МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT ISO 17635— 2018

Неразрушающий контроль сварных соединений ОБЩИЕ ПРАВИЛА ДЛЯ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ

(ISO 17635:2016, IDT)

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Техническим комитетом по стандартизации ТК 357 «Стальные и чугунные трубы и баллоны», Негосударственным образовательным учреждением дополнительного профессионального образования «Научно-учебный центр «Контроль и диагностика» («НУЦ «Контроль и диагностика») и Открытым акционерным обществом «Российский научно-исследовательский институт трубной промышленности» (ОАО «РосНИТИ») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 357 «Стальные и чугунные трубы и баллоны»
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 20 декабря 2018 г. № 114-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт
Узбекистан	UZ	Узстандарт
Украина	UA	Минэкономразвития Украины

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 5 февраля 2019 г. № 17-ст межгосударственный стандарт ГОСТ ISO 17635—2018 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2019 г.
- 5 Настоящий стандарт идентичен международному стандарту ISO 17635:2016 «Неразрушающий контроль сварных соединений. Общие правила для металлических материалов» («Non-destructive testing of welds — General rules for metallic materials», IDT).

Международный стандарт разработан Европейским комитетом по стандартизации (CEN), Техническим комитетом TC 121 «Сварка» в сотрудничестве с Техническим комитетом ISO/TC 44 «Сварка и смежные процессы», подкомитетом SC 5 «Диагностика и контроль сварных швов» в соответствии с Соглашением по техническому взаимодействию между ISO и CEN (Венское соглашение).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© ISO, 2016 — Все права сохраняются © Стандартинформ, оформление, 2019

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

FOCT ISO 17635-2018

Содержание

1 Область применения
2 Нормативные ссылки
3 Термины и определения
4 Сокращения
5 Ограничения
5.1 Стадия производства
5.2 Объем контроля
5.3 Материалы
6 Квалификация персонала4
7 Организация, выполняющая контроль
8 Документация
8.1 Документация, необходимая перед контролем
8.2 Документация, необходимая после контроля
9 Выбор метода контроля
9.1 Общие положения
9.2 Стыковые и тавровые соединения с полным проплавлением
9.3 Стыковые и тавровые соединения с неполным проплавлением и угловые швы 6
10 Проведение контроля
10.1 Применяемые стандарты
10.2 Условия проведения контроля
10.3 Время проведения контроля
10.4 Недопустимые дефекты
Приложение А (обязательное) Применяемые правила и стандарты
Приложение В (справочное) Диаграмма взаимосвязи стандартов
Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов
межгосударственным стандартам12
Библиография

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Неразрушающий контроль сварных соединений

ОБЩИЕ ПРАВИЛА ДЛЯ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ

Non-destructive testing of welds. General rules for metallic materials

Дата введения — 2019—07—01

1 Область применения

Настоящий стандарт устанавливает требования к выбору методов неразрушающего контроля (NDT) сварных соединений и оценке результатов контроля качества, основываясь на требованиях к качеству изделия, материалах, толщине сварного шва, технологии сварки и объеме контроля.

Настоящий стандарт определяет основные правила и стандарты для различных методов контроля с учетом как технологии, так и уровней приемки для металлов.

Уровни приемки не являются непосредственной интерпретацией уровней качества, определенных в ISO 5817 или ISO 10042. Они связаны с качеством изготовленной партии сварных соединений.

Требования к уровням приемки неразрушающего контроля соответствуют уровням качества, определенным в ISO 5817 или ISO 10042 (умеренный, средний, жесткий), только в общем, а не в деталях для каждого дефекта.

В приложении А определена взаимосвязь между стандартами уровней качества, неразрушающего контроля и уровней приемки.

В приложении В приведена диаграмма взаимосвязи стандартов с точки зрения уровней качества, приемки и методов неразрушающего контроля.

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные стандарты. Для недатированных ссылок используют последнее издание ссылочного стандарта, включая все изменения к нему:

ISO 3452-1, Non-destructive testing — Penetrant testing — Part 1: General principles (Неразрушающий контроль. Проникающий контроль. Часть 1. Общие принципы)

ISO 5817, Welding — Fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded) — Quality levels for imperfections [Сварка. Сварные швы при сварке плавлением стали, никеля, титана и других сплавов (лучевая сварка исключена). Уровни качества в зависимости от дефектов]

ISO 9712, Non-destructive testing — Qualification and certification of NDT personnel (Неразрушающий контроль. Квалификация и аттестация персонала)

ISO 10042, Welding. Arc-welding joints in aluminium and its alloys. Quality levels for imperfections (Сварка. Соединения из алюминия и алюминиевых сплавов, выполненные дуговой сваркой. Уровни качества в зависимости от дефектов)

ISO 10675-1, Nondestructive testing of welds — Acceptance levels for radiographic testing — Part 1: Steel, nickel, titanium and their alloys (Неразрушающий контроль сварных швов. Уровни приемки для радиографических испытаний. Часть 1. Сталь, никель, титан и сплавы на их основе)

ISO 10675-2, Non-destructive testing of welds — Acceptance levels for radiographic testing — Part 2: Aluminium and its alloys Rubber hoses and hose assemblies for water suction and discharge — Specification (Неразрушающий контроль сварных швов. Уровни приемки для радиографических испытаний. Часть 2. Алюминий и алюминиевые сплавы)

ISO 10863, Non-destructive testing of welds — Ultrasonic testing — Use of time-of-flight diffraction technique (TOFD) [Неразрушающий контроль сварных соединений. Ультразвуковая дефектоскопия. Использование дифракционно-временного метода (TOFD)]

ISO 11666, Non-destructive testing of welds — Ultrasonic testing — Acceptance levels (Неразрушающий контроль сварных соединений. Ультразвуковой контроль. Уровни приемки)

ISO 13588, Non-destructive testing of welds — Ultrasonic testing — Use of automated phased array technology (Неразрушающий контроль сварных швов. Ультразвуковые испытания. Использование технологии автоматизированной фазовой матрицы)

ISO 15626, Non-destructive testing of welds — Time-of-flight diffraction technique (TOFD) — Acceptance levels [Неразрушающий контроль сварных швов. Дифракционно-временной метод (TOFD). Приемочные уровни]

ISO 17636-1:2013, Non-destructive testing of welds — Radiographic testing — Part 1: X- and gammaray techniques with film (Контроль сварных швов неразрушающий. Радиографический контроль. Часть 1. Методы рентгеновского и гамма-излучения с применением пленки)

ISO 17636-2:2013, Non-destructive testing of welds — Radiographic testing — Part 2: X- and gamma-ray techniques with digital detectors (Контроль сварных швов неразрушающий. Радиографический контроль. Часть 2. Методы рентгеновского и гамма-излучения с применением цифровых детекторов)

ISO 17637, Non-destructive testing of welds — Visual testing of fusion-welded joints (Контроль неразрушающий сварных швов. Визуальный контроль сварных соединений, выполненных сваркой плавлением)

ISO 17638, Non-destructive testing of welds — Magnetic particle testing (Контроль неразрушающий сварных швов. Магнитно-порошковая дефектоскопия)

ISO 17640, Non-destructive testing of welds — Ultrasonic testing — Techniques, testing levels, and assessment (Неразрушающий контроль сварных соединений. Ультразвуковой контроль. Методики, уровни контроля и оценка результатов)

ISO 17643, Non-destructive testing of welds — Eddy current testing of welds by complex-plane analysis (Контроль неразрушающий сварных швов. Контроль сварных швов вихревыми токами методом векторного анализа)

ISO 19285, Non-destructive testing of welds — Phased Array technique (PA) — Ассерtance criteria [Неразрушающий контроль сварных швов. Технология с применением фазированных решеток (PA). Уровни приемки]

ISO 23277, Non-destructive testing of welds — Penetrant testing — Acceptance levels (Контроль неразрушающий сварных швов. Капиллярный контроль. Приемочные уровни)

ISO 23278, Non-destructive testing of welds — Magnetic particle testing — Acceptance levels (Контроль неразрушающий сварных швов. Магнитопорошковый контроль. Приемочные уровни)

ISO 23279, Non-destructive testing of welds — Ultrasonic testing — Characterization of indications in welds (Неразрушающий контроль сварных швов. Ультразвуковая дефектоскопия. Снятие характеристик индикаций в сварных соединениях)

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

 3.1 уровень контроля (testing level): Степень полноты и выбор значений параметров, по которым осуществляется контроль.

