МОЛОКО СУХОЕ

Определение содержания молочной кислоты и лактатов

МАЛАКО СУХОЕ

Вызначэнне змяшчэння малочнай кіслаты і лактатаў

(ISO 8069:2005, IDT) (IDF 69:2005, IDT)

Издание официальное

Предисловие

Евразийский совет по стандартизации, метрологии и сертификации (EACC) представляет собой региональное объединение национальных органов по стандартизации государств, входящих в Содружество Независимых Государств. В дальнейшем возможно вступление в EACC национальных органов по стандартизации других государств.

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены».

Сведения о стандарте

- 1 ВНЕСЕН Государственным комитетом по стандартизации Республики Беларусь
- 2 ПРИНЯТ Евразийским советом по стандартизации, метрологии и сертификации по переписке (протокол № 55-П от 25 марта 2013 г.)

За принятие стандарта проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97	Код страны по МК (ИСО 3166) 004-97	Сокращенное наименование национального органа по стандартизации			
Беларусь	BY	Госстандарт Республики Беларусь			
Казахстан	KZ	Госстандарт Республики Казахстан			
Кыргызстан	KG	Кыргызстандарт			
Молдова	MD	Молдова-Стандарт			
Узбекистан	UZ	Узстандарт			

- 3 ПОДГОТОВЛЕН на основе государственного стандарта Республики Беларусь СТБ ISO 8069-2012 «Молоко сухое. Определение содержания молочной кислоты и лактатов»
- 4 Настоящий стандарт идентичен международному стандарту ISO 8069 | IDF 69:2005 Dried milk Determination of content of lactic acid and lactates (Молоко сухое. Определение содержания молочной кислоты и лактатов).

Международный стандарт разработан подкомитетом SC 5 «Молоко и молочные продукты» технического комитета по стандартизации ISO/TC 34 «Пищевые продукты» Международной организации по стандартизации (ISO) и Международной молочной федерацией (IDF).

Перевод с английского языка (en).

Официальный экземпляр международного стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, имеется в Национальном фонде ТНПА Республики Беларусь.

Степень соответствия – идентичная (IDT)

5 ВВЕДЕН В ДЕЙСТВИЕ постановлением Госстандарта Республики Беларусь от 23 июля 2013 г. № 38 непосредственно в качестве государственного стандарта Республики Беларусь с 1 марта 2014 г.

6 ВЗАМЕН ГОСТ 31079-2002 (ИСО 8069:1986) (с отменой СТБ ISO 8069-2012)

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных (государственных) стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных (государственных) органов по стандартизации.

© Госстандарт, 2013

Настоящий стандарт не может быть воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта Республики Беларусь

Содержание

1 Область применения	1
2 Термины и определения	1
3 Сущность метода	1
4 Реактивы	1
5 Аппаратура	2
6 Отбор проб	3
7 Приготовление	3
7.1 Подготовка анализируемой пробы	3
7.2 Навеска	3
7.3 Контрольное испытание	3
7.4 Приготовление раствора и удаление белков	3
8 Процедура	3
8.1 Проверка активности реактивов	3
8.2 Определение	4
9 Вычисление и представление результатов	5
9.1 Вычисление	5
9.2 Представление результатов	5
10 Прецизионность	6
10.1 Межлабораторные испытания	6
10.2 Повторяемость	6
10.3 Воспроизводимость	6
11 Протокол испытания	6
Приложение A (обязательное) Правила надлежащей лабораторной практики (GLP) для проведения ферментных анализов	7
Библиография	10

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ БЕЛАРУСЬ

молоко сухое

Определение содержания молочной кислоты и лактатов

МАЛАКО СУХОЕ

Вызначэнне змяшчэння малочнай кіслаты і лактатаў

Dried milk

Determination of content of lactic acid and lactates

Дата введения 2014-03-01

1 Область применения

Настоящий стандарт устанавливает ферментный метод определения содержания молочной кислоты и лактатов во всех видах сухого молока.

2 Термины и определения

В настоящем стандарте применяют следующий термин с соответствующим определением:

2.1 содержание молочной кислоты и лактатов (lactic acid and lactates content): Масса веществ, определенная посредством процедуры, установленной в настоящем стандарте.

Примечание – Выражается в миллиграммах молочной кислоты на 100 г сухого обезжиренного остатка.

3 Сущность метода

Навеску сухого молока восстанавливают в теплой воде, осаждают жир и белки, после чего фильтруют пробу. Полученный фильтрат обрабатывают следующими ферментами и биохимическими веществами, добавляемыми одновременно, но действующими последовательно:

- а) L-лактат дегидрогеназа (L-LDH) и D-лактат дегидрогеназа (D-LDH) в присутствии никотинамидаденин-динуклеотида (NAD) окисляют до пирувата и восстанавливают NAD до NADH;
- b) глутамат-пируват-трансаминаза (GPT) в присутствии L-глутамата видоизменяет пируват в L-аланин и преобразовывает L-глутамат в α -кетоглутарат.

Определяют количество образовавшегося NADH, пропорциональное содержанию молочной кислоты и лактатов в пробе, посредством спектрофотометрического измерения при длине волны 340 нм.

4 Реактивы

Используют реактивы признанной аналитической чистоты. Вода, используемая в приготовлении растворов ферментов, должна быть дистиллирована как минимум дважды и без примесей. Вода, используемая в других целях, должна быть дистиллирована или иметь равнозначную чистоту.

4.1 Раствор гексацианоферрата (II) калия, $c(K_4[Fe(CN)_6]\cdot 3H_2O) = 35.9$ г/л.

Растворяют 35,9 г тригидрата гексацианоферрата (II) калия в воде. Доводят объем раствора водой до 1000 мл и перемешивают.

4.2 Раствор сульфата цинка, $c(ZnSO_4.7H_2O) = 71,8$ г/л.

Растворяют 71,8 г гептагидрата сульфата цинка в воде. Доводят объем раствора водой до 1000 мл и перемешивают.

4.3 Растворы гидроксида натрия

4.3.1 Раствор гидроксида натрия I, c(NaOH) = 10 моль/л.

Растворяют 400 г гидроксида натрия в воде. Доводят объем раствора водой до 1000 мл и перемешивают.

4.3.2 Раствор гидроксида натрия II, c(NaOH) = 0,1 моль/л.

Растворяют 4,0 г гидроксида натрия в воде. Доводят объем раствора водой до 1000 мл и перемешивают.

Издание официальное

- 4.4 Раствор глицерина (C₃H₈O₃) с объемным содержанием глицерина 50 %.
- 4.5 Раствор сульфата аммония, $c[(NH_4) 2SO_4] = 3,2$ моль/л.

Растворяют 422,84 г сульфата аммония в воде. Доводят объем раствора водой до 1000 мл и перемешивают.

4.6 Буферный раствор, рН 10.

Растворяют 7,92 г глицилглицина ($C_4H_8N_2O_3$) и 1,47 г L-глутаминовой кислоты ($C_5H_9NO_4$) приблизительно в 80 мл воды. Устанавливают рН до 10,0 ± 0,1 при температуре 20 °C раствором гидроксида натрия I (4.3.1). Доводят объем раствора водой до 1000 мл и перемешивают.

Раствор устойчив 3 мес при температуре хранения в холодильной камере от 0 °C до +5 °C.

4.7 Раствор никотинамид-аденин-динуклеотида (NAD).

Растворяют 350 мг никотинамид-аденин-динуклеотида ($C_{21}H_{27}N_7O_{14}P_2$) в 10 мл воды.

Раствор устойчив 4 нед при температуре хранения в холодильной камере от 0 °C до +5 °C. Во время использования сосуд с раствором должен быть погружен в емкость с колотым льдом.

4.8 **L-лактат дегидрогеназа** (L-LDH), суспензия, полученная из мышечной ткани свиньи.

Растворяют 10 мг суспензии L-лактат дегидрогеназы в 1 мл раствора глицерина (4.4). Значение рН полученной суспензии должно быть приблизительно 7. Удельная активность суспензии L-лактат дегидрогеназы (L-LDH, EC 1.1.1.27) должна быть не менее 5500 единиц/мл при 25 °C. При несоответствии установленным требованиям готовят другую суспензию L-LDH.

Суспензия L-LDH устойчива 12 мес при температуре хранения в холодильной камере от 0 °C до +5 °C. Во время использования сосуд с раствором должен быть погружен в емкость с колотым льдом.

4.9 **D-лактат дегидрогеназа** (D-LDH), суспензия, полученная из Lactobacillus leichmannii.

Растворяют 5 мг суспензии D-LDH в 1 мл раствора сульфата аммония (4.5). Значение рН полученной суспензии должно быть приблизительно 6. Удельная активность суспензии D-лактат дегидрогеназы (D-LDH, EC 1.1.1.28) должна быть не менее 1500 единиц/мл при 25 °C. При несоответствии установленным требованиям готовят другую суспензию D-LDH.

Суспензия D-LDH устойчива 12 мес при температуре хранения в холодильной камере от 0 °C до +5 °C. Во время использования сосуд с раствором должен быть погружен в емкость с колотым льдом.

