ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р 50779.75— 2018 (ИСО 28591:2017)

Статистические методы

ПОСЛЕДОВАТЕЛЬНЫЕ ПЛАНЫ ВЫБОРОЧНОГО КОНТРОЛЯ ПО АЛЬТЕРНАТИВНОМУ ПРИЗНАКУ

(ISO 28591:2017, Sequential sampling plans for inspection by attributes, MOD)

Издание официальное

Предисловие

- ПОДГОТОВЛЕН Открытым акционерным обществом «Научно-исследовательский центр контроля и диагностики технических систем» (АО «НИЦ КД») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 125 «Применение статистических методов»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 31 июля 2018 г. № 438-ст
- 4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 28591:2017 «Последовательные планы выборочного контроля по альтернативному признаку» (ISO 28591:2017 «Sequential sampling plans for inspection by attributes», MOD) путем внесения технических отклонений, указанных во введении к настоящему стандарту.

Международный стандарт разработан Техническим комитетом ISO/TC 69.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5—2012 (пункт 3.5).

Сведения о соответствии ссылочных национальных стандартов международным стандартам, использованным в качестве ссылочных в примененном международном стандарте, приведены в дополнительном приложении ДА

5 B3AMEH ГОСТ Р ИСО 8422-2011

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регупированию и метрологии в сети Интернет (www.gost.ru)

© ISO, 2017 — Все права сохраняются © Стандартинформ, оформление, 2018

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

Область применения	1
Нормативные ссылки	2
Термины и определения	2
Обозначения и сокращения	4
Принципы построения последовательных планов выборочного контроля по альтернативно	
признаку	5
Выбор плана контроля	5
Выполнение последовательного плана выборочного контроля	6
Пример	8
Таблицы	9
оиложение А (справочное) Статистические свойства последовательного плана выборочног контроля по альтернативному признаку	
оиложение ДА (справочное) Сведения о соответствии ссылочных национальных стандарто международным стандартам, использованным в качестве ссылочных в прим	иененном
международном стандарте	24

Введение

В современных производственных процессах качество продукции часто достигает таких уровней, когда количество несоответствующих единиц продукции в партии составляет порядка десяти на миллион (10⁻⁶). В этом случае обычно применяют планы контроля по ГОСТ Р ИСО 2859-1, требующие больших объемов выборки. Для уменьшения объема выборки применяют планы с большими значениями
вероятности ошибочных решений или в чрезвычайных ситуациях не применяют процедуры статистического приемочного контроля вообще. Однако во многих случаях существует необходимость в применении статистических процедур с минимальными объемами выборки. Этим требованиям удовлетворяют
последовательные планы выборочного контроля. Среди всех планов выборочного контроля, имеющих
близкие статистические свойства, для последовательного плана требуется наименьший средний объем
выборки.

Основным преимуществом последовательных планов выборочного контроля является сокращение среднего объема выборки. Средний объем выборки — это математическое ожидание объема выборки, соответствующее плану контроля. Так же как для двухступенчатых и многоступенчатых планов контроля, последовательным планам соответствует меньший средний объем выборки по сравнению с одноступенчатыми планами, имеющими эквивалентную оперативную характеристику. Однако сокращение объема выборки при использовании последовательного плана выборочного контроля больше, чем при использовании двухступенчатых или многоступенчатых планов. Для партий очень высокого качества максимальное сокращение объема выборки для последовательных планов выборочного контроля может достигать 85 % по сравнению с 37 % для двухступенчатых и 75 % для многоступенчатых планов. С другой стороны, при использовании двухступенчатого, многоступенчатого или последовательного плана контроля фактическое количество проверенных единиц продукции для конкретной партии может превысить объем выборки соответствующего одноступенчатого плана n_0 . Для двухступенчатых и многоступенчатых планов верхний предел количества фактически проверенных единиц продукции составляет 1,25 n_0 . Для классических последовательных планов выборочного контроля такого предела не существует, и фактическое количество проверенных единиц продукции может значительно превысить объем выборки n_0 соответствующего одноступенчатого плана. Для последовательных планов выборочного контроля, установленных в настоящем стандарте, введено ограничение на общий объем выборки п.

Следует учитывать также следующие факторы:

а) сложность контроля.

Правила последовательного плана выборочного контроля являются более сложными, чем простые правила одноступенчатого плана;

b) изменчивость объема контроля.

Поскольку фактическое количество проверенных единиц продукции партии не известно заранее, использование последовательных планов выборочного контроля вызывает различные организационные трудности, например при планировании операций контроля;

с) легкость отбора элементов выборки.

Если отбор выборки является довольно трудоемким, то сокращение среднего объема выборки в соответствии с последовательными планами выборочного контроля может быть экономически более выгодным;

d) продолжительность контроля.

Если проверка одной единицы продукции требует много времени и несколько единиц продукции могут быть проверены одновременно, последовательные планы выборочного контроля требуют существенно большего времени, чем соответствующие одноступенчатые планы;

е) изменчивость характеристики качества в партии.

