108 × 10 ³	3,5	-3,5
9	_	_		-0,859 071 767 × 10 ⁵	4,5	-12,5
10	_	_		0,724 778 127 × 10 ⁴	4,5	-8,5
11	_	-		0,153 097 473 × 10 ⁶	5	-15,5
12	_	_		-0,135 420 339 × 10 ⁴	6	-10,5
13	_			-0,292 807 154 × 10 ⁵	7	-20,5
14		_		0,884 153 806 × 10 ⁻¹	16	-15,5

Т а б л и ц а $\,$ В.4 — Коэффициенты для расчета $q_{\rm ref}$ и S для третьей разновидности состава (диапазон 3)

i	а	α	φ	b	γ	δ
1	0,115 572 303 × 10 ⁵	1	-0,5	0,801 874 088 × 10 ³	1	-1,5
2	-0,249 894 765 × 10 ³	1	0,5	0,264 127 915 × 10 ⁴	1	-0,5
3	-0,240 531 018 × 10 ⁴	2	-7,5	0,247 996 282 × 10 ³	1,25	-0,5
4	0,404 006 226 × 10 ⁴	2	-4,5	0,178 851 521 × 10 ⁴	2	-8,5
5	0,271 706 092 × 10 ⁴	3	-7,5	0,101 397 979 × 10 ⁵	2,5	-5,5

Окончание таблицы В.4

i	а	α	φ	b	γ	δ
6	-0,126 049 305 × 10 ⁵	4	-15,5	-0,296 058 326 × 10 ²	3,5	-0,5
7	0,553 331 233 × 10 ⁵	5	-18,5	-0,680 911 912 × 10 ⁵	4	-15,5
8	-0,115 934 413 × 10 ³	5	-7,5	0,259 571 626 × 10 ⁶	5	-18,5
9	-0,262 586 997 × 10 ⁵	6	-20,5	-0,144 795 597 × 10 ⁶	7	-25,5
10	_	_	_	-0,110 728 705 × 10 ⁴	9	-15,5
11	-	_	_	0,144 085 124 × 10 ²	11	-10,5
12	_	_	_	0,901 740 847 × 10 ⁰	16	-15,5
13	_	_	_	-0,132 368 505 × 10 ⁰	16	-10,5

Т а б л и ц а В.5 — Коэффициенты для расчета f по уравнению (В.4)

Коэффициент	Диапазон 1	Диапазон 2	Диапазон 3
A _{C3}	2,0113	2,1575	2,2440
A _{C4}	2,7517	2,8034	3,1238
A_{C_5}	3,8898	4,0860	4,3161
A_{C_6}	4,9478	5,4230	5,8693
A _{N2}	1,0148	1,0411	1,1074
B_{N_2}	1,4643	1,6721	2,2689
C_{N_2}	0,7650	0,8794	1,2224
A_{CO_2}	2,2533	2,3488	2,4347
B_{CO_2}	1,6733	2,0024	2,1250
C _{CO2}	0,8819	1,0659	1,1251
A _{ref}	0,06636	0,13694	0,21773

В.3 Справочные значения для проверки вычислений

Т а б л и ц а В.6 — Исходные данные для проверки компьютерного кода

Компонент	Тестовый газ 1	Тестовый газ 2	Тестовый газ 3
Метан	0,9317	0,8805	0,8375
Азот	0,0243	0,0104	0,0039
Диоксид углерода	0,0095	0,0204	0,0197
Этан	0,0263	0,0624	0,0935
Пропан	0,0049	0,0184	0,0331
Бутан	0,0020	0,0061	0,0097
Пентан	0,0013	0,0015	0,0020
Гексан	0,0000	0,0003	0,0006

Т а б л и ц а В.7— Справочные значения для проверки расчета по представленному соотношению

Тестовый газ	<i>Т</i> ₀ , К	<i>р</i> ₀ , МПа	$q_{\rm ref}$	S	f	C_{kp}
Тестовый газ 1	280	2	3704,50	1481,33	0,02094	3735,52
	310	10	19007,4	10716,5	0,00707	19083,2

Окончание таблицы В.7

Тестовый газ	т ₀ , К	р ₀ , МПа	q_{ref}	S	f	C_{kp}
Тестовый газ 2	280	2	3805,42	1402,57	0,04276	3865,38
	310	10	19749,8	10905,8	0,02804	20055,5
Тестовый газ 3	280	2	3913,25	1325,58	0,03958	3965,72
	310	10	20603,1	11260,7	0,02685	20905,5

Приложение Г (обязательное)

Методика расчета критического потока массы и функции критического расхода газа на основе уравнений состояния

Г.1 Расчет критического потока массы и функции критического расхода газа на основе уравнения состояния, представленного в виде Z = Z(p, T)

Г.1.1 Принцип расчета

Г.1.1.1 Расчет критического потока массы и функции критического расхода газа выполняют путем решения системы уравнений:

$$\frac{dS}{(R/M)} = \frac{C_p}{(R/M)} \cdot \frac{dT}{T} - \left(Z + T \cdot \left(\frac{\partial Z}{\partial T}\right)_p\right) \cdot \frac{dp}{p} = 0,\tag{\Gamma.1}$$

$$-\frac{v \cdot dv}{(R/M)} = \frac{C_p}{(R/M)} \cdot dT - T^2 \cdot \left(\frac{\partial Z}{\partial T}\right)_p \cdot \frac{dp}{\rho},\tag{\Gamma.2}$$

с целью определения значений T_{nt} и p_{nt} , при которых число Маха в горловине сопла Ma_{nt} становится равным еди-

Г.1.1.2 Зная параметры в горловине сопла T_{nt} и p_{nt} , при которых число Маха в горловине сопла Ma_{nt} становится равным единице, а также скорость потока газа в горловине сопла v_{nt} (равную скорости звука w_{nt}) и плотность газа в горловине сопла ho_{nt} (из уравнения состояния газа), можно найти критический поток массы

$$C_{KD} = w_{nt} \cdot \rho_{nt} \tag{\Gamma.3}$$

а также функцию критического расхода газа

$$C_* = \frac{C_{\text{Kp}} \cdot \sqrt{(R/M) \cdot T_0}}{p_0}. \tag{\Gamma.4}$$

Г.1.1.3 Решение системы уравнений (Г.1) и (Г.2) приведено в Г.1.2 и Г.1.3 в соответствии с [13].

Г.1.2 Исходные данные для расчета

Исходными данными для проведения расчета являются:

- уравнение состояние вида Z = Z(p, T);
- абсолютное давление торможения газа на входе в сопло p_0 ;
- абсолютная температура торможения газа на входе в сопло T_0 ;
- уравнение для расчета безразмерной изобарной теплоемкости газа в идеально-газовом состоянии вида $C_{pir} = C_{pir}(T);$ - компонентный состав газа (в случае многокомпонентных сред).

Г.1.3.1 При реализации алгоритма расчета критического потока массы и функции критического расхода газа в целях его упрощения используются следующие функции:

$$\varepsilon_{l}(p, T) = Z - 1, \tag{\Gamma.5}$$

$$\varepsilon_{\text{II}}(p,T) = T\left(\frac{\partial Z}{\partial T}\right)_{p},$$
(Γ.6)

$$\varepsilon_{\text{III}}(p,T) = \int_{0}^{p} (\varepsilon_{\text{I}} + \varepsilon_{\text{II}}) \frac{dp}{p}, \tag{\Gamma.7}$$

$$\varepsilon_{\text{IV}}(p,T) = \int_{0}^{p} \varepsilon_{\text{II}} \frac{dp}{p},$$
 (F.8)

$$\varepsilon_{V}(\rho,T) = \varepsilon_{I} - \rho \left(\frac{\partial Z}{\partial \rho}\right)_{T},$$
 (Г.9)

$$\varepsilon_{VI}(p,T) = T \left(\frac{\partial \varepsilon_{III}}{\partial T} \right)_{p},$$
 (Г.10)

$$\xi_{\mathsf{I}}\left(T_{0}, T_{nt}\right) = \int_{T_{nt}}^{T_{0}} C_{pir} \cdot \frac{dT}{T},\tag{\Gamma.11}$$

$$\xi_{\text{II}}\left(T_0, T_{nt}\right) = \int_{T_{nt}}^{T_0} C_{pir} \cdot dT. \tag{\Gamma.12}$$

