ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 8.961— 2019

Государственная система обеспечения единства измерений

ДИСПЕРСНЫЕ ХАРАКТЕРИСТИКИ АЭРОЗОЛЕЙ И ВЗВЕСЕЙ

Термины и определения

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (ФГУП «ВНИИФТРИ»)
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 206 «Эталоны и поверочные схемы»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 24 мая 2019 г. № 216-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение

Установленные в настоящем стандарте термины расположены в систематизированном порядке, отражающем систему понятий в области дисперсных характеристик аэрозолей и взвесей.

Для каждого понятия установлен один стандартизованный термин.

Стандартизованные термины набраны полужирным шрифтом.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

ДИСПЕРСНЫЕ ХАРАКТЕРИСТИКИ АЭРОЗОЛЕЙ И ВЗВЕСЕЙ

Термины и определения

State system for ensuring the uniformity of measurements.

Dispersed characteristics of nanometric aerosols and suspensions. Terms and definitions

Дата введения — 2020—01—01

1 Область применения

Настоящий стандарт устанавливает термины и определения понятий в области дисперсных характеристик аэрозолей и взвесей.

Термины, установленные настоящим стандартом, рекомендуют для применения во всех видах документации и литературы по дисперсным характеристикам аэрозолей и взвесей, входящих в сферу действия работ по стандартизации и/или использующих результаты этих работ.

2 Термины и определения

- аэродинамический диаметр частицы: Диаметр сферической частицы с известной плотностью, имеющей ту же скорость смещения относительно газообразной среды под действием той же силы, какую испытывает измеряемая частица.
- аэрозоль: Дисперсные системы, состоящие из взвешенных в воздухе или другом газе частиц (пыль, дым, туман, смог).
- 3 взвесь: Жидкая неоднородная система, состоящая из, распределенных в жидкости твердых частиц.
- 4 гидродинамический диаметр частицы: Диаметр сферической частицы с известной плотностью, имеющей ту же скорость смещения относительно жидкой среды под воздействием той же силы, какую испытывает измеряемая частица.
 - 5 дескриптор: Идентификатор объекта.
 - 6 диаметр Мартинса: Максимальное расстояние между границами частицы.
 - 7 диаметр Ферета: Минимальное расстояние между границами частицы.
- 8 диполь-дипольное взаимодействие: Взаимодействие между полярными молекулами, в которых центры тяжести положительного и отрицательного зарядов не совпадают.

9

дисперсионная среда: Непрерывная фаза в дисперсной системе. [ГОСТ 16887—71, статья 2]

 дисперсионное взаимодействие: Взаимодействие между неполярными молекулами, обусловленное перераспределением зарядов близлежащих молекул.

11

дисперсная система: Система, состоящая из двух или более фаз (тел) с развитой поверхностью раздела между ними.

[ГОСТ Р 51109-97, статья 5.6]

- 12 дисперсная фаза: Прерывная фаза, выраженная в виде отдельных твердых частиц, капелек жидкости или пузырьков газа в дисперсной системе.
- 13 дисперсные характеристики: Величины, характеризующие дисперсную систему при ее исследовании и практическом применении.
- 14 дисперсный анализ: Анализ изменчивости дисперсных характеристик под влиянием какихлибо контролируемых переменных факторов.
- 15 индукционное взаимодействие: Взаимодействие между полярной молекулой и неполярной молекулой, дипольный момент которой индуцирован внешним полем полярной молекулы.
- 16 коагуляция: Объединение частиц дисперсной фазы в агрегаты вследствие сцепления частиц при их взаимодействии.

17

коэффициент миделевого сечения: Отношение площади миделевого сечения к площади круга, диаметр которого равен наибольшему размеру измеряемой частицы.

[ГОСТ Р 51109—97, статья 4.27]

18

коэффициент несферичности: Отношение поверхности измеряемой частицы к поверхности сферы, равной ей по объему.

[ГОСТ Р 51109-97, статья 4.24]

19 коэффициент формы: Отношение сопротивления среды движению частицы неправильной формы к сопротивлению среды движению сферической частицы того же объема.

20

коэффициент формы динамический: Отношение коэффициента сопротивления измеряемой частицы к коэффициенту сопротивления равной ей по объему сферической частицы. [ГОСТ Р 51109—97, статья 4.26]

- 21 массовая концентрация частиц: Отношение суммарной массы частиц к единице объема.
- 22 межмолекулярное взаимодействие: Взаимодействие между молекулами частиц как дисперсной фазы, так и молекулами частиц с молекулами дисперсной среды.
- 23 миделево сечение частицы: Наибольшее по площади поперечное сечение тела, движущегося в жидкости или газообразной среде, или площадь проекции тела на плоскость, перпендикулярную направлению движения тела.
- 24 нуклеация: Процесс зарождения частиц, сопровождающийся фазовыми переходами первого рода, которые происходят в исходной метастабильной фазе в результате флуктуационных процессов и роста зародышей новой фазы.
 - 25 объемная концентрация частиц: Отношение суммарного объема частиц к единице объема.
- 26 осаждение: Образование твердого осадка на поверхности тела, ограничивающего дисперсную систему за счет приложенной к дисперсной фазе силы или в результате взаимодействия частиц той или иной природы.
- 27 поверхностное натяжение частиц: Работа, затрачиваемая на создание единицы площади раздела двух фаз и обусловленная избытком потенциальной энергии на их границе.
- 28 проекционный диаметр: Диаметр окружности с площадью, равной площади проекции частицы в плоскости наблюдения оптического или электронного микроскопа.
- 29 размер частицы: Разность характерных координат частицы (X₁, X₂) в метрическом пространстве, где ее свойства остаются постоянными (максимальный линейный размер частицы в плоскости наблюдения оптического или электронного микроскопа).
- 30 частицы РМ 2,5: Частицы, проходящие через селективное устройство для разделения фракций взвешенных частиц, которое обеспечивает отсеивание частиц с диаметром более 2,5 мкм.
- 31 частицы РМ 10: Частицы, проходящие через селективное устройство для разделения фракций взвешенных частиц, которое обеспечивает отсеивание частиц с диаметром более 10 мкм.
- 32 стоксовский диаметр частицы: Диаметр сферической частицы, имеющей ту же плотность вещества и скорость седиментации (осаждения под действием силы тяжести), что и измеряемая частица.
 - 33 счетная концентрация частиц: Отношение суммарного количества частиц к единице объема.

- 34 удельная поверхность частиц: Отношение суммарной площади поверхности частиц к единице объема.
- 35 форма частицы: Внешняя конфигурация частицы, определяемая отношением поперечного размера частицы в разных направлениях.
- 36 функция распределения частиц по массе: Отношение доли числа частиц df, масса которых лежит в пределах $(M, M + \delta M)$, к интервалу δM .
- 37 функция распределения частиц по объему: Отношение доли числа частиц df, объем которых лежит в пределах $(V, V + \delta V)$, к интервалу δV .
- 38 функция распределения частиц по поверхности: Отношение доли числа частиц df, площадь которых лежит в пределах $(S, S + \delta S)$, к интервалу δS .
- 39 функция распределения частиц по размерам: Отношение доли числа частиц df, размеры которых лежат в пределах $(d, d + \delta d)$, к интервалу δd .
- 40 частица: Твердый, жидкий или многофазный объект, в том числе микроорганизм, размерами до 1000 мкм.
- 41 эквивалентный диаметр частицы: Диаметр сферической частицы с известными свойствами, которая оказывает такое же воздействие на средство измерений, что и измеряемая частица.
- 42 эквивалентный массовый диаметр частицы: Диаметр сферической частицы, имеющей ту же плотность вещества и массу, что и измеряемая частица.
 - 43 ядра конденсации: Частицы аэрозоля, на которых конденсируется пересыщенный пар.

Алфавитный указатель терминов

анализ дисперсный	14
аэрозоль	2
взаимодействие диполь-дипольное	8
взаимодействие дисперсионное	10
взаимодействие индукционное	15
взаимодействие межмолекулярное	22
взвесь	3
дескриптор	5
диаметр Мартинса	. 6
диаметр проекционный	28
диаметр Ферета	7
диаметр частицы аэродинамический	1
диаметр частицы гидродинамический	4
диаметр частицы стоксовский	32
диаметр частицы эквивалентный	41
диаметр частицы эквивалентный массовый	42
коагуляция	16
концентрация частиц массовая	21
концентрация частиц объемная	25
концентрация частиц счетная	33
коэффициент миделевого сечения	17
коэффициент несферичности	.18
коэффициент формы	19
коэффициент формы динамический	20
натяжение частиц поверхностное	27
нуклеация	24
осаждение	26
поверхность частиц удельная	34
размер частицы	29

FOCT P 8.961-2019

сечение частицы миделево	23
система дисперсная	11
среда дисперсионная	9
фаза дисперсная	12
форма частицы	35
функция распределения частиц по массе	36
функция распределения частиц по объему	37
функция распределения частиц по поверхности	38
функция распределения частиц по размерам	39
характеристики дисперсные	13
частица	40
частицы РМ 2,5	30
частицы РМ 10	31
ядра конденсации	43

УДК 539.257.1.08-2:006.354

OKC 17.020

Ключевые слова: дисперсные характеристики аэрозолей и взвесей, термины и определения, дисперсный состав, частица, взаимодействие, функция распределения, концентрация

БЗ 5-2019/51

Редактор Е.А. Моисеева Технический редактор В.Н. Прусакова Корректор М.И. Першина Компьютерная верстка И.А. Налейкиной

Сдано в набор 27.05.2019. Подписано в печать 29.05.2019. Формат 60×84¹/₈. Гарнитура Ариал. Усл. печ. л. 0,93. Уч.-изд. л. 0,70. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru