ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р 50779.81— 2018 (ИСО 28592: 2017)

Статистические методы

ДВУХСТУПЕНЧАТЫЕ ПЛАНЫ КОНТРОЛЯ ПО АЛЬТЕРНАТИВНОМУ ПРИЗНАКУ С МИНИМАЛЬНЫМ ОБЪЕМОМ ВЫБОРКИ НА ОСНОВЕ ЗНАЧЕНИЙ PRQ И CRQ

(ISO 28592:2017,

Double sampling plans by attributes with minimal sample sizes, indexed by producer's risk quality (PRQ) and consumer's risk quality (CRQ), MOD)

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Открытым акционерным обществом «Научно-исследовательский центр контроля и диагностики технических систем» (АО «НИЦ КД») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 125 «Применение статистических методов»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 31 июля 2018 г. № 440-ст
- 4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 28592:2017 «Двухступенчатые планы контроля по альтернативному признаку с минимальным объемом выборки на основе качества риска поставщика (PRQ) и качества риска потребителя (CRQ)» (ISO 28592:2017 «Double sampling plans by attributes with minimal sample sizes, indexed by producer's risk quality (PRQ) and consumer's risk quality (CRQ)», MOD) путем внесения отклонений, объяснение которых приведено во введении к настоящему стандарту.

Международный стандарт разработан Техническим комитетом ISO/TC 69.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5—2012 (пункт 3.5).

Сведения о соответствии ссылочного национального стандарта международному стандарту, использованному в качестве ссылочного в примененном международном стандарте, приведены в дополнительном приложении ДА

5 B3AMEH FOCT P MCO 28801-2013

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© ISO, 2017 — Все права сохраняются © Стандартинформ, оформление, 2018

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения
2 Нормативные ссылки
3 Термины, определения и обозначения
4 Выбор и выполнение плана выборочного контроля
5 Оперативные характеристики
6 Средние объемы выборки
7 Фактические значения рисков поставщика и потребителя
8 Средний выходной уровень несоответствий (AOQ)
9 Примеры
10 Таблицы и рисунки
Приложение А (справочное) Теоретическое обоснование планов, таблиц и графиков
Приложение ДА (справочное) Сведения о соответствии ссылочного национального стандарта
международному стандарту, использованному в качестве
ссылочного в примененном международном стандарте

Введение

Двухступенчатые планы выборочного контроля по альтернативному признаку установлены в ГОСТ Р ИСО 2859-1. Эти планы разработаны на основе предельно допустимого уровня несоответствий (AQL¹¹) и предназначены для непрерывной серии партий. Для каждого диапазона объемов партии, т. е. для каждого кода объема выборки, объемы первой и второй выборок двухступенчатых планов выборочного контроля по ГОСТ Р ИСО 2859-1 являются постоянными и одинаковыми для всех значений AQL, а значения приемочного числа увеличиваются с увеличением AQL.

Вследствие улучшения производственных процессов и снижения уровня несоответствий возрос интерес к планам выборочного контроля с меньшими значениями приемочных и браковочных чисел, чем в планах, установленных в ГОСТ Р ИСО 2859-1.

Кроме того, в соответствии с пожеланиями потребителей продукцию часто изготавливают меньшими сериями. Иногда эти серии партий продукции являются слишком короткими для корректного применения правил переключения в соответствии с планами контроля, индексированными по AQL (см. ГОСТ Р ИСО 2859-1).

В свете рассмотрения потребностей рынка в настоящем стандарте приведены двухступенчатые планы выборочного контроля по альтернативному признаку, индексированные по значениям уровня несоответствия, соответствующего риску поставщика (PRQ) и риску потребителя (CRQ), включающие минимальные значения приемочных и браковочных чисел. При этом не использованы ограничения на объемы первой и второй выборок. Объемы первой и второй выборок установлены так, чтобы минимизировать средний суммарный объем выборок при условии непревышения заданного значения риска поставщика α и риска потребителя β . В настоящем стандарте использованы следующие комбинации значений рисков (α , β): (5 %, 5 %), (5 %, 10 %) и (10 %, 10 %).

При использовании двухступенчатых планов выборочного контроля решение принимают в соответствии со следующим правилом. Партию принимают, если по результатам выборочного контроля в первой выборке не обнаружено несоответствующих единиц продукции; партию отклоняют, если в первой выборке обнаружено две и более несоответствующих единиц продукции. Если в первой выборке обнаружена одна несоответствующая единица продукции, после отбора второй случайной выборки принимают решение о приемке партии, если во второй выборке не обнаружено несоответствующих единиц продукции, в противном случае партию отклоняют. Для каждой пары рисков поставщика и потребителя приведено 17 значений CRQ и PRQ.

Аналогичные планы применяют также для числа несоответствий.

Объемы выборки, приведенные в настоящем стандарте, для двухступенчатых планов выборочного контроля являются минимальными для планов приемочного контроля отдельных партий при коротких сериях партий. Однако поскольку в настоящем стандарте не применены правила переключения, в
нем предусмотрены объемы выборки больше объемов выборки, установленных в ГОСТ Р ИСО 2859-1
для аналогичных планов контроля последовательных партий. Это иллюстрируют следующие два примера для рисков поставщика и потребителя 5 % и 10 % соответственно.

Пример 1

Источник информации	Риск постав- щика	Риск потреби- теля	PRO	CRQ	Объем выборки
ГОСТ Р ИСО 2859-1, код объема выборки E, AQL = 1 %	5 %	10 %	0,394 %	20,6 %	8,8
Настоящий стандарт, таблицы 2 и 14	0,266 %	9,639 %	0,4 %	20 %	12,9

Ранее аббревиатура AQL применялась к термину «приемлемый уровень качества».

Пример 2

Источник информации	Риск постав- щика	Риск потреби- теля	PRQ	CRO	Объем выборки
ГОСТ Р ИСО 2859-1, код объема выборки F, AQL = 0,65 %	5 %	10 %	0,256 %	10,9 %	13,13
Настоящий стандарт, таблицы 2 и 14	0,435 %	9,920 %	0,25 %	10 %	26,16

Во многих случаях для планов контроля, установленных в настоящем стандарте, фактический риск поставщика много меньше указанного их номинального значения.

В настоящем стандарте ссылки на международные стандарты заменены ссылками на национальные стандарты.

Статистические методы

ДВУХСТУПЕНЧАТЫЕ ПЛАНЫ КОНТРОЛЯ ПО АЛЬТЕРНАТИВНОМУ ПРИЗНАКУ С МИНИМАЛЬНЫМ ОБЪЕМОМ ВЫБОРКИ НА ОСНОВЕ ЗНАЧЕНИЙ PRQ И CRQ

Statistical methods. Double sampling plans by attributes with minimal sample sizes indexed by PRQ and CRQ values

Дата введения — 2019-06-01

1 Область применения

В настоящем стандарте установлены двухступенчатые планы выборочного контроля по альтернативному признаку для приемочного контроля партий дискретных единиц продукции. Планы индексированы по значениям уровня несоответствий, соответствующего риску поставщика (PRQ), и уровня несоответствий, соответствующего риску потребителя (CRQ). для значений рисков поставщика и потребителя соответственно (5 %, 5 %), (5 %, 10 %) и (10 %, 10 %). Планы могут быть применены для контроля доли несоответствующих единиц продукции и для контроля числа несоответствий на 100 единиц продукции. Партию принимают при отсутствии несоответствующих единиц продукции (несоответствий) в первой выборке и отклоняют, если в выборке обнаружено две или более несоответствующих единиц продукции. Если в первой выборке обнаружена одна несоответствующая единица продукции, а во второй выборке не обнаружено несоответствующих единиц продукции (несоответствий), то партию принимают. Во всех остальных случаях партию отклоняют.

Целью настоящего стандарта является обеспечение процедур, позволяющих быстро и эффективно принимать или отклонять партии при высоком или низком качестве продукции. В тех случаях, когда по результатам контроля первой выборки невозможно принять или отклонить партию, отбирают вторую выборку, что позволяет более достоверно различать приемлемые и неприемлемые партии. Суммы объемов первой и второй выборок соответствуют наименьшему значению максимального среднего объвыборки при условии, что для входного уровня несоответствий продукции не превышены риски, указанные в плане контроля.

Аналогично планы могут быть использованы для проверки гипотез о том, что уровень несоответствий партии или процесса равен PRQ (т. е. является приемлемым), против альтернативы, что уровень несоответствий равен CRQ (т. е. является неприемлемым).

Предпочтительно применение одноступенчатых планов в случаях, когда стоимость контроля высока, затраты времени и неопределенность, связанные с возможным использованием второй выборки, несущественны и допустимо использование высокого значения отношения CRQ к PRQ.

Приведенные в настоящем стандарте планы контроля применимы для отдельных партий или для коротких серий партий, когда сумма объемов обеих выборок составляет не более 10 % объема партии. Планы приемлемы также для непрерывной серии партий, когда партии, удовлетворяющие критерию приемки, проходят сплошной контроль, а все несоответствующие единицы продукции заменяют соответствующими. Однако для непрерывных серий партий необходимо также рассмотреть двухступенчатые планы выборочного контроля по ГОСТ Р ИСО 2859-1.

Теоретическое обоснование планов, таблиц и графиков, установленных в настоящем стандарте, приведено в приложении А.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий стандарт:

ГОСТ Р ИСО 2859-1 Статистические методы. Процедуры выборочного контроля по альтернативному признаку. Часть 1. Планы выборочного контроля последовательных партий на основе привмлемого уровня качества

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то попожение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины, определения и обозначения

3.1 В настоящем стандарте применены следующие термины с соответствующими определениями. Термины «принятие», «принятый», «приемлемый» относятся только к использованию планов выборочного контроля. Определение приемлемости продукции должно быть установлено в договорной документации.

Базы данных терминов по статистике, поддерживаемые ИСО и МЭК, имеют следующие электронные адреса:

- электронная платформа ИСО с функцией онлайн-просмотра терминов расположена по адресу http://www.iso.org/obp;
 - электронная база МЭК Electropedia расположена по адресу http://www.electropedia.org/.
- 3.1.1 риск потребителя CR (consumer's risk, CR): Вероятность приемки при приемочном (выборочном) контроле с уровнем несоответствий (3.1.5) процесса, признаваемым в соответствии с планом контроля неудовлетворительным.
- 3.1.2 уровень несоответствий, соответствующий риску потребителя¹⁾ CRQ (consumer's risk quality, CRQ): Уровень несоответствий (3.1.5) партии или процесса, который для установленного плана контроля соответствует заданному риску потребителя (3.1.1).
- 3.1.3 риск поставщика PR (producer's risk, PR): Вероятность отклонения партии (при приемочном выборочном контроле) с уровнем несоответствий (3.1.5), признаваемым в соответствии с планом контроля приемлемым.
- 3.1.4 уровень несоответствий, соответствующий риску поставщика²⁾ PRQ (producer's risk quality, PRQ): Уровень несоответствий (3.1.5) партии или процесса, который для установленного плана контроля соответствует заданному риску поставщика (3.1.3).
- 3.1.5 уровень несоответствий (quality level): Показатель качества продукции, представляющий собой долю несоответствующих единиц продукции в партии или число несоответствий на единицу продукции (3.1.9).

Примечание — Доля несоответствующих единиц продукции может быть указана в виде числа или процента. Число несоответствий указывают на единицу продукции или на 100 единиц продукции.

3.1.6 средний объем выборки ASSI (average sample size, ASSI): Среднее количество единиц продукции в выборке, отбираемой из партии для принятия решения о приемке или отклонении партии в соответствии с установленным планом статистического приемочного контроля.

Примечание — ASSI зависит от фактического уровня несоответствий (3.1.5) представленных партий.

¹⁾ Синонимом термина является термин «качество риска потребителя».

²⁾ Синонимом термина является термин «качество риска поставщика».

- 3.1.7 средний выходной уровень несоответствий AOQ (average outgoing quality, AOQ): Средний уровень несоответствий (3.1.5) продукции на выходе (при статистическом приемочном контроле) за некоторый период времени для данного уровня несоответствий продукции на входе.
- 3.1.8 предел среднего выходного уровня несоответствий AOQL (average outgoing quality limit, AOQL): Максимальное значение AOQ (3.1.7) (при статистическом приемочном контроле) по всем возможным уровням несоответствий (3.1.5) продукции на входе для данного плана статистического приемочного контроля.
 - 3.1.9 несоответствие (nonconformity): Невыполнение требования.

Примечание — См. примечания к 3.1.11.

- 3.1.10 несоответствующая единица продукции (nonconforming unit): Единица продукции с одним или более несоответствиями (3.1.9).
- 3.1.11 дефект (defect): Невыполнение требования, связанного с предполагаемым или установленным использованием.

Примечания

- 1 Различие между понятиями «дефект» и «несоответствие» (3.1.9) важно, поскольку у термина «дефект» есть юридические основания, связанные с ответственностью за качество выпускаемой продукции. Следовательно, термин «дефект» должен быть использован с чрезвычайной осторожностью.
- Потребительские требования и предназначенное использование продукции должны быть установлены в документации, представленной потребителю.
 - 3.2 В настоящем стандарте применены следующие обозначения:
 - ф риск поставщика;
 - в риск потребителя;
 - т объем второй выборки двухступенчатого плана выборочного контроля;
 - п объем первой выборки двухступенчатого плана выборочного контроля.

4 Выбор и выполнение плана выборочного контроля

4.1 Выбор плана контроля

Для выбора плана контроля необходимо выбрать одну из таблиц 1—3 при контроле доли несоответствующих единиц продукции или одну из таблиц 4—6 при контроле числа несоответствий и значений рисков поставщика и потребителя. По выбранной таблице в соответствии с PRQ и CRQ определяют объемы выборок *п* и *т* двухступенчатого плана выборочного контроля.

Если в соответствующей ячейке таблицы стоит звездочка, это означает, что соответствующего двухступенчатого плана выборочного контроля не существует и необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

4.2 Выполнение плана при контроле доли несоответствующих единиц продукции

4.2.1 Приемочный выборочный контроль

Отбирают и контролируют случайную выборку объема n (n — объем первой выборки, установленный планом контроля). Если в первой выборке не обнаружены несоответствующие единицы продукции, то партию принимают. Если в первой выборке количество обнаруженных несоответствующих единиц продукции больше или равно двум, то партию отклоняют.

Если в первой выборке обнаружена одна несоответствующая единица продукции, то отбирают и контролируют вторую случайную выборку объема m (m — объем второй выборки, установленный планом). Если во второй выборке не обнаружено несоответствующих единиц продукции, то партию принимают. Если во второй выборке обнаружена хотя бы одна несоответствующая единица продукции, то партию отклоняют.

4.2.2 Проверка гипотез

Двухступенчатый план выборочного контроля может быть использован для проверки гипотез о том, что уровень несоответствий меньше или равен PRQ (нулевая гипотеза), против альтернативной гипотезы, что уровень несоответствий больше или равен CRQ. В этом случае отбирают и контролируют первую случайную выборку объема n, где n — объем первой выборки, установленный планом. Если в первой выборке не обнаружены несоответствующие единицы продукции, то принимают нулевую гипотезу. Если в первой выборке количество обнаруженных несоответствующих единиц продукции больше или равно двум, то принимают альтернативную гипотезу.

ГОСТ Р 50779.81-2018

Если в первой случайной выборке обнаружена одна несоответствующая единица продукции, то отбирают и контролируют вторую случайную выборку объема m, где m — объем второй выборки, установленный планом. Если во второй выборке не обнаружено несоответствующих единиц продукции, принимают нулевую гипотезу. Если во второй выборке обнаружена одна или более несоответствующих единиц продукции, принимают альтернативную гипотезу.

4.3 Выполнение плана при контроле числа несоответствий

4.3.1 Приемочный выборочный контроль

При контроле числа несоответствий на 100 единиц продукции применяют процедуру, установленную в 4.2.1 для контроля доли несоответствующих единиц продукции с заменой термина «несоответствующие единицы продукции» термином «несоответствия».

4.3.2 Проверка гипотез

Для проверки гипотез при контроле числа несоответствий на 100 единиц продукции применяют процедуру, установленную в 4.2.2 для контроля несоответствующих единиц продукции с заменой термина «несоответствующие единицы продукции» термином «несоответствия».

4.4 Обозначение плана контроля

Используемое обозначение планов контроля (n, 0, 2; m, 1, 2) указывает, что объем первой выборки равен n, приемочное и браковочное числа первой выборки равны соответственно 0 и 2, объем второй выборки равен m, приемочное и браковочное числа для объединенной выборки равны соответственно 1 и 2.

5 Оперативные характеристики

Кривые оперативных характеристик, приведенные на рисунках 1—6, показывают вероятность приемки партии при различных планах выборочного контроля для заданного диапазона уровней несоответствий.

Кривые построены на основе предположения о том, что сумма объемов двух выборок, заданных планом, составляет не более 10 % объема партии. Если сумма объемов двух выборок составляет более 10 % объема партии, то вероятность принятия партии выше, чем показанная на кривых для всех уровней несоответствий, и, таким образом, риск поставщика становится меньше, а риск потребителя увеличивается.

Примечание — Формула оперативной характеристики для несоответствующих единиц продукции приведена в А.1.3, а для несоответствий — в А.2.3.

6 Средние объемы выборки

6.1 Усеченный контроль

При усеченном контроле контроль прекращают, как только результатов контроля становится достаточно для принятия решения о приемке или отклонении партии, или в случае проверки гипотезы, как только становится ясно, какую гипотезу следует принять. Для двухступенчатых планов выборочного контроля, представленных в настоящем стандарте, контроль прекращают при выявлении второй несоответствующей единицы продукции или второго несоответствия в первой выборке или несоответствующей единицы продукции (несоответствия) во второй выборке. Кривые оперативных характеристик показаны полностью, но средний объем выборки редуцирован. Это сокращение является незначительным для низких значений уровней несоответствий и существенным для высоких значений уровней несоответствий. Такое сокращение приводит к тому, что оценки уровня несоответствий процесса или партии становятся менее точными. Более существенное значение это имеет в случае непрерывной серии партий.

6.2 Средний объем выборки (ASSI) в случае неусеченного контроля

Кривые среднего объема выборки для неусеченного контроля двухступенчатых планов выборочного контроля приведены на рисунках 7—12. Кривые показывают средний объем выборки для различных планов выборочного контроля и заданного диапазона уровня несоответствий процесса. Для всех планов кривая ASSI:

начинается со значения п для наилучшего качества (поскольку проверена только первая выборка);

- возрастает до максимума, где уровень несоответствий процесса р равен 1/n, т. е. 100/n % несоответствующих единиц продукции или 100/n несоответствий на 100 единиц продукции;
- постепенно убывает до значения n, т. к. уровень несоответствий процесса p ухудшается, приближаясь к 1/n (поскольку проверена только первая выборка).

Примечание — Формула среднего объема выборки в случае неусеченного контроля для несоответствующих единиц продукции приведена в А.1.4.1, а в А.2.4.1 — для несоответствий. Формулы для соответствующего максимального ASSI приведены в А.1.5 и А.2.5.

Средние объемы выборки двухступенчатых планов выборочного контроля для заданных значений PRQ и CRQ в случае неусеченного контроля приведены в таблицах 7—12. Там же приведены максимальные средние объемы выборки.

Пример — Необходимо проверить гипотезу о том, что уровень несоответствий большой партии продукции не превышает 0,25 %. Установлено, что вероятность приемки должна быть не менее 95 %, если уровень несоответствий партии составляет 0,25 % несоответствующих единиц продукции, кроме того, вероятность приемки должна быть не более 5 %, если уровень несоответствий составляет 5 % и более.

Таким образом, PRQ составляет 0,25 %, а CRQ составляет 5 %, с рисками поставщика и потребителя, равными 5 %. В таблице 1 приведен план с первой выборкой объема n = 66 и объемом второй выборки m = 39. В соответствии с таблицей 7 для выбранного плана контроля для PRQ = 71,5 и CRQ = 70,6 ASSI достигает максимума 80,5.

6.3 Средний объем выборки (ASSI) в случае усеченного контроля

Кривые среднего объема выборки в случае усеченного контроля для двухступенчатых планов настоящего стандарта приведены на рисунках 19—24. Как и в случае неусеченного контроля, для всех планов кривая ASSI начинается со значения *п* и возрастает до максимума. При контроле доли несоответствующих единиц продукции ASSI убывает до значения 2, поскольку необходимо не менее двух несоответствующих единиц продукции для отклонения партии. При контроле числа несоответствий ASSI убывает до значения 1, поскольку при бесконечном числе несоответствий на 100 единиц продукции первый элемент будет иметь более одного несоответствия.

Примечание — Формулы среднего объема выборки в случае усеченного контроля для контроля несоответствующих единиц продукции приведены в А.1.4.2, а в А.2.4.2 — для числа несоответствий на 100 единиц продукции.

Средние объемы выборки двухступенчатых планов выборочного контроля для заданных значений PRQ и CRQ в случае усеченного контроля приведены в таблицах 25—30. Там же приведены максимальные средние объемы выборки.

Пример — Предположим, что план контроля, рассмотренный в примере 6.2, соответствует усеченному контролю. Соответствующие значения ASSI приведены в таблице 25. Очевидно, что для усеченного контроля значения уменьшились для PRQ с 71,5 до 69,1, для CRQ с 70,6 до 38,2 и для ASSI с 80,5 до 73,7.

Обычно снижение ASSI становится больше с увеличением уровня несоответствий.

7 Фактические значения рисков поставщика и потребителя

Поскольку объемы выборки *ти п* всегда являются целыми числами, фактические значения рисков поставщика и потребителя меньше своих номинальных значений. Эти фактические значения рисков представлены в таблицах 13—18. Необходимо отметить, что в случае, когда риск потребителя близок к номинальному значению, риск поставщика в некоторых случаях намного меньше заданного значения.

Пример — Для данных примера 6.2 в соответствии с таблицей 13 фактический риск поставщика составляет 2,510 % (т. е. приблизительно половину его номинального значения), фактический риск потребителя составляет 4,978 % (т. е. ниже номинального значения).

8 Средний выходной уровень несоответствий (AOQ)

Для непрерывной серии партий с доработкой всех партий, не соответствующих критерию приемки, часто необходимо знать период сохранения значения AOQ для разных уровней несоответствий на входе. В таблицах 19—24 представлены значения AOQ для PRQ, CRQ, а также максимум ASSI для всех входных

ГОСТ Р 50779.81-2018

уровней несоответствий. Максимум ASSI называют пределом среднего выходного уровня несоответствий (AOQL). Кривые AOQ для планов, установленных в настоящем стандарте, приведены на рисунках 13—18.

Примечание — Хорошее значение среднего выходного уровня несоответствий продукции может быть достигнуто при высоком значении входного уровня несоответствий только за счет высокого (и обычно неэкономичного) уровня контроля.

Пример — Для данных примера 6.2 в соответствии с таблицей 19 среднему выходному уровню несоответствий соответствуют значения: 0,244 % для PRQ, 0,249 % для CRQ, 0,869 % для максимума ASSI. Кривая AOQ для данного примера приведена на рисунке 13.

9 Примеры

9.1 Пример плана выборочного контроля доли несоответствующих единиц продукции

Торговая фирма имеет намерение приобрести единственную партию из десяти тысяч энергосберегающих ламп у аккредитованного поставщика. Поставщик предъявляет записи, в соответствии с которыми отказывает лишь одна лампа из 1000. Покупатель обычно контролирует продукцию, применяя план выборочного контроля, согласованный с поставщиком. При этом:

- а) затраты на контроль включены в договорную цену;
- b) если партия отклонена, поставщик оплачивает сплошной контроль и стоимость замены несоответствующих ламп.

Согласованный план выборочного контроля представляет собой двухступенчатый план выборочного контроля с рисками поставщика и потребителя, равными 5 %, значениями PRQ и CRQ, равными 0.1 % и 2,5 % соответственно. Применение таблицы 1 с этими параметрами дает объемы выборок n = 133 и m = 80. Случайная выборка из 133 ламп отобрана из партии и проверена. Одна лампа в выборке отказала, в соответствии с планом контроля из партии отобрана и проверена вторая случайная выборка из 80 ламп. Ни одна из этих ламп не отказала. Таким образом, в соответствии с планом контроля партия принята.

9.2 Пример плана выборочного контроля числа несоответствий

Поставщик получил заказ на 2000 метров облицовочных досок шириной 17 см для отделки помещения. Владелец помещения четко указал, что доски должны быть без сучков. Из прошлого опыта потребитель знает, что для работы ему необходимо, чтобы доски содержали не более четырех сучков на 100 метров. Поставщик утверждает, что его облицовочная доска фактически не содержит сучков и, таким образом, предлагает использовать PRQ в виде одного сучка на 500 метров досок. Поставщик и потребитель решили установить оба риска на уровне 5 %.

В соответствии с таблицей 4 для PRQ = 0.2 % и CRQ = 4 % двухступенчатый план выборочного контроля предусматривает первую выборку с объемом n = 84 и вторую выборку с объемом m = 51. Для контроля из партии случайным образом отобрано и проверено 84 отрезка облицовочных досок длиной один метр. При этом обнаружено два сучка, таким образом, партия отклонена без отбора второй выборки, и поставшик согласился выполнить сплошной контроль, заменяя все доски, имеющие сучки.