[Источник ISO/TR 25901-1:2016, пункт 2.2.4.5, изменено — из определения убрано слово «неразрушающий»]

Примечание — Различные уровни соответствуют различным значениям чувствительности и/или вероятности выявления дефектов. Выбор уровней контроля, как правило, соответствует требованиям по качеству.

3.2 организация, выполняющая контроль (testing organization): Внутренняя или внешняя организация, проводящая неразрушающий контроль.

[Источник ISO/TR 25901-1:2016, пункт 2.2.1.7, изменено — из определения убрано слово «разрушающий»] 3.3 индикация (indication): Отображение или оповещение о дефекте в форме, предусмотренной применяемым методом неразрушающего контроля (для неразрушающего контроля).

[Источник ISO/TR 25901-1:2016, пункт 2.2.4.2, изменено — к определению добавлена фраза «в форме, предусмотренной применяемым методом неразрушающего контроля»]

- 3.4 внутренний дефект (internal discontinuity): Дефект, не выходящий на поверхность или к которому отсутствует непосредственный доступ (для неразрушающего контроля сварных соединений).
- 3.5 уровень качества (quality level): Описание качества сварного соединения, основанное на типе, размере и количестве выявленных дефектов.

[Источник ISO/TR 25901-1:2016, пункт 2.5.17]

3.6 контролируемая партия (inspection lot): Партия сварных соединений, которые предположительно имеют одинаковый уровень качества (для неразрушающего контроля сварных соединений).

Примечания

- 1 Элементами партии могут быть часть сварного соединения, соединение целиком или несколько соединений.
- 2 Одинаковое качество обуславливается применяемым способом сварки, материалом, типом соединения, личностью сварщика, условиями окружающей среды во время сварки, периодом времени и другими параметрами, влияющими на качество.

4 Сокращения

В настоящем стандарте применены наименования и сокращения методов контроля, приведенные в таблице 1.

Таблица 1 — Наименования методов контроля и их сокращения

Метод контроля	Сокращение
Вихретоковый контроль	ET
Магнитопорошковый контроль	MT
Капиллярный контроль	PT
Радиографический контроль	RT
Ультразвуковой контроль	UT
Визуальный контроль	VT

5 Ограничения

5.1 Стадия производства

Настоящий стандарт предназначен для контроля полностью завершенных сварных соединений (см. 10.3). Контроль основного металла перед сваркой или между этапами сварки в настоящем стандарте не рассматривается. Контроль выполняют согласно соответствующим стандартам по методам и уровням приемки.

5.2 Объем контроля

Объем контроля указан в стандарте или в спецификации на продукцию.

5.3 Материалы

Настоящий стандарт включает в себя требования к контролю выполненных сваркой плавлением соединений из следующих материалов, их сплавов и их сочетаний:

- а) сталь;
- b) алюминий;
- с) медь:
- d) никель;
- е) титан.

Применение настоящего стандарта для других металлов оговаривают в спецификации на продукцию.

6 Квалификация персонала

Контроль и оценку сварных соединений проводят только подготовленные операторы, квалифицированные согласно ISO 9712 или эквивалентным документам в соответствующем промышленном секторе.

7 Организация, выполняющая контроль

Организация, выполняющая контроль, независима от производственных служб изготовителя, и ее деятельность регулирует система менеджмента качества.

8 Документация

8.1 Документация, необходимая перед контролем

Перед контролем предоставляют всю необходимую информацию, требуемую стандартами по методу контроля.

8.1.1 Письменная процедура

Контроль выполняют в соответствии с письменной процедурой согласно требованиям стандарта для конкретного метода контроля или указаниям в спецификации на продукцию.

8.1.2 План контроля

При необходимости в дополнительном контроле, включающем более одного метода неразрушающего контроля или многократное применение одного метода, все используемые методы определяют в плане контроля. План устанавливает последовательность и объем контроля, а также другие аспекты его проведения и связанные с ним действия.

8.2 Документация, необходимая после контроля

8.2.1 Результаты этапов контроля

Все этапы контроля протоколируют в соответствии с требованиями стандарта для данного метода контроля.