Г.1.3.2 Для расчета первоначального приближенного значения температуры газа в горловине сопла T_{nt} используют выражение

$$T_{nt} = T_0 \cdot \frac{2}{\kappa_i + 1},\tag{\Gamma.13}$$

где к, рассчитывается по формуле

$$\kappa_i = \frac{C_{pir}(T_0)}{C_{pir}(T_0) - 1}.\tag{\Gamma.14}$$

- Г.1.3.3 Расчет значения давления газа в горловине сопла p_{nt} осуществляют с использованием следующего итерационного процесса:
 - 1) рассчитывают значение давления газа в горловине сопла p_{nt} в первом приближении

$$p_{nt,a} = p_0 \cdot e^{-\xi_I(T_0, T_{nt})}; \tag{\Gamma.15}$$

2) рассчитывают значение давления газа в горловине сопла p_{nt} во втором приближении

$$\rho_{nt,b} = \rho_0 \cdot e^{\left[-\xi_{\text{I}}(T_0, T_{nt}) + \varepsilon_{\text{III}}(\rho_0, T_0) - \varepsilon_{\text{III}}(\rho_{nt,a}, T_{nt})\right]}; \tag{\Gamma.16}$$

- 3) принимают значение давления газа $p_{nt,a}$ равным значению давления газа $p_{nt,b}$, после чего рассчитывают новое значение $p_{nt,b}$ по выражению (Г.16);
 - 4) шаг 3) повторяют до тех пор, пока не будет выполняться условие

$$\left| \frac{p_{nt,b} - p_{nt,a}}{p_{nt,a}} \right| < 1 \cdot 10^{-6}; \tag{\Gamma.17}$$

- 5) по выполнении условия (Г.17) итерации прекращают и принимают значение давления газа в горловине сопла p_{nt} равным $p_{nt,b}$.
- Г.1.3.4 Имея значения температуры газа в горловине сопла T_{nt} и давления газа в горловине сопла p_{nt} , рассчитывают значение скорости газа в горловине сопла по формуле

$$v_{nt} = \sqrt{2 \cdot \left(R/M\right) \cdot \left(\xi_{II}\left(T_0, T_{nt}\right) - T_0 \cdot \varepsilon_{IV}\left(p_0, T_0\right) + T_{nt} \cdot \varepsilon_{IV}\left(p_{nt}, T_{nt}\right)\right)},\tag{\Gamma.18}$$

а также значение скорости звука в горловине сопла по формуле

$$w_{nt} = \left[\frac{1}{\left(Z(p_{nt}, T_{nt}) \right)^{2} \cdot (R/M) \cdot T_{nt}} \right]^{-0.5} \times \left[1 + \varepsilon_{V}(p_{nt}, T_{nt}) - \frac{\left(1 + \varepsilon_{I}(p_{nt}, T_{nt}) + \varepsilon_{II}(p_{nt}, T_{nt}) \right)^{2}}{C_{pir}(T_{nt}) - \varepsilon_{VI}(p_{nt}, T_{nt})} \right]^{-0.5}.$$
 (Γ.19)

Г.1.3.5 Имея значения скорости газа в горловине сопла v_{nt} и скорости звука в горловине сопла w_{nt} , рассчитывают число Маха в горловине сопла по формуле

$$Ma_{nt} = \frac{v_{nt}}{w_{nt}}. ag{\Gamma.20}$$

 Γ .1.3.6 Сравнивают рассчитанное число Маха в горловине сопла Ma_{nt} с единицей и вычисляют разницу

$$\Delta Ma = 1 - Ma_{nt}. \tag{\Gamma.21}$$

Г.1.3.7 На основании рассчитанной разницы между числом Маха в горловине сопла Ma_{nt} и единицей ΔMa рассчитывают поправку к значению температуры газа в горловине сопла T_{nt} по формуле

$$\Delta T_{nt} = \Delta Ma \cdot \left[-T_{nt} \cdot \left(\frac{T_{nt}}{T_0} \right) \cdot (\kappa_i - 1) \right], \tag{\Gamma.22}$$

где κ_i рассчитывается по формуле

$$\kappa_i = \frac{C_{pir}(T_{nt})}{C_{pir}(T_{nt}) - 1}.$$
 (F.23)

 Γ .1.3.8 Новое приближение значения температуры газа в горловине сопла T_{nt} рассчитывают по формуле

$$T_{nt} - T'_{nt} + \Delta T_{nt}, \tag{\Gamma.24}$$

где T'_{nt} — предыдущее значение T_{nt} . Г.1.3.9 Расчеты по Г.1.3.3—Г.1.3.8 повторяют до тех пор, пока не выполнится условие $|\Delta Ma| < 10^{-5}$ (или $|\Delta \textit{Ma}| < 10^{-3}$, в зависимости от требуемого уровня точности). По выполнении данного условия расчеты прекращают и принимают последние значения T_{nt} , p_{nt} и w_{nt} температурой, давлением и скоростью звука в горловине сопла, со-

Г.1.3.10 По значениям температуры T_{nt} и давления ρ_{nt} газа в горловине сопла и уравнению состояния $Z = p/(\rho \cdot (R/M) \cdot T) = Z(p, T)$ рассчитывают значение плотности газа в горловине сопла ρ_{nt}

Г.1.3.11 Вычисляют критический поток массы по формуле

$$C_{\mathsf{KP}} = w_{nt} \cdot \rho_{nt},\tag{\Gamma.25}$$

а также функцию критического расхода газа по формуле

$$C_* = \frac{C_{\text{Kp}} \cdot \sqrt{(R/M) \cdot T_0}}{p_0}. \tag{\Gamma.26}$$

Г.2 Расчет критического потока массы и функции критического расхода газа на основе уравнения состояния, представленного в виде $Z = Z(\rho, T)$

Г.2.1 Принцип расчета

Г.2.1.1 Расчет критического потока массы и функции критического расхода газа выполняют путем решения системы уравнений

$$dS = C_V \cdot \frac{dT}{T} - \frac{1}{\rho^2} \cdot \left(\frac{\partial \rho}{\partial T}\right)_0 \cdot d\rho, \tag{\Gamma.27}$$

$$dH = T \cdot dS + \frac{p}{\rho^2} \cdot d\rho + d\left(\frac{p}{\rho}\right),\tag{\Gamma.28}$$

с целью определения значений T_{nt} и ρ_{nt} , при которых число Маха в горловине сопла Ma_{nt} становится равным единице. Г.2.1.2 Зная параметры в горловине сопла T_{nt} и ρ_{nt} , при которых число Маха в горловине сопла Ma_{nt} становится равным единице, а также скорость потока газа в горловине сопла v_{nt} (равную скорости звука w_{nt}), можно найти критический поток массы

$$C_{KD} = W_{pt} \cdot \rho_{pt}, \tag{\Gamma.29}$$

а также функцию критического расхода газа

$$C_* = \frac{C_{\text{kp}}}{Z_0 \cdot \rho_0 \cdot \sqrt{(R/M) \cdot T_0}}.$$
 (Γ.30)

Г.2.1.3 Решение системы уравнений (Г.27) и (Г.28) приведено в Г.2.2 и Г.2.3 в соответствии с [13].