10 Таблицы и рисунки

Система нумерации и расположение графиков и таблиц в настоящем стандарте

	Контроль дол	и несоответству продукции	ующих единиц		ь числа несооті 00 единиц проду	
Показатели контроля	α≤5%, β≤5%	α≤5%, β≤10%	α≤10 %. β≤10 %	a ≤ 5 %, β ≤ 5 %	α S 5 %. β ≤ 10 %	¤≤10%, β≤10%
Объемы выборок планов контроля	Таблица 1	Таблица 2	Таблица 3	Таблица 4	Таблица 5	Таблица 6
Средние объемы выборок для PRQ, максимума ASSI и CRQ при неусеченном контроле	Таблица 7	Таблица 8	Таблица 9	Таблица 10	Таблица 11	Таблица 12

B	Контроль дол	и несоответству продукции	ощих единиц		ь числа несвото 00 единиц проду	
Показатели контроля	α≤5%. β≤5%	α ≤ 5 %, β ≤ 10 %	α S 10 %. β S 10 %	a ≤ 5 %, β ≤ 5 %	α ≤ 5 %, β ≤ 10 %	α≤10 %. β≤ 10 %
Значения фактических рисков	Таблица 13	Таблица 14	Таблица 15	Таблица 16	Таблица 17	Таблица 18
Средний выходной уро- вень несоответствий	Таблица 19	Таблица 20	Таблица 21	Таблица 22	Таблица 23	Таблица 24
Средние объемы выборки (ASSI), усеченный контроль	Таблица 25	Таблица 26	Таблица 27	Таблица 28	Таблица 29	Таблица 30
Кривые оперативных ха- рактеристик	Рисунок 1	Рисунок 2	Рисунок 3	Рисунок 4	Рисунок 5	Рисунок 6
Кривые среднего объема выборок для неусеченного контроля	Рисунок 7	Рисунок 8	Рисунок 9	Рисунок 10	Рисунок 11	Рисунок 12
Кривые среднего выходно- го уровня несоответствий	Рисунок 13	Рисунок 14	Рисунок 15	Рисунок 16	Рисунок 17	Рисунок 18
Кривые среднего объема выборки для усеченного контроля	Рисунок 19	Рисунок 20	Рисунок 21	Рисунок 22	Рисунок 23	Рисунок 24

Таблица 1 — Объемы первой и второй выборок n и m для двухступенчатых планов выборочного контроля вида (n,0,2;m,1,2) при контроле доли несоответствующих единиц продукции с $\alpha \le 5$ % и $\beta \le 5$ %

PRQ.	Объем							CRO	2, %						
%	выборки	1,6	2,0	2,5	3,15	4,0	5,0	6,3	0,8	10,0	12,5	16,0	20,0	25,0	31,5
0.4	n	210	169	133	105	84	66	52	41	33	26	20	15	12	9
0,1	m	122	94	80	64	46	39	31	23	17	14	11	10	7	6
0.405	n	*	169	133	105	84	66	52	41	33	26	20	15	12	9
0,125	m	*	94	80	64	46	39	31	23	17	14	11	10	7	6
0.16	п			133	105	84	66	52	41	33	26	20	15	12	9
0.16	m	*		80	64	46	39	31	23	17	14	11	10	7	6
0.0	n	*	•	*	105	84	66	52	41	33	26	20	15	12	9
0,2	m	*		*	64	46	39	31	23	17	14	11	10	7	6
0.25	n		•			84	66	52	41	33	26	20	15	12	9
0,25	m	*	٠	٠	*	46	39	31	23	17	14	11	10	7	6
0,315	n	*				*	66	52	41	33	26	20	15	12	9
0,313	m		*	*	*	*	39	31	23	17	14	11	10	7	6
0.4	n	•		*	*		*	52	41	33	26	20	15	12	9
0,4	m	*	•	*		•	•	31	23	17	14	11	10	7	6
0.5	n	κ.		*	×		٠	•	41	33	26	20	15	12	9
0,5	m	*	٠	•		•	,	. *	23	17	14	11	10	7	6
0.62	n	*		*	*	*	*		*	33	26	20	15	12	9
0.63	m	*	٠	٠	*					17	14	11	10	7	6

FOCT P 50779.81-2018

Окончание таблицы 1

PRQ.	Объем							CR	2, %						
%	выборки	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	n	×			*	•				•	26	20	15	12	9
0,8	m	*									14	11	10	7	6
	n	*		•	*	*	•		•	•	*	20	15	12	9
1,0	m	*		٠		•				٠		11	10	7	6
	n		,	*								21	15	12	9
1,25	m	*							•			9	10	7	6
4.0	n	*	,						•		*		17	12	9
1,6	m	*				•	٠		•			*	6	7	6
	n	*		,	•	•	*			•	*	•	•	12	9
2,0	m	*				٠								7	6
2.5	n	*	•	•	*									*	9
2,5	m					•	٠.			٠			٠	*	6

Примечание — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n,0,2;m,1,2) при контроле доли несоответствующих единиц продукции с $\alpha \le 5$ % и $\beta \le 5$ %. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

Таблица 2 — Объемы первой и второй выборок n и m для двухступенчатых планов выборочного контроля вида (n,0,2;m,1,2) при контроле доли несоответствующих единиц продукции с $\alpha \le 5$ % и $\beta \le 10$ %

PRQ.	Объем								(RQ. 9	6							
%	выборки	8,0	1,0	1,25	1,6	2,0	ž,5	3,15	4.0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.1	n	336	269	216	168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,1	m	214	170	133	105	87	70	55	43	33	26	20	16	14	12	9	8	6
0.105	n	*	269	216	168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,125	m	*	170	133	105	87	70	55	43	33	26	20	16	14	12	9	8	6
0.160	n	*	*	216	168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,160	m		٠	133	105	87	70	55	43	33	26	20	16	14	12	9	8	6
0.2	n	*	*		168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,2	m	*	*	٠	105	87	70	55	43	33	26	20	16	14	12	9	8	6
0.05	n	*	*	٠	*	133	106	84	66	53	42	33	26	20	15	12	9	7
0.25	m			*	٠	87	70	55	43	33	26	20	16	14	12	9	8	6
0.245	n		٠	*	•		106	84	66	53	42	33	26	20	15	12	9	7
0,315	m				٠	•	70	55	43	33	26	20	16	14	12	9	8	6
0.4	n	•	*	*	,			84	66	53	42	33	26	20	15	12	9	7
0,4	m			*	٠	٠	٠	55	43	33	26	20	16	14	12	9	8	6
0.5	n			*		•	•		66	53	42	33	26	20	15	12	9	7
0,5	m	*		*	٠	*			43	33	26	20	16	14	12	9	8	6

PRQ.	Объем									CRQ. 9	6	1-7						
%	выборки	8,0	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	п	•	•	*			•		*	53	42	33	26	20	15	12	9	7
0,63	m		٠	*	٠		٠			33	26	20	16	14	12	9	8	6
	п		•	*	*	•			*		42	33	26	20	15	12	9	7
0,8	m		٠		*	٠.	٠		٠		26	20	16	14	12	9	8	6
	n		•		*		•	,		,		33	26	20	15	12	9	7
1,0	m		*	*	*		٠	٠	•		*	20	16	14	12	9	8	6
4.05	n	*		*				•			*		26	20	15	12	9	7
1,25	m		*	٠	*		٠	٠	٠	٠	*		16	14	12	9	8	6
	n	*	*	*	*	•		•	*		,	*		20	15	12	9	7
1,6	m	*	٠,		٠	٠	٠							14	12	9	8	6
0.0	n			*	*		•	•			×	*	*		15	12	9	7
2,0	m	*	*		٠	٠	٠				*	*	*	٠	12	9	8	6
	п		•		*		٠	•			*	*		. *	*	12	9	7
2,5	m			*	*	٠		•	*	٠	*	*	*	*	*	9	8	6
0.45	n			*	*		•	*	•		*	*	*	*	*	*	9	7
3,15	m	*		٠	*	٠	٠		٠		*	*		*		*	8	6

Примечание — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) при контроле доли несоответствующих единиц продукции с $\alpha \le 5 \%$ и $\beta \le 10 \%$. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

Таблица 3 — Объемы первой и второй выборок n и m для двухступенчатых планов выборочного контроля вида (n, 0, 2; m, 1, 2) при контроле доли несоответствующих единиц продукции с $\alpha \le 10 \%$ и $\beta \le 10 \%$

PRQ.	Объем								(RQ. 9	6							
%	выборки	8,0	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.4	n	336	269	216	168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,1	m	214	170	133	105	87	70	55	43	33	26	20	16	14	12	9	8	6
0.405	n	*	269	216	168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,125	m		170	133	105	87	70	55	43	33	26	20	16	14	12	9	8	6
0.460	n			216	168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,160	m		*	133	105	87	70	55	43	33	26	20	16	14	12	9	8	6
0.0	n		•	*	168	133	106	84	66	53	42	33	26	20	15	12	9	7
0,2	m	*	*		105	87	70	55	43	33	26	20	16	14	12	9	8	6
0.05	n		*	*	*	133	106	84	66	53	42	33	26	20	15	12	9	7
0,25	m	*		*		87	70	55	43	33	26	20	16	14	12	9	8	6
0.045	n	*	*	٠	*		106	84	66	53	42	33	26	20	15	12	9	7
0,315	m		٠	*		٠	70	55	43	33	26	20	16	14	12	9	8	6

FOCT P 50779.81-2018

Окончание таблицы 3

PRQ.	Объем	1 .								RQ. 9	6							
%	выборки	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4.0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.4	n	•	*	*	•		•	84	66	53	42	33	26	20	15	12	9	7
0,4	m	*	٠	*	*	*	٠	55	43	33	26	20	16	14	12	9	8	6
0,5	n		*	*	*	٠		•	66	53	42	33	26	20	15	12	9	7
0,5	m	*	•	*	*	*	•	•	43	33	26	20	16	14	12	9	8	6
0.63	n	*		*	*				•	53	42	33	26	20	15	12	9	7
0,03	m	*	*	*	*	•	•	•	•	33	26	20	16	14	12	9	8	6
0.8	n	*	*	*	*		•		•		42	33	26	20	15	12	9	7
0,0	m	•	*	*	*	٠	•	•	٠	•	26	20	16	14	12	9	8	6
1.0	n		*	*	*	•					*	33	26	20	15	12	9	7
1,0	m	*	*	*	*	•		•	*		*	20	16	14	12	9	8	6
1.25	n		•	*	*					•			26	20	15	12	9	7
1,20	m	•	٠	*			٠	•	•		*		16	14	12	9	8	6
1.6	n				*						*		*	20	15	12	9	7
3,0	m		*	*	*	•	*	. *	•	. *	*	*	*	14	12	9	8	6
2,0	n	*	*		*		•	•			*	,	*	×	15	12	9	7
2,0	m	*	*	*	*	٠	•	•	•	•	*	*	*	*	12	9	8	6
2.5	n		*	*	*				*		*	*	*	*	*	12	9	7
2,3	m		*	*	*	*	٠	*	•	*	*	*	*	*	*	9	8	6
3.15	n		*	*	*		,				*	*	*	•		*	9	7
3,10	m		*	*	*		٠		•	•	*			٠	٠.		8	6

Примечание — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) при контроле доли несоответствующих единиц продукции с α ≤ 10 % и β ≤ 10 %. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

Таблица 4 — Объемы первой и второй выборок n и m для двухступенчатых планов выборочного контроля вида (n,0,2;m,1,2) при контроле числа несоответствий с $\alpha \le 5$ % и $\beta \le 5$ %

PRQ,	Объем							CRO	Q. %						
%	выборки	1,6	2,0	2,5	3,15	4,0	5,0	6,3	0.8	10,0	12,5	16,0	20,0	25,0	31,5
	n	213	169	136	108	84	69	55	43	35	27	21	17	14	11
0,1	m	119	99	77	61	51	36	28	23	17	16	13	10	7	6
0.405	n		169	136	108	84	69	55	43	35	27	21	17	14	11
0,125 n	m		99	77	61	51	36	28	23	17	16	13	10	7	6
0.460	n			136	108	84	69	55	43	35	27	21	17	14	11
0,160	m	*		77	61	51	36	28	23	17	16	13	10	7	6
0.0	п		,	*	108	84	69	55	43	35	27	21	17	14	11
0,2	m	*			61	51	36	28	23	17	16	13	10	7	6

PRQ.	Объем							CRO	2, %						
%	выборки	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8.0	10,0	12,5	16,0	20,0	25,0	31,5
0.05	n	*		*	*	84	69	55	43	35	27	21	17	14	11
0.25	m		٠	•		51	36	28	23	17	16	13	10	7	6
	n			*		•	69	55	43	35	27	21	17	14	11
0,315	m	*	•				36	28	23	17	16	13	10	7	6
	n	*			*	•		55	43	35	27	21	17	14	11
0,4	m		٠	*		٠	. *	28	23	17	16	13	10	7	6
2.5	n	*		*	. *				43	35	27	21	17	14	11
0,5	m	*		٠	•	•	*	*	23	17	16	13	10	7	6
0.70	n	*		*	•			•		35	27	21	17	14	11
0,63	m	*				•	•	•		17	16	13	10	7	6
0.0	п	*	•	*	*						27	21	17	14	11
8,0	m	*		*	* *	•	•		•	٠	16	13	10	7	6
10	n			*			*			•		21	17	14	11
1,0	m	•	٠				•	•				13	10	7	6
4.05	n						*						17	14	11
1,25	m	*	•		*								10	7	6
10	n	*		*	*					*			*	14	11
1,6	m	*			*		٠			٠		٠	*	7	6
2.0	п	*	٠	•	•					•			*		11
2,0	m	*		٠			٠,		•	٠				*	6

Примечание — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) при контроле числа несоответствий с $\alpha \le 5$ % и $\beta \le 5$ %. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

Таблица 5 — Объемы первой и второй выборок n и m для двухступенчатых планов выборочного контроля вида (n,0,2;m,1,2) при контроле числа несоответствий с $\alpha \le 5$ % и $\beta \le 10$ %

PRQ.	Объем								CRO	2. %							
%	выборки	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.4	n	269	216	168	136	109	86	69	55	43	34	28	22	17	14	11	9
0,1	m	174	137	109	83	66	54	39	32	27	21	15	13	11	8	7	5
0.405	n	*		168	136	109	86	69	55	43	34	28	22	17	14	11	9
0,125	m			109	83	66	54	39	32	27	21	15	13	11	8	7	5
0.400	п	*	•	•	136	109	86	69	.55	43	34	28	22	17	14	11	9
0,160	m				83	66	54	39	32	27	21	15	13	11	8	7	5

FOCT P 50779.81-2018

Окончание таблицы 5

PRQ.	Объем								CRO	2, %							
%	выборки	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	п		٠	*	*	109	86	69	55	43	34	28	22	17	14	11	9
0,2	m				*	66	54	39	32	27	21	15	13	11	8	7	5
0.05	п	*					86	69	55	43	34	28	22	17	14	11	9
0.25	m						54	39	32	27	21	15	13	11	8	7	5
0.045	n	*		*	*	*		69	55	43	34	28	22	17	14	11	9
0,315	m				*		٠	39	32	27	21	15	13	11	8	7	5
	n	*			*			٠	55	43	34	28	22	17	14	11	9
0,4	m						٠		32	27	21	15	13	11	8	7	5
0.5	п	*		•		,	•	٠		43	34	28	22	17	14	11	9
0,5	m				•		٠		*	27	21	15	13	11	8	7	5
	п	*	*	٠	*	*	٠	*	*	٠	34	28	22	17	14	11	9
0,63	m		49.		*	٠	٠	٠	*		21	15	13	11	8	7	5
	n			•			٠	*	*	*		28	22	17	14	11	9
0,8	m				*	٠	٠		*		•	15	13	11	8	7	5
1.0	n			*	*	*	*	*		*	,	*	22	17	14	11	9
1,0	m				*	*		٠	*	٠	٠		13	11	8	7	5
4.05	п		•	٠	*			*	*			*		17	14	11	9
1,25	m					٠	٠		*	•	٠	×	•	11	8	7	5
1.6	п	*	•	•	*		*	•	*	•					14	11	9
1,6	m				*		٠	٠	*		٠	*		•	8	7	5
0.0	n	*	•		*		٠	•	*				•		*	11	9
2,0	m						٠					*		٠	*	7	5

Примечание — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) при контроле числа несоответствий с $\alpha \le 5 \%$ и $\beta \le 10 \%$. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

Та блица 6 — Объемы первой и второй выборок n и m для двухступенчатых планов выборочного контроля вида (n,0,2;m,1,2) при контроле числа несоответствий с α ≤ 10 % и β ≤ 10 %

PRQ.	Объем	1-1							(CRQ, 9	6							
%	выборки	0,8	1.0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	п	336	269	216	168	136	109	86	69	55	43	34	28	22	17	14	11	9
0,1	m	218	174	137	109	83	66	54	39	32	27	21	15	13	11	8	7	5
	п		269	216	168	136	109	86	69	55	43	34	28	22	17	14	11	9
0,125	m		174	137	109	83	66	54	39	32	27	21	15	13	11	8	7	5

PRQ.	Объем	1							9	RQ, 9	6							
%	выборки	8,0	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.400	n	*	*	216	168	136	109	86	69	55	43	34	28	22	17	14	11	9
0,160	m	•	٠	137	109	83	66	54	39	32	27	21	15	13	11	8	7	5
0.0	n		*	*	168	136	109	86	69	55	43	34	28	22	17	14	11	9
0,2	m		٠	*	109	83	66	54	39	32	27	21	15	13	11	8	7	5
0.05	n	*	٠	*	*	136	109	86	69	55	43	34	28	22	17	14	11	9
0,25	m	*	,	*	٠	83	66	54	39	32	27	21	15	13	11	8	7	5
0.245	n	*		*		•	109	86	69	55	43	34	28	22	17	14	11	9
0,315	m	•	٠		*	٠	66	54	39	32	27	21	15	13	11	8	7	5
	n		٠	*	*	•	٠	86	69	55	43	34	28	22	17	14	11	9
0,4	m	×	*		*	٠	٠	54	39	32	27	21	15	13	11	8	7	5
0.5	n		*	*	*	٠	٠		69	55	43	34	28	22	17	14	11	9
0,5	m	*	*	*	*	٠		•	39	32	27	21	15	13	11	8	7	5
0.62	n		*	*	*		٠	٠		55	43	34	28	22	17	14	11	9
0,63	m	*		٠		٠	•	٠	*	32	27	21	15	13	11	8	7	5
0,8	п	•	*	*		٠	٠				43	34	28	22	17	14	11	9
0,0	m	•		*		•	•	•	*	٠	27	21	15	13	11	8	7	5
1,0	n	*	*	*	*	٠	*			•	*	34	28	22	17	14	11	9
1,0	m		*	*	•				•	•		21	15	13	11	8	7	5
1,25	n		*		٠	•	•	٠	•		*	*	28	22	17	14	11	9
1,20	m	•	٠	٠	*	•		•	•	٠	*	*	15	13	11	8	7	5
1,6	n	*	٠	*	*	*	٠	٠		•	*	*	*	22	17	14	11	9
1,0	m	*	٠	*	٠	٠	٠	٠	•	•	*	•	٠	13	11	8	7	5
2.0	n		*	*		٠					*	*	*	*	17	14	11	9
2,0	m	•	٠	*	٠	٠	٠	٠	•	•	*		*	•	11	8	7	5
2,5	n			,	,	*	,	•			*	*		*	*	14	11	9
2,3	m	*	*	٠	*	٠	٠	•	٠	•	*	*	٠,		*	8	7	5
3,15	n		•	*			٠	•	•	•	×	*	*		*	*	11	9
5,15	m	*	*	*	*	•	*	•		•	*	*		*	*	*	7	5
4,0	п		•	٠.	*		,	•		•	*	*		•	*	*	٠	9
4,0	m		*	*							*						*	5

Примечание — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n,0,2;m,1,2) при контроле числа несоответствий с $\alpha \le 10$ % и $\beta \le 10$ %. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

ГОСТ Р 50779.81-2018

Таблица 7 — Средние объемы выборки (ASSI) для планов контроля доли несоответствующих единиц продукции, неусеченный контроль с $\alpha \le 5$ % и $\beta \le 5$ %

	ASSI для							CRO	2. %						
PRQ, %	PRQ, CRQ u max ASSI	1,6	2,0	2,5	3,15	4,0	5,0	6,3	0,8	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	231	182	142	111	87.6	68,4	53,5	41,9	33,5	26,4	20,2	15,1	12,1	9,1
0,1	max ASSI	255	204	163	129	101	80,5	63,5	49,6	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ	224	180	142	113	89,2	70,6	55,7	43,7	34,9	27,6	21,3	16,3	12,9	9,8
7,77	PRQ	*	185	144	112	88,4	69,0	53,9	42,1	33,7	26,4	20,3	15,2	12,1	9,1
0,125	max ASSI	*	204	163	129	101	80,5	63,5	49,6	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ	*	180	142	113	89,2	70,6	55,7	43.7	34,9	27,6	21,3	16,3	12,9	9,8
	PRQ	*		147	114	89,4	69,7	54,4	42,4	33,9	26,6	20,3	15,2	12,1	9,1
0,160	max ASSI	*		163	129	101	80,5	63,5	49,6	39,4	31,3	24,2	18,8	14,7	11,3
i	CRQ	*		142	113	89,2	70,6	55,7	43.7	34,9	27,6	21,3	16,3	12,9	9,8
	PRQ	*			116	90,5	70,5	54,9	42,7	34,1	26,7	20,4	15,3	12,2	9,1
0,2	max ASSI		٠		129	101	80,5	63,5	49,6	39,4	31,3	24.2	18,8	14,7	11,3
	CRQ		٠	*	113	89,2	70,6	55,7	43,7	34,9	27,6	21,3	16,3	12,9	9,8
	PRQ	*				91,8	71,5	55,5	43,1	34,3	26,9	20,5	15,4	12,2	9,1
0,25	max ASSI	*		٠		101	80,5	63,5	49,6	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ	×	•	٠	×	89,2	70,6	55,7	43,7	34,9	27,6	21,3	16,3	12,9	9,8
1.0	PRQ	*		•	*		72,6	56,3	43,6	34,6	27,1	20,7	15,5	12,3	9,2
0,315	max ASSI	•	•	•	. *		80,5	63,5	49,6	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ		٠		•		70,6	55,7	43,7	34,9	27,6	21,3	16,3	12,9	9,8
113	PRQ	*		*		•	*	57,3	44,2	35,0	27,3	20,8	15,6	12,3	9,2
0,4	max ASSI	*		٠			•	63,5	49,6	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ		*	٠	*	•	*	55,7	43.7	34,9	27,6	21,3	16,3	12,9	9,8
	PRQ	•	•	*			*	•	44,9	35,4	27,6	21,0	15,7	12,4	9,3
0,5	max ASSI						•		49,6	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ	٠	•	•		٠	•		43,7	34,9	27,6	21,3	16,3	12,9	9,8
	PRQ	*	•	•			•	•		35,9	28,0	21,2	15,9	12,5	9,3
0,63	max ASSI	*		*		•	•		•	39,4	31,3	24,2	18,8	14,7	11,3
	CRQ	*	٠	*		•		•	•	34,9	27,6	21,3	16,3	12,9	9,8
	PRQ	*		•		•				,	28,4	21,5	16,1	12,6	9,4
0,8	max ASSI	•						•		٠	31,3	24,2	18,8	14,7	11,3
1 7 1	CRQ	*	•	٠		*	•	*	*	•	27,6	21,3	16,3	12,9	9,8
7.54	PRQ			•	*	•	*			•		21,8	16,3	12,75	9,5
1,0	max ASSI	*	•			•	•	*	•		•	24.2	18,8	14,7	11,3
	CRQ			*	•		*	*		•	*	21,3	16,3	12,9	9,8
	PRQ	*	*			•	*					22,8	16,6	12,9	9,6
1,25	max ASSI	*					. •	•	•	٠	•	24.4	18,8	14,7	11,3
	CRQ	*	٠	*	*		*			٠		21,9	16,3	12,9	9,8

PRQ.	ASSI для PRQ, CRQ							CR	2, %						
%	и max ASSI	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	*			*	* .	*	*		٠	*		18,3	13,1	9,8
1,6	max ASSI		٠			*							19,3	14,7	11,3
	CRQ		•	•		•						٠	17,6	12,9	9,8
	PRQ	*		*	*									13,3	9,9
2,0	max ASSI				*	٠.	٠,	•	•					14,7	11,3
	CRQ	*			*	*		•						12,9	9,8
	PRQ	*			*						*		•	×	10,1
2,5	max ASSI	*	٠		*	* 1				•					11,3
	CRQ		,	*		٠									9,8

Примечание — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) с $\alpha \le 5$ % и $\beta \le 5$ %. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