Если партия состоит из двух и более частей (подпартий), поступивших из разных источников, или если возможно наличие существенных различий между характеристиками качества частей партии, то применение последовательного плана выборочного контроля является менее эффективным по сравнению с одноступенчатым планом контроля.

Двухступенчатые и многоступенчатые планы контроля имеют свои преимущества и недостатки по сравнению с одноступенчатыми и последовательными планами контроля. Преимущества от сокращения среднего объема выборки и вышеупомянутые недостатки последовательного плана показывают, что последовательные планы применимы только в тех случаях, когда затраты на контроль одной единицы продукции являются значительными, что существенно повышает общие затраты на контроль. Выбор между одноступенчатыми и последовательными планами выборочного контроля должен быть сделан до начала контроля. В процессе контроля партии запрещается изменять план контроля, поскольку оперативная характеристика плана при этом может существенно измениться.

Несмотря на то, что использование последовательных планов выборочного контроля в среднем существенно более экономично по сравнению с одноступенчатыми планами, при контроле конкретной партии решение о ее приемке или отклонении может быть принято на самой последней стадии контроля вследствие того, что значение кумулятивного показателя контроля несоответствующих единиц продукции или несоответствий лежит между приемочным и браковочным числами. На приемочной карте в этом случае результаты контроля попадают в зону неопределенности. Такая ситуация наиболее вероятна, когда уровень несоответствий партии или процесса (процент несоответствующих единиц продукции или число несоответствий на 100 единиц продукции) близок к (100g), где g — угловой коэффициент линий приемки и отклонения.

Для устранения такой ситуации объем выборки ограничивают до начала контроля. При этом контроль заканчивают, если общий объем выборки достигает установленного значения $n_{\rm t}$, без принятия решения о приемке партии. Для решения о приемке или отклонении партии используют приемочные и браковочные значения.

Последовательным планам выборочного контроля, использующим ограничение общего объема выборки, соответствуют отличные от классических оперативные характеристики. В настоящем стандарте оперативные характеристики последовательных планов выборочного контроля определены с учетом сокращения общего объема выборки.

Последовательные планы выборочного контроля для контроля по альтернативному признаку также установлены в ГОСТ Р ИСО 2859-5. Однако принципы построения этих планов существенно отличаются от принципа построения планов контроля, использованного в настоящем стандарте. Планы выборочного контроля, установленные в ГОСТ Р ИСО 2859-5, дополняют установленную в ГОСТ Р ИСО 2859-1 систему статистического приемочного контроля для контроля по альтернативному признаку. Таким образом, их следует использовать для контроля непрерывной серии партий, достаточной для применения правил переключения, установленных в стандартах серии ГОСТ Р ИСО 2859. Применение правил переключения является единственным средством обеспечения защиты потребителя (посредством перехода на усиленный контроль или прекращение контроля), когда последовательно применяют планы выборочного контроля по ГОСТ Р ИСО 2859-5. Однако в определенных обстоятельствах необходим контролировать и риск изготовителя, и риск потребителя. Это происходит, например, в случае, когда контроль выполняют для того, чтобы продемонстрировать качество процессов производства или проверить гипотезу. В таких случаях индивидуальные планы выборочного контроля, выбранные по ГОСТ Р ИСО 2859-5, могут не соответствовать указанным требованиям. Планы выборочного контроля, установленные в настоящем стандарте, разработаны в соответствии с этими требованиями.

В настоящем стандарте ссылки на международные стандарты заменены ссылками на национальные стандарты.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Статистические методы

ПОСЛЕДОВАТЕЛЬНЫЕ ПЛАНЫ ВЫБОРОЧНОГО КОНТРОЛЯ ПО АЛЬТЕРНАТИВНОМУ ПРИЗНАКУ

Statistical methods. Sequential sampling plans for inspection by attributes

Дата введения — 2019-06-01

1 Область применения

В настоящем стандарте установлены последовательные планы выборочного контроля и процедуры контроля по альтернативному признаку отдельных единиц продукции.

Планы установлены в соответствии с точкой риска изготовителя и точкой риска потребителя, поэтому они могут быть использованы не только для статистического приемочного контроля, но и для более общих целей проверки простых статистических гипотез.

Целью настоящего стандарта является установление таких процедур последовательного контроля, которые стимулируют поставщика к поставке партии продукции с уровнем несоответствий, обеспечивающим высокую вероятность приемки. Интересы потребителя защищены установленной верхней границей вероятности приемки партии низкого качества.

В настоящем стандарте установлены планы выборочного контроля, применимые при контроле таких видов продукции, как:

- готовая продукция;
- сырье и материалы;
- процессы и технологические операции;
- материалы в процессе производства;
- материалы на хранении:
- операции технического обслуживания;
- данные или записи;
- административные процедуры.

В настоящем стандарте установлены планы выборочного контроля по альтернативному признаку отдельных единиц продукции. Планы выборочного контроля предназначены для применения в ситуациях, когда степень несоответствия продукции выражена в виде или процента несоответствующих единиц продукции, или процента несоответствий на 100 единиц продукции.