8.2.2 Заключительный отчет

Для каждой детали или партии деталей заключительный отчет содержит информацию, требуемую планом контроля, и как минимум:

- а) протоколы, требуемые стандартами по отдельным методам контроля;
- b) идентификацию деталей;
- с) ссылки на отдельные результаты контроля, включая статус (не проконтролирован, соответствует, не соответствует);
- d) идентификацию проконтролированных сварных соединений и/или ссылку на документы, идентифицирующие данные соединения;
- е) систему маркировки отдельных сварных соединений и/или ссылку на документы, определяющие использованную систему координат при контроле;
 - f) идентификацию персонала и организаций, которые выполняли контроль;
- д) записи об отклонениях от требований стандартов по технологии контроля и по уровням приемки.

9 Выбор метода контроля

9.1 Общие положения

Настоящий стандарт определяет требования для выбора методов контроля различных материалов и типов сварных соединений, полученных сваркой плавлением. Данные методы используют по отдельности или в сочетаниях для получения требуемого результата.

Перед выбором методов и уровней контроля учитывают следующее:

- а) технологию сварки:
- b) основной металл, материалы для сварки и обработку;
- с) тип соединения и размеры;

- d) конфигурацию деталей (доступность, состояние поверхности и т. д.);
- е) уровни качества;
- f) тип дефектов и их ожидаемую ориентацию.

При необходимости выбирают иные методы и уровни контроля в отличие от перечисленных в приложении А. Если спецификация на продукцию требует выбора других методов, то уровни контроля, перечисленные в приложении А, используют как подходящие. Такого рода изменения должны быть четко описаны.

9.2 Стыковые и тавровые соединения с полным проплавлением

Основные методы контроля сварных соединений для обнаружения поверхностных дефектов приведены в таблице 2, для обнаружения внутренних дефектов — в таблице 3.

Таблица 2— Основные методы обнаружения поверхностных дефектов для всех типов сварных соединений, включая угловые сварные швы

Материал	Метод контроля
	VT
	VT и MT
Ферритные стали	VT и PT
	VT и (ET)
Аустенитные стали,	VT
алюминий, никель,	VT и PT
медь и титан	VT и (ET)

Таблица 3— Основные методы обнаружения внутренних дефектов для стыковых сварных соединений и тавровых соединений с полным проплавлением

0	Номинальная толщина основного металла t, мм		
Материал и тип соединения	t ≤ 8	8 < t ≤ 40	t > 40
Ферритная сталь, стыковое соединение	RT или (UT)	RT или UT	UT или (RT)
Ферритная сталь, тавровое соединение	(UT) или (RT)	UT или (RT)	UT или (RT)
Аустенитная сталь, стыковое соединение	RT	RT или (UT)	RT или (UT)
Аустенитная сталь, тавровое соединение	(UT) или (RT)	(UT) и/или (RT)	(UT) или (RT)
Алюминий, стыковое соединение	RT	RT или UT	RT или UT
Алюминий, тавровое соединение	(UT) или (RT)	UT или (RT)	UT или (RT)
Никелевые и медные сплавы, стыковое соединение	RT	RT или UT	RT или (UT)
Никелевые и медные сплавы, тавровое соединение	(UT) или (RT)	UT или (RT)	(UT) или (RT)
Титан, стыковые соединения	RT	RT или UT	_
Титан, тавровые соёдинения	(UT) или (RT)	UT или (RT)	_

Примечания

¹ Методы, указанные в скобках, применимы только с ограничениями.

² Ультразвуковой контроль соединений из аустенитных сталей — см. ISO 22825.

9.3 Стыковые и тавровые соединения с неполным проплавлением и угловые швы

Сварные соединения сталей с минимальным пределом текучести свыше 280 МПа, аустенитных сталей, алюминия, никелевых и медных сплавов и титана контролируют с использованием одного метода или более в дополнение к визуальному контролю в соответствии с таблицей 2.

Для определения степени проплавления шва и размеров других типов дефектов устанавливают методы, отличные от указанных в таблицах 2 и 3.

В сварных соединениях с частичным проплавлением и угловых швах не заваренный корень может препятствовать получению удовлетворительных результатов по всему объему контроля при использовании методов, указанных в таблице 3. Если не установлены специальные методы контроля, то качество сварного соединения гарантируют путем контроля сварочного процесса.

10 Проведение контроля

10.1 Применяемые стандарты

Применяемые стандарты и правила приведены в приложении А.

10.2 Условия проведения контроля

Перед проведением контроля персонал, который будет его выполнять, получает доступ ко всей информации об объекте контроля, включая:

- а) необходимую начальную информацию, требуемую стандартом для конкретного метода контроля;
- b) план контроля при необходимости;
- с) действия, которые предпринимают в случае обнаружения недопустимых дефектов в сварных соединениях;
 - d) ответственность за координацию контроля узлов, изготовленных субподрядчиком;
 - е) время и место проведения контроля.

10.3 Время проведения контроля

Контроль выполняют после завершения всех необходимых этапов термообработки. Сварные соединения в материалах, склонных к водородному (например, высокопрочные стали) или к задержанным растрескиваниям других видов, не контролируют до тех пор, пока не пройдет минимально необходимое время после окончания сварки или время, указанное в спецификации на продукцию.

Если это указано в спецификации на продукцию, может потребоваться контроль перед окончательной термообработкой или по истечении определенного времени.

Если согласно одному из методов контроля проводят контроль с целью обнаружения поверхностных дефектов, то его проводят до контроля, выполняемого с целью обнаружения внутренних дефектов.

Если имеется непосредственный доступ к сварному соединению, то прежде чем приступить к контролю с целью обнаружения внутренних дефектов, целесообразно проводить контроль и оценку визуальным методом контроля в соответствии с ISO 17637 или любым подходящим методом контроля с целью обнаружения поверхностных дефектов.

10.4 Недопустимые дефекты

Если выявлены недопустимые дефекты, используют критерий приемки, установленный в применяемом стандарте или в спецификации на продукцию.

После устранения недопустимых дефектов сварное соединение повторно контролируют с учетом тех же требований, которые предъявлялись к нему изначально.

Приложение А (обязательное)

Применяемые правила и стандарты

А.1 Общие положения

В настоящем приложении определена взаимосвязь между уровнями качества по ISO 5817 или ISO 10042 и способами контроля, уровнями контроля и уровнями приемки, определенными стандартами по неразрушающему контролю.

Данная взаимосвязь не является количественной.

А.2 Визуальный контроль (VT)

Таблица А.1 — Визуальный контроль (VT)

Уровень качества в соответствии с ISO 5817 или ISO 10042	Способ и уровень контроля в соответствии с ISO 17637	Уровень приемки ^{а)}
В		В
С	Уровень не определен	C
D		D

А.З Капиллярный контроль (РТ)

Таблица А.2 — Капиллярный контроль (РТ)

Уровень качества в соответствии с ISO 5817 или ISO 10042	Способ и уровень контроля в соответствии с ISO 3452-1	Уровень приемки в соответствии с ISO 23277
В		2X
С	Уровень не определен	2X
D		3X

А.4 Магнитопорошковый контроль (МТ)

Таблица А.3 — Магнитопорошковый контроль (МТ)

Уровень качества в соответствии с ISO 5817	Способ и уровень контроля в соответствии с ISO 17638	Уровень приемки в соответствии с ISO 23278
В		2X
С	Уровень не определен	2X
D		3X

А.5 Вихретоковый контроль (ЕТ)

Таблица А.4 — Вихретоковый контроль (ЕТ)

Уровень качества в соответствии с ISO 5817 или ISO 10042	Способ и уровень контроля в соответствии с ISO 17643	Уровень приемки
В	Уровень не определен	70.70
С		Согласно спецификации на продукцию
D		

А.6 Радиографический контроль (RT)

А.б.1 Радиографический контроль с использованием пленки

Таблица А.5 — Радиографический контроль с использованием пленки (RT-F)

Уровень качества в соответствии с ISO 5817 или ISO 10042	Способ и уровень контроля в соответствии с ISO 17636-1	Уровень приемки в соответствии с ISO 10675-1 или ISO 10675-2
В	В	1
С	Ba)	2
D	Как минимум А	3

а) Минимальное число экспозиций для контроля кольцевых швов может соответствовать требованиям ISO 17636-1;2013, класс А.

А.6.2 Контроль с применением цифровой радиографии (RT-D) с использованием запоминающих фосфорных пластин (RT-CR) или матричных цифровых детекторов (DDA)

Таблица А.6— Цифровая радиография (RT-D) с использованием запоминающих фосфорных пластин (RT-CR) или матричных цифровых детекторов (DDA)

Уровень качества в соответствии с ISO 5817 или ISO 10042	Способ и уровень контроля в соответствии с ISO 17636-2 ^{b)}	Уровень приемки в соответствии с ISO 10675-1 или ISO 10675-2
В	В	1
С	B _a)	2
D	Как минимум А ^{а)}	3

а) Минимальное число экспозиций для контроля кольцевых швов может соответствовать требованиям ISO 17636-2:2013, класс А.

А.7 Ультразвуковой контроль ферритных сталей (UT)

А.7.1 Ультразвуковой импульсный эхо-метод

Таблица А.7 — Ультразвуковой импульсный эхо-метод (UT-PE)

Уровень качества в соответствии с ISO 5817	Способ контроля и уровень в соответствии с ISO 17640 ^{a)}	Уровень приемки в соответствии с ISO 11666
В	Как минимум В	2
С	Как минимум А	3
D	Не определен	Не требуется ^{b)}

а) Когда требуется определить характеристики дефекта, следует применять ISO 23279.

b) По согласованию с заказчиком для радиоскопического контроля (RT-S) для получения цифровых изображений могут применяться усилители изображений или флуороскопы (с обработкой изображения не менее 12 бит). Требования к контролю сварных соединений, например минимальное количество экспозиций, геометрические параметры экспозиции и требования к индикаторам качества изображения (IQI), должны отвечать требования ISO 17636-2. По соглашению индикаторы качества двухпроволочного типа можно выбрать на основании требований EN 13068-3.

b) UT не рекомендуется, однако может быть указан в спецификации на продукцию (с теми же требованиями, как для уровня качества С).

А.7.2 Ультразвуковой дифракционно-временной метод

Таблица А.8 — Дифракционно-временной метод (UT-TOFD)

Уровень качества в соответствии с ISO 5817	Способ и уровень контроля в соответствии с ISO 10863	Уродень приемки в соответствии с ISO 15626	
В	С	1	
С	Как минимум В	2	
D	Как минимум А	3	

А.7.3 Ультразвуковой контроль с применением фазированных решеток (PAUT)

Таблица А.9 — Ультразвуковой контроль с применением фазированных решеток (PAUT)

Уровень качества в соответствии с ISO 5817	Спасоб и уровень контраля в соответствии с ISO 13588	Уровень приемки в соответствии с ISO 19285	
В	В	2	
С	A	3	
D	A	3	

Приложение В (справочное)

Диаграмма взаимосвязи стандартов

Диаграмма взаимосвязи стандартов представлена на рисунках В.1, В.2 и В.3.

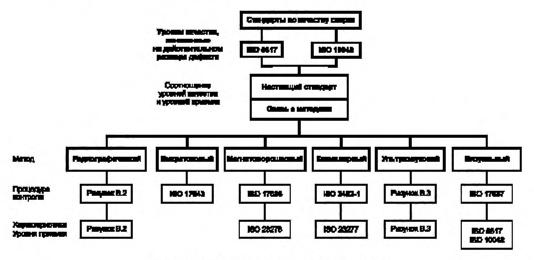


Рисунок В.1 — Диаграмма взаимосвязи стандартов

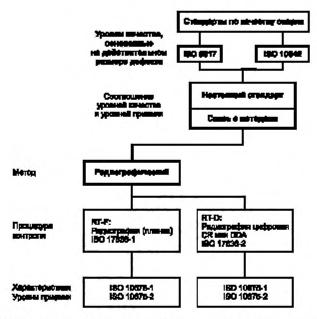


Рисунок В.2 — Диаграмма взаимосвязи стандартов по радиографическому методу

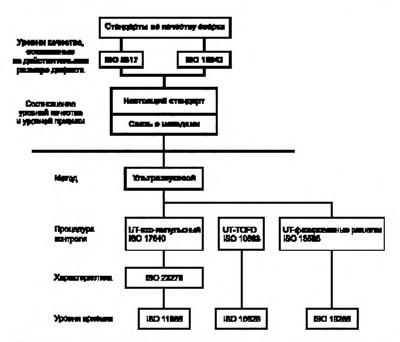


Рисунок В.3 — Диаграмма взаимосвязи стандартов по ультразвуковому методу

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
ISO 3452-1	_	*
ISO 5817	_	
ISO 9712	-	
ISO 10042	_	
ISO 10675-1	-	
ISO 10675-2	_	
ISO 10863		
ISO 11666	-	*
ISO 13588	_	
ISO 15626	- T	*
ISO 17636-1	IDT	ГОСТ ISO 17636-1—2017 «Неразрушающий контроль свар- ных соединений. Радиографический контроль. Часть 1. Спо- собы рентгено- и гаммаграфического контроля с применени- ем пленки»
ISO 17636-2	IDT	ГОСТ ISO 17636-2—2017 «Неразрушающий контроль свар- ных соединений. Радиографический контроль. Часть 2. Спо- собы рентгено- и гаммаграфического контроля с применени- ем цифровых детекторов»
ISO 17637	_	*
ISO 17638	IDT	Проект ГОСТ ISO 17638 «Контроль неразрушающий сварных соединений. Магнитопорошковый контроль»
ISO 17640		*
ISO 17643	-	•
ISO 19285	-	
ISO 23277	-	
ISO 23278	-	*
ISO 23279	-	*

Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного международного стандарта. Официальный перевод данного международного стандарта находится в Федеральном информационном фонде стандартов.

Примечание — В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

⁻ IDT — идентичные стандарты.

Библиография

[1]	ISO 16828	Non-destructive testing — Ultrasonic testing — Time-of-flight diffraction technique as a method for detection and sizing of discontinuities (Неразрушающий контроль. Ультразвуковой контроль. Техника с применением дифракции в зависимости от времени пролета в качестве метода обнаружения и определения размера несплошностей)
[2]	ISO 19232-5	Non-destructive testing — Image quality of radiographs — Part 5: Determination of the image unsharpness value using duplex wire-type image quality indicators (Контроль неразрушающий. Качество изображения на рентгеновских снимках. Часть 5. Определение значения нерезкости изображения с использованием показателей качества изображения типа дуплексного провода)
[3]	ISO 22825	Non-destructive testing of welds — Ultrasonic testing — Testing of welds in austenitic steels and nickel-based alloys (Контроль неразрушающий сварных швов. Ультразвуковой контроль. Испытания швов в аустенитных сталях и сплавах на никелевой основе)
[4]	ISO/TR 25901-1	Welding and related processes — Vocabulary (Сварка и связанные с ней процессы. Словарь. Часть 1. Общие термины)
[5]	EN 13068-3	Non-destructive testing — Radioscopic testing — Part 3: General principles of radioscopic testing of metallic materials by X- and gamma rays (Неразрушающий контроль. Рентгеноскопический контроль, Часть 3. Основные положения рентгеноскопического контроля металлических материалов рентгеновскими и гамма-лучам)
[6]	EN 14784-2	Non-destructive testing — Industrial computed radiography with storage phosphor imaging plates — Part 2: General principles for testing of metallic materials using X-rays and gamma rays (Неразрушающий контроль. Промышленная компьютерная радиография с помощью фосфорных плат ЗУ. Часть 2. Основные принципы испытания металлических материалов, используя рентгеновские и гамма-лучи)

УДК 621.774.08:620.179:006.354

MKC 25.160.40

Ключевые слова: сварные соединения стальных труб, контроль неразрушающий, материалы металлические, уровни приемки

БЗ 12-2018/44

Редактор Л.С. Зимилова Технический редактор В.Н. Прусакова Корректор Е.Р. Ароян Компьютерная верстка Ю.В. Половой

Сдано в набор 07.02.2019. Подписано в лечать 28.02.2019. Формат $60 \times 84^{\frac{1}{2}}$. Гарнитура Ариал. Усл. печ. л. 2,33. Уч.-изд. л. 1,86. Тираж 40 экз. Зак. 87.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru

Издано и отпечатано во ФГУП «СТАНДАРТИНФОРМ» 117418 Москва, Нахимовский пр-т. д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru

150 17635-20