Таблица 8 — Средние объемы выборки (ASSI) для планов контроля доли несоответствующих единиц продукции, неусеченный контроль с α \leq 5 % и β \leq 10 %

PRQ.	ASSI для PRQ, CRQ								CRQ. %						-	
% %	и max ASSI	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10.0	12,5	16,0	20,0	25,0	31,5
	PRQ	239	183	143	113	88,3	68,7	54,7	43,0	33,6	26,4	20,3	15,2	12,1	9,1	7,0
0,1	max ASSI	265	207	165	132	104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	240	187	149	119	94,2	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ		186	145	114	89,2	69,3	55,0	43,3	33,8	26,5	20,3	15,2	12,1	9,1	7,1
0,125	max ASSI		207	165	132	104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ		187	149	119	94,2	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ			148	116	90,5	70,1	55,6	43,6	34,0	26,6	20,4	15,3	12,2	9,1	7,1
0,160	max ASSI		٠	165	132	104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	•		149	119	94,2	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ			*	118	91,8	71,0	56,2	44,0	34,2	26,8	20,5	15,4	12,2	9,1	7,1
0,2	max ASSI	•			132	104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	•	*		119	94,2	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ	•	•		*	93,4	72,0	56,8	44,5	34,5	27,0	20,7	15,4	12,3	9,2	7,1
0,25	max ASSI	•	•	*		104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	*	*	*	•	94,2	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ	٠		*		•	73,3	57,7	45,0	34,9	27,2	20,8	15,5	12,3	9,2	7,1
0,315	max ASSI	•	•			•	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	•	٠	*	٠	٠	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4

ГОСТ Р 50779.81-2018

Окончание таблицы 8

2224	ASSI для PRQ, CRQ								CRQ, %							
PRQ, %	и max ASSI	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ		•	*				58,7	45,7	35,3	27,5	21,0	15,7	12,4	9,3	7,2
0,4	max ASSI	٠		*	•	*	*	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ		٠	*	•	•	٠	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ		,	*		*			46,4	35,8	27,8	21,3	15,8	12,5	9,3	7,2
0,5	max ASSI				*		•	٠	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	•	*	*	•	*	•	٠	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ		*	*			*		•	36,4	28,2	21,6	16,0	12,6	9,4	7,3
0.63	max ASSI	٠	٠	*			•	*	•	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	٠	٠	*		*	٠			36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ			*	•		•			•	28,7	21,9	16,3	12,8	9,5	7,3
8,0	max ASSI			*		•				•	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	•	٠	*	•		٠	*		•	29,0	22,8	17,5	13,9	10,8	8,4
1,71	PRQ	•	•	*	*	*	٠	*	•	•	*	22,3	16,6	13,0	9,7	7,4
1,0	max ASSI	٠	٠	•	٠	*		*		*		25,3	19,6	15,5	12,1	9,4
	CRQ	•		•	•			*	*		*	22,8	17,5	13.9	10,8	8,4
100	PRQ		٠	*						•			16,9	13,2	9,8	7,5
1,25	max ASSI	•	*		•	*						٠	19,6	15,5	12,1	9,4
	CRQ	•		*	•	•	•	*	•	•	*	*	17,5	13,9	10,8	8,4
	PRQ	•				*		*	*		*	*	*	13,4	10,0	7,6
1,6	max ASSI	•	٠	*	*		•	٠			*		•	15,5	12,1	9,4
	CRQ		*	*	•	•	•	٠	•	•	٠	•	*	13,9	10,8	8,4
	PRQ		*	*			•				*		•	17,2	10,2	7,7
2,0	max ASSI	•	٠		•	•	•	*	•	٠		•		17.4	12,1	9,4
	CRQ	٠	٠	•	٠	*	٠	*			•		*	17,1	10,8	8,4
17 . []	PRQ	•	٠	*		•		*			*			•		7,9
2,5	max ASSI	•	٠	*		•	•			•	•	•	*	•		9,4
	CRQ		٠		•	*	*		٠	•		٠			*	8,4
	PRQ	•				•	٠	*						•	•	8,8
3,15	max ASSI	٠	٠	*	٠	*	•	*	•		٠	•		•		9,6
	CRQ			*	•	٠	*	*		•	*	٠	•	•	*	8,7

П р и м е ч,а н и е — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (л, 0, 2; л, 1, 2) с α ≤ 5 % и β ≤ 10 %. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

Таблица 9 — Средние объемы выборки (ASSI) для планов контроля доли несоответствующих единиц продукции, неусеченный контроль с α ≤ 10 % и β ≤ 10 %

	ASSI для								(RQ, 9	6							
PRQ, %	PRQ. CRQ и max ASSI	8,0	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	387	304	239	183	143	113	88,3	68,7	54,7	43,0	33,6	26,4	20,3	15,2	12,1	9,1	7,0
0,1	max ASSI	415	332	265	207	165	132	104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	375	300	240	187	149	119	94,2	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ	•	310	243	186	145	114	89,2	69,3	55,0	43,3	33,8	26,5	20,3	15,2	12,1	9,1	7,1
0,125	max ASSI	*	332	265	207	165	132	104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	•	300	240	187	149	119	94,2	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ	•	٠	249	190	148	116	90,5	70,1	55,6	43,6	34,0	26,6	20,4	15,3	12,2	9,1	7,1
0,16	max ASSI	•		265	207	165	132	104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ		٠	240	187	149	119	94,2	74.0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8.4
	PRQ	*	*	*	193	151	118	91,8	71,0	56,2	44,0	34,2	26,8	20,5	15,4	12,2	9,1	7,1
0,2	max ASSI	•	*	*	207	165	132	104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	*	*	*	187	149	119	94,2	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ	•	•	*		154	120	93,4	72,0	56,8	44,5	34,5	27,0	20,7	15,4	12,3	9,2	7,1
0.25	max ASSI	*	٠	•		165	132	104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ		٠	٠	*	149	119	94,2	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ	*		*		*	123	95,2	73,3	57,7	45,0	34,9	27,2	20,8	15,5	12,3	9,2	7,1
0,315	max ASSI		٠	*	*	٠	132	104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	*	*	*	*	٠	119	94,2	74,0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
	PRQ				*		٠	97,3	74,7	58,7	45,7	35,3	27,5	21,0	15,7	12,4	9,3	7,2
0,4	max ASSI	*	*	*	*	•		104	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	•	*	*	*	•	•	94,2	74.0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8.4
	PRQ		*	*	*			•	76,2	59,7	46,4	35,8	27,8	21,3	15,8	12,5	9,35	7,2
0,5	max ASSI	•	٠	٠	٠	٠		*	81,9	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	*	*	*	*	•			74.0	59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8,4
100	PRQ		•		*	•	•	•	•	60,9	47,3	36,4	28,2	21,6	16,0	12,6	9,4	7,3
0,63	max ASSI	*	*	٠	*	•	٠	•	•	65,3	51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ		*	*	٠	•	*	٠		59,1	46,8	36,7	29,0	22,8	17,5	13,9	10,8	8.4
	PRQ	*	*		*		*	•	•		48,3	37,1	28,7	21,9	16,3	12,8	9,5	7,3
0,8	max ASSI	•	٠	*	•		*	,	٠		51,7	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	*	*	*		٠	*	•	•		46,8	36,7	29,0	22,8	17,5	13,9	10,8	8.4
	PRQ		•	*	*			,			•	37,8	29,2	22,3	16,6	13,0	9,7	7,4
1,0	max ASSI	*	*	٠	٠	•	٠				٠	40,5	32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	*	•	*	*	٠	•	•	٠	•	•	36,7	29,0	22,8	17,5	13,9	10,8	8,4

ГОСТ P 50779.81-2018

Окончание таблицы 9

PRQ.	ASSI для PRQ.									RQ, 9	6	,						
%	CRQ и max ASSI	8,0	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10.0	12,5	16,0	20,0	25,0	31,5
	PRQ					*		•	*		*	*	29,8	22,8	16,9	13,2	9,8	7,5
1,25	max ASSI		*		*	٠	٠			*	*		32,0	25,3	19,6	15,5	12,1	9,4
	CRQ	*	٠	*	*	٠	٠		*	٠		*	29,0	22,8	17,5	13,9	10,8	8.4
	PRQ	•		*	*			•	•	•	*	*		23,3	17,3	13,4	10,0	7.6
1,6	max ASSI		*	٠	*	٠.		•	*	•		*		25,3	19,6	15,5	12,1	9,4
	CRQ	*	٠	* .	*		,			٠		*	*	22,8	17,5	13,9	10,8	8.4
4	PRQ	*	*	*	*	,					*	*	•		17,7	13,7	10,2	7,7
2,0	max ASSI	*			*										19,6	15,5	12,1	9,4
	CRQ		٠		٠	٠	٠		٠		*				17,5	13,9	10,8	8,4
	PRQ		*	*	*	٠	٠			*	*	*	*	٠	*	14,0	10,5	7,9
2,5	max ASSI	•	٠	*		•	٠	٠		٠	*		*		٠	15,5	12,1	9,4
	CRQ	•	,		٠	•	٠			•	*	*	*		٠	13,9	10,8	8,4
	PRQ	٠	*	*			٠		•		*	*		*	*	*	10,8	8,1
3,15	max ASSI		٠	*	٠	٠	٠	•	٠	*	*.	*	*		٠	٠	12,1	9,4
	CRQ		,		٠		,				*				٠	٠	10,8	8.4
P. N	PRQ				•	•	*	٠		*	*		,		*		*	8,3
4,0	max ASSI	•	*		*	٠.	٠		٠	٠	*	*	*	٠	*		٠	9,4
	CRQ	*	٠	*	*		٠	٠		٠		*		*	•	•	٠	8,4

П р и м е ч а н и е — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) с α ≤ 10 % и β ≤ 10 %. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

Таблица 10 — Средние объемы выборки (ASSI) для планов контроля числа несоответствий, усеченный контроль с α \leq 5 % и β \leq 5 %

PRQ.	ASSI gns PRQ, CRQ							CRO	2. %						
%	и max ASSI	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	233	183	145	114	87,9	71,3	56,5	43,9	35,6	27,4	21,3	17,2	14,1	11,1
0,1	max ASSI	257	205	164	130	103	82,2	65,3	51,5	41,3	32,9	25, 8	20,7	16,6	13,2
	CRQ	226	180	145	115	90,0	72,9	58,0	45,5	36,8	28,8	22,5	18,1	14,7	11,7
	PRQ		186	147	115	8,88	71,8	56,8	44,2	35,7	27,5	21,3	17,2	14,1	11,1
0,125	max ASSI	*	205	164	130	103	82,2	65,3	51,5	41,3	32,9	25,8	20,7	16,6	13,2
	CRQ		180	145	115	90,0	72,9	58,0	45,5	36,8	28,8	22,5	18,1	14,7	11,7
	PRQ		٠	149	117	90,0	72,6	57,3	44,5	35,9	27,7	21,4	17,3	14,2	11,1
0,160	max ASSI			164	130	103	82,2	65,3	51,5	41,3	32,9	25,8	20,7	16,6	13,2
	CRQ	-8		145	115	90,0	72,9	58,0	45,5	36,8	28,8	22,5	18,1	14,7	11,7

PRQ.	ASSI для PRQ, CRQ				-			CR	2, %	1 - 1					
%	и max ASSI	1,6	2,0	2,5	3,15	4,0	5,0	6,3	0,8	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	*		•	119	91,2	73,3	57,8	44,8	36,1	27,8	21,5	17,3	14,2	11,1
0,2	max ASSI		٠	*	130	103	82,2	65,3	51,5	41,3	32,9	25,8	20,7	16,6	13,2
	CRQ		٠	*	115	90,0	72,9	58,0	45,5	36,8	28,8	22,5	18,1	14,7	11,7
	PRQ		•	*		92,7	74,2	58,4	45,2	36,4	28,0	21,6	17,4	14,2	11,2
0,25	max ASSI	*		٠	*	103	82,2	65,3	51,5	41,3	32,9	25,8	20,7	16,6	13,2
	CRQ	*	•	*	*	90,0	72,9	58,0	45,5	36,8	28,8	22,5	18,1	14,7	11,7
	PRQ	*			*		75,3	59,1	45,7	36,7	28,2	21,8	17,5	14,3	11,2
0,315	max ASSI	*		*	•		82,2	65,3	51.5	41,3	32,9	25,8	20,7	16,6	13,2
	CRQ			*		•	72,9	58,0	45,5	36,8	28,8	22,5	18,1	14,7	11,7
	PRQ	*	•	•		•	•	59,9	46,3	37,1	28,6	22,0	17,6	14,4	11,3
0,4	max ASSI	. *	٠	٠	*	•	•	65,3	51,5	41,3	32,9	25,8	20,7	16,6	13,2
	CRQ	*				٠	٠	58,0	45,5	36,8	28,8	22,5	18,1	14,7	11,7
	PRQ	*		•	*		*		47.0	37,5	28,9	22,2	17,8	14,5	11,3
0,5	max ASSI	٠		*	*			*	51,5	41,3	32,9	25,8	20,7	16,6	13,2
	CRQ					•	*	*	45,5	36,8	28,8	22,5	18,1	14,7	11,7
	PRQ	*		*	*		*	*		38,0	29,3	22,5	18,0	14,6	11,4
0,63	max ASSI	*		*	. *		. * .	. * .		41,3	32,9	25,8	20,7	16,6	13,2
	CRQ	*		*		٠				36,8	28,8	22,5	18,1	14,7	11,7
	PRQ	*				•				*	29,8	22,8	18,2	14,7	11,5
0,8	max ASSI	*		*		. •	*			٠	32,9	25.8	20,7	16,6	13,2
	CRQ		•	•	*	*				•	28,8	22,5	18,1	14,7	11,7
1-7-1	PRQ	*		•	*							23,2	18,4	14,9	11,6
1,0	max.	*		•		•	٠			•	*	25,8	20,7	16,6	13.2
	CRQ	*		•	*		*	•	•	٠		22,5	18,1	14,7	11,7
	PRQ	*	•	*	*						*		18,7	15,0	11,7
1,25	max ASSI	*					•			*	•		20,7	16,6	13,2
	CRQ			•	•			•				*	18,1	14,7	11,7
	PRQ			*	•	•	*			•		•	•	15,3	11,9
1,6	max ASSI	•	•	•			*		-	•				16,6	13,2
	CRQ	*	٠	٠	*					٠	*	٠	٠	14,7	11,7
	PRQ	*			*		٠	*	*	٠	*		•	,	12,1
2,0	max ASSI	*	•	*	*	•	•		•	*	•	•		*	13,2
	CRQ		,	*	*		N .	*	•			•	•	*	11,7

Примечание — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) с α ≤ 5 % и β ≤ 5 %. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

ГОСТ Р 50779.81-2018

Tа блица 11 — Средние объемы выборки (ASSI) для планов контроля числа несоответствий, усеченный контроль с α \leq 5 % и β \leq 10 %

	ASSI для								CRQ, %	,						
PRQ, %	PRQ, CRQ u max ASSI	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10.0	12,5	16,0	20,0	25,0	31,5
	PRQ	240	183	146	115	90,3	71,5	56,7	44,1	34,7	28,4	22,3	17,2	14,1	11,1	9,0
0,1	max ASSI	266	208	167	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	241	188	151	121	95,7	75.8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ		187	148	117	91,2	72,1	57,1	44,4	34,9	28,5	22,3	17,2	14,1	11,1	9,1
0,125	max ASSI		208	167	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10.8
	CRQ		188	151	121	95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ		•	151	119	92,5	72,9	57,6	44,7	35,1	28,6	22,4	17,3	14,2	11,1	9,1
0,160	max ASSI			167	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10.8
	CRQ	*		151	121	95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ			*	121	93,8	73,7	58,2	45,1	35,3	28,8	22,5	17,4	14,2	11,2	9,1
0,2	max ASSI			*	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10.8
	CRQ				121	95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ		٠		•	95,4	74,7	58,8	45,6	35,6	29,0	22,7	17,4	14,3	11,2	9,1
0.25	max ASSI					106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ					95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	•	*	*			75,8	59,7	46,2	36,0	29,2	22,8	17,6	14,3	11,2	9,1
0,315	max ASSI						83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ		٠	*			75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ		*			*	•	60,6	46,9	36,5	29,5	23,0	17,7	14,4	11,3	9,2
0,4	max ASSI		•			*		66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
H.D.	CRQ			*				60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ			*		*			47,7	37,0	29,8	23,3	17,9	14,5	11,4	9,2
0,5	max ASSI	•					•	*	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	•		*		*			47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	•		*			•	*		37,6	30,2	23,6	18,1	14,6	11,5	9,3
0,63	max ASSI	•	٠	*						41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	•			•			*		37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ			*	٠	*	•			•	30,7	23,9	18,3	14,8	11,6	9,3
0,8	max ASSI		•	*	•					•	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	•	*	*			*	*	•	•	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ		•	*	•	•	*		•	•	*	24,3	18,6	15,0	11,7	9,4
1,0	max ASSI		*		*					•		26,8	21,0	16,9	13,6	10,8
	CRQ	*	٠	*	٠	•			•	•	*	24,3	19,0	15,4	12,2	9,8

Окончание таблицы 11

PRQ.	ASSI для PRQ, CRQ								CRQ, %							
%	и max ASSI	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ		*							•			18,9	15,2	11,8	9,5
1,25	max ASSI	•	٠				. •			٠	*		21,0	16,9	13,6	10,8
	CRQ	•	*		٠			*				•	19,0	15,4	12,2	9,8
	PRQ	•	٠	*		*			•		*			15.4	12,0	9,6
1,6	max ASSI		*		٠	*	•	٠	. •	*		*	*	16,9	13,6	10,8
	CRQ										*		*	15,4	12,2	9,8
	PRQ	*		*	*	*			*	•		•			12,2	9,8
2,0	max ASSI		٠				•	*	•	٠		*	*	•	13,6	10,8
	CRQ	•	٠	*		*			. • .	٠		•			12,2	9,8

Примечание — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) с $\alpha \le 5 \%$ и $\beta \le 10 \%$. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

Таблица 12 — Средние объемы выборки (ASSI) для планов контроля числа несоответствий, усеченный контроль с $\alpha \le 10$ % и $\beta \le 10$ %

PRQ.	ASSI для PRQ, CRQ								(CRQ. 9	6					ř.,		
%	и max ASSI	8,0	1,0	1,25	1,6	2,0	2,5	3,15	4.0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
7-1-1	PRQ	388	305	240	183	146	115	90,3	71,5	56,7	44,1	34,7	28,4	22,3	17,2	14,1	11,1	9,0
0,1	max ASSI	416	333	266	208	167	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	376	301	241	188	151	121	95.7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
17 (PRQ	•	311	244	187	148	117	91,2	72,1	57,1	44,4	34,9	28,5	22,3	17,2	14,1	11,1	9,1
0,125	max ASSI	•	333	266	208	167	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*	301	241	188	151	121	95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
7	PRQ	*	*	250	190	151	119	92,5	72,9	57,6	44,7	35,1	28,6	22,4	17,3	14,2	11,1	9,1
0,160	max ASSI	*	*	266	208	167	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	•	٠	241	188	151	121	95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
1	PRQ	*	*	*	194	153	121	93,8	73,7	58,2	45,1	35,3	28,8	22,5	17,4	14,2	11,2	9,1
0,2	max ASSI	•	٠	*	208	167	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*	*	*	188	151	121	95,7	75.B	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ		•	*	*	156	123	95,4	74.7	58,8	45,6	35,6	29,0	22,7	17,4	14,3	11,2	9,1
0.25	max ASSI		*	*	*	167	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ			٠	٠	151	121	95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	*	*	*	*	•	125	97,2	75,8	59,7	46,2	36,0	29,2	22,8	17,6	14,3	11,2	9,1
0,315	max ASSI	*	*		*	٠	133	106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ		٠	*		٠	121	95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8

ГОСТ P 50779.81-2018

Окончание таблицы 12

51.7	ASSI для PRQ.								(CRQ, 9	6	Z 5						
PRQ.%	CRQ и max ASSI	8,0	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	*	*	*	*	*		99.2	77,2	60,6	46,9	36,5	29,5	23,0	17,7	14,4	11,3	9,2
0,4	max ASSI		•					106	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
24 Z	CRQ	*	٠	٠		*	٠	95,7	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ			*	*		,		78,5	61,7	47,7	37,0	29,8	23,3	17,9	14,5	11,4	9,2
0,5	max ASSI		•	*			•	•	83,3	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*	*	*	*		٠	٠	75,8	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
7-11	PRQ			*	*	,		,		62,8	48,6	37,6	30,2	23,6	18,1	14,6	11,5	9,3
0,63	max ASSI	•	•		*	•	٠		•	66,8	52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*		*	٠	*	٠		•	60,6	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	*	*	*	*	•	٠		٠		49,6	38,4	30,7	23,9	18,3	14,8	11,6	9,3
0,8	max ASSI		*	*	*	. •	•				52,9	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*	*	*	*	٠	٠	٠	٠	٠	47,9	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ		•	*		•			•		*	39,1	31,2	24,3	18,6	15,0	11,7	9,4
1,0	max ASSI			*	٠	*	٠	•	*	٠	*	41,7	33,5	26,8	21,0	16,9	13,6	10,8
	CRQ	*	•	*	*	•	•	*	٠	•	*	37,8	30,6	24,3	19,0	15,4	12,2	9,8
	PRQ	*	*	•	*	•	*	,	•		*	*	31,7	24,7	18,9	15,2	11,8	9,5
1,25	max ASSI	•	*	*	*				•		*	*	33,5	26,8	21,0	16,9	13,6	10,8
, 1, 1,	CRQ	*	*	*	*	•	٠	•	•	•	*	*	30,6	24,3	19,0	15,4	12,2	9,8
100	PRQ	*	*	*	*	•								25,2	19,3	15,4	12,0	9,6
1,6	max ASSI		•		*	٠	•	•	•		•	*	•	26,8	21,0	16,9	13,6	10,8
	CRQ	*	*	٠	*	٠	٠	•	٠	•	*	*	٠	24,3	19,0	15,4	12,2	9,8
	PRQ	•	*	*	*				•		*	*	. *	*	19,7	15,7	12,2	9,75
2,0	max ASSI	*	*	*	*	•	٠		•	•	*	*	*	*	21,0	16,9	13,6	10,8
	CRQ	*	*	*	*	•	•	•	*	*	*	*	*	*	19,0	15,4	12,2	9,8
	PRQ	•	•	*	*							*	•	•	*	16,0	12,5	9,9
2,5	max ASSI	•	•	*	*	٠			•		*	*	*	*	*	16,9	13,6	10,8
	CRQ	*	*	*	*	*	٠	٠	*	•	*	•	*	*	*	15,4	12,2	9,8
	PRQ	•	•	*	*	•			•	•	*	*	*	*	*	*	12,7	10,1
3,15	max ASSI	*	*	•	•		•		•	•	*	*	•	•	*	×	13,6	10,8
	CRQ	•	*	*	*	*	٠	•	•	•	*	*	. *	•	٠	*	12,2	9,8
	PRQ		*	*		•	,	*	•		*		•	•	•			10,3
4,0	max ASSI	*	*	*		*		٠	•	•	*	•	*		*	*	٠	10,8
	CRQ	*	*	.*	*	٠			•	•	*	*	*	*	*	*	٠	9,8

П р и м е ч а н и е — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) с α ≤ 10 % и β ≤ 10 %. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

Tа б π и ц а 13 — Значения фактических рисков в процентах для планов контроля доли несоответствующих единиц продукции с α \leq 5 % и β \leq 5 %

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31,5 0,009 359 4,740 023 0,014 359 4,740 038 0,023 359 4,740 059 0,035 359 4,740 091 0,055
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	359 4,740 023 0,014 359 4,740 038 0,023 359 4,740 059 0,035 359 4,740
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	023 0,014 0359 4,740 038 0,023 0359 4,740 059 0,035 0,055
0,125 β * 4,989 5,000 4,999 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 0,160 β * 5,000 4,999 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 0,2 β * 4,999 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 0,2 β * 4,999 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 0,25 β * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 0,25 β * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 0,26 β * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 0,27 β * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 0,28 β * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 0,29 β * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 0,29 β * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8	359 4,740 038 0,023 359 4,740 059 0,035 359 4,740 091 0,055
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	038 0,023 359 4,740 059 0,035 359 4,740 091 0,055
0,160 β * 5,000 4,999 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * 4,999 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * 4,999 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8	359 4,740 059 0,035 359 4,740 091 0,055
β * 5,000 4,999 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * 3,957 2,503 1,659 1,061 0,652 0,410 0,263 0,158 0,099 0,0 β * 4,999 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * 3,758 2,510 1,617 0,999 0,631 0,405 0,245 0,154 0,0 β * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8	059 0,035 359 4,740 091 0,055
0,2 β * * 4,999 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 0,25 β * * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * * * 3,823 2,485 1,547 0,982 0,634 0,384 0,242 0,1	359 4,740 091 0,055
β * * 4,999 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * * 3,758 2,510 1,617 0,999 0,631 0,405 0,245 0,154 0,0 β * * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * * 3,823 2,485 1,547 0,982 0,634 0,384 0,242 0,1	0,055
0.25 β * * * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * * * 3,823 2,485 1,547 0,982 0,634 0,384 0,242 0,1	
β * * * 4,977 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8 α * * * 3,823 2,485 1,547 0,982 0,634 0,384 0,242 0,1	159 4.740
0. 0.023 2,903 1,347 0,802 0,009 0,309 0,242 0,1	211.40
	144 0,087
0,315 β · · · 4,978 4,970 4,992 4,980 4,885 4,771 4,935 4,8	359 4,740
α * * * * * 3,839 2,413 1,543 1,001 0,610 0,385 0.2	230 0,139
β	359 4,740
0.5 α * * * * * * * 3,628 2,339 1,527 0,935 0,593 0.3	355 0,216
	359 4,740
α * * * * * * 3,571 2,351 1,450 0,924 0,5	556 0,339
	359 4,740
0.8 a 3.641 2,267 1,455 0.8	381 0,540
β * * * * * * 4,885 4,771 4,935 4.8	359 4,740
1.0 α * * * * * * * * * * 3,415 2,209 1.3	347 0,830
	359 4,740
1,25 α	050 1,270
	359 4,740
1.6 a ' ' ' ' ' ' ' ' ' ' ' ' 4,907 3,2	235 2,023
	359 4,740
2.0 α ' ' ' ' ' ' ' ' ' ' ' ' 4.8	3,060
	359 4,740
2.5 α	4,591
в	