Г.2.2 Исходные данные для расчета

Исходными данными для проведения расчета являются:

- уравнение состояние вида $Z = Z(\rho, T)$;
- абсолютное давление торможения газа на входе в сопло p_0 ;
- абсолютная температура торможения газа на входе в сопло T_0 ;
- уравнение для расчета безразмерной изобарной теплоемкости газа в идеально-газовом состоянии вида $C_{pir} = C_{pir}(T);$ - компонентный состав газа (в случае многокомпонентных сред).

Г.2.3.1 При реализации алгоритма расчета критического потока массы и функции критического расхода газа в целях его упрощения используются следующие функции:

$$\varepsilon_{l}(\rho, T) = Z - 1, \tag{\Gamma.31}$$

$$\varepsilon_{\text{II}}(\rho, T) = T \left(\frac{\partial Z}{\partial T} \right)_{\rho},$$
(Γ.32)

$$\varepsilon_{\text{III}}(\rho, T) = \int_{0}^{\rho} (\varepsilon_{\text{I}} + \varepsilon_{\text{II}}) \frac{d\rho}{\rho}, \tag{\Gamma.33}$$

$$\varepsilon_{\text{IV}}(\rho, T) = \int_{0}^{\rho} \varepsilon_{\text{II}} \frac{d\rho}{\rho}, \tag{\Gamma.34}$$

$$\varepsilon_{V}(\rho, T) = \varepsilon_{I} + \rho \left(\frac{\partial Z}{\partial \rho}\right)_{T},$$
 (Г.35)

$$\varepsilon_{VI}(\rho, T) = T \left(\frac{\partial \varepsilon_{III}}{\partial T} \right)_{\rho},$$
 (Г.36)

$$\xi_{l}\left(T_{0}, T_{nt}\right) = \int_{T_{nt}}^{T_{0}} \left(C_{pir} - 1\right) \cdot \frac{dT}{T},\tag{\Gamma.37}$$

$$\xi_{II}(T_0, T_{nt}) = \int_{T_{nt}}^{T_0} (C_{pir} - 1) \cdot dT.$$
 (Γ.38)

- Г.2.3.2 Значение плотности газа ρ_0 при давлении p_0 и температуре T_0 рассчитывают с использованием следующего итерационного процесса:
 - 1) рассчитывают значение плотности газа ρ_0 в первом приближении

$$\rho_{0,a} = \frac{p_0}{(R/M) \cdot T_0}; \tag{\Gamma.39}$$

2) рассчитывают значение плотности газа ρ_0 во втором приближении

$$\rho_{0,b} = \frac{\rho_0}{\left[1 + \varepsilon_I \left(\rho_{0,a}, T_0\right)\right] \cdot \left(R/M\right) \cdot T_0};\tag{\Gamma.40}$$

- 3) принимают значение плотности газа $\rho_{0,a}$ равным значению плотности газа $\rho_{0,b}$, после чего рассчитывают новое значение $\rho_{0,b}$ по выражению (Г.40);
 - 4) шаг 3) повторяют до тех пор, пока не будет выполняться условие

$$\left| \frac{\rho_{0,b} - \rho_{0,a}}{\rho_{0,a}} \right| < 1 \cdot 10^{-6}; \tag{\Gamma.41}$$

- 5) по выполнении условия (Г.41) итерации прекращают и принимают значение плотности газа ρ_0 при давлении p_0 и температуре T_0 равным $\rho_{0,b}$.
- Г.2.3.3 Для расчета первоначального приближенного значения температуры газа в горловине сопла T_{nt} используют выражение

$$T_{nt} = T_0 \cdot \frac{2}{\kappa_i + 1},\tag{\Gamma.42}$$

где κ_i рассчитывается по формуле

$$\kappa_i = \frac{C_{pir}(T_0)}{C_{pir}(T_0) - 1}.\tag{\Gamma.43}$$

- Г.2.3.4 Расчет значения плотности газа в горловине сопла ρ_{nt} осуществляют с использованием следующего итерационного процесса:
 - 1) рассчитывают значение плотности газа в горловине сопла $\rho_{\it nt}$ в первом приближении