4.10 Глутамат-пируват-трансаминаза (GPT), суспензия, полученная из свиного сердца.

Растворяют 20 мг суспензии GPT в 1,0 мл раствора сульфата аммония (4.5). pH полученной суспензии должен быть приблизительно 7. Удельная активность суспензии глутамат-пируват-трансаминазы (GPT, EC 2.6.1.2) должна быть не менее 1600 единиц/мл при 25 °C. При несоответствии установленным требованиям готовят другую суспензию GPT.

Добавляют 1,0 мл раствора сульфата аммония (4.5) в 1 мл суспензии, содержащей 20 мг GPT, и перемешивают. Центрифугируют полученные 2,0 мл суспензии, содержащей 10 мг GPT/мл, с радиальным ускорением 4000 g в течение 10 мин. Переливают 1,0 мл чистой надосадочной жидкости и отбрасывают, а оставшуюся суспензию используют.

Суспензия GPT устойчива 12 мес при температуре хранения в холодильной камере от 0 °C до +5 °C. Во время использования сосуд с раствором должен быть погружен в емкость с колотым льдом.

4.11 Раствор L-лактата лития

Растворяют 50 мг L-лактата лития ($C_3H_5O_3Li$) в воде. Доводят объем раствора водой до 500 мл и перемешивают.

4.12 Раствор D-лактата лития

Растворяют 50 мг D-лактата лития ($C_3H_5O_3Li$) в воде. Доводят объем раствора водой до 500 мл и перемешивают.

5 Аппаратура

Используют стандартное лабораторное оборудование, в том числе указанное ниже.

- 5.1 Аналитические весы с ценой деления 0,1 мг, способные взвешивать с точностью до 1 мг.
- 5.2 Мензурка вместимостью 50 мл.
- 5.3 Градуированный цилиндр вместимостью 50 мл.
- 5.4 Мерные колбы с одной отметкой вместимостью 100 мл.
- 5.5 Пипетки вместимостью 0,02; 0,05; 0,2; 1,0 и 2,0 мл.
- 5.6 Градуированные пипетки вместимостью 5 и 10 мл, с ценой деления 0,1 мл.
- 5.7 Стеклянные фильтровальные воронки диаметром приблизительно 7 см.

- 5.8 **Фильтровальная бумага** средней плотности, диаметром приблизительно 15 см, не содержащая молочной кислоты и лактатов.
 - 5.9 Стеклянная палочка.
- 5.10 Пластмассовые лопатки, способные перемешивать пробу ферментной смеси в спектрометрической кювете.
- 5.11 **Спектрофотометр**, способный измерять при длине волны 340 нм, оборудованный кюветами с оптической длиной пути 1 см.
 - 5.12 Парафильм^{тм 1)}.

6 Отбор проб

В лабораторию предоставляют представительную пробу. Она не должна быть повреждена или изменена во время транспортирования или хранения.

Процедура отбора проб не описана в настоящем стандарте. Рекомендованный метод отбора проб приведен в ISO 707 | IDF 50.

Пробу хранят в условиях, предотвращающих ее порчу и изменение состава.

7 Приготовление

7.1 Подготовка анализируемой пробы

Анализируемую пробу помещают в контейнер, вместимость которого в два раза превышает объем пробы, с герметично закрывающейся крышкой. Контейнер сразу же закрывают. Тщательно перемешивают пробу, энергично встряхивая и переворачивая контейнер.

При подготовке анализируемой пробы следует избегать ее контакта с атмосферой, чтобы минимизировать адсорбцию влаги.

7.2 Навеска

В мензурке вместимостью 50 мл (5.2) взвешивают 1,0 г анализируемой пробы с точностью до 1 мг.

7.3 Контрольное испытание

Контрольное испытание проводят в порядке, установленном в 7.4 и 8.2, с использованием всех реактивов, но без навески.

7.4 Приготовление раствора и удаление белков

- 7.4.1 Растворяют навеску (7.2) приблизительно в 20 мл воды температурой от 40 °C до 50 °C, перемешивая стеклянной палочкой (5.9) или подходящим средством. Количественно переносят содержимое мензурки в мерную колбу вместимостью 100 мл с одной отметкой (5.4), ополаскивая мензурку водой. Охлаждают содержимое колбы до температуры приблизительно 20 °C.
- 7.4.2 Добавляют к раствору (7.4.1) последовательно 5,0 мл раствора гексацианоферрата (II) калия (4.1), 5,0 мл раствора сульфата цинка (4.2) и 10,0 мл раствора гидроксида натрия II (4.3.2), тщательно перемешивая после добавления каждого реагента. Доводят объем раствора водой до 100 мл. Тщательно перемешивают раствор и выдерживают 30 мин при комнатной температуре.
- 7.4.3 Фильтруют содержимое колбы через фильтровальную бумагу (5.8), отбрасывая первую порцию фильтрата.