П р и м е ч а н и е — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) с $\alpha \le 5$ % и $\beta \le 5$ %. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

ГОСТ P 50779.81-2018

Та б π и ц а 14 — Значения фактических рисков в процентах для планов контроля доли несоответствующих единиц продукции с α \leq 5 % и β \leq 10 %

PRQ.	Риски,			- 1					CRQ, %							
%	%	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
2.4	α	4,186	2,674	1,776	1,165	0,774	0,466	0,297	0,187	0,115	0,072	0,046	0,028	0,017	0,011	0,006
0,1	β	9,998	9,998	9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0.405	α		. *	2,684	1,772	1,138	0,716	0,457	0,290	0,178	0,112	0,072	0,044	0,027	0,017	0,010
0,125	β			9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0.400	α	*	*	4,196	2,796	1,810	1,146	0,736	0,468	0,289	0,182	0.117	0,071	0.044	0,027	0,016
0,160	β	٠	*	9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0.7	α	•		•	4,187	2,734	1,744	1,126	0,719	0,446	0,282	0,181	0,111	0.068	0,042	0,025
0,2	β	. *	*	*	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0.05	α		*	*		4,097	2,637	1,714	1,101	0,685	0,435	0,279	0,171	0,106	0,066	0,039
0.25	β					9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0.045	α		*	*	٠		4,011	2,630	1,701	1,066	0,679	0,438	0,269	0,166	0,104	0,061
0,315	β		*		٠	•	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0.4	α		•	*	*	•		4,059	2,650	1,672	1,072	0,694	0,429	0,266	0,167	0,098
0,4	β				•	٠		9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0.5	α		*	*	*	*	•	*	3,975	2,532	1,634	1,064	0,660	0,410	0,258	0,152
0,5	β	•			•	•	•		9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0.00	α		*		*	•	*	*	*	3,858	2,512	1,646	1,026	0.641	0,405	0,240
0,63	β		*	*	*	*	٠		*	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0.0	α				*	•		*		•	3,883	2,566	1,612	1,013	0,642	0,382
8,0	β		*	*			*	*	*	*	9,920	9,970	9,894	9,639	9,764	9,430
1,0	α	,										3,855	2,444	1,547	0,985	0,589
1,0	β		*	*	*	•		*	*	*	٠	9,970	9,894	9,639	9,764	9,430
1.25	α	*	*		*	*	*	*		•	*	•	3,675	2,347	1,504	0,905
1,23	β	•	•	•	*	*	•		*	*	*	•	9,894	9,639	9,764	9,430
1.6	α				•	•	•		,	*			*	3,691	2,387	1,447
1,0	β	•	*		*	*	•	*	*	*	٠	*	*	9,639	9,764	9,430
2,0	α		*	*	*	•		*	*	*			*	4,951	3,597	2,201
2,0	β	•	•		*	•	•	*	*	*	•	•	*	9,908	9,764	9,430
2,5	α		*		*		•		•	*	•	•	*		*	3,326
2,0	β	•	. *	•	*	•	,	*		*	٠	•	*		*	9,430
3,15	α			*	•	•	•	*	*	•	•		•	*	•	4,869
5,15	β	*	*	•	*	*		*		•	*	•	•	*	•	8,774

П р и м е ч а н и е — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) с $\alpha ≤ 5 \%$ и $\beta ≤ 10 \%$. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

Т а бл и ц а 15 — Значения фактических рисков в процентах для планов контроля доли несоответствующих единиц продукции с α \leq 10 % и β \leq 10 %

PRQ.	Риски,					i T		* T		CRQ. %	6				-	-,		
%	%	0,8	1,0	1.25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	α	9,150	6,240	4,186	2,674	1,776	1,165	0,744	0,466	0,297	0,187	0,115	0,072	0,046	0,028	0.017	0,011	0,006
0,1	β	9,997	9,993	9,998	9,998	9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0.125	α		9,129	6,204	4,008	2,684	1,772	1,138	0,716	0,457	0,290	0,178	0,112	0,072	0,044	0,027	0,017	0,010
0,125	β	٠	9,993	9,998	9,998	9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0.160	α	*	*	9,445	6,198	4,196	2,796	1,810	1,146	0,736	0,468	0,289	0,182	0,117	0,071	0.044	0,027	0,016
0,160	β	٠	٠	9,998	9,998	9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0.0	α			٠	9,070	6,218	4,187	2,734	1,744	1,126	0,719	0,446	0,282	0,181	0,111	0,068	0.042	0,025
0,2	β	٠	٠	*	9,998	9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,25	α		٠		•	9,099	6,205	4,097	2,637	1,714	1,101	0,685	0,435	0,279	0,171	0,106	0,066	0,039
0,25	β	٠	. •		٠	9,996	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,315	α		•		•	•	9,202	6,161	4,011	2,630	1,701	1,066	0,679	0,438	0,269	0.166	0,104	0,061
0,313	β	,	٠	٠	•	٠	9,986	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,4	α	*	٠		*	•		9,260	6,119	4,059	2,650	1,672	1,072	0,694	0,429	0,266	0,167	0,098
0,4	β	٠	,	*	٠	٠	•	9,992	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,5	α	٠	•	٠	٠	•	*	٠	8,962	6,024	3,975	2,532	1,634	1,064	0,660	0,410	0,258	0,152
0,5	β	٠	•	•	٠	•	•	•	9,972	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0.63	α		•	•	•	٠	*		*	8,950	5,987	3,858	2,512	1,646	1,026	0,641	0,405	0,240
0,00	β	٠	٠	*	*	٠	*	٠	•	9,984	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
0,8	a				•	٠	*	٠			9,018	5,898	3,883	2,566	1,612	1,013	0,642	0,382
0,0	β	٠	÷.	٠	٠	٠	*	٠	•	*	9,884	9,839	9,920	9,970	9,894	9,639	9,764	9,430
1,0	α			*	•		•			٠	٠	8,659	5,776	3,855	2,444	1,547	0,985	0,589
1,10	β	*	٠	•	•	٠	•	٠	•	•	٠	9,839	9,920	9,970	9,894	9,639	9,764	9,430
1.25	α	*	٠	*	•	•	*	•		٠	٠		8,491	5,736	3,675	2,347	1,504	0,905
1,20	β	٠	,	*	*	٠	٠	٠	٠		٠		9,920	9,970	9,894	9,639	9,764	9,430
1,6	α		•	٠	•	•	*		•		٠	•	*	8,780	5,711	3,691	2,387	1,447
.,,0	β	٠	٠	*	٠	•	٠	٠	٠	٠	*	•	٠	9,970	9,894	9,639	9,764	9,430
2,0	α	٠	٠	•	•			٠	٠	*		٠	•	٠	8,401	5,506	3,597	2,201
	β	•	,	•	*	*	•	,	*	٠	٠	*	•	٠	9,894	9,639	9,764	9,430
2,5	α	•		*	•		•		٠	•		٠	•	٠	•	8,120	5,371	3,326
-12	β	٠	٠	٠	•	*	٠	٠	•	٠	٠	٠	٠	•	•		_	9,430
3,15	α				•	٠	*			٠	٠		٠	٠		٠	8,040	5,055
-,	β	*	٠	•	*	٠	*	•	٠	*	٠	٠	*	٠	٠	•	9,764	9,430

ГОСТ P 50779.81-2018

Окончание таблицы 15

PRQ.	Риски,								(CRQ. 9	6							
%	%	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
1/2	α	•	,		•	٠		•	*		•		*			•	•	7,699
4,0	β	٠	,		٠	٠			٠			*		٠	٠	٠	٠	9,430

Примечание — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) с $\alpha \le 10 \%$ и $\beta \le 10 \%$. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

Таблица 16 — Значения фактических рисков в процентах для планов контроля доли несоответствий с α \leq 5 % и β \leq 5 %

PRQ.	Риски,	1-2-						CR	2,%		1 - 1				
%	%	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0,1	α	3,902	2,622	1,725	1,117	0,718	0,455	0,290	0,183	0,117	0,078	0,048	0,031	0,019	0,013
1,0	β	4,992	4,994	4,993	4,989	4,991	4,985	4,984	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0,125	α		3,931	2,607	1,699	1,098	0,699	0,447	0,284	0,181	0,120	0,075	0,048	0.030	0,020
0,125	β	•	4,994	4,993	4,989	4,991	4,985	4,984	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0,160	α			4,080	2,683	1,747	1,120	0,718	0,458	0,293	0,195	0,122	0,078	0,049	0,032
0,100	β	•	•	4,993	4,989	4,991	4,985	4,984	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0,2	α				4,021	2,640	1,704	1,099	0,704	0,452	0,302	0,189	0,122	0,076	0,050
0,2	β	•	*	•	4,989	4,991	4,985	4,984	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0,25	α					3,957	2,577	1,673	1,077	0,695	0,465	0,292	0,188	0,118	0,077
0,25	β	•			•	4,991	4,985	4,984	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0.315	α			*		*	3,921	2,568	1,665	1,080	0,726	0,458	0,296	0,186	0,121
0,315	β	•		•	•	*	4,985	4,984	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0.4	α				,			3,963	2,593	1,693	1,144	0,725	0,470	0,297	0,194
0,4	β	•	*	•	•	*		4,984	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0,5	α		*	•		*	•	*	3,889	2,561	1,740	1,109	0,722	0,458	0,300
0,5	β	•			•		٠	*	4,958	4,951	4,985	4,932	4,873	4,856	4,764
0.63	α		*			*	*	* -		3,898	2,669	1,713	1,122	0,715	0,469
0,03	β	•			,	•	٠			4,951	4,985	4,932	4,873	4,856	4,764
0,8	α			•		*	•	*		•	4,114	2,665	1,758	1,128	0,743
0,0	β	•	*	٠	٠		*	*		•	4,985	4,932	4,873	4,856	4,764
1,0	α		•				•			•	*	3,994	2,656	1,716	1,136
1,0	β	•	•	*		٠	٠	*	•	•	•	4,932	4,873	4,856	4,764
1.25	α		*								*	•	3,981	2,595	1,729
1,20	β	*		*		*		*	•	•		*	4,873	4,856	4,764
10	α		×		*	*	٠					*	•	4,061	2,730
1,6	β			٠				*		٠		*		4,856	4,764

PRQ.	Риски,				, ;:			CRO	2, %						
%	%	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
100	α	•	×			*	•	*	*	•	*		•	*	4,089
2,0	β			٠		*	٠		*			٠	*		4,764

Пр и м е ч а н и е — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) при контроле числа несоответствий с $\alpha \le 5$ % и $\beta \le 5$ %. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

 ${
m Ta}$ бл и ц а 17 — Значения фактических рисков в процентах для планов контроля доли несоответствий с ${
m \alpha}$ ${
m \le}$ 5 % и ${
m \beta}$ ${
m \le}$ 10 %

PRQ.	Риски,								CRQ, %							
%	%	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.4	α	4,251	2,729	1,791	1,177	0,764	0,474	0,310	0,200	0,125	0,079	0,052	0.033	0,021	0,014	800,0
0,1	β	9,994	9,998	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,125	α	•	4,088	2,705	1,790	1,168	0,728	0.477	0,308	0,193	0,123	0,080	0,051	0,032	0,021	0,013
0,125	β	٠	9,998	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,160	α		•	4,277	2,823	1,857	1,164	0,767	0,498	0,313	0,199	0,130	0,083	0,053	0,035	0,022
0,100	β	•	٠	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0.2	α		•	*	4,225	2,803	1,771	1,173	0,764	0,482	0,308	0,202	0,128	0,082	0,054	0,034
0,2	β	•	٠	•	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0.25	α		•		•	4,195	2,676	1,784	1,168	0,741	0.474	0,312	0,198	0,127	0,084	0.052
0,20	β	٠	•		٠	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,315	α				,	•	4,068	2,735	1,803	1,150	0,740	0,489	0,311	0,199	0,132	0,082
0,0.0	β	•	*	*	•	•	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,4	α							4,214	2,803	1,801	1,165	0,774	0,494	0,318	0,210	0,132
	β	•	•	*	•	٠	٠		9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,5	α			•	•			•	4,195	2,721	1,773	1,183	0,759	0,490	0,325	0,204
	β	•	•	•	٠	٠	٠	•	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0.63	α				•	•				4,134	2,718	1,825	1,178	0,764	0,508	0,321
	β	*	٠	•	•	•	•	•		9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,8	α		•	•	•				•		4,188	2,836	1,845	1,203	0,804	0,510
	β		•	•	٠		•	٠	*	,	9,880	n 100 m	A Property of	9,519		20000
1,0	α		•						*			4,245	2,785	1,829	1,229	0,783
	β		•	*	•		•		٠	٠	•	9,855	9,670	9,519	9,448	9,318
1,25	α			•	•		•		*			•	4,169	2,762	1,867	1,196
	β		•	*	•	•	•	•	*	٠		•	9,670	9,519	9,448	2.00
1,6	α						•	•	•			•	•	4,315	2,942	1,901
	β		•	•	•	٠	•	•	•	*	•	•	•	9,519	9,448	9,318

ГОСТ P 50779.81-2018

Окончание таблицы 17

PRQ. %	Риски, %		CRQ, %														
		1,25	1,6	2,0	2,5	3,15	4.0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5	
2,0	αβ						•							:	4,399 9,448		
2,5	αβ		•										:	:	:	4,293 9,318	

Примечание — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующёго двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) при контроле числа несоответствий с α ≤ 5 % и β ≤ 10 %. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

Tа бл и ц а ~18 — 3начения фактических рисков в процентах для планов контроля доли несоответствий с α \leq 10 % и β \leq 10 %

PRQ.	Риски,								(CRQ, %	6							
%	%	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0,1	α	9,230	6,313	4,251	2,729	1,791	1,177	0,764	0,474	0,310	0,200	0,125	0,079	0,052	0,033	0.021	0,014	0,008
0,1	β	9,998	9,993	9,994	9,998	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,125	α		9,228	6,295	4,088	2,705	1,790	1,168	0,728	0,477	808,0	0,193	0,123	0,080	0,051	0,032	0,021	0,013
0,123	β	•	9,993	9,994	899,8	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,160	α	*	٠	9,574	6,314	4,227	2,823	1,857	1,164	0,767	0,498	0,313	0,199	0,130	0,083	0,053	0,035	0,022
0,100	β	٠	٠	9,994	9,998	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,2	α	•	٠	*	9,230	6,262	4,225	2,803	1,771	1,173	0.764	0,482	0,308	0,202	0,128	0,082	0,054	0,034
0,2	β	•	•	•	8,998	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0.25	α	•	•	*	•	9,158	6,259	4,195	2,676	1,784	1,168	0,741	0,474	0,312	0,198	0,127	0,084	0,052
0,25	β	٠	*	*	•	9,994	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,315	α		٠	*	•		9,276	6,301	4,068	2,735	1,803	1,150	0,740	0,489	0,311	0,199	0,132	0,082
0,010	β	•	•	*	•	•	9,985	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0.4	α		•	٠	٠	٠	٠	9,458	6,201	4,214	2,803	1,801	1,165	0,774	0,494	0,318	0,210	0,132
0,4	β	٠	٠	•	٠	٠	•	9,953	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,5	α	*		٠	*		٠	٠	9,073	6,243	4,195	2,721	1,773	1,183	0,759	0,490	0,325	0,204
0,0	β		•	•	•	•	٠	•	10,00	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0.63	α	•			•			•		9,255	6,301	4,134	2,718	1,825	1,178	0.764	0,508	0,321
0,00	β	٠	٠	*	٠	•		٠	•	9,942	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
0,8	α	٠	,		*	•	•		,	•	9,458	6,297	4,188	2,836	1,845	1,203	0,804	0,510
0,0	β	٠	•	•	٠,	٠	*	,	*	•	9,953	9,927	9,880	9,855	9,670	9,519	9,448	9,318
1.0	α		•	*		*	*	*			٠	9,207	6,207	4,245	2,785	1,829	1,229	0,783
*,5	β	٠			•	٠		•	•	*	٠	9,927	9,880	9,855	9,670	9,519	9,448	9,318
1.25	α		•		•			٠	•	*	*		9,084	6,287	4,169	2,762	1,867	1,196
.,	β		٠	*	٠		•	•	•	•	٠	٠	9,880	9,855	9,670	9,519	9,448	9,318

PRQ.	Риски,		CRQ, %															
%	%	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
0.0	α	•			•	•	٠	•	*	*		٠	*	9,565	6,436	4,315	2,942	1,90
1,6	β	٠	٠	٠	٠	٠	٠		٠		٠	٠	٠	9,855	9,670	9,519	9,448	9,31
2,0	α	٠				٠	٠		٠		٠	٠	٠		9,402	6,389	4,399	2,86
	β	٠	٠	٠	*	٠	٠	٠			٠	٠	٠	٠	9,670	9,519	9,448	9,31
	α	•			•	٠	٠	٠		٠			٠			9,338	6,508	4,29
2,5	β	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	9,519	9,448	9,31
0.45	α	٠		٠	•		٠	٠	٠	٠	٠	•	٠	٠	٠	•	9,630	6,44
3,15	β		٠		٠	٠	٠	٠	٠	٠	٠		٠	٠		٠	9,448	9,31
4,0	α					٠	٠		•	٠	•	٠	٠		٠		٠	9,66
	β				*		*	*				•		*	*			9,31

Примечание — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) при контроле числа несоответствий с $\alpha \le 10 \%$ и $\beta \le 10 \%$. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

Таблица 19 — Средний выходной уровень несоответствий (AOQ) в процентах для планов контроля доли несоответствующих единиц продукции с α \leq 5 % и β \leq 5 %

PRQ,	AOQ для PRQ, CRQ							CRO	2. %	,					
%	и AOQL	1,6	2,0	2,5	3,15	4.0	5,0	6,3	0,8	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	0,096	0,097	0,098	0,099	0,099	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100
0,1	AOQL	0,275	0,345	0,431	0.543	0,696	0,869	1,099	1,412	1,786	2,237	2,883	3,645	4,684	5,986
	CRQ	0,080	0,100	0,125	0,157	0,199	0,249	0,313	0,399	0,498	0,611	0,763	0,987	1,215	1,493
	PRQ	*	0,120	0,122	0,123	0,124	0,124	0.124	0,125	0,125	0,125	0,125	0,125	0,125	0,125
0,125	AOQL	*	0,345	0,431	0,543	0,696	0,869	1,099	1,412	1,786	2,237	2,883	3,645	4,684	5,986
	CRQ		0,100	0,125	0,157	0,199	0,249	0,312	0,399	0,498	0,611	0,763	0,987	1,215	1,493
	PRQ	*	٠	0,154	0,156	0,157	0,158	0,159	0,159	0,160	0,160	0,160	0,160	0,160	0,160
0,160	AOQL		٠	0,431	0,543	0,696	0,869	1,099	1,412	1,786	2,237	2,883	3,645	4.684	5,986
	CRQ	*		0,125	0,157	0,199	0,249	0.313	0,399	0,498	0,611	0,763	0,987	1,215	1,493
	PRQ	×	•		0,192	0,195	0,197	0.198	0,199	0,199	0.199	0,200	0,200	0,200	0,200
0,2	AOQL	*		•	0,543	0,696	0,869	1,099	1,412	1,786	2,237	2,883	3,645	4.684	5,986
	CRQ	*		٠	0,157	0,199	0,249	0,313	0,399	0,498	0,611	0,763	0,987	1,215	1,493
	PRQ	*		*	*	0,241	0,244	0,246	0,248	0,248	0.249	0,249	0,250	0,250	0,250
0,25	AOQL			•		0,696	0,869	1,099	1,412	1,786	2,237	2,883	3,645	4,684	5,986
	CRQ	*	•	٠	•	0,199	0,249	0,313	0,399	0,498	0,611	0,763	0,987	1,215	1,493

ГОСТ Р 50779.81-2018

Окончание таблицы 19

PRQ.	ялд ООА				,	- J		CRO	2, %			7			- 1
%	PRQ, CRQ и AOQL	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8.0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ			*	•	•	0,303	0.307	0,310	0,312	0.313	0,314	0,314	0,315	0,315
0,315	AOQL	*		*	*		0,869	1,099	1,412	1,786	2,237	2,883	3,645	4.684	5,986
	CRQ	*		٠			0,249	0,313	0,399	0,498	0,611	0,763	0,987	1,215	1,493
	PRQ	*	•	*	×			0,385	0,390	0,394	0.396	0,398	0,398	0,399	0,399
0,4	AOQL			٠	. *			1,099	1,412	1,786	2,237	2,883	3,645	4.684	5,986
	CRQ	*		*	•	•		0,313	0,399	0,498	0,611	0,763	0,987	1,215	1,493
	PRQ	*	٠	*	*			•	0,482	0,488	0,492	0,495	0,497	0,498	0,499
0,5	AOQL	*		٠		•	٠.	•	1,412	1,786	2,237	2,883	3,645	4.684	5,986
	CRQ	*	•		*	•	•		0,399	0,498	0,611	0,763	0,987	1,215	1,493
	PRQ	*		*		٠	,			0,608	0,615	0,621	0,624	0,626	0,628
0,63	AOQL			*		•	*			1,786	2,237	2,883	3,645	4,684	5,986
	CRQ			•			٠		•	0,498	0,611	0,763	0,987	1,215	1,493
10,00	PRQ	*		*			•			•	0,771	0,782	0,788	0,793	0,796
0,8	AOQL	•	•							*	2,237	2,883	3,645	4,684	5,986
	CRQ			•		٠	*				0,611	0,763	0,987	1,215	1,493
	PRQ			*	*	•	*	*	•	,	*	0,966	0,978	0,987	0,992
1,0	AOQL		٠	*		•	٠		•			2,883	3,645	4.684	5,986
	CRQ	*	٠	٠	*	•	•	•		•	•	0,763	0,987	1,215	1,493
	PRQ	•		•	•	*	*			٠		1,188	1,208	1,224	1,234
1,25	AOQL	*				•	•			•	•	2,908	3,645	4.684	5,986
	CRQ		•	*	•	•	*	*	1.	•	*	0,754	0,987	1,215	1,493
	PRQ	*		•		,		•				•	1,521	1,548	1,568
1,6	AOQL	*		*		•	•				•	•	3,726	4,684	5,986
	CRQ	*	,	*			*	•	•	•	*	•	0,952	1,215	1,493
	PRQ	*	•	*	*	•				*			•	1,903	1,939
2,0	AOQL			*	•	•		*	•	•	*	*	•	4,684	5,986
	CRQ	*	•	*	•	. v .	*	•	٠	•	٠		•	1,215	1,493
	PRQ	*		*	,	•	,			•	•	,	•	*	2,385
2,5	AOQL	٠	•	*	*		*		•		•		•	•	5,986
	CRQ	*	•	*	*	*		•	•	*	•	•	•	*	1,493

Примечание — Звездочки в ячейках указывают на то, что для заданных значений PRQ и CRQ не существует соответствующего двухступенчатого плана выборочного контроля вида (n, 0, 2; m, 1, 2) с $\alpha \le 5$ % и $\beta \le 5$ %. Для определения плана контроля необходимо уменьшить PRQ, увеличить CRQ или сделать и то и другое одновременно.

Та блица 20 — Средний выходной уровень несоответствий (AOQ) в процентах для планов контроля доли несоответствующих единиц продукции с α \leq 5 % и β \leq 10 %

PRQ.	АОQ для			<u> </u>					CRQ, %	,			-			
%	PRQ, CRQ и AOQL	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	0,096	0,097	0,098	0,099	0,099	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100
0,1	AOQL	0,264	0,338	0,422	0,527	0,666	0,848	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ	0,125	0,160	0,200	0,250	0,315	0,399	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
7-1	PRQ	•	0,120	0,122	0,123	0,124	0,124	0,124	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125
0,125	AOQL		0,338	0,422	0,527	0,666	0,848	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ	•	0,160	0,200	0,250	0,315	0,399	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ	•	•	0,153	0,156	0,157	0,158	0,159	0.159	0,160	0,160	0,160	0,160	0,160	0,160	0,160
0,160	AOQL		•	0,422	0,527	0,666	0,848	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ		,	0,200	0,250	0,315	0,399	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ		•		0,192	0,195	0,197	0,198	0,199	0,199	0,199	0,200	0,200	0,200	0,200	0,200
0,2	AOQL	•	•	٠	0,527	0,666	0,848	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ	•	•	•	0,250	0,315	0,399	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ	•	•		•	0,240	0,243	0,246	0,247	0,248	0.249	0,249	0,250	0,250	0,250	0,250
0,25	AOQL		•	•		0,666	0.848	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ	٠	٠	•	*	0,315	0,399	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
7.0	PRQ	•		•			0,302	0,307	0,310	0,312	0.313	0,314	0,314	0,314	0,315	0,315
0,315	AOQL		•	•	•	•	0,848	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7.131
1	CRQ	•	*				0,399	0,499	0,623	0,787	0.992	1,246	1,583	1,928	2,441	2,970
	PRQ			•	•	•		0,384	0,389	0,393	0,396	0,397	0,398	0,399	0,399	0,400
0,4	AOQL			•	,			1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ		•	•	•	•	•	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ					•	•		0,480	0,487	0.492	0,495	0,497	0,498	0,499	0,499
0,5	AOQL								1,346	1,718						
	CRQ			•	•		•	•	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
133	PRQ	•	•	•	•	•	•		•	0,606	0,614	0,620	0,624	0,626	0,627	0,628
0.63	AOQL				•	•	•						3,477			7,131
	CRQ	•	•	•	•	•	•		•		2.00				2000	2,970
	PRQ	•	•	•	•		•		•					12.00		0,797
8,0	AOQL			٠		•	•	•	•							7,131
	CRQ	•	•	•	•	•	•	•	•	•	0,992					2,970
	PRQ					•					•			127		0,994
1,0	AOQL							•	•		•			100		7,131
	CRQ			•	•	٠	*	•	•		•	1,246	1,583	1,928	2,441	2,970

FOCT P 50779.81-2018

Окончание таблицы 20

PRQ.	AOQ для PRQ, CRQ								CRQ, %							
%	n AOQL	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	•	•	•	٠	•	•		*	•		•	1,204	1,221	1,231	1,23
1,25	AOQL	•					٠			٠			3,477	4,396	5,551	7,13
	CRQ			٠	٠	٠	٠		*	٠	٠		1,583	1,928	2,441	2,970
	PRQ	•	•	•		•	*		•			•		1,541	1,562	1,57
1,6	AOQL				•					٠				4,396	5,551	7,13
	CRQ				٠		•	-		-			-	1,928	2,441	2,970
	PRQ		•	٠			•			٠		•		1,901	1,928	1,956
2,0	AOQL			٠	٠	٠				٠	٠	٠		4,591	5,551	7,131
	CRQ		٠	٠			٠			٠	٠			1,982	2,441	2,970
	PRQ		٠				٠					•				2,417
2,5	AOQL		•				٠			٠				٠		7,131
	CRQ	٠	٠	٠	٠		٠			٠	٠				٠	2,970
	PRQ	•	•		•		٠			•				•	•	2,997
3,15	AOQL		•	٠			•	-	•		-		-			7,191
	CRQ				٠		•	*						•	٠	2,764

Та блица 21 — Средний выходной уровень несоответствий (AOQ) в процентах для планов контроля доли несоответствующих единиц продукции с α \leq 10 % и β \leq 10 %

PRQ.	АОО для								(CRQ, 5	6						, Y	
%	PRQ, CRQ # AOQL	8,0	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	0,091	0,094	0,096	0,097	890,0	0,099	0,099	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0.100	0,100
0,1	AOQL	0,168	0,211	0,264	0,338	0,422	0,527	0,666	0,848	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ	0,080	0,100	0,125	0,160	0,200	0,250	0,315	0,399	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
17	PRQ	٠	0,114	0,117	0,120	0,122	0,123	0,124	0,124	0,124	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125
0,125	AOQL	•	0,211	0,264	0,338	0,422	0,527	0,666	0,848	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
40.00	CRQ	٠	0,100	0,125	0,160	0,200	0,250	0,315	0,399	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ		٠	0,145	0,150	0,153	0,156	0,157	0,158	0,159	0,159	0,160	0,160	0,160	0,160	0,160	0,160	0,160
0,16	AOQL	٠	٠	0,264	0,338	0,422	0,527	0,666	0,848	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ		•	0,125	0,160	0,200	0,250	0,315	0,399	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ				0,182	0,188	0,192	0,195	0,197	0,198	0,199	0,199	0,199	0,200	0,200	0,200	0,200	0,200
0,2	AOQL		٠	٠	0,338	0,422	0,527	0,666	0,848	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ		٠	٠	0,160	0,200	0,250	0,315	0,399	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970

Продолжение таблицы 21

PRQ.	япд ООА					7 . 3		7 5		CRQ, 5	6							
%	PRQ, CRQ # AOQL	8,0	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
1	PRQ	•	٠	•	•	0,227	0,234	0,240	0,243	0,246	0,247	0,248	0,249	0,249	0,250	0,250	0,250	0,250
0,25	AOQL		٠			0,422	0,527	0,666	0,848	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ	٠	٠	٠	٠	0,200	0,250	0,315	0,399	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ		,		,		0,286	0,296	0,302	0,307	0,310	0,312	0,313	0,314	0,314	0,314	0,315	0,315
0,315	AOQL	٠	٠		٠	٠	0,527	0,666	0,848	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
. Y 'A	CRQ	٠	٠		٠		0,250	0,315	0,399	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ		٠	•	٠		٠	0,363	0,376	0,384	0,389	0,393	0,396	0,397	0,398	0,399	0,399	0,400
0,4	AOQL	٠	•			٠	٠	0,666	0,848	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ	•	•	•	•		٠	0,315	0,399	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ			•	٠		٠	•	0,455	0,470	0,480	0,487	0,492	0,495	0,497	0,498	0,499	0,499
0,5	AOQL	•	٠	•	•		٠	٠	0,848	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ	٠	٠	٠	٠	٠	٠	٠	0,399	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ		•			,	•			0,574	0,592	0,606	0,614	0,620	0,624	0,626	0,627	0,628
0.63	AOQL	٠	٠	٠	٠	٠	٠	٠	٠	1,067	1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ	•	•	•	,	*	•	,	•	0,499	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ	•	•	•	٠		•	٠	٠	•	0,728	0,753	0,769	0,779	0,787	0,792	0,795	0,797
0,8	AOQL	•		•	*		•		•		1,346	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ	٠	•	٠	٠	٠	٠	٠	٠	٠	0,623	0,787	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ	,	•	•	*	•	٠		•	•	٠	0,913	0,942	0,961	0,976	0,985	0,990	0,994
1,0	AOQL	•	•	•			,	٠			,	1,718	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ	•	٠	•	٠	•	٠	•	*	•		0,787	0,992	1,246	1,583	1,928	2,441	2,970
	PRQ		٠	٠	•		٠	٠	•	•	٠	•	1,144	1,178	1,204	1,221	1,231	1,239
1,25	AOQL			•		•		•		•		٠	2,166	2,716	3,477	4,396	5,551	7,131
	CRQ	•	*	٠	٠		٠		•	٠	•		0,992	1,246	1,583	1,928	2,441	2,970
	PRQ						•			•		٠		1,460	1,509	1,541	1,562	1,577
1,6	AOQL	•	•	•					•	•		•	•	2,716	3,477	4,396	5,551	7,131
	CRQ	•	,	٠			٠	٠		٠	*	,	٠	1,246	1,583	1,928	2,441	2,970
17.	PRQ					٠				*				•				1,956
2,0	AOQL		٠	٠	٠						٠	•	٠					7,131
	CRQ	٠	٠	٠	•		•	٠	•	٠	٠	٠	٠	٠				2,970
5-1	PRQ						,		•									2,417
2,5	AOQL			•				•		,	•	•		,	,			7,131
	CRQ	•	•	•	*	•	٠	•	٠	•	٠	*	٠	*	*	1,928	2,441	2,970

Окончание таблицы 21

PRQ.	АОО для			A						CRQ, 9	6						j	
%	PRQ, CRQ # AOQL	8,0	1,0	1,25	1,6	2,0	2,5	3,15	4.0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ		٠	٠	•			٠	٠	٠	٠	٠	•				2,897	2,991
3,15	AOQL	٠		٠	٠		٠	٠		٠	٠.	٠	٠	•	٠	٠	5,551	7,131
	CRQ	٠	٠	٠	٠	٠	٠	٠	٠	,	٠	٠	٠	٠	٠	٠	2,441	2,970
	PRQ	٠	•		٠	•	,	٠		•	•	٠		,	٠	٠	٠	3,692
4,0	AOQL	٠	٠	٠	٠	٠.	*	٠		٠	٠	٠	٠	٠	٠	٠	٠	7,131
	CRQ	•	*	٠	*	-	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	2,970

T а б π и ц а 22 — Средний выходной уровень несоответствий (AOQ) в процентах для планов контроля числа несоответствий с $\alpha \le 5$ % и $\beta \le 5$ %

PRQ.	АОО для							CRO	0. %						
%	PRQ, CRQ и AOQL	1,6	2,0	2,5	3,15	4.0	5,0	6,3	0,8	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	0,096	0,097	0,098	0,099	0,099	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100
0,1	AOQL	0,274	0,342	0,428	0,540	0,682	0,861	1,086	1,373	1,725	2,134	2,715	3,395	4.285	5,343
	CRQ	0,080	0,100	0,125	0,157	0,200	0,249	0.314	0,397	0,495	0,623	0,789	0,975	1,214	1,501
7.70	PRQ	*	0,120	0,122	0.123	0,124	0,124	0,124	0,125	0,125	0,125	0,125	0,125	0,125	0,125
0,125	AOQL	*	0,342	0,428	0,540	0,682	0,861	1,086	1,373	1,725	2,134	2,715	3,395	4.285	5,343
	CRQ	*	0,100	0,125	0.157	0,200	0,249	0,314	0,397	0,495	0.623	0,789	0,975	1,214	1,501
	PRQ	*	,	0,153	0,156	0,157	0,158	0,159	0,159	0,160	0,160	0,160	0,160	0.160	0,160
0,160	AOQL	*		0,428	0,540	0,682	0,861	1,086	1,373	1,725	2,134	2,715	3,395	4,285	5,343
	CRQ	*	•	0,125	0,157	0,200	0,249	0,314	0,397	0,495	0.623	0,789	0,975	1,214	1,501
	PRQ	*		*	0,192	0,195	0,197	0,198	0,199	0,199	0,199	0,200	0,200	0,200	0,200
0,2	AOQL	*		*	0.540	0,682	0,861	1,086	1,373	1,725	2,134	2,715	3,395	4.285	5,343
M. 4.	CRQ	*	•	•	0.157	0,200	0,249	0,314	0,397	0,495	0.623	0,789	0,975	1,214	1,501
	PRQ	•		*		0,240	0,244	0.246	0,247	0,248	0,249	0,249	0,250	0,250	0,250
0,25	AOQL	*		•	*	0,682	0,861	1,086	1,373	1,725	2,134	2,715	3,395	4,285	5,343
0 1 1	CRQ		•	*	•	0,200	0,249	0,314	0,397	0,495	0.623	0,789	0,975	1,214	1,501
	PRQ	*		•	,		0,303	0,307	0,310	0,312	0,313	0,314	0,314	0,314	0,315
0,315	AOQL	^		*		•	0,861	1,086	1,373	1,725	2,134	2,715	3,395	4,285	5,343
	CRQ	*	•	*	*	•	0,249	0,314	0,397	0,495	0,623	0,789	0,975	1,214	1,501
	PRQ	*		*	*	•	•	0.384	0,390	0,393	0,395	0,397	0,398	0,399	0,399
0,4	AOQL	•		•	•		*	1,086	1,373	1,725	2,134	2,715	3,395	4.285	5,343
	CRQ		٠	*	. *		•	0,314	0,397	0,495	0,623	0,789	0,975	1,214	1,501

PRQ.	AOQ для PRQ, CRQ					7 -		CR	% ,C						
%	и AOQL	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	*		*	*				0,481	0,487	0,491	0,494	0,496	0.498	0,499
0,5	AOQL	•		•					1,373	1,725	2,134	2,715	3,395	4,285	5,343
	CRQ	*	•	*	*	*			0,397	0,495	0,623	0,789	0,975	1,214	1,501
	PRQ			*	,		,			0,605	0,613	0,619	0,623	0,625	0,627
0,63	AOQL			*			*			1,725	2,134	2,715	3,395	4,285	5,343
	CRQ	*	٠	*	*	*	*			0,495	0,623	0,789	0,975	1,214	1,501
777	PRQ	*			*	•	,			•	0,767	0,779	0,786	0,791	0,794
8,0	AOQL	*		*			٠,	•			2,134	2,715	3,395	4,285	5,343
	CRQ	×	•	٠	*	•	•	•	•	٠	0,623	0,789	0,975	1,214	1,501
	PRQ						,			,		0,960	0,973	0,983	0,989
1,0	AOQL	*	٠	٠	*	•				•	•	2,715	3,395	4,285	5,343
	CRQ	*			•	•	•		•	•	•	0,789	0,975	1,214	1,501
	PRQ	*		*		•		*		•	٠	*	1,200	1,218	1,228
1,25	AOQL	*				•	•	*		٠			3,395	4,285	5,343
	CRQ	*	•	*		•		•			•		0,975	1,214	1,501
	PRQ	*			*	*		*	,	*	*		,	1,535	1,556
1,6	AOQL	*	•	*	*				•	•				4,285	5,343
	CRQ	*	*		*	*	•		•	•		•	•	1,214	1,501
	PRQ	*	•									,	,		1,918
2,0	AOQL	*							•	•		•	•	,	5,343
	CRQ	*	٠	*	*	*	٠		*		*	*		*	1,501

T а б л и ц а 23 — Средний выходной уровень несоответствий (AOQ) в процентах для планов контроля числа несоответствий с $\alpha \le 5$ % и $\beta \le 10$ %

PRQ.	АОQ для						74		CRQ. %							
%	PRQ, CRQ uAOQL	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	0,096	0,097	0,098	0,099	0,099	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100
0,1	AOQL	0,262	0,335	0,421	0,526	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	0,125	0,160	0,200	0,250	0,314	0,400	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ		0,120	0,122	0,123	0,124	0,124	0,124	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125
0,125	AOQL		0,335	0,421	0,526	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ		0,160	0,200	0.250	0,314	0,400	0,497	0.627	0,794	0.988	1,232	1,547	1,904	2,362	2,935

ΓΟCT P 50779.81-2018

Продолжение таблицы 23

PRQ.	АОО для								CRQ, %		-				1	. = 1
%	PRQ, CRQ и AOQL	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ			0,153	0,155	0,157	0,158	0,159	0.159	0,159	0,160	0,160	0,160	0,160	0,160	0,160
0,160	AOQL			0,421	0,526	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ			0,200	0,250	0,314	0,400	0,497	0,627	0,794	0.988	1,232	1,547	1,904	2,362	2,935
	PRQ	•	•	٠	0,192	0,194	0,196	0,198	0,198	0,199	0,199	0,200	0,200	0,200	0,200	0,200
0,2	AOQL	٠	*		0,526	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
12.	CRQ	•	*		0,250	0,314	0,400	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ		•			0,240	0,243	0,246	0,247	0,248	0.249	0,249	0,250	0,250	0,250	0,250
0,25	AOQL		*			0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ			•		0,314	0,400	0,497	0.627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ		•	•	•		0,302	0,306	0,309	0,311	0,313	0,313	0,314	0,314	0,315	0,315
0,315	AOQL	•	•	•	•	٠	0.845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	•	•	٠	٠	•	0,400	0,497	0,627	0,794	0.988	1,232	1,547	1,904	2,362	2,935
	PRQ	•		•			•	0,383	0,389	0,393	0,395	0,397	8,00	0,399	0,399	0,399
0,4	AOQL		•	•			•	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	•	•	٠	٠	•	•	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ			•		,			0,479	0,486	0,491	0,494	0,496	0,498	0,498	0,499
0,5	AOQL	•		•		•	•		1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	•	•	٠	•	٠	•	•	0,627	0,794	0.988	1,232	1,547	1,904	2,362	2,935
	PRQ	٠	٠	٠		*				0,604	0,613	0,619	0,623	0,625	0,627	0,628
0,63	AOQL	٠		•	•		•		•	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	٠		٠	•	*	•	٠	٠	0,794	0.988	1,232	1,547	1,904	2,362	2,935
	PRQ	•			٠	•	٠				0,766	0,777	0,785	0,790	0,794	0.796
8,0	AOQL		•		•				•		2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	*	*	•	•		. •	٠	•	٠	0.988	1,232	1,547	1,904	2,362	2,935
	PRQ			•	•	٠	•	•	•		•	0,958	0,972	0,982	0,988	0,992
1,0	AOQL	•	•	•	•	•	•	•		٠	٠	2,621	3,317	4,152	5,147	6,502
	CRQ	*	•	**	*	*		•	•	,	•	1,232	1,547	1,904	2,362	2,935
15.5	PRQ	•	•	•	•		•	•	•		•		1,198	1,215	1,227	1,235
1,25	AOQL	•	•		•	•				•	•	•	3,317	4,152	5,147	6,502
	CRQ	*	•	٠	•		•	•	٠	•	٠	٠	1,547	1,904	2,362	2,935
	PRQ	•				•		•			•			1,531	1,553	1,570
1,6	AOQL	•		•	•	•				•	•			4,152		6,502
	CRQ	•	•	٠	•		•		•	•	•	•	•	1,904	2,362	2,935
1.7.1	PRQ	•	•		•	•		•		•	•			•	1,912	1,943
2,0	AOQL	•				٠		•	•	•	•				5,147	6,502
	CRQ	*	•	٠	•	*	•	•	•	•	٠	•	•	•	2,362	2,935

PRQ.	AOQ для PRQ, CRQ								CRQ, %							
%	и AOQL	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ		•	•		•	•		*	•			•	•		2,393
2,5	AOQL	٠	•			٠	٠		٠	٠		•			٠	6,502
	CRQ						٠		٠	٠				٠	14	2,935

Та блица 24 — Средний выходной уровень несоответствий (AOQ) в процентах для планов контроля числа несоответствий с α \leq 10 % и β \leq 10 %

PRQ.	АОО для								(RQ. 9								
%	PRQ, CRQ MADQL	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	0,091	0,094	0,096	0,097	0,098	0,099	0,099	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100	0,100
0,1	AOQL	0,168	0,210	0,262	0,335	0,421	0,526	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	0,080	0,100	0,125	0,160	0,200	0,250	0,314	0,400	0,497	0,627	0,794	889,0	1,232	1,547	1,904	2,362	2,935
	PRQ		0,113	0,117	0,120	0,122	0,123	0,124	0,124	0,124	0,125	0,125	0,125	0,125	0,125	0,125	0,125	0,125
0,125	AOQL	٠	0,210	0,262	0,335	0,421	0,526	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	٠	0,100	0,125	0,160	0,200	0,250	0,314	0,400	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ			0,145	0,150	0,153	0,155	0,157	0,158	0,159	0,159	0,159	0,160	0,160	0,160	0,160	0,160	0,160
0,160	AOQL	٠		0,262	0,335	0,421	0,526	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	٠	*	0,125	0,160	0,200	0,250	0,314	0,400	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ			*	0,182	0,187	0.192	0,194	0,196	0,198	0,198	0,199	0,199	0,200	0,200	0,200	0,200	0,200
0,2	AOQL	٠		٠	0,335	0,421	0,526	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	*	•	٠	0,160	0,200	0,250	0,314	0,400	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ			٠	٠	0,227	0,234	0,240	0,243	0,246	0,247	0,248	0,249	0,249	0,250	0,250	0,250	0,250
0,25	AOQL	•	•	٠	٠	0,421	0,526	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	٠	•	*	٠	0,200	0,250	0,314	0,400	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	•		٠		٠	0,286	0,295	0,302	0,306	0,309	0,311	0,313	0,313	0,314	0,314	0,315	0,315
0,315	AOQL	٠	•		٠	٠	0,526	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	٠	•	٠	٠	٠	0,250	0,314	0,400	0,497	0,627	ō,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	٠	•		٠	٠	٠	0,362	0,375	0,383	0,389	0,393	0,395	0,397	0,398	0,399	0,399	0,399
0,4	AOQL	٠	•	*	٠	٠	٠	0,661	0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	•	٠	•		,	•	0,314	0,400	0,497	0,627	0,794	889,0	1,232	1,547	1,904	2,362	2,935
	PRQ	•		•	•	•	٠	•	0,455	0,469	0.479	0,486	0,491	0,494	0,496	0,498	0,498	0,499
0,5	AOQL					•			0,845	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ		٠	•	•	*	•	•	0,400	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935

Окончание таблицы 24

PRQ.	АОО для			- 71					9	CRQ, 9	6		, -	Ţ				
%	PRQ, CRQ u AOQL	0,8	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	٠	•	٠	٠	٠	•	٠	٠	0,572	0,590	0,604	0,613	0,619	0,623	0,625	0,627	0,628
0,63	AOQL	•	٠		٠		٠.		٠	1,052	1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
1 166	CRQ	•	٠	٠	٠		٠	٠	٠	0,497	0,627	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	•			,						0.724	0,750	0,766	0,777	0,785	0,790	0,794	0,796
8,0	AOQL	٠	*	٠	٠	٠	٠	٠	٠		1,321	1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRO	٠	٠	٠	٠	•	٠	٠	٠	•	0,627	0.794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ					•	٠	٠	•		٠	0,908	0,938	0,958	0,972	0,982	0,988	0,992
1,0	AOQL	•	*		٠	•	٠	•	٠	٠		1,678	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	٠	,	•	*	•	•	•	٠	٠	•	0,794	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ	•	•	٠	٠	٠	•	•	٠			٠	1,136	1,171	1,198	1,215	1,227	1,235
1,25	AOQL	٠	٠	٠	٠	٠	•	٠	٠	•		٠	2,108	2,621	3,317	4,152	5,147	6,502
	CRQ	٠	٠	•	٠	•	•	٠	٠	٠	٠	٠	0,988	1,232	1,547	1,904	2,362	2,935
	PRQ			•	•	•		٠	٠	•				1,447	1,497	1,531	1,553	1,570
1,6	AOQL	•			•				٠	٠				2,621	3,317	4,152	5,147	6,502
	CRQ	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠	1,232	1,547	1,904	2,362	2,935
	PRQ	٠		*	٠	٠		•	٠	•					1,812	1,872	1,912	1,943
2,0	AOQL	•		٠	٠	٠	٠	٠	٠	•	٠	٠			3,317	4,152	5,147	6,502
	CRQ	٠	•	*	٠	*	•	•	٠	٠	•	٠	٠	٠	1,547	1,904	2,362	2,935
	PRQ	•			•	٠			٠				-			2,267	2,337	2,393
2,5	AOQL	*	٠	*	٠	٠	,		٠		٠		٠	•		4,152	5,147	6,502
	CRQ	٠	٠	٠	٠	٠	,	٠	٠	•	•	٠	٠	•	٠	1,904	2,362	2,935
	PRQ	٠	•			•	٠	٠	٠		٠	٠				*	2,847	2,947
3,15	AOQL	•		٠	٠	•	٠	•	٠	٠	•	٠	٠	•	*	٠	5,147	6,502
	CRQ	•	•	٠	*	•	•	٠	٠	٠	٠		*	•	٠	٠	2,362	2,935
	PRQ	•	•		•	٠	•									٠	٠	3,613
4,0	AOQL	٠	•	٠		•	•	•	٠					•		٠.		6,502
	CRQ	•	٠		٠	•	,	٠	٠	٠	٠	٠	•	٠	٠	٠	•	2,935

Таблица 25 — Средние объемы выборки (ASSI) для планов контроля доли несоответствующих единиц продукции, усеченный контроль с α \leq 5 % и β \leq 5 %