$$\rho_{nt,a} = \rho_0 \cdot e^{-\xi_I(T_0, T_{nt})}; \tag{\Gamma.44}$$

2) рассчитывают значение плотности газа в горловине сопла ρ_{nt} во втором приближении

$$\rho_{nt,b} = \rho_0 \cdot e^{\left[-\xi_{\text{II}}(T_0, T_{nt}) + \varepsilon_{\text{III}}(\rho_0, T_0) - \varepsilon_{\text{III}}(\rho_{nt,a}, T_{nt})\right]}; \tag{\Gamma.45}$$

- 3) принимают значение плотности газа $\rho_{nt,a}$ равным значению плотности газа $\rho_{nt,b}$, после чего рассчитывают новое значение $\rho_{nt,b}$ по выражению (Г.45);
 - 4) шаг 3) повторяют до тех пор, пока не будет выполняться условие

$$\left| \frac{\rho_{nt,b} - \rho_{nt,a}}{\rho_{nt,a}} \right| < 1 \cdot 10^{-6};$$
 (Г.46)

5) по выполнении условия (Г.46) итерации прекращают и принимают значение плотности газа в горловине сопла ρ_{nt} равным $\rho_{nt.b}$.

Г.2.3.5 Имея значения температуры газа в горловине сопла T_{nt} и плотности газа в горловине сопла ρ_{nt} , рассчитывают значение скорости газа в горловине сопла по формуле

$$v_{nt} = \left\{ 2 \cdot (R/M) \cdot \left[\xi_{II} \left(T_0, T_{nt} \right) + T_0 \cdot \left(1 + \varepsilon_I \left(\rho_0, T_0 \right) - \varepsilon_{IV} \left(\rho_0, T_0 \right) \right) - T_{nt} \cdot \left(1 + \varepsilon_I \left(\rho_{nt}, T_{nt} \right) - \varepsilon_{IV} \left(\rho_{nt}, T_{nt} \right) \right) \right] \right\}^{0.5}, \tag{\Gamma.47}$$

а также значение скорости звука в горловине сопла по формуле

$$w_{nt} = \left[(R/M) \cdot T_{nt} \cdot \left[1 + \varepsilon_{V} \left(\rho_{nt}, T_{nt} \right) + \frac{\left(1 + \varepsilon_{I} \left(\rho_{nt}, T_{nt} \right) + \varepsilon_{II} \left(\rho_{nt}, T_{nt} \right) \right)^{2}}{C_{pir} \left(T_{nt} \right) - 1 - \varepsilon_{VI} \left(\rho_{nt}, T_{nt} \right)} \right]^{0.5} \right]. \tag{\Gamma.48}$$

Г.2.3.6 Имея значения скорости газа в горловине сопла v_{nt} и скорости звука в горловине сопла w_{nt} , рассчитывают число Маха в горловине сопла по формуле

$$Ma_{nt} = \frac{v_{nt}}{w_{nt}}. ag{\Gamma.49}$$

 $\Gamma.2.3.7$ Сравнивают рассчитанное число Маха в горловине сопла Ma_{nt} с единицей и вычисляют разницу

$$\Delta Ma = 1 - Ma_{nt}. \tag{\Gamma.50}$$

Г.2.3.8 На основании рассчитанной разницы между числом Маха в горловине сопла Ma_{nt} и единицей ΔMa рассчитывают поправку к значению температуры газа в горловине сопла T_{nt} по формуле

$$\Delta T_{nt} = \Delta Ma \cdot \left[-T_{nt} \cdot \left(\frac{T_{nt}}{T_0} \right) \cdot (\kappa_i - 1) \right], \tag{\Gamma.51}$$

где к, рассчитывается по формуле

$$\kappa_i = \frac{C_{pir}(T_{nt})}{C_{pir}(T_{nt}) - 1}.$$
(F.52)