Планы выборочного контроля основаны на предположении, что несоответствия являются случайными и статистически независимыми. В некоторых случаях могут быть серьезные основания полагать, что одно несоответствие единицы продукции может вызвать появление других несоответствий. В такой ситуации целесообразно рассматривать единицы продукции как соответствующие или несоответствующие, отказавшись от подсчета количества несоответствий.

Планы выборочного контроля, установленные в настоящем стандарте, предназначены прежде всего для анализа выборок, отобранных из продукции, изготовленной процессом. Например, для статистического приемочного контроля партий продукции, изготовленной процессом, находящимся в состоянии статистической управляемости. Однако представленные в стандарте планы также могут быть использованы для статистического приемочного контроля отдельной партии большого объема с ожидаемым процентом несоответствующих единиц продукции менее 10 %.

ГОСТ P 50779.75-2018

Для статистического приемочного контроля непрерывной серии партий должна быть применена система последовательных планов выборочного контроля на основе предельно допустимого уровня несоответствий, установленная в ГОСТ Р ИСО 2859-5.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р ИСО 2859-1 Статистические методы. Процедуры выборочного контроля по альтернативному признаку. Часть 1. Планы выборочного контроля последовательных партий на основе приемлемого уровня качества

ГОСТ Р ИСО 2859-5 Статистические методы. Процедуры выборочного контроля по альтернативному признаку. Часть 5. Система последовательных планов на основе AQL для контроля последовательных партий

ГОСТ Р 50779.11 (ИСО 3534.2—93) Статистические методы. Статистическое управление качеством. Термины и определения

Примение и мение — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ Р 50779.11, а также следующие термины с соответствующими определениями:

Базы данных терминов по статистике, поддерживаемые ИСО и МЭК, имеют следующие электронные адреса:

- электронная платформа ИСО с функцией онлайн-просмотра терминов расположена по адресу http://www.iso.org/obp;
 - электронная база МЭК Electropedia расположена по адресу http://www.electropedia.org/
- 3.1 контроль (inspection): Проверка соответствия (установленным требованиям), проводимая в форме наблюдений и оценки на основе измерений, испытаний или калибровки.
- 3.2 контроль по альтернативному признаку (inspection by attributes): Контроль (3.1), основанный на регистрации наличия или отсутствия одного или нескольких признаков у каждой единицы продукции в рассматриваемой группе или подсчете количества единиц продукции, обладающих или не обладающих этими признаками, или количество таких событий в единице, группе или совокупности.

Примечание — Контроль, в процессе которого проверяют, является ли единица продукции несоответствующей, называют контролем несоответствующих единиц продукции. Контроль, в процессе которого определяют количество несоответствий в каждой единице продукции, называют контролем несоответствий.

3.3 единица продукции (item entity); То, что может быть рассмотрено и описано индивидуально.

Пример — Самостоятельный физический элемент; определенное количество сыпучего материала; услуга (действие), деятельность, человек, система или некоторая комбинация перечисленного.

- 4 несоответствие (nonconformity): Невыполнение требования.
- 3.5 дефект (defect): Невыполнение требования, связанного с предполагаемым или установленным использованием.

Примечания

- 1 Различие между понятиями «дефект» и «несоответствие» (3.4) важно, поскольку у него есть юридические основания, связанные с ответственностью за качество выпускаемой продукции. Следовательно, термин «дефект» не должен быть использован как общий термин.
- Потребительские требования и требования к использованию продукции должны быть установлены в документации, предоставляемой потребителю.
- 3.6 несоответствующая единица продукции (nonconforming item): Единица продукции (3.3), обладающая хотя бы одним несоответствием (3.4).
- 3.7 процент несоответствующих единиц продукции в выборке (percent nonconforming in a sample): Количество несоответствующих единиц продукции (3.6) в выборке (3.13), умноженное на сто и деленное на объем выборки (3.14), т. е.

$$\frac{d}{n}$$
100,

где d — количество несоответствующих единиц продукции в выборке;

п — объем выборки.

 3.8 процент несоответствующих единиц продукции в совокупности или партии (percent nonconforming in a population or lot): Количество несоответствующих единиц продукции (3.6) в совокупности или партии (3.11), умноженное на сто и деленное на объем совокупности или партии (3.12), т. е.

$$100p_{ni} = 100\frac{D_{ni}}{N}$$

где ρ_n — доля несоответствующих единиц продукции;

D_{ni} — количество несоответствующих единиц продукции в совокупности или партии;

N — объем совокупности или партии.

Примечания

- См. также ГОСТ Р ИСО 2859-1 (3.1.8).
- 2 В настоящем стандарте термины «процент несоответствующих единиц продукции» (3.7 и 3.8) или «процент несоответствий на 100 единиц продукции» (3.9 и 3.10) использованы главным образом вместо терминов «доля несоответствующих единиц продукции» и «процент несоответствий на единицу продукции», ранее широко применявшихся.
- 3.9 число несоответствий на 100 единиц продукции в выборке (nonconformities per 100 items in a sample): Количество несоответствий (3.4) в выборке (3.13), умноженное на сто и деленное на объем выборки (3.14), т. е.

$$100\frac{d}{n}$$
.