PRQ.	AOQ для							CRO	2. %		7 77			1	
%	PRQ, CRQ и AOQL	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	223	175	137	106	83,4	65,9	51,8	40,1	31,7	24,5	18,3	15,1	11,1	9,1
0,1	AOQL	233	186	149	118	92,4	73,7	58,2	45,5	36,0	28,6	21,9	17,3	13,5	10,5
	CRQ	119	95,5	76,3	60,6	47,8	38,2	30,3	23,9	19,1	15,3	11,9	9,6	7,6	6,1
	PRQ		178	139	108	84.3	66,5	52,2	40.4	31,8	24,6	18,4	15,2	11,1	9,1
0,125	AOQL	*	186	149	118	92,4	73,7	58,2	45.5	36,0	28,6	21,9	17,3	13,5	10,5
	CRO	*	95,5	76,3	60,6	47,8	38,2	30,3	23,9	19,1	15,3	11,9	9,6	7,6	6,1
642	PRQ	*		141	110	85,5	67,3	52,7	40.7	32,1	24,8	18,5	15,2	11,2	9,1
0,160	AOQL	*	•	149	118	92,4	73,7	58,2	45,5	36,0	28,6	21,9	17,3	13,5	10,5
	CRQ	*	•	76,3	60,6	47,8	38,2	30,3	23,9	19,1	15,3	11,9	9,6	7,6	6,1
	PRQ	*		*	112	86,7	68,2	53,2	41,1	32,3	24,9	18,6	15,3	11,2	9,1
0,2	AOQL	•		*	118	92,4	73,7	58,2	45.5	36,0	28,6	21,9	17,3	13,5	10,5
	CRQ	*	٠	*	60,6	47,8	38,2	30,3	23,9	19,1	15,3	11,9	9.6	7,6	6,1
	PRQ	•		•		88,0	69,1	53,9	41,5	32,6	25,1	18,8	15,4	11,3	9,1
0,25	AOQL	*	•	*	*	92,4	73,7	58,2	45,5	36,0	28,6	21,9	17,3	13,5	10,5
	CRQ	•	•	٠		47.8	38,2	30,3	23,9	19,1	15,3	11,9	9,6	7,6	6,1
	PRQ	*	•	*	*		70,2	54,7	42,0	32,9	25,4	18,9	15,4	11,4	9,2
0,315	AOQL	•	•		•		73,7	58,2	45,5	36,0	28,6	21,9	17,3	13,5	10,5
	CRQ	*	*	*	*	*	38,2	30,03	23,9	19,1	15,3	11,9	9.6	7,6	6,1
	PRQ			*	*		*	55,5	42,7	33,4	25,7	19,2	15,6	11,5	9,2
0,4	AOQL	*		•	*	•		58,2	45,5	36,0	28,6	21,9	17,3	13,5	10.5
	CRQ	*		•		•	•	30,3	23,9	19,1	15,3	11,9	9,6	7,6	6,1
1-7-	PRQ	^	,		*				43,3	33,8	26,1	19,4	15,7	11,6	9,3
0,5	AOQL	•							45,5	36,0	28,6	21,9	17,3	13,5	10,5
- /	CRQ	*	٠	٠	*	•	•	•	23,9	19,1	15,3	11,9	9,6	7,6	6,1
	PRQ						•			34,3	26,5	19,7	15,8	11,7	9,3
0.63	AOQL	*		•	•	•	•	•		36,0	28,6	21,9	17,3	13,5	10.5
	CRQ	*		*	•		٠	•	•	19,1	15,3	11,9	9,6	7,6	6,1
	PRQ	*									27,0	20,1	16,0	11,8	9,4
8,0	AOQL	*	•	`	*			*			28,6	21,9	17,3	13,5	10,5
	CRQ						•		•	•	15,3	11,9	9,6	7,6	6,1
	PRQ	*		`								20,4	16,2	12,0	9,5
1,0	AOQL	*										21,9	17,3	13,5	10,5
	CRQ	*	•		*		•	•	•	,	•	11,9	9,6	7,6	6,1

Окончание таблицы 25

PRQ.	АОО для							CRO	2, %						
%	PRQ, CRQ u AOQL	1,6	2,0	2,5	3,15	4,0	5,0	6,3	0,8	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ			*	*	٠					Υ.	22,6	16,4	12,2	9,6
1,25	AOQL									,		22,9	17,3	13,5	10,
	CRQ	*	٠	*	*	٠						12,0	9.6	7,6	6,1
	PRQ		•	*	. *								18,1	12,5	9,7
1,6	AOQL			*		٠							18,3	13,5	10.
	CRQ	*	٠	*			*			٠			9,6	7,6	6,1
	PRQ	*			*	•					*	*	•	13,2	9,8
2,0	AOQL	*				•	٠,							13,6	10,
	CRQ	*			*	•								7,7	6,1
	PRQ													.*	10,0
2,5	AOQL	*		٠	*	•								*	10.
	CRQ	*				•	٠,						*		6,1

Таблица 26 — Средние объемы выборки (ASSI) для планов контроля доли несоответствующих единиц продукции, усеченный контроль с α \leq 5 % и β \leq 10 %

DDO 0	АОО для								CRQ. %							
PRQ. %	PRQ, CRQ #AOQL	1,25	1.6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16.0	20,0	25,0	31,5
, C , 1 ³	PRQ	226	172	136	106	82,6	64,4	51,1	39,5	30,9	24,5	19,3	14,2	11,1	9,1	7,0
0,1	AOQL	239	187	149	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13.9	10,9	8,5
	CRQ	145	113	90,9	72,7	57,6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
2 7 7 7	PRQ		175	138	108	83,8	65,2	51,6	39,8	31,1	24,7	19,4	14,3	11,2	9,1	7,1
0,125	AOQL		187	149	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	•	113	90,9	72,7	57,6	45.4	36,4	28,8	22,7	18,2	14,6	11.3	9,1	7,3	5,8
Trond	PRQ	•		141	110	85,3	66,1	52,2	40,3	31,3	24,8	19,5	14,4	11,2	9,1	7,1
0,160	AOQL	٠	•	149	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
477	CRQ	•		90,9	72,7	57,6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	•	•		112	86,9	67,2	52,9	40,7	31,6	25,0	19,6	14,5	11,3	9,1	7,1
0,2	AOQL		٠	*	119	94,2	74.0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ			*	72,7	57,6	45.4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ		٠	*		88,5	68,3	53,7	41,3	32,0	25,3	19,8	14,6	11,3	9,2	7,1
0,25	AOQL			*	•	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	٠	*	*	57,6	45.4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8

PRQ.	АОО для				<u>; </u>				CRQ, %							
%	PRQ, CRQ и AOQL	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ			*		*	69,6	54,6	42,0	32,4	25,5	20,0	14,7	11,4	9,2	7,1
0,315	AOQL				•	•	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
2.44	CRQ	٠			•	*	45.4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
75	PRQ		•	*	,	*	•	55,7	42,8	33,0	25,9	20,2	14,9	11,5	9,3	7,2
0,4	AOQL	•		•		•		58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
h Ta	CRQ	•	*	*			•	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	*			•	•	43,7	33,5	26,3	20,5	15,1	11,7	9,3	7,2
0,5	AOQL	•		*	•			٠	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
. 1 1 1	CRQ	*	*	*	*		•		28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ			*						34,2	26,7	20,8	15,3	11,8	9,4	7,2
0,63	AOQL	•		*				•		36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	•	٠	*	,	•	•	*	•	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ		•	*	٠	*			*	•	27,2	21,2	15,6	12,0	9,5	7,3
0,8	AOQL		٠	*	٠			*	•	*	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	•	٠	•	٠		•	*	•	•	18,2	14,6	11,3	9,1	7,3	5,8
AFE	PRQ		•	*		*	•	*			•	21,5	15,9	12,2	9,6	7,4
1,0	AOQL			*	•			*		•	*	23,0	17,7	13,9	10,9	8,5
	CRQ	•	٠	*	٠	•	*	*		•	*	14,6	11,3	9,1	7,3	5,8
1.2	PRQ			4		*		*	•	*	•	*	16,2	12.4	9,8	7,5
1,25	AOQL			•			•	*			*		17,7	13,9	10,9	8,5
	CRQ		٠	*	•	*		*	•	,	*	•	11,3	9,1	7,3	5,8
	PRQ		*	•			•	•					*	12,7	9,9	7,6
1,6	AOQL			•			•	*		•	*	*	*	13,9	10,9	8,5
	CRQ	•	,	*	٠	*	•	*	•	,	*	•	*	9,1	7,3	5,8
1	PRQ	•	•	•				*						17,0	10,1	7,7
2,0	AOQL	•		*			•	*		•	•	•		17.0	10,9	8,5
	CRQ	•	•	*	•	*	*	*	•	*	*	٠	*	9,4	7,3	5,8
	PRQ			*	•						•				*	7,8
2,5	AOQL			*			•	*		*	*	•		•		8,5
	CRQ	•	•	•	•		•		•	•			•		*	5,8
5.00	PRQ		•			-		•		•	•					8,7
3,15	AOQL	•		*		•		*			*		*	•	*	9,0
	CRQ	•	*	•	*	*		*	•	•	*	•	*	•	*	5,9

Таблица 27 — Средние объемы выборки (ASSI) для планов контроля доли несоответствующих единиц продукции, усеченный контроль с α \leq 10 % и β \leq 10 %

PRQ.	АОО для								(CRQ, 9	p		I .					
%	PRQ, CRQ и AOQL	0,8	1.0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	367	288	226	172	136	106	82,6	64,4	51,1	39,5	30,9	24,5	19,3	14,2	11,1	9,1	7.0
0,1	AOQL	374	299	239	187	149	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	227	182	145	113	90,9	72,7	57.6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9.1	7,3	5,8
	PRQ	*	293	230	175	138	108	83,8	65,2	51,6	39,8	31,1	24,7	19,4	14,3	11,2	9,1	7,1
0,125	AOQL	•	299	239	187	149	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	182	145	113	90,9	72,7	57,6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ		•	236	179	141	110	85,3	66,1	52,2	40,3	31,3	24,8	19,5	14,4	11,2	9,1	7,1
0,16	AOQL		*	240	187	149	119	94,2	74.0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	*	146	113	90,9	72,7	57,6	45.4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5.8
TTA	PRQ	•	*	*	183	144	112	86,9	67,2	52,9	40,7	31,6	25,0	19,6	14,5	11,3	9,1	7,1
0,2	AOQL	•	*	*	187	149	119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	*	٠	114	90,9	72,7	57,6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
7-7-1	PRQ	•	•	*	*	146	114	88,5	68,3	53,7	41,3	32,0	25,3	19,8	14,6	11,3	9,2	7,1
0,25	AOQL	*	*	٠	*	149	119	94,2	74.0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	•	٠	*	*	90,9	72,7	57,6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
	PRQ	*	*	•	*	٠	117	90,3	69,6	54,6	42,0	32,4	25,5	20,0	14,7	11,4	9,2	7,1
0,315	AOQL	•	•	*	*		119	94,2	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*			*	٠	72,7	57,6	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
TACE	PRQ	*	*	*	*		•	92,6	71,0	55,7	42,8	33,0	25,9	20,2	14,9	11,5	9,3	7,2
0,4	AOQL	*	*	•	*			94,4	74.0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	•	*	*	*	٠	•	57.8	45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
17.	PRQ	•		*	•		•		72,3	56,7	43,7	33,5	26,3	20,5	15,1	11,7	9,3	7,2
0,5	AOQL	•			•		•	•	74,0	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	•	٠	*	*		٠		45,4	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
T.L.	PRQ						•			57,7	44,6	34,2	26,7	20,8	15,3	11,8	9,4	7,2
0,63	AOQL	•		*				•	*	58,9	46,6	36,4	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ	*	*	*	*	*	•		•	36,4	28,8	22,7	18,2	14,6	11,3	9,1	7,3	5,8
1 - J	PRQ		•					•	•		45,7	34,9	27,2	21,2		12,0	9,5	7.3
0,8	AOQL		•			•		'					1372	23,0	5 2 57			17.7
	CRQ		^	*			,	•	•		_	_		14,6		_	7,3	5,8
4.5	PRQ	*			•			•	•		*		10.11	21,5			7.77	7,4
1,0	AOQL			*				•		•				23,0		114-11		8,5
	CRQ			*		*	•	•	•		*	22,7	18,2	14,6	11,3	9,1	7,3	5,8

PRQ.	АОО для									RQ. 9	6							
%	PRQ, CRQ u AOQL	8,0	1,0	1,25	1,6	2,0	2,5	3,15	4.0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	*	*		*		•		*	•	*	•	28,2	21,9	16,2	12,4	9,8	7,5
1,25	AOQL				*		٠	*			*	*	29,0	23,0	17,7	13,9	10,9	8,5
	CRQ		*		٠		٠	*	¥	,	*		18,2	14,6	11,3	9,1	7,3	5,8
	PRQ		•		*		•		•			*	•	22,4	16,6	12,7	9,9	7,6
1,6	AOQL		٠		*	٠	,		٠			*	٠	23,0	17,7	13,9	10,9	8,5
	CRQ	*	*	٠	٠	٠	٠	٠	٠	٠	*	*		14,6	11,3	9,1	7,3	5,8
• -	PRQ	*	*	*	*					•		*	*		17,0	13,0	10,1	7,7
2,0	AOQL		*				٠		٠	•	*	*	*	٠	17,7	13,9	10,9	8,5
	CRQ				٠	•	٠	٠			*				11,3	9,1	7,3	5,8
	PRQ		*	*	٠	٠			•		х.	*	. *	•		13,3	10,3	7,8
2,5	AOQL	*	٠	*	٠	•	٠	٠	•		*		*		٠	13,9	10,9	8,5
	CRQ	•		*	٠	•	٠	•			*	*	*	•	*	9,1	7,3	5,8
	PRQ	•	*	*					•	•	*	*	٠	*	*	*	10,5	8,0
3,15	AOQL	*	٠		٠	٠			٠		*	*	*	٠	٠	*	10,9	8,5
	CRQ		*	*	٠	٠	٠			٠	*	*	*		*		7,3	5,8
	PRQ					*	*	•	*	*	*		*		*	*	*	8,1
4,0	AOQL		٠	*	*	٠	٠	*		•		•		٠	٠		٠	8,5
	CRQ	٠		٠	٠	*	,		٠		*		*		,		,	5,8

Таблица 28 — Средний объем выборки (ASSI) для планов контроля числа несоответствий, усеченный контроль с $\alpha \le 5$ % и $\beta \le 5$ %

PRQ.	АОО для							CRO	2. %			<i>y</i>			
%	PRQ, CRQ NAOQL	1,6	2,0	2,5	3,15	4,0	5,0	6,3	0,8	10.0	12,5	16,0	20,0	25,0	31,5
	PRQ	231	182	144	114	87,7	71,2	56,4	43,9	35,6	27,4	21,3	17,2	14,1	11,1
0,1	AOQL	238	190	152	121	94,6	76,4	60,7	47,7	38,4	30,3	23,7	19,1	15,4	12,2
	CRQ	119	95,0	75,9	60,0	47.1	37,6	29,6	23,2	18,4	14,5	11,2	8.8	6,9	5,3
	PRQ	*	184	146	115	88,5	71,7	56,7	44.1	35,7	27,5	21,3	17,2	14,1	11,1
0,125	AOQL	*	190	152	121	94,6	76,4	60,7	47,7	38,4	30,3	23,7	19,1	15,4	12,2
	CRQ		95.0	75,9	60,0	47.1	37,6	29,6	23,2	18,4	14,5	11,2	8,8	6,9	5,3
	PRQ			148	116	89,5	72,3	57,1	44.4	35,9	27,6	21,4	17,3	14,2	11,1
0,160	AOQL	•		152	121	94,6	76,4	60,7	47.7	38,4	30,3	23,7	19,1	15,4	12,2
	CRQ		٠	75,9	60,0	47.1	37,6	29,6	23,2	18,4	14,5	11,2	8,8	6,9	5,3

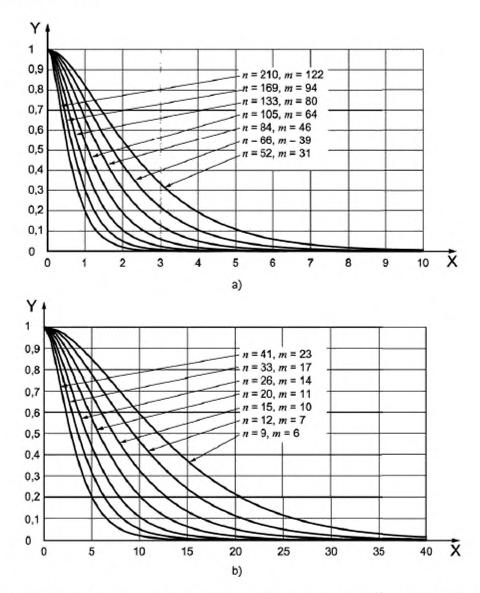
Окончание таблицы 28

PRQ.	АОО для					_		CRO	2, %						
%	PRQ, CRQ и AOQL	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8.0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ			٠	117	90,5	73,0	57,6	44,7	36,1	27,8	21,5	17,3	14,2	11,1
0,2	AOQL				121	94,6	76,4	60,7	47.7	38,4	30,3	23,7	19,1	15,4	12,2
100	CRQ			•	60,0	47,1	37,6	29,6	23,2	18,4	14,5	11,2	8.8	6,9	5,3
	PRQ	*		,	*	91,6	73,7	58,1	45,1	36,3	28,0	21,6	17,4	14,2	11,2
0,25	AOQL					94,6	76,4	60,7	47,7	38,4	30,3	23,7	19,1	15,4	12,2
	CRQ	*		•	*	47.1	37,6	29,6	23,2	18,4	14,5	11,2	8,8	6,9	5,3
	PRQ	*	,	*			74,5	58,7	45,5	36,6	28,2	21,8	17,5	14,3	11,2
0,315	AOQL	*			. *	٠	76,4	60,7	47,7	38,4	30,3	23,7	19,1	15,4	12,2
	CRQ	*	٠		*	•	37,6	29,6	23,2	18,4	14,5	11,2	8,8	6,9	5,3
	PRQ	*	•		*	*	•	59,3	46,0	36,9	28,5	22,0	17,6	14,4	11,2
0,4	AOQL	*		•	*	*		60,7	47.7	38,4	30,3	23.7	19,1	15,4	12,2
	CRQ	*	٠	*	*	٠	•	29,6	23,2	18,4	14,5	11,2	8,8	6,9	5,3
	PRQ	*		*	*		•	•	46,5	37,2	28,7	22,2	17,7	14,4	11,3
0,5	AOQL	*		*	*		*	•	47,7	38,4	30,3	23.7	19,1	15,4	12,2
	CRQ	*	•	*	*	•	*	*	23,2	18,4	14,5	11,2	8,8	6,9	5,3
	PRQ	*		*			*			37,6	29,1	22,4	17,9	14,5	11,4
0,63	AOQL						•	•		38,4	30,3	23,7	19,1	15,4	12,2
	CRQ	•	•	*	*	•	*	*	1.	18,4	14,5	11,2	8.8	6,9	5,3
14.7	PRQ	•		,	•						29,4	22,7	18,1	14,7	11,5
0,8	AOQL	*									30,3	23,7	19,1	15,4	12,2
	CRQ	*			*	*	٠	*		•	14,5	11,2	8,8	6,9	5,3
144	PRQ	*		,	*					•	•	22,9	18,3	14,8	11,6
1,0	AOQL			`	*		•					23,7	19,1	15,4	12,2
	CRQ	*	•	,		•	•				•	11,2	8,8	6,9	5,3
	PRQ	•					•						18,5	14,9	11,7
1.25	AOQL	•				•	*			•	*	•	19,1	15,4	12,2
	CRQ	•	•	•		٠	•		*	*		•	8,8	6,9	5,3
1.72	PRQ	*			*	•	•	*		•			•	15,1	11,8
1,6	AOQL	*					*						*	15,4	12,2
	CRQ	*	*	*	*	*		*	*	*	•	•	*	6,9	5,3
	PRQ			`	*		*	*						^	11,9
2,0	AOQL	*	:					:		:		:	:		12,2
	CRQ	*				•		•	•	•	•	•	•	*	5,3

T а б л и ц а 29 — Средний объем выборки (ASSI) для планов контроля числа несоответствий, усеченный контроль с α \leq 5 % и β \leq 10 %

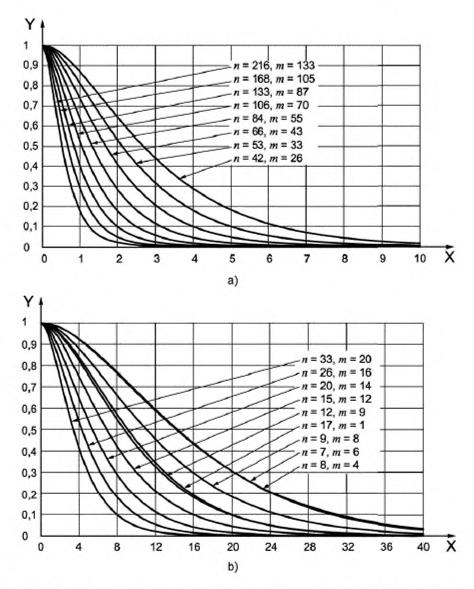
PRQ.	АОQ для		· ·	7-9	JE J	73.5			CRQ, %	,	- y 1				7 4	
%	PRQ, CRQ и AOQL	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ	237	182	145	115	90,0	71.4	56,6	44,1	34,7	28,4	22,3	17,2	14,1	11,1	9,0
0,1	AOQL	245	191	153	123	97,2	77.1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	146	114	91,0	72,7	57,5	45,2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ		184	147	116	90,9	71,9	57,0	44,3	34,8	28,5	22,3	17,2	14,1	11,1	9,1
0,125	AOQL		191	153	123	97,2	77.1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ		114	91,0	72,7	57,5	45,2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ			149	118	92,0	72,6	57,4	44,7	35,0	28,6	22,4	17,3	14,2	11,1	9,1
0,160	AOQL		,	153	123	97,2	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ		*	91,0	72,7	57,5	45.2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ		*	*	119	93,0	73,3	58,0	45,0	35,3	28,8	22,5	17,4	14,2	11,1	9,1
0,2	AOQL			*	123	97,2	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ		٠	*	72,7	57,5	45.2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ		٠	*	•	94,2	74.1	58,5	45,4	35,6	28,9	22,7	17,4	14,3	11,2	9,1
0,25	AOQL		•	*		97,2	77.1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ		*	*	•	57,5	45.2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ		•	*			74,9	59,2	45,9	35,9	29,1	22,8	17,5	14.3	11,2	9,1
0,315	AOQL	16.	*	*		*	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ		*	•	•	*	45,2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ	70	*	*		*		59,9	46,5	36,3	29,4	23,0	17,7	14,4	11,3	9,2
0,4	AOQL		*	•	•	•	•	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ			*	*	*	•	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
j. Ai	PRQ			•	•		•	•	47,1	36,7	29,7	23,2	17,8	14,5	11,4	9,2
0,5	AOQL		*	•		*		•	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ			*	•	•	•	*	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ	F	*					•	*	37,2	30,0	23,4	18,0	14,6	11,4	9,3
0,63	AOQL			*				•		38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ		•	*				•		22,2	17,7	14,0	10,8	8,5	6,7	5,2
17.7	PRQ							•			30,3	23,7		14,8	11,5	9,3
8,0	AOQL					•		•			31,1	24,7	19,3	15,6	12,5	10,0
	CRQ		•			*	•	•	•	•	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ			*	•	•	*	*		•	*	24,0	18,4	14,9	11,6	9,4
1,0	AOQL		*	*	,					*	*	24,7	19,3	15,6	12,5	10,0
	CRQ		٠	*	•	•	•	•	•	•	*	14,0	10,8	8,5	6,7	5,2

FOCT P 50779.81-2018


Окончание таблицы 29

PRQ.	АОО для								CRQ, %							
%	PRQ, CRQ u AOQL	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ		*	*		*	•	•			×	*	18,7	15,1	11,8	9,5
1,25	AOQL							*					19,3	15,6	12,5	10,
	CRQ		٠		٠	*		,					10,8	8,5	6,7	5,2
	PRQ			*	•						*			15,2	11,9	9,6
1,6	AOQL				٠	*		٠		٠				15,6	12,5	10,
	CRQ			*						٠		٠		8,5	6,7	5,2
	PRQ		*				•				*		*	•	12,1	9,7
2,0	AOQL			*					•				*		12,5	10,
	CRQ		•		٠					•	*	•	*	•	6,7	5,2
	PRQ			*			•			-			*		*	9,8
2,5	AOQL				•				•	•		•		•		10,
	CRQ			•			٠.									5,2

Таблица 30 — Средний объем выборки (ASSI) для планов контроля числа несоответствий, усеченный контроль с $\alpha \le 10$ % и $\beta \le 10$ %


PRQ,	АОО для								(RQ. 9	i.	7 7						
%	PRQ, CRQ u AOQL	8,0	1,0	1,25	6,1	2,0	2,5	3,15	4.0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
77.77	PRQ	378	299	237	182	145	115	90,0	71,4	56,6	44,1	34,7	28,4	22,3	17,2	14,1	11,1	9,0
0,1	AOQL	381	305	245	191	153	123	97,2	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	228	183	146	114	91,0	72,7	57,5	45.2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ		302	240	184	147	116	90,9	71,9	57,0	44,3	34,8	28,5	22,3	17,2	14,1	11,1	9,1
0,125	AOQL		305	245	191	153	123	97,2	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	•	183	146	114	91,0	72,7	57,5	45,2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6.7	5,2
	PRQ	*	*	242	187	149	118	92,0	72,6	57,4	44,7	35,0	28,6	22,4	17,3	14,2	11,1	9,1
0,160	AOQL	•	•	245	191	153	123	97,2	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	*	*	146	114	91,0	72,7	57,5	45,2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ	•	•	*	189	150	119	93,0	73.3	58,0	45,0	35,3	28,8	22,5	17,4	14,2	11,1	9,1
0,2	AOQL		*	٠	191	153	123	97,2	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ		*	*	114	91,0	72,7	57,5	45,2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ	*	*	*	*	152	120	94,2	74,1	58,5	45,4	35,6	28,9	22,7	17,4	14,3	11,2	9,1
0,25	AOQL	•	*	*	•	153	123	97,2	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	*	*	•	*	91,0	72,7	57,5	45,2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2