 Γ .2.3.9 Новое приближение значения температуры газа в горловине сопла T_{nt} рассчитывают по формуле

$$T_{nt} = T'_{nt} + \Delta T_{nt}, \tag{\Gamma.53}$$

где T'_{nt} — предыдущее значение T_{nt}

Г.2.3.10 Расчеты по Г.2.3.4—Г.2.3.9 повторяют до тех пор, пока не выполнится условие $|\Delta Ma|$ < 10^{-5} (или $|\Delta Ma|$ < 10^{-3} , в зависимости от требуемого уровня точности). По выполнении данного условия расчеты прекращают и принимают последние значения T_{nt} , ρ_{nt} и w_{nt} температурой, плотностью и скоростью звука в горловине сопла, соответственно.

Г.2.3.11 По значениям температуры T_0 и плотности ρ_0 газа и уравнению состояния $Z = Z(\rho, T)$ рассчитывают значение фактора сжимаемости Z_0 .

Г.2.3.12 Вычисляют критический поток массы по формуле

$$C_{\mathsf{KP}} = w_{nt} \cdot \rho_{nt},\tag{\Gamma.54}$$

а также функцию критического расхода газа по формуле

$$C_{\star} = \frac{C_{\kappa p}}{Z_0 \cdot \rho_0 \cdot \sqrt{(R/M) \cdot T_0}}.$$
 (Γ.55)

Приложение Д (рекомендуемое)

Рекомендуемая форма акта проверки состояния и применения средств измерений и соблюдения требований стандарта

Наименование юридического лица AKT проверки состояния и применения средств измерений и соблюдения требований ГОСТ Р ____ наименование проверяемого объекта Основание 1 Перечень средств измерений _____ 2 Наличие и комплектность эксплуатационной документации на основные и дополнительные средства измерений, вспомогательные и дополнительные устройства При отсутствии указать средства измерений и устройства, на которые отсутствует документация 3 Состояние и условия эксплуатации средств измерений _____ Соответствие, несоответствие требованиям эксплуатационной документации, указываются диапазоны изменения параметров окружающей и измеряемой среды 4 Соответствие характеристик средств измерений установленным техническим требованиям ГОСТ Р ______ Перечислить средства измерений и указать: поверен/не поверен 5 Номер используемой формулы для вычисления расхода по ГОСТ Р ______ 6 Относительная расширенная неопределенность измерений _____ 7 Результаты проверки соблюдения требований ГОСТ Р _____ Соответствие Наименование операции проверки Нормативный документ 1 Правильность монтажа и эксплуатации средств ГОСТ Р _____, эксплуатацион-Да Нет измерений, вспомогательных и дополнительных ная документация устройств FOCT P 2 Соблюдение процедур обработки результатов измерений 3 Соблюдение требований к точности измерений ГОСТ Р

8 Перечень нарушений и срок	8 Перечень нарушений и сроки их устранения:					
	Заполня	ется при наличии наруш	ений			
9 Выводы						
		•				
Руководитель						
метрологической службы		<u></u>	_			
	подпись	инициалы, фамилия	7			

М.П.

Приложение Е (обязательное)

Поправочный коэффициент для массового расхода атмосферного воздуха

Е.1 Общие замечания

Массовый расход атмосферного воздуха $q_{m,atmos}$ для данной температуры торможения вверх по потоку T_0 , K, и давления торможения вверх по потоку p_0 , МПа, можно вычислить по формуле

$$q_{m,atmos} = q_{m,dry,CO_2-free} \left[1 + x_{CO_2} \cdot (0,25 + 0,04732 \cdot \pi) + \frac{RH}{100} \cdot A \cdot B \right], \tag{E.1}$$

где $q_{m,dry,\mathrm{CO}_2\,-\mathrm{free}}$ — массовый расход сухого воздуха без CO_2 ;

 $x_{{\rm CO}_2}$ — молярная доля ${\rm CO}_2$ в воздухе (если ее значение неизвестно, то принять 0,0004);

RH — относительная влажность воздуха, %;

$$A = 0.127828 \cdot \tau^3 - 0.789422 \cdot \tau^2 + 1.63166 \cdot \tau - 1.12818, \tag{E.2}$$

где
$$\tau = \frac{T_0}{T_c}$$
;

$$B = -0,000288749 \cdot \pi^2 - 0,00191022 \cdot \pi + 0,00569536 - \frac{0,0719995}{\pi}, \tag{E.3}$$

где
$$\pi = \frac{p_0}{p_c}$$
;

 p_c = 3,786 MПa, T_c = 132,5306 K.