где d — количество несоответствий в выборке:

п — объем выборки.

 3.10 число несоответствий на 100 единиц продукции в совокупности или партии (nonconformities per 100 items in a population or lot): Количество несоответствий (3.4) в совокупности или партии (3.11), умноженное на сто и деленное на объем совокупности или объем партии (3.12), т. е.

$$100 p_{\rm nt} = 100 \frac{D_{\rm nt}}{N},$$

где $\rho_{\rm nt}$ — доля несоответствий на единицу продукции (3.4);

— количество несоответствий в совокупности или партии;
 N — объем совокупности или партии.

Примечания

- 1 См. также ГОСТ Р ИСО 2859-1 (3.1.11).
- Единица продукции может содержать одно или более несоответствий.
- 3.11 (контролируемая) партия (lot): Определенная часть совокупности, составленная для выборочного контроля и отражающая свойства совокупности.

Примечание — Целями выборочного контроля могут быть или оценка среднего некоторой характеристики качества, или принятие решения о приемке или отклонении партии.

- 3.12 объем партии (lot size): Количество единиц продукции (3.3) в партии (3.11).
- 3.13 выборка (sample): Подмножество совокупности, состоящее не менее чем из одной единицы продукции (выборочной единицы).
 - 3.14 объем выборки (sample size): Количество выборочных единиц в выборке (3.13).
- 3.15 план статистического приемочного контроля (acceptance sampling plan): План, который устанавливает объем(ы) выборки (3.14) и правила принятия решения о приемке партии.
- 3.16 уровень несоответствий, соответствующий риску потребителя¹⁾ (consumer's risk quality); Q_{CR}: Уровень несоответствий партии (3.11) или процесса, который для установленного плана статистического приемочного контроля (3.15) соответствует заданному риску потребителя.

Примечание — Риск потребителя обычно составляет 10 %.

3.17 уровень несоответствий, соответствующий риску изготовителя 2) (producer's risk quality); $Q_{\rm PR}$: Уровень несоответствий партии (3.11) или процесса, который для установленного плана статистического приемочного контроля (3.15) соответствует заданному риску изготовителя.

Примечание — Риск изготовителя обычно составляет 5 %.

3.18 показатель контроля (count): Результат контроля одной выборочной единицы при контроле по альтернативному признаку.

Примечание — При контроле несоответствующих единиц продукции значение показателя контроля равно 1 для несоответствующей единицы продукции и равно 0 в противном случае. При контроле несоответствий значение показателя контроля равно количеству несоответствий, выявленных у выборочной единицы.

- 3.19 кумулятивный показатель контроля (при последовательном контроле) (cumulative count): Сумма показателей контроля проверенных выборочных единиц партии от первой до последней (включая ее) при последовательном контроле.
- 3.20 кумулятивный объем выборки (при последовательном контроле) (cumulative sample size): Общее количество проверенных выборочных единиц партии от первой до последней (включая ее) при последовательном контроле.
- 3.21 приемочное значение (при последовательном контроле) (ассертаnce value): Значение, используемое в графическом методе для принятия решения о приемке партии, которое рассчитывают на основе параметров плана контроля и кумулятивного объема выборки.
- 3.22 приемочное число (при последовательном контроле) (acceptance number): Целое число, используемое в численном методе для определения приемлемости партии, которое получают, округляя приемочное значение в меньшую сторону до целого числа.
- 3.23 браковочное значение (при последовательном контроле) (rejection value): Значение, используемое в графическом методе для принятия решения об отклонении партии, которое определяют на основе параметров плана контроля и кумулятивного объема выборки.
- 3.24 браковочное число (при последовательном контроле) (rejection number): Целое число, используемое в численном методе для принятия решения об отклонении партии, которое получают, округляя браковочное значение до ближайшего целого числа.
- 3.25 таблица приемки (acceptability table): Таблица, применяемая при приемке партии численным методом.
- 3.26 приемочная карта (ассертаbility chart): Карта, применяемая для определения приемлемости партии графическим методом и состоящая из трех зон (приемки, отклонения и неопределенности), ограниченных линиями приемки, отклонения и усеченного объема выборки.

4 Обозначения и сокращения

В настоящем стандарте применены следующие обозначения и сокращения:

— приемочное значение (для последовательного плана выборочного контроля);

Ас — приемочное число:

Ас, — приемочное число для соответствующего одноступенчатого плана;

¹⁾ Синонимом термина является термин «качество риска потребителя».

Синонимом термина является термин «качество риска изготовителя».

- Ас_т приемочное число, соответствующее усеченному значению кумулятивного объема выборки:
- значение показателя контроля;
- значение кумулятивного показателя контроля;
- угловой коэффициент линий приемки и отклонения;
- п. свободный член уравнения линии приемки;
- $h_{_{\rm Pl}}$ свободный член уравнения линии отклонения;
- п_{сит} кумулятивный объем выборки;
- п, усеченное значение кумулятивного объема выборки;
- среднее процесса;
- $ho_{_{
 m X}}$ уровень несоответствий, для которого вероятность приемки равна x;
- Р. вероятность приемки (в процентах);
- Q_{CR} уровень несоответствий, соответствующий риску потребителя (в виде процента несоответствующих единиц продукции или числа несоответствий на 100 единиц продукции);
- Q_{PR} уровень несоответствий, соответствующий риску изготовителя (в виде процента несоответствующих единиц продукции или числа несоответствий на 100 единиц продукции);
- браковочное значение для последовательного плана выборочного контроля;
- Re браковочное число;
- Re₀ браковочное число для соответствующего одноступенчатого плана;
- Re_t браковочное число, соответствующее усеченному значению кумулятивного объема выборки;
- риск изготовителя;
- в риск потребителя
- Примечание Re, = Ac, + 1.

5 Принципы построения последовательных планов выборочного контроля по альтернативному признаку

В соответствии с последовательным планом выборочного контроля по альтернативному признаку единицы продукции отбирают в выборку случайным образом, одну за другой и подсчитывают значения кумулятивного показателя контроля (общее количество несоответствующих единиц продукции или несоответствий). По результатам контроля каждой единицы продукции значения кумулятивного показателя контроля сопоставляют с критерием приемки и принимают решение о достаточности информации для приемки/отклонения партии на этой стадии контроля.

Если на данной стадии контроля значение кумулятивного показателя контроля таково, что риск приемки партии продукции неудовлетворительного качества достаточно низок, партию считают приемлемой, а контроль завершают.

Если значение кумулятивного показателя контроля таково, что риск отклонения партии продукции удовлетворительного качества не достаточно низок, партию считают неприемлемой, а контроль завершают.

Если значение кумулятивного показателя контроля не позволяет принять ни одно из вышеупомянутых решений, то отбирают и контролируют еще одну единицу продукции. Процесс продолжают, пока не будет получено достаточно информации для принятия решения о приемке или отклонении партии.

6 Выбор плана контроля

6.1 Точка риска изготовителя и точка риска потребителя

Общий метод, описанный в 6.1 и 6.2, используют в тех случаях, когда требования последовательного плана выборочного контроля определены на основе двух точек кривой оперативной характеристики плана. Точка, соответствующая более высокой вероятности приемки, является точкой риска изготовителя, а другая — точкой риска потребителя.

ГОСТ P 50779.75-2018

На первом этапе разработки последовательного плана выборочного контроля необходимо выбрать эти две точки, если они не установлены ранее. С этой целью часто используют следующую комбинацию рисков:

- риск изготовителя $\alpha \le 0.05$ с уровнем несоответствий, соответствующим риску изготовителя (Q_{DR}) ;

- риск потребителя β ≤ 0,10 с уровнем несоответствий, соответствующим риску потребителя (Q_{CR}).
 - Если необходимо, чтобы последовательный план выборочного контроля имел такую же кривую оперативной характеристики, как существующие одноступенчатый, двухступенчатый или многоступенчатый планы выборочного контроля, точка риска изготовителя и точка риска потребителя могут быть определены по графику или по таблице оперативной характеристики плана. Если такого плана не существует, точка риска изготовителя и точка риска потребителя должны быть определены на основе рассмотрения условий, в которых план выборочного контроля будет применен.

6.2 Предпочтительные значения Q_{PR} и Q_{CR}

В таблицах 1 и 2 приведено 28 предпочтительных значений $Q_{\rm PR}$ (уровень несоответствий, соответствующий риску изготовителя), от 0,020 % до 10,0 %, и 23 предпочтительных значения $Q_{\rm CR}$ (уровень несоответствий, соответствующий риску потребителя), от 0,200 % до 31,5 %. Настоящий стандарт применим только в случае, когда комбинация предпочтительных значений $Q_{\rm PR}$ и $Q_{\rm CR}$ выбрана при выполнении условий $\alpha \le 0,05$ и $\beta \le 0,10$.

6.3 Предварительные действия

6.3.1 Определение параметров $h_{\rm A}, h_{\rm R}$ и g

Критерии приемки и отклонения партий на каждой стадии контроля определены с помощью параметров $h_{\rm A}$, $h_{\rm R}$ и g. В таблицах 1 и 2 приведены значения этих параметров, соответствующие комбинациям предпочтительных значений $Q_{\rm PR}$ и $Q_{\rm CR}$ для риска изготовителя $\alpha \le 0,05$ и риска потребителя $\beta \le 0,10$. Таблицу 1 используют для контроля процента несоответствующих единиц продукции, а таблицу 2 — для контроля несоответствий на 100 единиц продукции.

6.3.2 Определение значения п,

Значения усеченного кумулятивного объема выборки $n_{\rm t}$ для последовательного плана выборочного контроля приведены в таблицах 1 и 2 вместе с параметрами $h_{\rm A}$, $h_{\rm R}$ и g.

7 Выполнение последовательного плана выборочного контроля

7.1 Требования плана

Перед выполнением последовательного плана выборочного контроля контролер должен записать в журнале контроля значения параметров $h_{\rm A}$, $h_{\rm R}$ и g, $n_{\rm t}$ и Ac,

7.2 Отбор выборочных единиц продукции

Отдельные единицы продукции должны быть отобраны случайным образом и проверены одна за другой в порядке их отбора.

7.3 Показатель контроля и кумулятивный показатель контроля

7.3.1 Показатель контроля

При контроле процента несоответствующих единиц продукции значение показателя контроля *d* для единицы продукции равно 1, если проверяемая единица продукции является несоответствующей. В противном случае значение *d* равно нулю.

При контроле числа несоответствий на 100 единиц продукции значение показателя контроля d для единицы продукции равно числу несоответствий, обнаруженных в единице продукции.

7.3.2 Кумулятивный показатель контроля

Значение кумулятивного показателя контроля D равно общей сумме показателей контроля всех проверенных единиц продукции.

7.4 Выбор между численным и графическим методами

В настоящем стандарте установлены два метода выполнения последовательного плана выборочного контроля: численный и графический методы.

При применении численного метода используют таблицу приемки. Преимуществом метода является его четкость, исключающая сомнения (споры) о приемке или отклонении партии. Таблица приемки после заполнения может также быть использована как отчет о результатах контроля.

При применении графического метода используют приемочную карту. Преимуществом графического метода являются наглядность и возможность получить больше информации относительно качества продукции в партии за счет информации, представляющей поведение данных в зоне неопределенности. С другой стороны, метод является менее точным под влиянием погрешности, соответствующей точкам графика при построении линий на приемочной карте.

Численный метод включает стандартный подход приемки или отклонения партии (см. предостережение в 7.6.2). При применении численного метода рекомендуется для вычислений и подготовки таблицы приемки использовать соответствующее программное обеспечение.

7.5 Численный метод

7.5.1 Подготовка таблицы приемки

При использовании численного метода выполняют следующие вычисления.

Для каждого значения n_{cum} кумулятивного объема выборки ($n_{\text{cum}} < n_{\text{t}}$) приемочное значение A рассчитывают по формуле

$$A = (g n_{cum}) - h_A. \tag{1}$$

Приемочное число Ac равно целой части приемочного значения A (Ac — целое число). Для каждого значения n_{cum} браковочное значение R рассчитывают по формуле

$$R = (g n_{cum}) + h_R. \tag{2}$$

Браковочное число Rе получают, округляя браковочное значение R до ближайшего целого числа. Если получено отрицательное значение A, это означает, что кумулятивный объем выборки слишком мал для принятия решения о приемке партии. Если значение R больше кумулятивного объема выборки, это означает, что кумулятивный объем выборки слишком мал для принятия решения об отклонении партии при контроле процента несоответствующих единиц продукции.

Если браковочное число Rе больше Rе, следует заменить Rе на Rе, поскольку для D > Rе, приемка невозможна.

Значения A и R, рассчитанные в соответствии с (1) и (2), должны иметь то же количество знаков после запятой, как и значение g.

Наименьший кумулятивный объем выборки, допускающий приемку партии, получают округлением значения $h_{\rm A}/g$ до ближайшего целого числа. Наименьший кумулятивный объем выборки, разрешающий отклонение партии при контроле процента несоответствующих единиц продукции, получают округлением значения $h_{\rm R}/(1-g)$ до ближайшего целого числа. Полученные значения записывают в таблицу приемки.

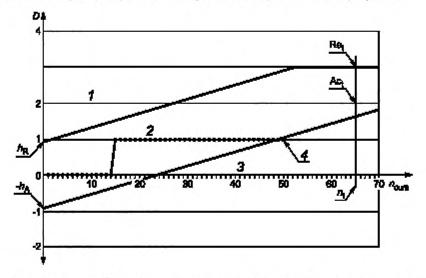
7.5.2 Принятие решений

После контроля каждой единицы продукции для принятия решений определяют показатель контроля, кумулятивный показатель контроля и применяют таблицу приемки, подготовленную в соответствии с 7.5.1.

- а) Если кумулятивный показатель контроля D меньше или равен приемочному числу Ас для кумулятивного объема выборки n_{cum}, то партию считают приемлемой и контроль завершают.
- b) Если кумулятивный показатель контроля D больше или равен браковочному числу Rе для кумулятивного объема выборки $n_{\rm cum}$, то партию считают неприемлемой и контроль завершают.
- с) Если ни одно из условий а) и b) не выполнено, то следует отобрать и проверить еще одну единицу продукции.

При достижении кумулятивным объемом выборки значения n_1 правила, установленные в а) и b), применяют со значениями Ac, и Re, (Re, = Ac, + 1) соответственно.