Допускается применять центрифугирование в качестве альтернативы фильтрации.

8 Процедура

ПРЕДУПРЕЖДЕНИЕ – Следует избегать загрязнений, особенно связанных с испарением.

8.1 Проверка активности реактивов

8.1.1 Всякий раз при приготовлении реактивов (4.6 — 4.10 включительно), или при хранении готовых реактивов в холодильной камере без использования в течение более чем 2 нед, или при возобновлении аналитической работы после периода хранения, или в других обоснованных случаях проверяют активность реактивов.

¹⁾ Парафильм™ является примером продукта, имеющегося в продаже. Эта информация приведена для удобства пользователей настоящего стандарта и не является рекламой указанного продукта со стороны ISO или IDF.

- 8.1.2 В две мерные колбы вместимостью 100 мл с одной отметкой (5.4) вносят по 10 мл раствора L-лактата лития (4.11). В две другие мерные колбы вместимостью 100 мл с одной отметкой (5.4) вносят по 10 мл раствора D-лактата лития (4.12). Определяют концентрацию L-молочной кислоты и лактатов и содержание D-молочной кислоты и лактатов растворов в двух парах колб вместимостью 100 мл, действуя в порядке, установленном в 7.4.2, 7.4.3 и 8.2.
 - 8.1.3 Концентрацию лактата лития w_L, мг/л, вычисляют по формулам:
 - а) для раствора L-лактата:

$$w_1 = 341 \times A$$
;

b) для раствора D-лактата:

$$w_1 = 346 \times A$$

- где A численное значение коэффициента поглощения при 340 нм, вычисленное в соответствии с 8.2.1 и 8.2.2;
 - 341 численное значение параметра после замещения молекулярной массы L-лактата лития $(M_r = 96,1)$ и конечного объема $(V_1 = 2,24 \text{ мл})$ в 9.1 после того, как восстановление L-лактата оценено;
 - 346 численное значение параметра после замещения молекулярной массы D-лактата лития $(M_r = 96,1)$ и конечного объема $(V_1 = 2,27 \text{ мл})$ в 9.1 после того, как восстановление D-лактата оценено.
- 8.1.4 Принимая во внимание чистоту L-лактата лития и D-лактата лития, определенная концентрация L- или D-лактата лития при проверке активности реактивов должна составлять (100 ± 5) % концентрации приготовленных растворов (8.1.2). Если определяемые значения не попадают в этот интервал, проверяют реактивы, технику измерения, точность пипеток, а также исправность спектрофотометра. Предпринимают необходимые действия для получения соответствующих результатов. После этого тестирование повторяют до получения удовлетворительных результатов.

8.2 Определение

8.2.1 В кювету с оптической длиной пути 1 см спектрофотометра (5.11) пипеткой (5.5) вносят согласно схеме, изложенной в таблице 1:

Таблица 1 – Схема процедуры

Вносят пипеткой в спектрофотометрическую кювету	Контрольная проба	Стандартный раствор D-лактата	Стандартный раствор L-лактата	Анализируемая проба		
Дистиллированная вода	1,000 мл	_	_	_		
Стандартный раствор (8.1.2)	_	1,000 мл	1,000 мл	_		
Фильтрат анализируемой пробы (7.4.3)	_	_	_	1,000 мл		
Буферный раствор, рН 10				·		
(4.6)	1,000 мл	1,000 мл	1,000 мл	1,000 мл		
Раствор NAD (4.7)	0,200 мл	0,200 мл	0,200 мл	0,200 мл		
Суспензия GPT (4.10)	0,020 мл	0,020 мл	0,020 мл	0,020 мл		
Содержимое кюветы перемешивают пластмассовой лопаткой (5.10) или закрыв кювету парафиль-						
мом (5.12) и переворачивая несколько раз. Через 5 мин после перемешивания измеряют коэффици-						
ент поглощения (A_{b0} и A_{s0}) по отношению к воде при длине волны 340 нм						
Суспензия L-LDH (4.8)	0,020 мл	_	0,020 мл	0,020 мл		
Суспензия D-LDH (4.9)	0,050 мл	0,050 мл	_	0,050 мл		

Ровно через 45 мин после перемешивания измеряют коэффициент поглощения испытуемого раствора ($A_{\rm b45}$ и $A_{\rm s45}$) по отношению к воде при длине волны 340 нм.

Ровно через 60 мин после перемешивания повторно измеряют коэффициент поглощения испытуемого раствора (A_{b60} и A_{s60}) по отношению к воде при длине волны 340 нм.