Е.2 Справочные значения для проверки вычислений

В таблице Е.1 приводятся справочные значения, по которым можно проверить расчет по формуле (Е.1).

Таблица Е.1

т ₀ , к	р ₀ , МПа	RH, %	$q_{m,\;dry,\;{\rm CO_2^-}}$ free	q _{m, atmos}
280	0,1	50	241,663	241,403
280	1	100	2427,42	2427,11
305	0,1	75	231,501	229,674
305	2	100	4662,04	4660,15

Библиография

- [1] РМГ 29—2013 Государственная система обеспечения единства измерений. Метрология. Основные термины и определения
- [2] Федеральный закон от 21 июля 1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов»
- [3] Федеральные нормы и правила в области промышленной безопасности «Правила безопасности сетей газораспределения и газопотребления» (утверждены приказом Федеральной службы по экологическому, технологическому и атомному надзору от 15 ноября 2013 г. № 542)
- [4] Федеральные нормы и правила в области промышленной безопасности «Правила безопасности в нефтяной и газовой промышленности» (утверждены приказом Федеральной службы по экологическому, технологическому и атомному надзору от 12 марта 2013 г. № 101)
- [5] Федеральный закон от 22 июля 2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасности»
- [6] ASME MFC-7—2016 Measurement of Gas Flow by Means of Critical Flow Venturis and Critical Flow Nozzles
- [7] ИСО 9300:2005 Измерение расхода газа с помощью критических сопел Вентури (Measurement of gas flow by means of critical flow Venturi nozzles)
- [8] Stewart D.G., Watson J.T.R. and Vaidya A.M. Improved critical flow factors and representative equations for four calibration gases. Flow Measurement and Instrumentation, 1999, 10 (1): 27—34
- [9] Span R., Lemmon E.W., Jacobsen R.T. and Wagner W. A.Reference Quality Equation of State for Nitrogen. International Journal of Thermophysics, 1998; 19(4): 1121—1132
- [10] Tegeler CH., Span R. and Wagner W.A. New equation of state for argon covering the fluid region from the triple-point temperature to 700 K at pressures up to 1000 MPa. Paper Presented at 13th Symposium on Thermophysical Properties, Boulder, June 1997
- [11] Panasati M.D., Lemmon E.W., Penoncello S.G., Jacobsen R.T. and Friend D.G. Thermodynamic properties of air from 60 to 2000 K at pressures up to 2000 MPa. Paper Presented at 13th Symposium on Thermophysical Properties. Boulder. June 1997
- [12] Setzmann U. and Wagner W.A. New equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1 000 MPa. Journal of Physical and Chemical Reference Data, 1991; 20(6): 1061—1116
- [13] Robert C. Johnson. Real-Gas Effects in Critical-Flow-Through Nozzles and Tabulated Thermodynamic Properties, Lewis Research Center, Cleveland, Ohio, 1965

УДК 681.121.842:006.354

OKC 17.020

Ключевые слова: критическое сопло, расход газа, методика измерений

БЗ 5-2019/61

Редактор *Н.А. Аргунова*Технический редактор *И.Е. Черепкова*Корректор *М.В. Бучная*Компьютерная верстка *Е.О. Асташина*

Сдано в набор 17.09.2019. Подписано в печать 10.12.2019. Формат $60 \times 84^{1}/_{8}$. Гарнитура Ариал. Усл. печ. л. 6,05. Уч.-изд. л. 5,45. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта