МОЛОКО И МОЛОКО СУХОЕ

Определение содержания афлатоксина M₁. Очистка с помощью иммуноаффинной хроматографии и определение с помощью высокоэффективной жидкостной хроматографии

МАЛАКО І МАЛАКО СУХОЕ

Вызначэнне змяшчэння афлатаксіну М₁. Ачыстка з дапамогай імунаафіннай храматаграфіі і вызначэнне з дапамогай высокаэфектыўнай вадкаснай храматаграфіі

(ISO 14501:2007, IDT) (IDF 171:2007, IDT)

Издание официальное

Предисловие

Евразийский совет по стандартизации, метрологии и сертификации (EACC) представляет собой региональное объединение национальных органов по стандартизации государств, входящих в Содружество Независимых Государств. В дальнейшем возможно вступление в EACC национальных органов по стандартизации других государств.

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены».

Сведения о стандарте

- 1 ПОДГОТОВЛЕН научно-производственным республиканским унитарным предприятием «Белорусский государственный институт стандартизации и сертификации» (БелГИСС)
 - 2 ВНЕСЕН Госстандартом Республики Беларусь
- 3 ПРИНЯТ Евразийским советом по стандартизации, метрологии и сертификации (протокол № 87-П от 20 апреля 2016 г.)

За при	інятие ст	андарта	проголосовали	1:
--------	-----------	---------	---------------	----

Краткое наименование страны	Код страны	Сокращенное наименование
по МК (ИСО 3166) 004—97	по МК (ИСО 3166) 004—97	национального органа по стандартизации
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Кыргызстан	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Российская Федерация	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Узбекистан	UZ	Узстандарт
Украина	UA	Минэкономразвития Украины

4 Настоящий стандарт идентичен международному стандарту ISO 14501:2007|IDF 171:2007 Milk and milk powder — Determination of aflatoxin M_1 content — Clean-up by immunoaffinity chromatography and determination by high-performance liquid chromatography (Молоко и сухое молоко. Определение содержания афлатоксина M_1 . Очистка иммуноаффинной хроматографией и определение с помощью высокоэффективной жидкостной хроматографии).

Международный стандарт разработан подкомитетом SC 5 «Молоко и молочные продукты» технического комитета по стандартизации ISO/TC 34 «Пищевые продукты» Международной организации по стандартизации (ISO) и Международной молочной федерацией (IDF).

Перевод с английского языка (en).

Официальные экземпляры международного стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, и международных стандартов, на которые даны ссылки, имеются в Национальном фонде ТНПА.

Степень соответствия — идентичная (IDT)

5 ВВЕДЕН В ДЕЙСТВИЕ постановлением Госстандарта Республики Беларусь от 14 октября 2016 г. № 79 непосредственно в качестве государственного стандарта Республики Беларусь с 1 мая 2017 г.

6 ВВЕДЕН ВПЕРВЫЕ

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных (государственных) стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных (государственных) органов по стандартизации.

© Госстандарт, 2016

Настоящий стандарт не может быть воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта Республики Беларусь

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РЕСПУБЛИКИ БЕЛАРУСЬ

МОЛОКО И МОЛОКО СУХОЕ

Определение содержания афлатоксина М₁. Очистка с помощью иммуноаффинной хроматографии и определение с помощью высокоэффективной жидкостной хроматографии

МАЛАКО І МАЛАКО СУХОЕ

Вызначэнне змяшчэння афлатаксіну М₁. Ачыстка з дапамогай імунаафіннай храматаграфіі і вызначэнне з дапамогай высокаэфектыўнай вадкаснай храматаграфіі

Milk and milk powder. Determination of aflatoxin M₁ content.

Clean-up by immunoaffinity chromatography
and determination by high-performance liquid chromatography

Дата введения — 2017-05-01

1 Область применения

Настоящий стандарт устанавливает метод определения содержания афлатоксина М₁ в молоке и сухом молоке. Предел обнаружения составляет 0,08 мкг/кг для цельного сухого молока, т. е., 0,008 мкг/л для восстановленного молока.