7.6 Графический метод


7.6.1 Подготовка приемочной карты

При использовании графического метода должна быть подготовлена приемочная карта. Горизонтальной осью на приемочной карте является кумулятивный объем выборки $n_{\text{сиm}}$, а вертикальной осью — кумулятивный показатель контроля D. На карте проводят две параллельные линии с одним и тем же угловым коэффициентом g, соответствующие приемочному и браковочному значениям A и R [см. формулы (1) и (2)]. Нижняя линия со свободным членом ($-h_A$) является линией приемки, а верхняя линия со свободным членом h_R является линией отклонения. На графике проводят вертикальную линию усеченного значения кумулятивного объема выборки $n_{\text{cum}} = n_t$ и горизонтальную линию $D = Re_t$.

В результате на карте можно выделить три зоны:

- приемки зона ниже линии приемки, включая линию приемки и часть линии усеченного кумулятивного объема выборки ниже точки (n_i, A_i), включая точку (n_i, A_c);
- отклонения зона выше линии отклонения, включая линию отклонения и часть линии усеченного кумулятивного объема выборки выше точки (n_t, Re_t);
- неопределенности полоса между линиями приемки и отклонения левее линии усеченного кумулятивного объема выборки.

При наличии линии усеченного объема выборки треугольник в верхней части зоны неопределенности, ограниченный линией отклонения, линией $D = Re_1$ и линией усеченного объема выборки (включая каждую сторону), следует рассматривать как часть зоны отклонения. В настоящем стандарте точки на карте, представляющие совокупный показатель контроля, никогда не будут лежать на линиях приемки или отклонения. Пример подготовленной приемочной карты показан на рисунке 1.

1 — зона отклонения; 2 — зона неопределенности; 3 — зона приемки; 4 — завершение контроля

Рисунок 1 — Приемочная карта

7.6.2 Принятие решений

При использовании графического метода должны быть выполнены следующие процедуры.

- В соответствии с 7.6.1 после контроля каждой единицы продукции на приемочную карту наносят точку (n_{cum}, D) .
 - а) Если точка лежит в зоне приемки, партию считают приемлемой и контроль завершают;
 - b) если точка лежит в зоне отклонения, партию считают неприемлемой и контроль завершают;
 - с) если точка лежит в зоне неопределенности, из партии отбирают другую единицу продукции.

Последовательные точки на приемочной карте соединяют отрезками прямой, что позволяет выявить тенденцию изменения результатов контроля.

Если точка находится близко к линиям приемки или отклонения, для принятия решения необходимо использовать численный метод.

8 Пример

Представленный пример показывает, как использовать последовательные планы выборочного контроля, установленные в настоящем стандарте.

Пример — Организацию, представляющую потребителей, интересует оценка качества определенной продукции. Изготовитель утверждает, что не менее 99 % его продукции соответствуют установленным требованиям. Однако данные рынка ставят это утверждение под сомнение. Поэтому было принято решение проверить утверждение изготовителя против альтернативы, что реальный процент несоответствующих единиц продукции составляет 10 %. Чтобы минимизировать затраты, был применен последовательный план выборочного контроля с $Q_{PR} = 1$ % и $Q_{CR} = 10$ %.

Параметры $(h_A,h_R\,u\,g)\,u\,$ ограничивающие значения $(n_t\,u\,Ac_t)\,$ последовательного плана выборочного контроля определяют по таблице 1.

В соответствии с таблицей 1: h_A = 0,931, h_R = 0,922 и g = 0,0394. n_t = 65 и Ac_t = 2. Следовательно, приемочное и браковочное значения (A и R) определяют по следующей формуле:

$$A = g \, n_{cum} - h_A = 0,0394 \, n_{cum} - 0 \, 931, \\ R = g \, n_{cum} + h_R = 0,0394 \, n_{cum} + 0,922.$$

При использовании численного метода необходимо вычислить приемочное и браковочное значения (A и R) для значений n_{cum} om 1 до (n_t-1) $(n_t=64)$, а затем определить приемочное и браковочное числа (Ac и Re) соответственно. Если браковочное число (Re) больше, чем значение $Re_t=3$, его (Re) следует заменить на 3.

Результаты контроля последовательных единиц продукции, отобранных из продукции, представленной на рынке случайным образом, представлены ниже:

n _{cum}	D
1	0
_	_
14	0
15	1
_	_
50	1

Поскольку для n_{cum} = 50, D = 1, то значение D меньше расчетного приемочного значения A = 1,039. Следовательно, контроль завершен, а утверждение изготовителя признано справедливым. Приемочная карта для этого примера показана на рисунке 1.

9 Таблицы

В стандарте приведены две таблицы:

таблица 1 — Параметры последовательных планов выборочного контроля процента несоответствующих единиц продукции. (Основная таблица для α ≤ 0,05 и β ≤ 0,10):

таблица 2 — Параметры последовательных планов выборочного контроля числа несоответствий на 100 единиц продукции. (Основная таблица для α ≤ 0,05 и β ≤ 0,10).

 Π р и м е ч а н и е — Значения $h_{\rm R}$ постоянно уменьшаются вдоль строки и увеличиваются вниз по колонке, за исключением значений, расположенных по диагонали.