PRQ.	код для	1							9	CRQ, 9	6							
%	PRQ, CRQ и AOQL	8,0	1,0	1,25	1,6	2,0	2,5	3,15	4,0	5,0	6,3	8,0	10,0	12,5	16,0	20,0	25,0	31,5
	PRQ			*	*		122	95,3	74,9	59,2	45,9	35,9	29,1	22,8	17,5	14,3	11,2	9,1
0,315	AOQL		*				123	97,2	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	*				*	72,7	57,5	45,2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5.2
-	PRQ		*		*	•		96,4	75,8	59,9	46,5	36,3	29,4	23,0	17,7	14,4	11,3	9,2
0,4	AOQL	•	•	*	*			97,2	77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ			.*	*	•		57,5	45,2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
100	PRQ	*		*	*		•		76,5	60,6	47,1	36,7	29,7	23,2	17,8	14,5	11,4	9,2
0,5	AOQL		*	*	*	٠			77,1	61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	*	*	*		*			45.2	36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5.2
	PRQ	•	*	*						61,2	47,7	37,2	30,0	23,4	18,0	14,6	11,4	9,3
0,63	AOQL		*	*			*	•		61,6	48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	•	*	*	*	•	٠	•		36,0	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ	•	•	*	*						48,2	37,6	30,3	23,7	18,2	14,8	11,5	9,3
0,8	AOQL		*		*			•			48,6	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	*	•	*	*	*	•	•		*	28,4	22,2	17,7	14,0	10,8	8,5	6,7	5.2
	PRQ		*		•						*	38,0	30,6	24,0	18,4	14,9	11,6	9,4
1,0	AOQL	*	*	*	*			*		•	. *	38,4	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	*	*	*	*	•		*	•	٠	*	22,2	17,7	14,0	10,8	8,5	6,7	5,2
	PRQ	,	•	*	*						*		30,9	24,3	18,7	15,1	11,8	9,5
1,25	AOQL		*	*							^	*	31,1	24,7	19,3	15,6	12,5	10,0
	CRQ	*	*	*		٠	*		•		*		17,7	14,0	10,8	8,5	6,7	5.2
	PRQ	*	•								*		*	24,5	18,9	15,2	11,9	9,6
1,6	AOQL		*	*	*			•			*	*		24,7	19,3	15,6	12,5	10,0
	CRQ	*	*	*	*		٠	•	•	•	*	*	•	14,0	10,8	8,5	6,7	5,2
	PRQ		*	*							*	*	*	*	19,1	15,4	12,1	9,7
2,0	AOQL	*	*	*	*	•		•	*			*		*	19,3	15,6	12,5	10,0
	CRQ	*		*	*	*			,		*	•	*	•	10,8	8,5	6,7	5.2
	PRQ		•	*	*						*	*	•	•		15,6	12,2	9,8
2,5	AOQL	*	•	*						•	*	*	*	*	*	15,6	12,5	10,0
	CRQ	*	*	*	*		•			•	*	*	*	*	*	8,5	6,7	5,2
	PRQ		*	*	*				*	*	•	*	*	*	*	*	12,4	9,9
3,15	AOQL	*	*	*	*	•					*	*	*	*	*	•	12,5	10,0
	CRQ	*	•	*		٠	٠		*	*	*		*	•	*		6,7	5,2
	PRQ	•	•	*	*						•	*	•	*	*	*		10,0
4,0	AOQL	•	,	*	*							*			*	*		10,0
	CRQ	*	*	*	•	•					*	*	*	•	*	*	٠	5,2

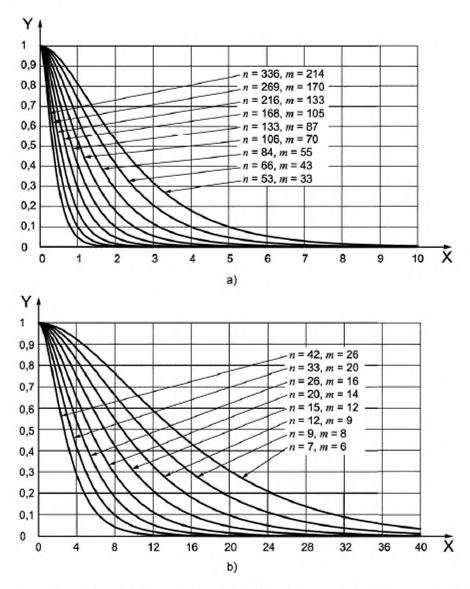

X — входной уровень несоответствий в процентах несоответствующих единиц продукции; Y — вероятность приемки

Рисунок 1 — Кривые оперативных характеристик для планов контроля доли несоответствующих единиц продукции с $\alpha \le 5 \%$ и $\beta \le 5 \%$

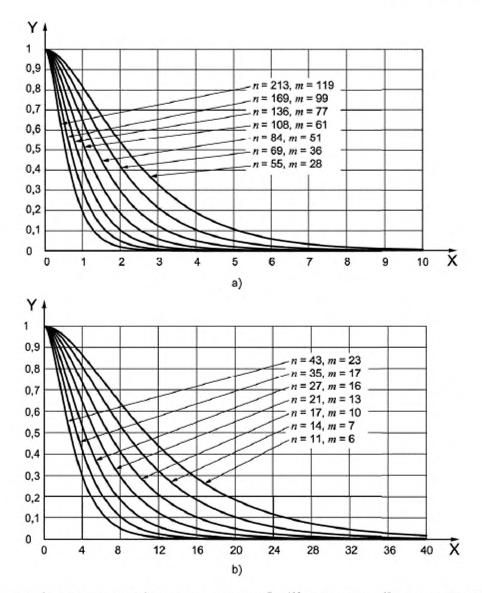

Х — входной уровень несоответствий в процентах несоответствующих единиц продукции; У — вероятность приемки

Рисунок 2 — Кривые оперативных характеристик для планов контроля доли несоответствующих единиц продукции с $\alpha \le 5 \%$ и $\beta \le 10 \%$

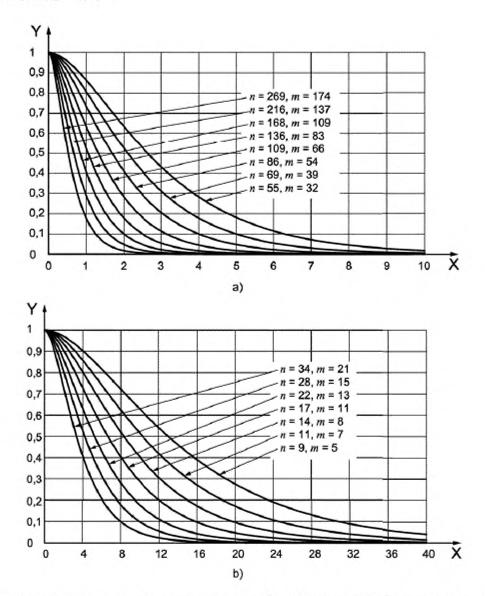

X — входной уровень несоответствий в процентах несоответствующих единиц продукции; Y — вероятность приемки

Рисунок 3 — Кривые оперативных характеристик для планов контроля доли несоответствующих единиц продукции с α \leq 10 % и β \leq 10 %

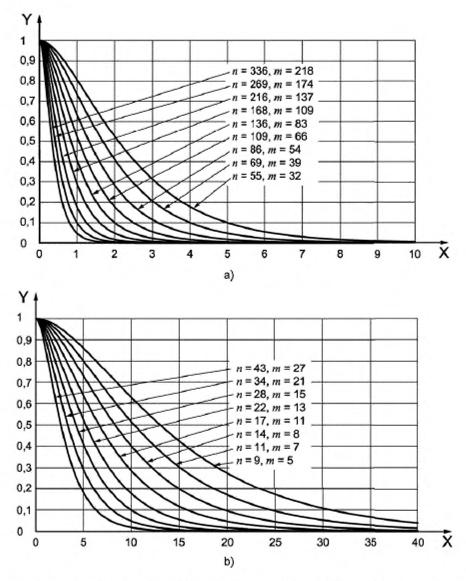

Х — входной уровень несоответствий в виде числа несоответствий на 100 единиц продукции; Y — вероятность приемки

Рисунок 4 — Кривые оперативных характеристик для планов контроля числа несоответствий с α \leq 5 % и β \leq 5 %

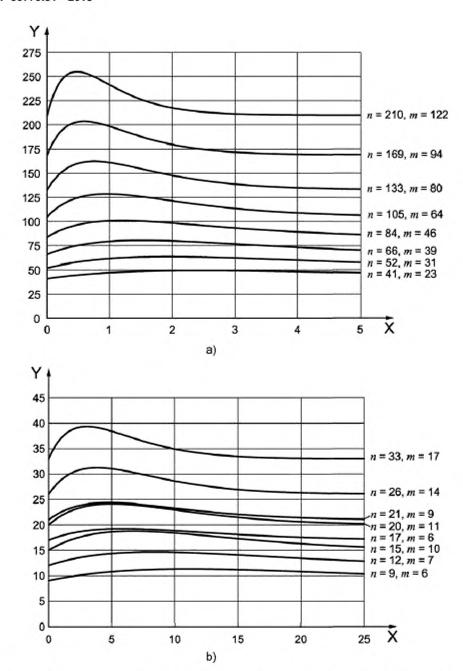

Х — входной уровень несоответствий в виде числа несоответствий на 100 единиц продукции; У — вероятность приемки

Рисунок 5 — Кривые оперативных характеристик для планов контроля числа несоответствий с α \leq 5 % и β \leq 10 %

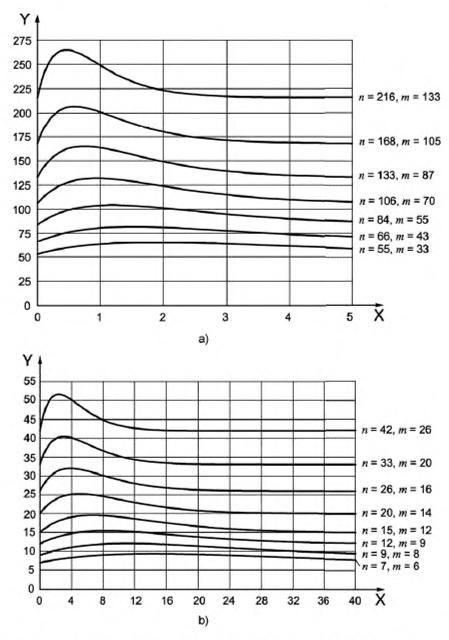

Х — входной уровень несоответствий в виде числа несоответствий на 100 единиц продукции; У — вероятность приемки

Рисунок 6 — Кривые оперативных характеристик для планов контроля числа несоответствий с $\alpha \le 10 \%$ и $\beta \le 10 \%$

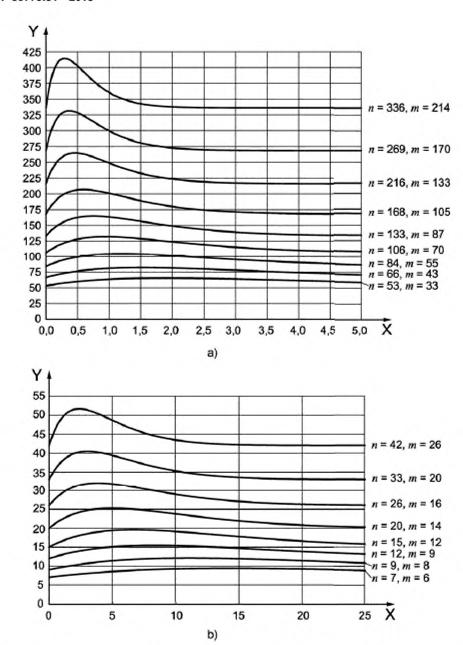

Х — входной уровень несоответствий в процентах несоответствующих единиц продукции; У — вероятность приемки

Рисунок 7 — Кривые среднего объема выборки для планов контроля доли несоответствующих единиц продукции, неусеченный контроль с α \leq 5 % и β \leq 5 %

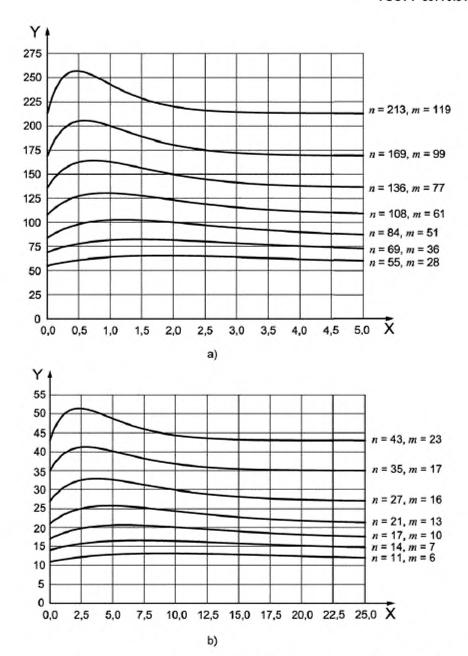

Х — входной уровень несоответствий в процентах несоответствующих единиц продукции; У — вероятность приемки

Рисунок 8 — Кривые среднего объема выборки для планов контроля доли несоответствующих единиц продукции, неусеченный контроль с α ≤ 5 % и β ≤ 10 %

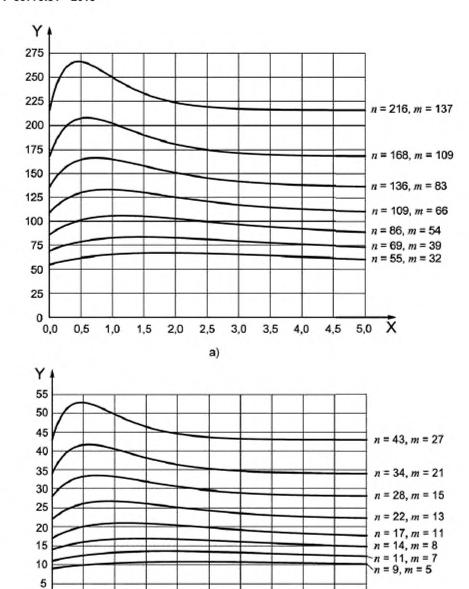

Х — входной уровень несоответствий в процентах несоответствующих единиц продукции, У — вероятность приемки

Рисунок 9 — Кривые среднего объема выборки для планов контроля доли несоответствующих единиц продукции, неусеченный контроль с α ≤ 10 % и β ≤ 10 %

Х — входной уровень несоответствий в виде числа несоответствий на 100 единиц продукции; У — вероятность приемки

Рисунок 10 — Кривые среднего объема выборки для планов контроля числа несоответствий, неусеченный контроль с α ≤ 5 % и β ≤ 5 %

X — входной уровень несоответствий в виде числа несоответствий на 100 единиц продукции; Y — вероятность приемки

b)

7,5

5,0

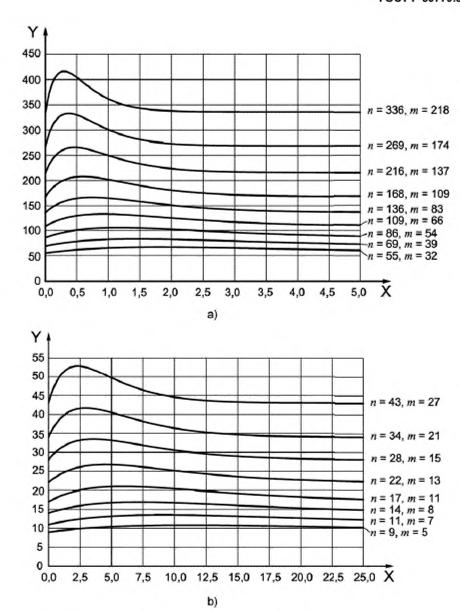
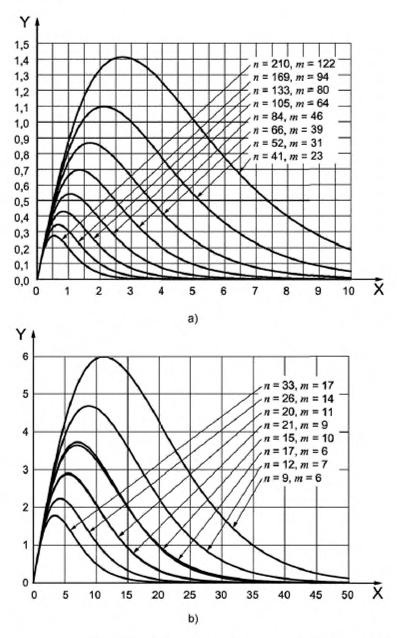

10,0 12,5 15,0 17,5 20,0 22,5 25,0 X

Рисунок 11 — Кривые среднего объема выборки для планов контроля числа несоответствий, неусеченный контроль с $\alpha \le 5$ % и $\beta \le 10$ %

0


0,0

2,5

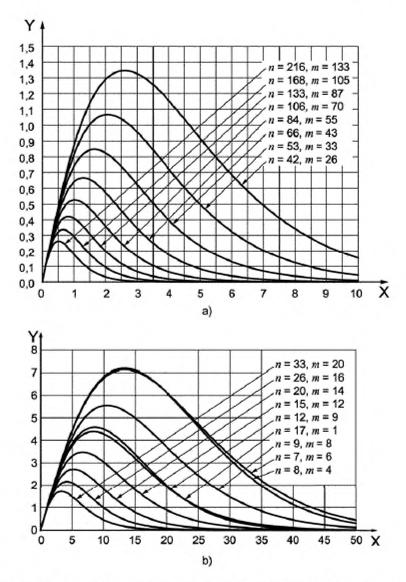

Х — входной уровень несоответствий в виде числа несоответствий на 100 единиц продукции; У — вероятность приемки

Рисунок 12 — Кривые среднего объема выборки для планов контроля числа несоответствий, неусеченный контроль с α ≤ 10 % и β ≤ 10 %

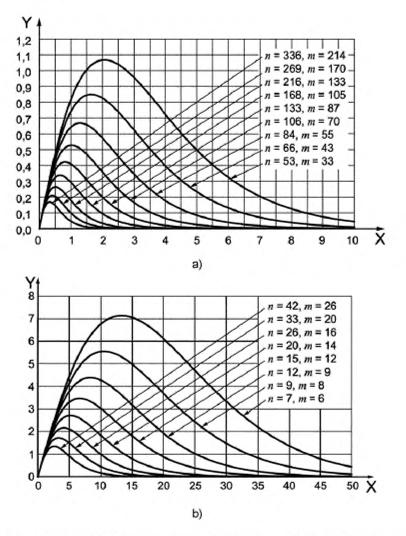

 X — входной уровень несоответствий в процентах несоответствующих единиц продукции; Y — средний выходной уровень несоответствий в процентах несоответствующих единиц продукции

Рисунок 13 — Кривые среднего выходного уровня несоответствий для планов контроля доли несоответствующих единиц продукции с α ≤ 5 %, β ≤ 5 %

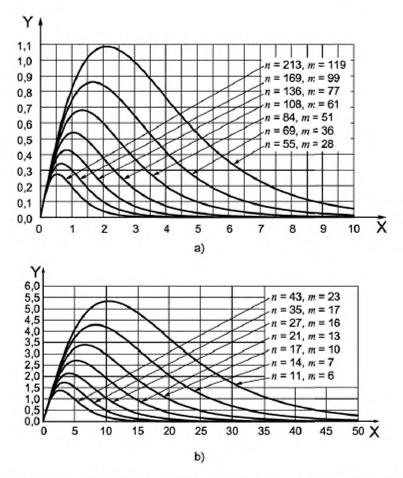

 X — входной уровень несоответствий в процентах несоответствующих единиц продукции; У — средний выходной уровень несоответствий в процентах несоответствующих единиц продукции

Рисунок 14 — Кривые среднего выходного уровня несоответствий для планов контроля доли несоответствующих единиц продукции с α ≤ 5 % и β ≤ 10 %

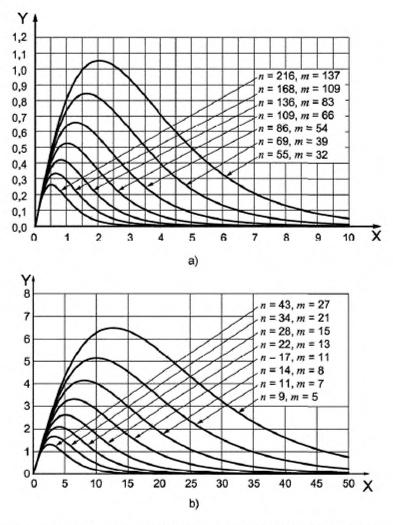

 X — входной уровень несоответствий в процентах несоответствующих единиц продукции; Y — средний выходной уровень несоответствий в процентах несоответствующих единиц продукции

Рисунок 15 — Кривые среднего выходного уровня несоответствий для планов контроля доли несоответствующих единиц продукции с α ≤ 10 % и β ≤ 10 %

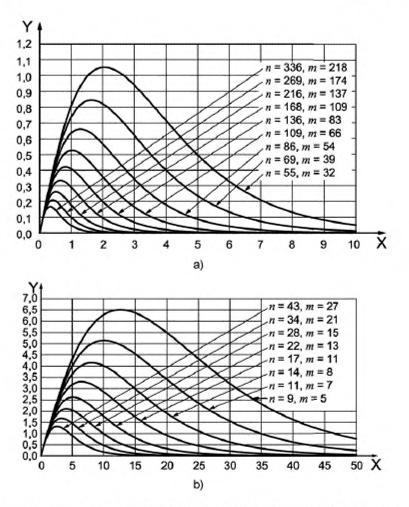

X — входной уровень несоответствий в виде числа несоответствий на 100 единиц продукции; У — средний выходной уровень несоответствий в виде числа несоответствий на 100 единиц продукции

Рисунок 16 — Кривые среднего выходного уровня несоответствий для планов контроля числа несоответствий с $\alpha \le 5$ % и $\beta \le 5$ %

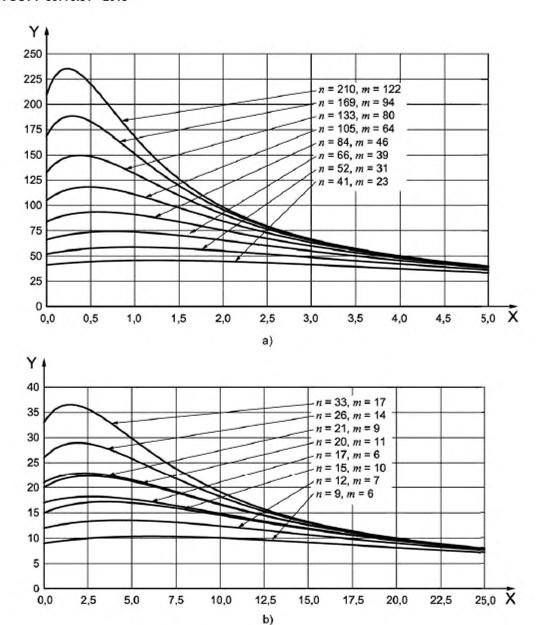

 X — входной уровень несоответствий в виде числа несоответствий на 100 единиц продукции; У — средний выходной уровень несоответствий в виде числа несоответствий на 100 единиц продукции

Рисунок 17 — Кривые среднего выходного уровня несоответствий для планов контроля числа несоответствий с α ≤ 5 % и β ≤ 10 %

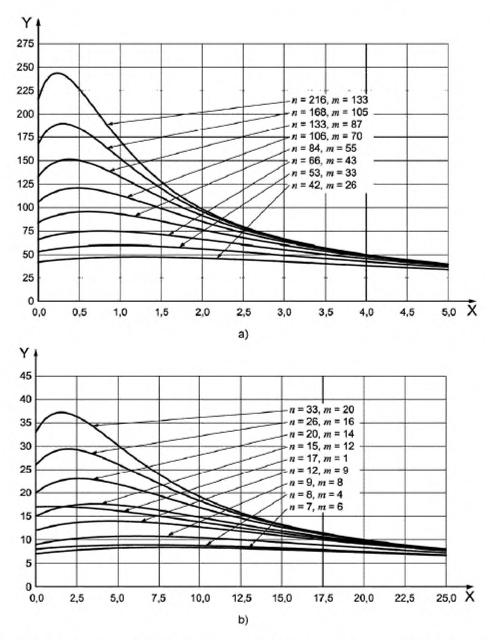

X — входной уровень несоответствий в виде числа несоответствий на 100 единиц продукции; У — средний выходной уровень несоответствий в виде числа несоответствий на 100 единиц продукции

Рисунок 18 — Кривые среднего выходного уровня несоответствий для планов контроля числа несоответствий с $\alpha \le 10 \%$ и $\beta \le 10 \%$