Содержания L- или D-молочной кислоты и лактатов может быть определено отдельно путем добавления или L-LDH (4.8), или D-LDH (4.9).

При необходимости определения содержания только L-молочной кислоты и лактатов измерения выполняют соответственно через 30 и 45 мин после перемешивания.

8.2.2 Вычисляют фактическое значение коэффициента поглощения *A*, используемое в вычислении (9.1), по следующей формуле:

$$A = [(A_{s60} - A_{s0}) - 4(A_{s60} - A_{s45})] - [(A_{b60} - A_{b0}) - 4(A_{b60} - A_{b45})], \tag{1}$$

где $A_{\rm s60}$ — численное значение коэффициента поглощения испытуемого раствора, измеренное через 60 мин по 8.2.1;

 $A_{\rm s0}~$ – численное значение коэффициента поглощения испытуемого раствора, измеренное по 8.2.1;

 A_{s45} — численное значение коэффициента поглощения испытуемого раствора, измеренное через 45 мин по 8.2.1;

 A_{b60} – численное значение коэффициента поглощения раствора контрольного испытания, измеренное через 60 мин по 8.2.1;

 A_{b0} — численное значение коэффициента поглощения раствора контрольного испытания, измеренное по 8.2.1;

 $A_{\rm b45}$ — численное значение коэффициента поглощения раствора контрольного испытания, измеренное через 45 мин по 8.2.1.

В некоторых случаях протекает вялотекущая побочная реакция. Изменение коэффициента поглощения, вызванное этой реакцией, исключают экстраполяцией коэффициента поглощения на нулевой момент времени.

Если требуется определить содержание только L-молочной кислоты и лактатов (см. 8.2.1), измерения выполняют соответственно через 30 и 45 мин. В таком случае вычисление проводят по следующей измененной формуле:

$$A = [(A_{s45} - A_{s0}) - 3(A_{s45} - A_{s30})] - [(A_{b45} - A_{b0}) - 3(A_{b45} - A_{b30})],$$
(2)

где A_{s30} — численное значение коэффициента поглощения испытуемого раствора, измеренное через 30 мин по 8.2.1;

 $A_{\rm b30}$ – численное значение коэффициента поглощения раствора контрольного испытания, измеренное через 30 мин по 8.2.1.

8.2.3 Если увеличение коэффициента поглощения, вычисленного согласно 8.2.2, превышает 0,500 единиц, повторяют процедуры, установленные в 8.2.1 — 8.2.3, разбавляя фильтрат раствора навески (7.4.3) и раствор контрольного испытания (7.3) необходимым количеством воды.

9 Вычисление и представление результатов

9.1 Вычисление

Вычисляют содержание молочной кислоты и лактатов *w*_L, выраженное в миллиграммах молочной кислоты на 100 г обезжиренного сухого остатка, по следующей формуле:

$$w_{L} = \left(\frac{A \cdot M_{r}}{k \cdot I \cdot m}\right) \times \left(\frac{V_{1} \cdot V_{4} \cdot V_{5}}{V_{2} \cdot V_{3}}\right) \times \left(\frac{100}{w_{s}}\right) \times 10^{5},$$
(3)

где А – численное значение коэффициента поглощения при 340 нм, вычисленное согласно 8.2.2;

 $M_{\rm r}$ – относительная молекулярная масса молочной кислоты, равная 90,1;

к – молярный коэффициент поглощения NADH при 340 нм, равный 6,3×10⁶ см²/моль;

I — оптическая длина пути спектрофотометрической кюветы, равная 1 см;

m – масса навески (7.2), г;

 V_1 – общий объем жидкости в спектрофотометрической кювете (см. 8.2.1), мл:

- при определении L- и D-молочной кислоты и лактатов равный 2,29 мл,
- при определении только L-молочной кислоты и лактатов равный 2,24 мл,
- при определении только D-молочной кислоты и лактатов равный 2,27 мл;

 V_2 – объем фильтрата (см. 7.4.3) в спектрофотометрической кювете (см. 8.2.1), мл;

 V_3 – объем фильтрата (см. 7.4.3), взятый для разбавления (см. 8.2.3), в случае необходимости, мл;

 V_4 – объем подготовленного раствора по 7.4.2, равный 100 мл;

 V_5 – объем разведенного фильтрата (см. 8.2.3), в случае необходимости, мл;

 $w_{\rm s}$ – массовая доля сухого обезжиренного остатка в пробе, %.

П р и м е ч а н и е — Определение содержания жира не является частью метода, установленного в настоящем стандарте. Рекомендуемый метод определения содержания жира в сухом молоке приведен в ISO 1736.

9.2 Представление результатов

Результаты испытания выражают в целых числах.

10 Прецизионность

10.1 Межлабораторные испытания

Значения повторяемости и воспроизводимости были получены на основе результата межлабораторного испытания, проведенного в соответствии с ISO 5725 ²⁾.

Была опубликована подробная информация по межлабораторному испытанию на прецизионность метода (см. [5]). Значения, полученные на основе данного межлабораторного испытания, могут быть неприменимы к диапазонам концентрации и матрицам, отличным от представленных.

10.2 Повторяемость

Абсолютная разность между двумя отдельными независимыми результатами испытаний, полученными с использованием одного и того же метода на идентичных исследуемых пробах в одной лаборатории одним оператором на одном оборудовании в течение короткого промежутка времени, не должна превышать более чем в 5 % случаев следующие значения:

- а) для среднеарифметического значения содержания молочной кислоты и лактатов ≤ 60 мг на 100 г сухого обезжиренного остатка 10 мг/100 г;
- b) для среднеарифметического значения содержания молочной кислоты и лактатов > 60 мг на 100 г сухого обезжиренного остатка 15 % (условно) от среднеарифметического значения.

10.3 Воспроизводимость

Абсолютная разность между двумя отдельными результатами испытаний, полученными с использованием одного и того же метода на идентичных исследуемых пробах в разных лабораториях разными операторами на различном оборудовании, не должна превышать более чем в 5 % случаев следующие значения:

- а) для среднеарифметического значения содержания молочной кислоты и лактатов ≤ 100 мг на 100 г сухого обезжиренного остатка 15 мг/100 г;
- b) для среднеарифметического значения содержания молочной кислоты и лактатов > 100 мг на 100 г сухого обезжиренного остатка 20 % (условно) от среднеарифметического значения.

11 Протокол испытания

Протокол испытания должен включать:

- а) всю информацию, необходимую для полной идентификации пробы;
- b) метод отбора проб, если известен;
- с) метод испытания со ссылкой на настоящий стандарт;
- d) все детали, не описанные в настоящем стандарте или рассматриваемые как необязательные, вместе с подробностями любых непредвиденных случайностей, которые могли повлиять на результат (ы) анализа;
- е) полученный (ые) результат (ы) и, если была проверена повторяемость, полученный окончательный заявленный результат.

²⁾ ISO 5725:1986 «Прецизионность методов измерений. Определение повторяемости и воспроизводимости стандартного метода измерения посредством использования межлабораторных испытаний» (в настоящее время отменен) был использован для получения данных о прецизионности.

Приложение А (обязательное)

Правила надлежащей лабораторной практики (GLP) для проведения ферментных анализов

А.1 Введение

Правила надлежащей лабораторной практики для ферментных анализов в меньшей степени изучены, в отличие от правил для других химических анализов. На указанные правила необходимо обратить внимание для получения правильных и точных результатов. Перед проведением анализов необходимо ознакомиться с правилами GLP, описанными ниже.

А.2 Реактивы

- А.2.1 Используют только реактивы признанной аналитической чистоты (удельная активность, концентрация, загрязняющие вещества с ферментной активностью, растворитель).
- А.2.2 Используют только коферменты установленного качества (степень чистоты, солевая или кислотная форма, загрязняющие вещества).
- А.2.3 Все реактивы, кроме ферментов и коферментов, должны быть признанной аналитической чистоты.
- А.2.4 Вода для приготовления ферментных растворов и других реактивов должна быть дважды дистиллирована.
- А.2.5 Вода для приготовления растворов анализируемой пробы должна быть дистиллирована или деионизирована.
- А.2.6 Реактивы и ферментные суспензии/растворы хранят согласно инструкциям (как правило, при температуре от 2 °C до 8 °C).
 - А.2.7 Ферментные суспензии не замораживают.
- А.2.8 По окончании срока хранения реактива его либо утилизируют, либо проверяют качество, добавляя его различные количества в стандартные растворы. Полученные значения коэффициента поглощения должны быть пропорциональны значениям концентрации.
- А.2.9 Температура буферных растворов, взятых из холодильной камеры, должна быть доведена до комнатной температуры перед добавлением в испытуемую смесь.

А.3 Фотометрические и спектрофотометрические кюветы

- А.З.1 Используют стеклянные или пластмассовые кюветы с оптической длиной пути 1 см.
- П р и м е ч а н и е Пластмассовые кюветы имеют следующие преимущества перед стеклянными кюветами:
- а) являются более дешевыми (одноразовые);
- b) возможно проведение большего числа анализов;
- с) в одной партии пластмассовые кюветы имеют относительно равный коэффициент поглощения.
- А.3.2 При использовании новой партии кювет необходимо контролировать их оптическую длину пути по отношению к оптической длине пути прецизионной кюветы (например, кварцевая кювета), как описано ниже.

Прецизионную кювету и пластмассовую кювету наполняют водой и измеряют коэффициент поглощения A_1 каждой кюветы относительно воды. После ополаскивания кюветы наполняют раствором NADH (приблизительно 0,15 мг/мл) и снова измеряют коэффициент поглощения A_2 относительно воды. Вычисляют ($A_2 - A_1$) для прецизионной кюветы и для пластмассовой кюветы. Если разность ($A_2 - A_1$) между двумя типами кювет превышает 0,5 % измерения фактического значения коэффициента поглощения для прецизионной кюветы, вычисляют среднюю разность в процентах и учитывают ее для длины пути I в формуле (3).

- А.3.3 Всегда используют чистые кюветы без механических повреждений. Оптические стороны кювет протирают или чистят только мягкой тканью.
- А.З.4 Рекомендуется не измерять коэффициент поглощения кювет при испытании пробы относительно коэффициента поглощения кюветы в контрольном испытании без полученной информации о значении величины коэффициента поглощения при самом контрольном испытании. Измеряют коэффициент поглощения при испытании пробы и при контрольном испытании относительно воды и вычисляют разность.

- А.3.5 Не измеряют коэффициент поглощения кюветы при испытании пробы или в контрольном испытании относительно пустой кюветы (из-за рассеивания света).
- А.3.6 Содержимое кюветы перемешивают пластмассовой лопаткой или осторожно переворачивают кювету, закрыв ее парафильмом.
- А.3.7 Удаляют со стенок кюветы пузырьки воздуха, используя лопатку. Оптическую сторону кюветы стараются не царапать.
- А.3.8 Для измерения при испытании пробы и контрольном испытании всегда используют одинаковые кюветы.
- А.3.9 Стеклянные или кварцевые кюветы всегда устанавливают в держатель в одинаковое положение. Для этой цели помечают одну оптическую сторону кюветы.

А.4 Фотометры и спектрофотометры

А.4.1 Используют спектрофотометр (пропускная способность ≤ 10 нм), фильтр-фотометр, оснащенный интерферирующим фильтром (пропускная способность ≤ 10 нм), или фотометр линейного спектра, оснащенный ртутной лампой. Измерения, осуществляемые с использованием спектрофотометра или фильтр-фотометра, должны выполняться при максимальном поглощении NADH или NADPH, т. е. 340 нм. Измерения, осуществляемые с использованием фотометра линейного спектра с ртутной лампой, должны выполняться при 365 или 334 нм.

Примечание – Молярные коэффициенты поглощения NADH и NADPH, измеренные при 334, 340 и 365 нм, составляют:

- а) NADH и NADPH при 334 нм (Hg) $-6,18\times10^6$ см²/моль;
- b) NADH и NADPH при 340 нм 6,3×10⁶ см²/моль;
- c) NADPH при 365 нм (Hg) $-3,5 \times 10^6$ см²/моль;
- d) NADH при 365 нм -3.4×10^6 см²/моль.
- А.4.2 Между коэффициентом поглощения и концентрацией NADH или NADPH должна существовать линейная зависимость в пределах коэффициента поглощения 2,0. Линейную зависимость проверяют следующим образом:
- а) отбирают пипеткой 2,00 мл дистиллированной воды в кювету и измеряют коэффициент поглощения A_0 относительно воды;
- b) отбирают пипеткой 0,10 мл раствора NADH (0,5 мг/мл) в кювету; перемешивают содержимое кюветы и измеряют коэффициент поглощения A_1 .

Вычисляют уменьшенный коэффициент поглощения A_m по следующей формуле:

$$A_m = (A_1 - A_0) \times \frac{2.1}{3.5}$$
 (A.1)

Повторяют процедуру проверки линейной зависимости 14 раз, как описано выше.

После каждой пары измерений вычисляют уменьшенный коэффициент поглощения A_m по следующей формуле:

$$A_m = (A_n - A_0) \times \frac{V}{3.5},$$
 (A.2)

где A_n – коэффициент поглощения, полученный при измерении n;

V — объем содержимого ячейки при измерении n.

Для каждого измерения строят график зависимости объема раствора NADH, находящегося в кювете, от соответствующего уменьшенного коэффициента поглощения. Корреляционное значение измерений должно быть > 0,99.

А.5 Автоматические пипетки и другие пипетки-дозаторы

- А.5.1 Автоматические пипетки и другие пипетки-дозаторы используют в соответствии с инструкциями изготовителя.
 - А.5.2 Для каждой пипетки используют соответствующие наконечники.
- А.5.3 Периодически (например, ежемесячно) проверяют характеристики вместимости и повторяемости автоматических пипеток и других пипеток-дозаторов, как описано ниже.

Мензурку с водой взвешивают на протяжении времени t. Пипеткой отбирают или переливают 1 × порцию воды в мензурку и взвешивают ровно через (t+1) мин после первого взвешивания. Повторяют процедуру отбора пипеткой или дозирования девять раз. Взвешивают мензурку без отбора пипеткой

или дозирования в моменты (t + 11), (t + 12), (t + 13), (t + 14) и (t + 15) мин. Вычисляют на основании данных взвешиваний потери на испарение в минуту. Вычисляют вместимость и повторяемость пипетки или пипетки-дозатора, учитывая потерю воды вследствие испарения.

А.5.4 Теплопередача от ладони руки при продолжительном использовании может повлиять на вместимость некоторых автоматических пипеток.

Находят и отбраковывают пипетки, имеющие данную зависимость, посредством процедуры, описанной в А.5.3.

А.5.5 Непосредственно перед применением несколько раз ополаскивают наконечник пипетки раствором/суспензией, которую необходимо отобрать. Для каждого раствора анализируемой пробы используют новый наконечник для пипетки.

А.5.6 Отбирают пипеткой пробу, буферный, ферментный, коферментный растворы и раствор анализируемой пробы, помещая наконечник пипетки как можно глубже в разные углы кюветы.

Небольшие количества ферментных растворов/суспензий (10 – 50 мкл) могут дозироваться на лопатку, которую опускают в кювету и перемешивают с помощью нее содержимое кюветы.

А.5.7 Следует избегать загрязнения.

А.6 Другая полезная информация

- А.6.1 Возможность нарушения и грубых ошибок проверяют посредством определения коэффициентов поглощения двух растворов с различными концентрациями анализируемого вещества. Полученные значения коэффициента поглощения должны быть пропорциональны значениям концентрации анализируемого вещества.
- А.6.2 Для проверки ферментной (ых) реакции (й) используют эталонный образец. Эталонный образец должен рассматриваться как общепринятый эталонный образец.

Примечание — Эталонные образцы подтвержденной чистоты могут быть получены от организаций, таких как Национальный институт стандартов и технологий (NIST) или Бюро по стандартам Европейского сообщества (BCR).

- А.6.3 Испытание на восстановление проводят в присутствии раствора анализируемой пробы. Количество добавленного анализируемого вещества должно быть приблизительно таким же, как и количество анализируемого вещества, уже присутствующего в растворе анализируемой пробы.
- А.6.4 Для каждой кюветы используют одну пластмассовую лопатку или каждую лопатку используют только один раз.

Примечание – Допускается не учитывать количество жидкости, оставшейся на лопатке.

Библиография

[1]	ISO 707 IDF 50	Milk and milk products – Guidance on sampling (Молоко и молочные продукты. Руководство по отбору проб)
[2]	ISO 1736:2008	Dried milk and dried milk products – Determination of fat content – Gravimetric method (Reference method) [Молоко сухое и сухие молочные продукты. Определение содержания жира. Гравиметрический метод (контрольный метод)]
[3]	ISO 5725-1:1994	Accuracy (trueness and precision) of measurement methods and results – Part 1: General principles and definitions (Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Общие принципы и определения)
[4]	ISO 5725-2:1994	Accuracy (trueness and precision) of measurement methods and results — Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method (Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерения)
[5]	Leenheer J. and Jans J (Бюллетень IDF, № 20	I.A. Bulletin of the IDF, No. 207, 1986, pp. 122 – 132 07)

УДК 637.143.047:547.472.3(083.74)(476) МКС 67.100.10 IDT Ключевые слова: сухое молоко, молочная кислота, лактаты

Ответственный	38	выпуск	T.	B.	Варивончик
	JU	DUILIACK		┙.	Dabadonian

Сдано в набор 03.09.2013. Подписано в печать 20.09.2013. Формат бумаги 60×84/8. Бумага офсетная. Гарнитура Arial. Печать ризографическая. Усл. печ. л. 1,74 Уч.-изд. л. 0,85 Тираж 7 экз. Заказ 851

Издатель и полиграфическое исполнение:
Научно-производственное республиканское унитарное предприятие
«Белорусский государственный институт стандартизации и сертификации» (БелГИСС)
ЛИ № 02330/0552843 от 08.04.2009
ул. Мележа, 3, комн. 406, 220113, Минск.