Метод также применим для частично обезжиренного молока, обезжиренного молока, сухого частично обезжиренного молока и сухого обезжиренного молока.

Предосторежение

- 1 Для метода, описанного в настоящем стандарте, требуется использование растворов афлатоксина М₁. Афлатоксины являются канцерогенами для человека. Особое внимание необходимо уделять отчетам Международного агентства по изучению рака [4], [5].
- 2 Анализы должны выполняться в помещении при затемненном свете. Стандартные растворы афлатоксина должны быть защищены от света, например, с помощью алюминиевой фольги.
- 3 Вся стеклянная посуда (пробирки, склянки, колбы, мензурки, шприцы, и др.), контактирующая с водными растворами афлатоксина, должна быть вымыта перед использованием раствором кислоты во избежание потери афлатоксина.

Новую стеклянную посуду, которая будет контактировать с водными растворами афлатоксина, следует замачивать перед использованием в растворе серной кислоты (2 моль/л) в течение нескольких часов, а затем тщательно промыть дистиллированной водой для удаления всех следов кислоты (контролируют, чтобы значение pH находилось в пределах от 6 до 8).

4 Необходимо проводить обеззараживание лабораторных отходов, таких как твердые вещества, растворы в органических растворителях, водные растворы и пролитые жидкости, а также стеклянной посуды, контактирующей с канцерогенными материалами. Подходящие процедуры обеззараживания разработаны и утверждены Международным агентством по изучению рака [4], [5].

2 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

2.1 **содержание афлатоксина M₁** (aflatoxin M₁ content): Массовая концентрация или массовая доля афлатоксина M₁, определенная методом, установленным в настоящем стандарте.

П р и м е ч а н и е — Массовая концентрация афлатоксина М₁ выражается в микрограммах на литр, а массовая доля — в микрограммах на килограмм.

3 Сущность метода

Афлатоксин M₁ экстрагируют, пропуская пробу для испытания через иммуноаффинную колонку, которая содержит специфические антитела, связанные с твердым материалом субстрата.

Когда проба проходит через колонку, антитела селективно связываются с любым присутствующим афлатоксином M_1 (антигеном) и образуют комплекс антитело-антиген. Все другие компоненты основного состава пробы вымываются из колонки водой. Затем афлатоксин M_1 элюируют из колонки и элюат собирают. Количество афлатоксина M_1 , присутствующего в элюате, определяют методом высокоэффективной жидкостной хроматографии (ВЭЖХ) с флуориметрическим детектированием.

4 Реактивы

Применяют реактивы только установленной аналитической квалификации, если не оговорено договором иное, а также дистиллированную или деминерализованную воду эквивалентной чистоты.

4.1 Иммуноаффинная колонка

Иммуноаффинная колонка должна содержать антитела относительно афлатоксина M_1 . Максимальная емкость колонки должна быть не менее 100 нг афлатоксина M_1 (что соответствует 2 мкг/л, когда используют 50 мл пробы для испытания). Колонка должна давать выход афлатоксина M_1 не менее 80 %, при применении стандартного раствора, содержащего 4 нг токсина (что соответствует 80 нг/л, когда используют 50 мл пробы для испытания). Допускается использовать любую иммуноаффинную колонку, удовлетворяющую вышеуказанным рабочим характеристикам. Работа колонки должна проверяться регулярно и не менее одного раза для каждой партии колонок (см. 4.1.1 и 4.1.2).

4.1.1 Контроль емкости

Разбавляют водой 1,0 мл основного стандартного раствора афлатоксина M_1 (4.4.2) до 50 мл. Хорошо перемешивают и аккуратно наносят весь объем на иммуноаффинную колонку, соблюдая рекомендации по использованию колонок, предоставленные изготовителем. Моют колонку и элюируют токсин. Определяют количество афлатоксина M_1 , элюированного из колонки, методом ВЭЖХ после приготовления подходящего разбавления окончательного элюата.

Рассчитывают емкость для афлатоксина M₁. Сравнивают результат с требованиями, указанными в 4.1.

4.1.2 Контроль выхода

С помощью пипетки (5.4) разбавляют водой 0,8 мл рабочего стандартного раствора афлатоксина M_1 концентрацией 0,005 мкг/мл (4.4.3) до 10 мл. Хорошо перемешивают и аккуратно наносят весь объем на иммуноаффинную колонку, соблюдая рекомендации по использованию колонок, предоставленные изготовителем. Моют колонку и элюируют токсин. Определяют количество афлатоксина M_1 , элюированного из колонки, методом ВЭЖХ после приготовления подходящего разбавления окончательного элюата.

Рассчитывают выход для афлатоксина М₁. Сравнивают результат с требованиями, указанными в 4.1.

4.2 Ацетонитрил, степень чистоты для ВЭЖХ.

4.2.1 Раствор ацетонитрила, 25 %

Добавляют 250 мл ацетонитрила (4.2) к 750 мл воды и перемешивают. Можно использовать другие объемы в такой же пропорции. Раствор (элюент) перед использованием дегазируют.

4.2.2 Раствор ацетонитрила, 10 %

Добавляют 100 мл ацетонитрила (4.2) к 900 мл воды и перемешивают. Можно использовать другие объемы в такой же пропорции. Раствор (элюент) перед использованием дегазируют.

4.3 Азот газообразный.

4.4 Стандартные растворы афлатоксина M₁

4.4.1 Градуировочный стандартный раствор афлатоксина M₁

Готовят градуировочный стандартный раствор афлатоксина M_1 путем растворения в ацетонитриле (4.2) такого количества афлатоксина M_1 ($C_{17}H_{12}O_7$), которое позволяет получить раствор концентрации 10 мкг/мл. Определяют фактическую концентрацию афлатоксина M_1 путем измерения оптической плотности при длине волны максимума поглощения раствора.

Используют спектрофотометр (5.14) для измерения оптической плотности градуировочного стандартного раствора афлатоксина M_1 в диапазоне длин волн от 330 до 370 нм относительно ацетонитрила (4.2), применяемого в качестве образца сравнения. Измеряют оптическую плотность A при длине волны максимума поглощения λ_{max} , близкой к 350 нм.

Рассчитывают массовую концентрацию c_1 , мкг/мл, используя формулу (1):

$$c_1 = A \times M \times \frac{100}{d \times \varepsilon}, \tag{1}$$

где A — числовое значение оптической плотности, измеренной при λ_{max} ;

M — числовое значение молярной массы афлатоксина M_1 , г/моль (M = 328 г/моль);

d — толщина поглощающего слоя кварцевой кюветы, см (d = 1 см);

 ϵ — числовое значение молярного коэффициента поглощения афлатоксина M_1 в ацетонитриле, M^2 /моль (ϵ = 1985 M^2 /моль).

4.4.2 Основной стандартный раствор афлатоксина M₁

После проверки концентрации разбавляют градуировочный стандартный раствор афлатоксина М₁ (4.4.1) ацетонитрилом (4.2) до получения основного стандартного раствора афлатоксина М₁ концентрацией 0,1 мкг/мл. Основной стандартный раствор афлатоксина М₁ следует хранить в хорошо закупоренной склянке, обернутой алюминиевой фольгой для защиты от света.

Хранят основной стандартный раствор афлатоксина M_1 в холодильнике при температуре от 1 °C до 5 °C в течение двух месяцев. Допускается использовать основной стандартный раствор афлатоксина M_1 со сроком хранения более двух месяцев после проверки концентрации афлатоксина M_1 в нем. Если концентрация раствора изменилась, то раствор отбраковывают и готовят свежий.

4.4.3 Рабочие стандартные растворы афлатоксина M₁

Рабочие стандартные растворы афлатоксина M_1 готовят свежие из основного стандартного раствора афлатоксина M_1 (4.4.2), предварительно доведенного до комнатной температуры. Разбавляют основной стандартный раствор афлатоксина M_1 (4.4.2) 10%-ным раствором ацетонитрила (4.2.2) до получения концентрации афлатоксина M_1 0,005 мкг/мл.

Рабочие стандартные растворы с концентрациями афлатоксина М₁ 0,05; 0,10; 0,20 и 0,40 нг/мл готовят путем разбавления 10%-ным раствором ацетонитрила (4.2.2) необходимых аликвот разбавленного основного стандартного раствора афлатоксина М₁. Допускается готовить рабочие стандартные растворы афлатоксина М₁ других концентраций в зависимости от объема петли инжектора.

5 Оборудование

Используют стандартное лабораторное оборудование, в том числе перечисленное ниже.

- 5.1 Одноразовые шприцы, вместимостью 10 и 50 мл.
- 5.2 **Вакуумная система** (например, колба Бюхнера, система Vac-Elut ¹⁾ или перистальтический насос).
 - 5.3 **Центрифуга**, обеспечивающая радиальное ускорение не менее 2000 g.
 - 5.4 Пипетки, вместимостью 1,0; 2,0 и 50,0 мл, или подходящие пипеточные дозаторы.
 - 5.5 Стеклянные стаканы, вместимостью 250 мл.
 - 5.6 Мерная колба с одной меткой, вместимостью 100 мл.
- 5.7 **Термостаты водяные**, поддерживающие интервалы температуры 30 °C \pm 2 °C, 36 °C \pm 1 °C и 50 °C \pm 5 °C.
 - 5.8 **Фильтровальная бумага**, ватман № 4 ¹⁾, или аналогичная.
- 5.9 Градуированные стеклянные пробирки с коническим дном, с горловиной из матового стекла и притертой стеклянной пробкой, вместимостью 5, 10 и 20 мл.
- 5.10 **Установка для ВЭЖХ**, оборудованная безымпульсным насосом, обеспечивающим скорость потока около 1 мл/мин, инжектором с петлей постоянного или переменного объема, обеспечивающей объемы инжектирования от 20 до 500 мкл.
- 5.11 **Аналитическая обращенно-фазная колонка для ВЭЖХ**, заполненная октадециловым кремнеземом размером 3 или 5 мкм и предколонкой, с обратным чередованием фаз.
- 5.12 **Флуоресцентный детектор,** с длиной волны фильтра возбуждения 365 нм и длиной волны эмиссии 435 нм, позволяющий обнаруживать (при отношении сигнала к шуму: 5) 0,02 нг афлатоксина M_1 , при проведении испытания в подходящих хроматографических условиях.

¹⁾ Система Vac-Elut и ватман являются примерами коммерчески доступной продукции. Указаны примеры продуктов, имеющихся в продаже. Информация приведена для удобства пользователей настоящего стандарта и не является рекламой указанных продуктов со стороны ISO или IDF.

- 5.13 **Ленточный самописец**, с принтером или плоттером, либо **электронный интегратор** или **компьютерная система обработки данных**.
- 5.14 Спектрофотометр, с диапазоном измерения от 200 до 400 нм, снабженный кварцевыми кюветами с толщиной поглощающего слоя 1 см.
 - 5.15 Весы лабораторные, с точностью взвешивания 0,01 г.

6 Отбор проб

В лабораторию должна быть передана представительная проба, не поврежденная или измененная во время транспортирования и/или хранения.

Метод отбора проб не регламентирован настоящим стандартом. Рекомендуемый метод отбора проб приведен в [1].

7 Методика проведения испытания

Все операции должны выполняться в помещении при затемненном свете. Процедуры по вводу пробы на аффинные колонки, промывке колонки и элюированию будут слегка различаться у различных изготовителей колонок. Поэтому нужно точно следовать инструкциям, поставляемым с колонками.

7.1 Подготовка пробы для испытания

7.1.1 Молоко

Образец для испытания нагревают в водяном термостате (5.7) при температуре 36 °C \pm 1 °C. Затем пробу фильтруют через фильтровальную (ые) бумагу (и) (5.8), используя при необходимости несколько фильтров, или центрифугируют при радиальном ускорении не менее 2000 g в течение 15 мин. Собирают не менее 50 мл подготовленной таким образом пробы для испытания. Проводят экстракцию и очистку пробы для испытания в соответствии с 7.3.

7.1.2 Сухое молоко

10 г навески образца для испытания, взвешенного с точностью до 0,01 г, помещают в стеклянный стакан вместимостью 250 мл (5.5). Добавляют небольшими порциями 50 мл воды, предварительно нагретой в водяной бане (5.7) до 50 °C. Перемешивают мешалкой до получения однородной смеси.

При необходимости для получения однородной смеси помещают стеклянный стакан в водяной термостат (5.7) с температурой 50 °C в течение не менее 30 мин. Смесь часто перемешивают.

Полученный раствор оставляют охлаждаться до температуры от 20 °C до 25 °C, затем количественно переносят в мерную колбу с одной меткой вместимостью 100 мл (5.6), используя небольшие количества воды, и доводят водой до метки. Достаточное количество раствора фильтруют через фильтровальную (ые) бумагу (и) (5.8) или центрифугируют при радиальном ускорении не меньше 2000 g в течение15 мин. Собирают не менее 50 мл подготовленной таким образом пробы для испытания. Проводят экстракцию и очистку пробы для испытания в соответствии с 7.3.

7.2 Подготовка иммуноаффинной колонки

Присоединяют шприц вместимостью 50 мл (5.1) к верхней части иммуноаффинной колонки (4.1). Соединяют иммуноаффинную колонку с вакуумной системой (5.2).

7.3 Экстракция и очистка пробы для испытания

Набирают 50 мл подготовленной пробы для испытания (7.1.1 или 7.1.2) в шприц (5.1) и пропускают ее через иммуноаффинную колонку со скоростью от 2 до 3 мл/мин, контролируя скорость потока с помощью вакуумной системы (5.2).

Набирают 10 мл воды в шприц вместимостью 10 мл и промывают колонку, пропуская воду через нее при постоянной скорости потока. После промывки колонку продувают досуха.

Отсоединяют колонку от вакуумной системы. Медленно элюируют афлатоксин М₁ из колонки, пропуская через нее 4 мл ацетонитрила (4.2) в течение 60 с, с помощью шприца вместимостью 10 мл. Скорость потока регулируют посредством плунжера шприца.

Собирают элюат в пробирку (5.9) и выпаривают до объема $V_{\rm e}$ от 20 до 500 мкл, помещая пробирку в водяной термостат (5.7) с температурой 30 °C и продувая азотом (4.3).

Предупреждение — При выпаривании досуха могут происходить потери элюата.

Восполняют потери, добавляя воду к окончательному элюату, $V_{\rm f}$ = 10 $V_{\rm e}$, т. е. от 500 до 5000 мкл (см. примечание).

П р и м е ч а н и е — Если объемная доля ацетонитрила в инжектированном экстракте, содержащем афлатоксин M_1 , более 10 %, на хроматограмме будет уширение пика. Однако объемная доля воды более 90 % не оказывает никакого влияния на форму пика [8].

7.4 Высокоэффективная жидкостная хроматография

7.4.1 Установка насоса

Насосом прокачивают элюент (4.2.1) с постоянной скоростью через колонку ВЭЖХ. В зависимости от типа используемой колонки при необходимости регулируют соотношение ацетонитрила/воды для элюента (4.2.1), чтобы обеспечить отделение афлатоксина М₁ от других компонентов экстракта.

Примечание — Скорость течения элюента (4.2.1) также зависит от используемой колонки (5.11). Рекомендации для обычных колонок длиной приблизительно 25 см: при внутреннем диаметре 4,6 мм, оптимальная скорость течения должна составлять приблизительно 1 мл/мин; при внутреннем диаметре 3 мм — приблизительно 0,5 мл/мин.

Рекомендуется определять оптимальные условия, используя экстракт пробы (предпочтительно без афлатоксина M_1), который инжектируется отдельно и в комбинации с рабочим стандартным раствором афлатоксина M_1 (4.4.3).

7.4.2 Хроматографические характеристики

Стабильность в работе хроматографической системы проверяют посредством многократного инжектирования постоянного количества рабочего стандартного раствора афлатоксина M_1 (4.4.3) до получения стабильной площади или высоты пика. Площадь или высота пика при последовательных инжекциях не должны различаться более чем на 5 %.

Характеристики времени удержания пиков афлатоксина M_1 зависят от температуры. Поэтому для компенсации отклонений в системе детектирования необходимо инжектировать постоянное количество рабочего стандартного раствора афлатоксина M_1 (4.4.3) с регулярными интервалами. При необходимости результат для используемого рабочего стандартного раствора афлатоксина M_1 можно корректировать с учетом наблюдаемого отклонения.

7.4.3 Градуировочный график для афлатоксина M₁

Последовательно вводят в петлю инжектора объемы рабочих стандартных растворов афлатоксина M_1 (4.4.3), содержащих 0,05; 0,10; 0,20 и 0,40 нг афлатоксина M_1 . Строят градуировочный график зависимости площади или высоты пика для каждого рабочего стандартного раствора афлатоксина M_1 от массовой концентрации афлатоксина M_1 .

7.4.4 Анализ очищенных экстрактов и схемы инжекции

Элюат (7.3) вводят в петлю инжектора в таком же объеме, как и рабочие стандартные растворы афлатоксина M_1 (7.4.3). Отделяют афлатоксин M_1 , применяя такие же условия, как для стандартных растворов. Инжекции стандартных растворов и экстрактов пробы осуществляют согласно установленной схеме.

При инжекции друг за другом серии элюатов рекомендуется через каждые пять инжекций инжектировать рабочий стандартный раствор афлатоксина M₁.

Определяют площадь или высоту пика для афлатоксина М₁ элюата. Вычисляют из градуировочного графика массу афлатоксина М₁ в экстракте пробы в нанограммах.

Если площадь или высота пика афлатоксина M₁ в элюате выше соответствующих максимальных значений для стандартного раствора, разбавляют его водой и повторно инжектируют, как описано выше.

8 Расчет и представление результатов

8.1 Молоко

8.1.1 Расчет

Рассчитывают массовую концентрацию афлатоксина M_1 c, мкг/л, используя формулу (2):

$$c = m_{a} \times \left(\frac{V_{f}}{V_{i}}\right) \times \left(\frac{1}{V_{i}}\right), \tag{2}$$

где m_a — масса афлатоксина M_1 , соответствующая площади или высоте пика для афлатоксина M_1 в элюате, нг;

FOCT ISO 14501-2016

- V_i объем инжектируемого элюата, мкл;
- $V_{\rm f}$ окончательный объем элюата, мкл;
- $V_{
 m t}$ объем пробы для испытания, пропускаемый через иммунноафинную колонку, мл.

8.1.2 Представление результатов

Выражают конечные результаты с точностью до трех десятичных знаков.

8.2 Сухое молоко

8.2.1 Расчет

Рассчитывают массовую долю афлатоксина М₁, мкг/кг, используя формулу (3):

$$w = m_{t} \times \left(\frac{V_{f}}{V_{i}}\right) \times \left(\frac{1}{m_{t}}\right) \times f, \tag{3}$$

где $m_{\rm t}$ — масса навески образца для испытания, используемой для получения 50 мл пробы для испытания, используемой в 7.3;

f — коэффициент разбавления образца для испытания (при отсутствии разбавления f = 1).

8.2.2 Представление результатов

Выражают конечные результаты с точностью до трех десятичных знаков.

9 Прецизионность

9.1 Межлабораторное испытание

Информация о межлабораторном испытании по определению прецизионности метода, проведенном в соответствии с [2] и [3], приведена в приложении А.

Значения, полученные в результате указанного межлабораторного испытания, не могут быть применимы к другим интервалам массовой концентрации и типам матриц, кроме тех, которые указаны.

9.2 Повторяемость

Абсолютное расхождение между двумя отдельными результатами испытания, которые были получены при применении одного и того же метода на идентичном испытуемом материале одним и тем же оператором на одном и том же оборудовании в течение короткого промежутка времени, не должно превышать значений, приведенных в таблице А.1, более чем в 5 % случаев.

9.3 Воспроизводимость

Абсолютное расхождение между двумя отдельными результатами испытания, которые были получены при применении одного и того же метода на идентичном испытуемом материале разными операторами, на разном оборудовании, не должно превышать значений, приведенных в таблице А.1, более чем в 5 % случаев.

10 Протокол испытания

Протокол испытания должен содержать следующие данные:

- а) всю информацию, необходимую для полной идентификации пробы;
- b) применяемый метод отбора проб, если известен;
- с) применяемый метод испытания со ссылкой на настоящий стандарт;
- d) все операции, не оговоренные в настоящем стандарте или рассматриваемые как необязательные, а также подробности о любых инцидентах, которые могли повлиять на результаты испытания;
- е) полученные результаты испытания или окончательный заявленный результат, если была проверена повторяемость.

Приложение А (справочне)

Результаты межлабораторного испытания

При проведении международного совместного испытания с участием 16 лабораторий были анализированы пробы сухого молока с массовой долей жира 1 % (пробы сухое частично обезжиренное молоко — пробы 1,3) и массовой долей жира 28 % (сухое цельное молоко — пробы 2, 4 и 5). Последние пробы остались от партий сухого молока, применяемого для приготовления стандартных образцов [6], поэтому содержание афлатоксина М₁ было известно.

Уровни загрязнения варьировались от 0,08 до 0,6 мкг/кг, т. е. от 0,008 до 0,060 мкг/л для восстановленного молока.

Полученные результаты были подвергнуты статистическому анализу согласно [2] и [3] для определения данных по прецизионности, приведенных в таблице А.1.

Таблица А.1 — Данные по прецизионности

Проба	1	2	3	4	5
Участвующие лаборатории ^{а)}	12	14	13	11	14
Среднее значение 🐷, мкг/кг	0,081	0,150	0,080	0,202	0,580
Стандартное отклонение <i>s_r</i> , мкг/кг	0,008	0,022	0,005	0,010	0,073
Значение для повторяемости $r = 2,8s_r$, мкг/кг	0,023	0,060	0,015	0,027	0,203
Коэффициент изменчивости повторяемости CV(r), %	9,9	14,0	6,8	4,7	12,5
Стандартное отклонение воспроизводимости s_R , мкг/кг	0,019	0,035	0,015	0,022	0,110
Значение для воспроизводимости $R = 2,8s_R$, мкг/кг	0,052	0,098	0,041	0,061	0,310
Коэффициент изменчивости воспроизводимости CV(R), %	23	22,7	18,3	10,8	19,1

^{а)} Лаборатории были исключены на основе критериев Кохрана и Граббса для выбросов.

Библиография

- [1] ISO 707:2008|IDF 50 Milk and milk products Guidance on sampling (Молоко и молочные продукты. Руководство по отбору проб)
- [2] ISO 5725-1:1994 Accuracy (trueness and precision) of measurement methods and results —

Part 1: General principles and definitions

(Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Общие принципы и определения)

[3] ISO 5725-2:1994 Accuracy (trueness and precision) of measurement methods and results -

Part 2: Basic method for the determination of repeatability and reproducibility

of a standard measurement method

(Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерения)

- [4] Castegnaro, M., Hunt, D.C., Sansone, E.B., Schuller, P.L., Siriwardana, M.G., Telling, G.M., Van Egmond, H.P., Walker, E.A. Laboratory decontamination and destruction of aflatoxins B₁, B₂, G₁ and G₂ in laboratory wastes. IARC Scientific Publication No. 37, International Agency for Research on Cancer (WHO), Lyon, France, 1980, 59 pp. (Лабораторное обеззараживание и уничтожение афлатоксинов B₁, B₂, G₁ и G₂ в лабораторных отходах)
- [5] Castegnaro, M., Barek, J., Frémy, J.M., Lafontaine, M., Miraglia, M., Sansone, E.B., Telling, G.M. Laboratory decontamination and destruction of carcinogens in laboratory wastes: Some mycotoxins. IARC Scientific Publication No. 113, International Agency for Research on Cancer (WHO), Lyon, France, 1991, 63 pp. (Лабораторное обеззараживание и уничтожение канцерогенов в лабораторных отходах: некоторые микотоксины)
- [6] van Egmond, H.P., Wagstaffe, P.J. The certification of aflatoxin M₁ in three milk powder samples, Commission of the European Community, Community Bureau of Reference (BCR). Report and Addendum report EUR 10412, 1986, CRM Nos 282, 284, 285 (Сертификация афлатоксина M₁ в трех образцах сухого молока)
- [7] Tuinstra, L.G.M.T., Roos, A.H., van Trijp, J.M.P. IDF collaborative study on the determination of aflatoxin M₁ in milk powder, using immunoaffinity columns. RIKILT (Institute of Food Safety), Wageningen, Report 92, 1992, 14 pp. (Совместное исследование Международной молочной федерации по определению афлатоксина M₁ в сухом молоке, используя иммуноаффинную колонку)
- [8] Tuinstra, L.G.M.T., Roos, A.H., van Trijp, J.M.P. Liquid chromatographic determination of aflatoxin M₁ in milk powder using immunoaffinity columns for cleanup: Interlaboratory study. J. A.O.A.C. Int 1993, 76, pp. 1248-1254 (Определение афлатоксина М₁ в сухом молоке методом высокоэффективной жидкостной хроматографии с очисткой на иммуноаффинной колонке: Межлабораторное исследование)
- [9] De Vries, E.J. et al. Dried skimmed milk Determination of vitamin A Colorimetric and liquid chromatographic methods, pp. 53-64. In: Reference materials and interlaboratory collaborative studies (third series). [Bull. IDF 1993, (285)] (Молоко обезжиренное сухое. Определение содержания витамина А. Колориметрический метод и метод с использованием высокоэффективной жидкостной хроматографии)

УДК 637.143.2.04:543.544.5.068.7(083.74)(476)

MKC 67.100.10

IDT

Ключевые слова: молоко молоко обезжиренное, молоко частично обезжиренное, молоко обезжиренное сухое, молоко частично обезжиренное сухое, афлатоксин M_1 , иммуноаффинная хроматография, высокоэффективная жидкостная хроматография

O	тветственный	за	выпуск	Н.	Α.	ьаранов
---	--------------	----	--------	----	----	---------

Сдано в набор 21.10.2014. Подписано в печать 04.11.2014. Формат бумаги 60×84/8. Бумага офсетная. Гарнитура Arial. Печать ризографическая. Усл. печ. л. 1,51 Уч.-изд. л. 0,68 Тираж 2 экз. Заказ 2044

Издатель и полиграфическое исполнение:
Научно-производственное республиканское унитарное предприятие
«Белорусский государственный институт стандартизации и сертификации» (БелГИСС)
Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий
№ 1/303 от 22.04.2014
ул. Мележа, 3, комн. 406, 220113, Минск.