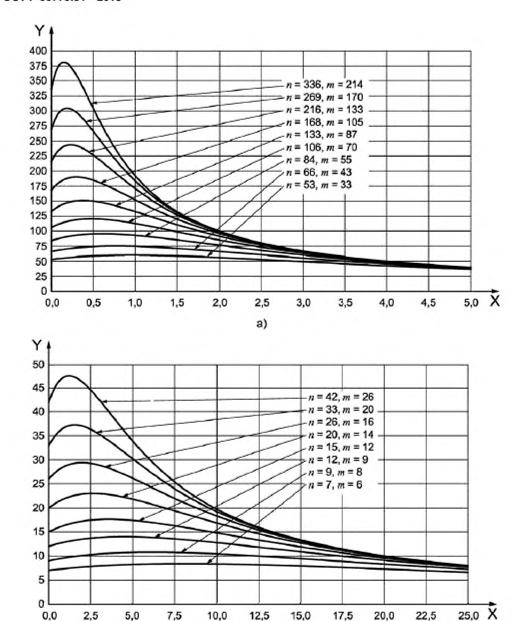

X — входной уровень несоответствий в процентах несоответствующих единиц продукции; Y — средний объем выборки

Рисунок 19 — Кривые среднего объема выборки для планов контроля доли несоответствующих единиц продукции, усеченный контроль с $\alpha \le 5$ % и $\beta \le 5$ %

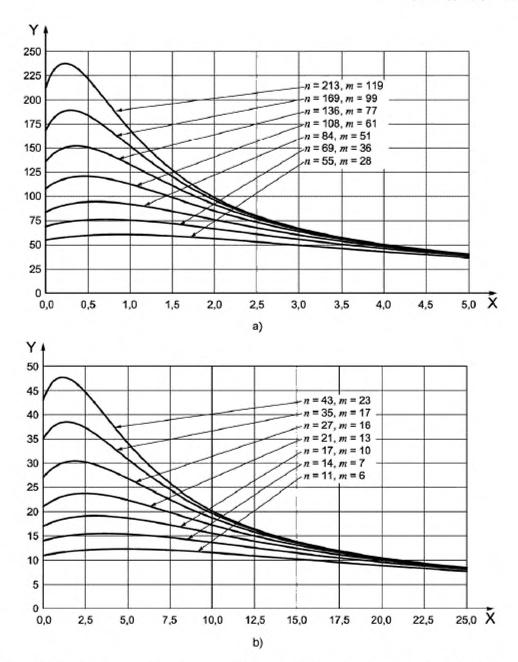

Х — входной уровень несоответствий в процентах несоответствующих единиц продукции; У — средний объем выборки

Рисунок 20 — Кривые среднего объема выборки для планов контроля доли несоответствующих единиц продукции, усвченный контроль с $\alpha \le 5 \%$ и $\beta \le 10 \%$

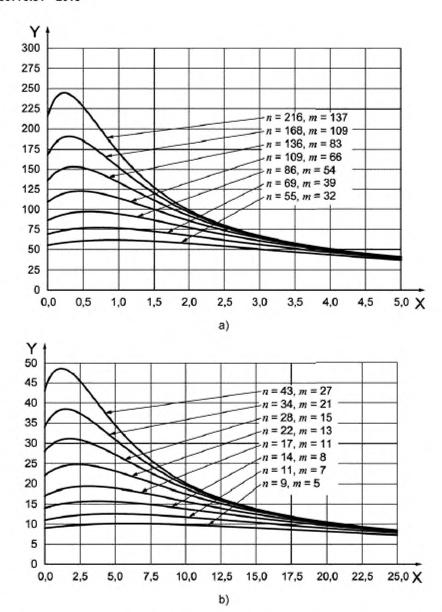

b)
 x — входной уровень несоответствий в процентах несоответствующих единиц продукции; Y — средний объем выборки

Рисунок 21 — Кривые среднего объема выборки для планов контроля доли несоответствующих единиц продукции, усеченный контроль с $\alpha \le 10 \%$ и $\beta \le 10 \%$

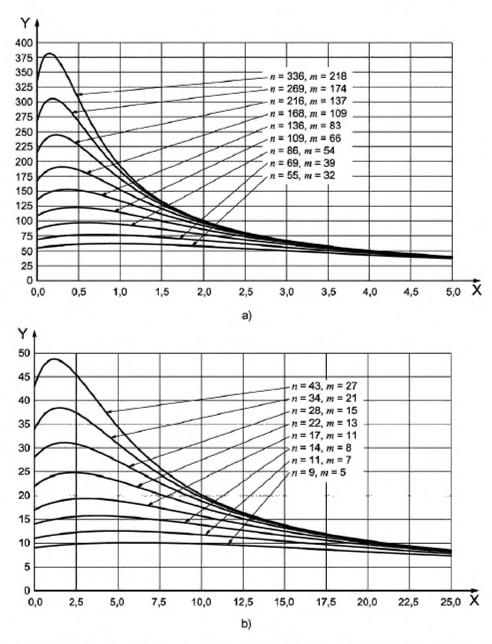

Х — входной уровень несоответствий в виде числа несоответствий на 100 единиц продукции; У — средний объем выборки

Рисунок 22 — Кривая среднего объема выборки для планов контроля числа несоответствий, усеченный контроль с $\alpha \le 5$ % и $\beta \le 5$ %

Х — входной уровень несоответствий в виде числа несоответствий на 100 единиц продукции; У — средний объем выборки

Рисунок 23 — Кривая среднего объема выборки для планов контроля числа несоответствий, усеченный контроль с $\alpha \le 5$ % и $\beta \le 10$ %

Х — входной уровень несоответствий в виде числа несоответствий на 100 единиц продукции; У — средний объем выборки

Рисунок 24 — Кривая среднего объема выборки для планов контроля числа несоответствий, усеченный контроль с $\alpha \le 10 \%$ и $\beta \le 10 \%$

Приложение А (справочное)

Теоретическое обоснование планов, таблиц и графиков

А.1 Выборочный контроль доли несоответствующих единиц продукции

А.1.1 Условные обозначения

 — риск поставщика α = 1 – P_n(n, m, p₁); номинальное значение риска поставщика; α_0 8 — риск потребителя β = P_a(n, m, p₂); β_0 номинальное значение риска потребителя; ď — количество несоответствующих единиц продукции (несоответствий) в первой выборке; n* средний объем выборки; $n_{\rm max}$ максимальный средний объем выборки, соответствующий р; уровень несоответствий как доля несоответствующих единиц продукции в партии, изготовлен-D ной процессом; уровень несоответствий, соответствующий риску поставщика (PRQ); p_1 уровень несоответствий, соответствующий риску потребителя (CRQ); p_2 — уровень несоответствии, соответствующии риску потросительность. — вероятность того, что d несоответствующих единиц продукции обнаружено в выборке объема

п, если уровень несоответствий процесса равен р;

 $P_{
m a}(n,m,p)$ — вероятность приемки для объема первой выборки n, объема второй выборки m и уровня несоответствий процесса р;

 доля соответствующих единиц продукции в партии, изготовленной процессом q = 1 – p; 9 количество несоответствующих единиц продукции (несоответствий) во второй выборке.

А.1.2 Выполнение плана контроля

По таблицам 1, 2 или 3 определяют объемы выборок п и т при условии, что риски поставщика и потребителя при контроле не превышают 5 % и 5 %, 5 % и 10 % или 10 % и 10 % соответственно. Из партии объема л отбирают случайную выборку и определяют количество несоответствующих единиц продукции d. Партию принимают, если d = 0, и отклоняют, если d = 2 или более. Если d = 1, отбирают вторую случайную выборку объема m и определяют количество г несоответствующих единиц продукции во второй выборке. Если г = 0, партию принимают, в противном случае партию отклоняют.

А.1.3 Оперативная характеристика

Партию принимают если:

- несоответствующие единицы продукции обнаружены в первой выборке;
- в первой выборке обнаружена одна несоответствующая единица продукции, а во второй выборке несоответствующие единицы продукции не обнаружены.

Следовательно, вероятность приемки партии имеет вид:

$$P_3(n, m, p) = P(0, n, p) + P(1, n, p) P(0, m, p) =$$

= $(1 - p)^n + np(1 - p)^{n-1}(1 - p)^m = (1 - p)^n[1 + np(1 - p)^{m-1}].$

А.1.4 Средний объем выборки

А.1.4.1 Неусеченный контроль

Если в первой выборке обнаружена одна несоответствующая единица продукции, отбирают вторую выборку. Средний объем выборки п' имеет вид:

$$n^* = n + mP(1, n, p) = n + nmp(1 - p)^{n-1}$$
.

При изменении р от нуля до единицы средний объем выборки при неусеченном контроле сначала увеличивается от значения п до максимального значения, а затем убывает до значения n.

А.1.4.2 Усеченный контроль

Если контроль завершен после обнаружения второй несоответствующей единицы продукции в первой выборке или несоответствующей единицы продукции во второй выборке после того, как в первой выборке обнаружена одна несоответствующая единица продукции, то средний объем выборки для уровня несоответствий р имеет вид:

 $n^* = \sum_{i=1}^n i.P$ (второй несоответствующей единицей продукции в первой выборке является iя единица продукции) +

- + п.Р (в первой выборке не обнаружено несоответствующих единиц продукции) +
- + P (в первой выборке обнаружена одна несоответствующая единица продукции) ×

$$\times \left[\sum_{j=1}^{m} P\left(j \cdot \mathbf{g} \right.$$
 единица продукции второй выборки является несоответствующей) +

+(n+m)P (во второй выборке не обнаружены несоответствующие единицы продукции) $=\sum_{i=1}^n i(i-1)p^2q^{i-2}+nq^m+nq^{m-1}p\Biggl(\sum_{j=1}^m (n+j)q^{j-1}p+(n+m)q^m\Biggr).$

Эти выводы могут быть упрощены при использовании следующих свойств геометрической прогрессии:

$$\sum_{i=1}^{m} q^{i} = \frac{q(1-q^{m})}{1\cdot q},$$

$$\sum_{i=1}^{m} iq^{i-1} = \frac{\partial}{\partial q} \sum_{i=1}^{m} q^{i} = \frac{\partial}{\partial q} \left[\frac{q(1-q^{m})}{1\cdot q} \right] = \frac{(1-q)[1\cdot (m+1)q^{m}] + q(1\cdot q^{m})}{(1\cdot q)^{2}} =$$

$$= \frac{1\cdot q\cdot (m+1)q^{m} + (m+1)q^{m+1} + q\cdot q^{m+1}}{(1\cdot q)^{2}} = \frac{1\cdot (m+1)q^{m} + mq^{m+1}}{(1-q)^{2}},$$

$$\sum_{i=1}^{n} i(i-1)q^{i-2} = \frac{\partial}{\partial q} \sum_{i=1}^{n} iq^{i-1} = \frac{\partial}{\partial q} \left[\frac{1\cdot (n+1)q^{n} + nq^{m+1}}{(1-q)^{2}} \right] =$$

$$= [1-(n+1)q^{n} + nq^{n+1}] \cdot 2(1-q)^{-3} + (1-q)^{-2}[-(n+1)nq^{m+1} + n(n+1)q^{n}] =$$

$$= (1-q)^{-3}[2-2(n+1)q^{n} + 2nq^{m+1} - n(n+1)q^{n-1} + 2n(n+1)q^{n} - n(n+1)q^{n+1}] =$$

$$= (1-q)^{-3}[2-n(n+1)q^{n-1} + 2(n^{2}-1)q^{n} - n(n-1)q^{n+1}].$$

Таким образом,

$$\begin{split} n^* &= \sum_{i=1}^n i(i-1)p^2q^{i-2} + nq^m + nq^{n-1}p \left[\sum_{j=1}^m (n+j)q^{j-1}p + (n+m)q^m \right] = \\ &= \frac{1}{p} [2 - n(n+1)q^{n-1} + 2(n^2 - 1)q^n - n(n-1)q^{n+1}] + nq^n + \\ &+ nq^{m-1}p \left[n + \frac{1 \cdot (m+1)q^m + mq^{m+1}}{p} + mq^m \right] = \frac{2(1 \cdot q^n)}{1 \cdot q} - nq^{m+n-1}. \end{split}$$

Так как р возрастает от нуля до единицы, а q убывает от единицы до нуля, то средний объем выборки при усеченном контроле сначала возрастает от n до максимального значения, а затем убывает до значения 2.

А.1.5 Максимальный средний объем выборки при неусеченном контроле

Производная среднего объема выборки п' по р имеет вид:

$$\frac{dn'}{dp} = -nmp(n-1)(1-p)^{n-2} + nm(1-p)^{n-1} =$$

$$= -nm(1-p)^{n-2}[p(n-1) - (1-p)] = nm(1-p)^{n-2}(1-np).$$

Производная n^* равна нулю в точке p = 1/n. Вторая производная n^* по p имеет вид:

$$\frac{d^2n^2}{dp^2} = -nm(1-np)(n-2)(1-p)^{n-3} - nm(1-p)^{n-2}n =$$

$$= -nm(1-p)^{n-3}[(n-2)(1-np) + n(1-p)] = -nm(n-1)(1-1/n)^{n-3}.$$

Вторая производная n' по p в точке p = 1/n меньше нуля.

Таким образом, n^* достигает максимума в точке p = 1/n. Этот максимум имеет вид:

$$n_{\max}^* = n + nm \frac{1}{n} (1 - 1/n)^{n-1} = n + m(1 - 1/n)^{n-1}.$$

В планах контроля доли несоответствующих единиц продукции, установленных в настоящем стандарте, минимизировано значение n_{\max}' по n и m для рисков поставщика и потребителя α и β , не превышающих своих номинальных значений α_0 и β_0 соответственно, т. е.

$$\alpha = 1 - P_a(n, m, p_1) = 1 - (1 - p_1)^n [1 + np_1(1 - p_1)^{m-1}] \le \alpha_0,$$

 $\beta = P_a(n, m, p_2) = (1 - p_2)^n [1 + np_2(1 - p_2)^{m-1}] \le \beta_0.$

А.1.6 Предел среднего выходного уровня несоответствий (AOQL)

При сплошном контроле всех партий, не удовлетворяющих критерию приемлемости, с заменой всех несоответствующих единиц продукции соответствующими, средний выходной уровень несоответствий (AOQ) можно описать приближенной формулой

$$pP_p(n,m,p) = p(1-p)^n[1+np(1-p)^{m-1}].$$

AOQL - максимум AOQ по р.

А.2 Выборочный контроль числа несоответствий на 100 единиц продукции

А.2.1 Используемые обозначения

Далее использованы следующие условные обозначения:

- уровень несоответствий процесса как среднее число несоответствий на единицу продукции в партии, изготовленной процессом;
- вероятность того, что d несоответствующих единиц продукции обнаружено в выборке объема n, если среднее число несоответствий на единицу продукции процесса равно p;
- Р_а(п, т, р) вероятность приемки, если объем первой выборки п, объем второй выборки т и среднее число несоответствий на единицу продукции процесса составляет р.

А.2.2 Выполнение плана

Объемы выборки n и m определяют по таблицам 4, 5 или 6 в зависимости от заданных значений риска поставщика и потребителя, не превышающих 5 % и 5 %, 5 % и 10 % или 10 % и 10 % соответственно. Случайную выборку объема n отбирают из партии и определяют число d несоответствий в выборке. Партию принимают, если d = 0, и отклоняют, если d = 2 или более. Если d = 1, отбирают вторую случайную выборку объема m, определяют число r несоответствий в этой выборке. Если r = 0, партию принимают, в противном случае партию отклоняют.

А.2.3 Оперативная характеристика

Партию принимают, если:

- в первой выборке не обнаружены несоответствия;
- в первой выборке обнаружено одно несоответствие, а во второй выборке несоответствия не обнаружены.
 Следовательно, вероятностью того, что партия принята, является

$$P_{a}(n, m, p) = P(0, n, p) + P(1, n, p) \cdot P(0, m, p) =$$

= exp(-np) + exp(-np) \cdot np \cdot exp(-mp) =
= exp(-np) + np \cdot exp[-(n + m)p].

А.2.4 Средний объем выборки

А.2.4.1 Неусеченный контроль

Вторую выборку отбирают, если в первой выборке обнаружено одно несоответствие. Средний объем выборки n^* имеет вид:

$$n' = n + mP(1, n, p) = n + m \cdot \exp(-np) \cdot np = n + nmp \cdot \exp(-np)$$
.

При изменении ρ от нуля до бесконечности средний объем выборки при неусеченном контроле возрастает от значения n до максимума, а затем убывает до значения n.

А.2.4.2 Усеченный контроль

Средний объем выборки при усеченном контроле имеет вид:

$$n^* = \sum_{i=1}^n i.P$$
 (в i -й единице продукции первой выборки обнаружено второе несоответствие) +

- н.Р (в первой выборке не обнаружено несоответствий) +
- + P (в первой выборке обнаружено одно несоответствие) ×

$$\times \sum_{j=1}^{m} P$$
 (первое несоответствие во второй выборке обнаружено в i -й единице продукции) + + $(n+m) P$ (во второй выборке не обнаружено несоответствий) $= \sum_{j=1}^{n} i \exp(-(i-1)p) \cdot (i-1)p \cdot \exp(-p) \cdot p + n \exp(-np) + \exp(-np)np \left(\sum_{j=1}^{m} (n+j) \exp(-(j-1)p) \exp(-p)p + (n+m) \exp(-mp)\right) = 0$

$$= \rho^2 \sum_{i=1}^{n} i^2 \exp(-ip) - \rho^2 \sum_{j=1}^{n} i \exp(-ip) + n \exp(-np) +$$

$$+ np \exp(-np) \left\{ np \sum_{j=1}^{m} \exp(-jp) + p \sum_{j=1}^{m} j \exp(-jp) + (n+m) \exp(-mp) \right\}.$$

Это выражение может быть упрощено при использовании следующих соотношений:

$$\sum_{i=1}^{n} \exp(-ip) = \exp(-p) \cdot \frac{1 \cdot \exp(-np)}{1 \cdot \exp(-p)} = \frac{1 \cdot \exp(-np)}{\exp(p) - 1},$$

$$\sum_{i=1}^{n} i \exp(-ip) = -\frac{\partial}{\partial p} \left(\frac{1 \cdot \exp(-np)}{\exp(p) - 1} \right) =$$

$$= -\frac{(\exp(p) \cdot 1) \cdot n \exp(-np) \cdot (1 - \exp(-np)) \cdot \exp(p)}{(\exp(p) - 1)^2} =$$

$$= -\frac{n \exp(-(n-1)p) \cdot n \exp(-np) \cdot \exp(p) + \exp(-(n-1)p)}{(\exp(p) - 1)^2} =$$

$$= -\frac{(n+1) \exp(-(n-1)p) \cdot n \exp(-(n+p) - \exp(p))}{(\exp(p) - 1)^2} =$$

$$= -\frac{(n+1) \exp(-(n+1)p) \cdot n \exp(-(n+2)p - \exp(-p))}{(1 \cdot \exp(-p))^2},$$

$$\sum_{i=1}^{n} i^2 \exp(-ip) = \frac{\partial}{\partial p} \left(\frac{(n+1) \exp(-(n+1)p) \cdot n \exp(-(n+2)p - \exp(-p))}{(1 \cdot \exp(-p))^2} \right) =$$

$$= [(n+1) \exp(-(n+1)p) - n \exp(-(n+2)p) - \exp(-(p))](-2)(1 - \exp(-p))^{-3} \exp(-p) +$$

$$+ (1 - \exp(-p))^{-2} [-(n+1)^2 \exp(-(n+1)p) + n(n+2) \exp(-(n+2)p) + \exp(-(p))] =$$

$$= (1 - \exp(-p))^{-3} [-2n \exp(-(n+2)p) - 2 \exp(-(n+2)p) + 2n \exp(-(n+3)p) +$$

$$+ 2 \exp(-2p) - (n+1)^2 \exp(-(n+1)p) + n(n+2) \exp(-(n+2)p) + \exp(-p) +$$

$$+ (n+1)^2 \exp(-(n+2)p) - n(n+2) \exp(-(n+3)p) - \exp(-2p)] =$$

$$= 1 - \exp(-p))^{-3} [\exp(-p) + \exp(-2p) - (n+1)^2 \exp(-(n+3)p)].$$

ГОСТ Р 50779.81-2018

В результате для среднего объема выборки при усеченном контроле может быть получено выражение:

$$n^* = [(1 - \exp(-p)]^{-3}[2p^2 \exp(-2p) + n \exp(-np) - 3n \exp(-(n+1)p) +$$

$$+ (3n - (n+2)p^2) \exp(-(n+2)p) - n(1-p^2) \exp(-(n+3)p) +$$

$$+ n(n+m)p \exp(-(n+m)p) - np((n+m+1)p + 3(n+m)) \exp(-(n+m+1)p) +$$

$$+ np(3(n+m) + (2n+2m+1)p) \exp(-(n+m+2)p) - n(n+m)p(1+p) \exp(-(n+m+3)p)].$$

При изменении *p* от нуля до бесконечности средний объем выборки при усеченном контроле увеличивается от значения *n* до максимального значения и затем убывает до значения 1.

А.2.5 Максимальный средний объем выборки неусеченного контроля

Производная среднего объема выборки п* неусеченного контроля по р имеет вид:

$$\frac{dn^*}{dp} = nm[\exp(-np) - np \exp(-np)] = nm(1-np) \exp(-np).$$

Эта производная равна нулю в точке p = 1/n. Вторая производная n по p имеет вид:

$$\frac{\partial^2 n^2}{\partial n^2} = -nm[n \exp(-np) + n(1-np) \exp(-np)] = -n^2 m(2-np) \exp(-np).$$

Эта производная меньше нуля в точке p = 1/n. Таким образом, n^* достигает максимума в точке p = 1/n, при этом

$$n_{\max}^* = n + \frac{m}{e}$$
.

Планы контроля числа несоответствий, установленные в настоящем стандарте, минимизируют \vec{n} относительно n и m, для которых риски поставщика и потребителя α и β не превышают их номинальных значений α_0 и β_0 соответственно, т. е.

$$\alpha = 1 - P_{\alpha}(n, m, p_{1}) = 1 - \exp(-np_{1}) - np_{1} \exp[-(n+m)p_{1}] \le \alpha_{0},$$

 $\beta = P_{\alpha}(n, m, p_{2}) = \exp(-np_{\alpha}) + np_{\alpha} \exp[-(n+m)p_{\alpha}] \le \beta_{0}.$

А.2.6 Предел среднего выходного уровня несоответствий (AOQL)

Если партия или партии, не соответствующие критерию приемки, подвергают сплошному контролю и все несоответствующие единицы продукции заменяют соответствующими, средний выходной уровень несоответствий (AOQ) приближенно имеет вид:

$$pP_{\nu}(n,m,p) = p \exp(-np)[1 + np \exp(-mp)].$$

Производная AOQ по р имеет вид:

$$\exp(-np)\{(1-np)+np\{2-(m+n)p\}\exp(-mp)\}.$$

Поскольку эта производная положительна в точке p = 1/(n + m) и отрицательна в точке p = 1/(n + m), а n больше m для всех планов, установленных в настоящем стандарте, то максимум AOQ находится в интервале значений p [1/n, 2/(n + m)]. Максимум может быть найден с помощью исследования этого диапазона.

Приложение ДА (справочное)

Сведения о соответствии ссылочного национального стандарта международному стандарту, использованному в качестве ссылочного в примененном международном стандарте

Таблица ДА.1

Обозначение ссылочного	Степень	Обозначение и наименование
национального стандарта	соответствия	соответствующего международного стандарта
ГОСТ Р ИСО 2859-1—2007	IDT	ISO 2859-1:1999 «Процедуры выборочного контроля по аль тернативному признаку. Часть 1. Планы выборочного контроля последовательных партий на основе приемлемого уровня качества AQL»

Примечание — В настоящей таблице использовано следующее условное обозначение степени соответствия стандарта:

IDT — идентичный стандарт.

УДК 658.562.012.7:65.012.122:006.352

OKC 03.120.30

T59

Ключевые слова: статистический приемочный контроль, контроль по альтернативному признаку, план статистического приемочного контроля; уровень несоответствий, соответствующий риску потребителя; уровень несоответствий, соответствующий риску изготовителя; показатель контроля, приемочное число, браковочное число, таблица приемки, приемочная карта, выборка, партия, приемлемый уровень несоответствий, единица продукции, несоответствие, несоответствующая единица продукции, процент несоответствующих единиц продукции, число несоответствий на 100 единиц продукции в выборке, объем партии

БЗ 3-2018/28

Редактор Л.В. Коретникова Технический редактор В.Н. Прусакова Корректор Е.Р. Ароян Компьютерная верстка Ю.В. Половой

Сдано в набор 01.08.2018. Подписано в печать 13.08.2018. Формат $80 \times 84^{1}l_{8}$. Гарнитура Ариал. Усл. печ. л. 9,77. Уч.-изд. л. 8,84.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru

Создано в единичном исполнении ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 123001 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru

50779.81-20