Таблица 1 — Параметры последовательных планов выборочного контроля процента несоответствующих единиц продужции. (Основная таблица для $a \le 0.05$ и $\beta \le 0.10$) 10

Opp	Rapa-					9	ж (процент	Q_{CR} (процент несоответствующих единиц продукции)	ствующих	единип про	одукции)					
(%)	метр	0,200	0,250	0,315	0.400	0,500	0.630	0,800	1,00	1,25	1,60	2,00	2,50	3,15	4,00	5,00
0,0200	44 44 9 74 74 75	1,014 0,944 0,000775 3054 2	0,878 0,991 0,000899 2079 1	0,835 0,856 0,00107 1560 1	0,788 0,745 0,00126 1127 1	0,741 0,656 0,00148 853 1	0,694 0,564 0,00176 630 1	0,616 0,465 0,00210 503 1	. 2300							
0,0250	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1,085 1,280 0,000837 3473 2	1,016 0,943 0,000971 2444 2	0,883 0,985 0,00114 1649 1	0,831 0,847 0,00135 1218 1	0,799 0,741 0,00159 892 1	0,741 0,651 0,00187 677 1	0,680 0,559 0,00222 507	0,616 0,464 0,00263 401	. 184 0						
0,0315	hy 9 10 10 10 10 10 10 10 10 10 10 10 10 10		1,091 1,302 0,00105 27642	1,014 0,944 0,00122 1936 2	0,884 0,980 0,00145 1297 1	0,829 0,852 0,00169 984 1	0,783 0,745 0,00198 719 1	0,734 0,649 0,00236 533 1	0,681 0,560 0,00279 408 1	0,616 0,468 0,00329 321 1	. 143 0					
0,0400	4 4 2 E		1,244 1,410 0,00114 3282 3	1,086 1,355 0,00132 2217 2	1,013 0,943 0,00155 1525 2	0,888 0,990 0,00182 1038 1	0,823 0,856 0,00212 784 1	0,784 0,743 0,00252 564 1	0,737 0,653 0,00297 429 1	0,683 0,567 0,00350 328 1	0,611 0,462 0,00421 255 1	. 114 0				
0,0500	ha B B A			1,237 1,388 0,00143 2590 3	1,081 1,275 0,00167 1730 2	1,013 0,942 0,00195 1238 2	0,887 0,982 0,00229 819 1	0,830 0,845 0,00270 605 1	0,785 0,742 0,00315 448 1	0,743 0,652 0,00371 336 1	0,672 0,556 0,00445 257 1	0,611 0,464 0,00526 199 1	91 0			
0,0630	h h g n, Ac,			1,412 1,684 0,00156 3110 4	1,233 1,365 0,00181 2024 3	1,081 1,312 0,00209 1390 2	1,020 0,942 0,00246 968 2	0,876 0,980 0,00289 650 1	0,835 0,850 0,00340 392 1	0,797 0,745 0,00398 354 1	0,755 0,645 0,00477 254 1	0,700 0,560 0,00563 192 1	0,625 0,465 0,00848 154 1	72 0		
0,0800	ha ha g na Aca				1,410 1,682 0,00198 2448 4	1,242 1,407 0,00228 1640 3	1,087 1,346 0,00265 1109 2	1,010 0,942 0,00310 762 2	0,879 0,986 0,00362 520 1	0,835 0,855 0,00427 392 1	0,795 0,740 0,00509 275 1	0,731 0,650 0,00594 213 1	0,673 0,567 0,00700 165 1	0,609 0,467 0,00834 126 1	. 57 0	
0,100	h h g n, Ac,				1,642 1,879 0,00214 3035 6	1,406 1,682 0,00247 1954 4	1,246 1,378 0,00288 1293 3	1,078 1,270 0,00334 865 2	1,018 0,941 0,00391 609 2	0,885 0,985 0,00456 411 1	0,813 0,844 0,00538 309 1	0,764 0,742 0,00631 234 1	0,721 0,651 0,00743 174 1	0,663 0,559 0,00883 134 1	0,610 0,450 0,0107 94 1	45 0

Продолжение таблицы 1

	25.0 31.5						0	. 6	3 0,600 3 0,400 ° 5 0,0715 1 14 1 7 0	0,650 0,550 9 0,500 0,450 0 0,0751 0,0916 1 14 1 11 1	2 0,700 0,580 2 0,650 0,500 8 0,0794 0,0965
H.	16.0 20.0					, 4	0,674 0,0441 11 (0,601 0,559 0,492 0,441 0,0462 0,0558 24 1 18 1	0,638 0,586 0,609 0,533 0,0490 0,0585 27 1 20 1	0,678 0,621 0,688 0,629 0,0521 0,0620 28 1 21 1	0,721 0,659 0,779 0,672 0,0554 0,0658
	12.5				. 81	0,587 0,414 0,0345 29 1 14	0,660 0, 0,550 0, 0,0363 0,0	0,686 0, 0,620 0, 0,0381 0,0	0,735 0, 0,715 0, 0,0408 0,0	0,787 0. 0,826 0. 0,0437 0,0	0,850 0, 0,940 0, 0,0466 0,0
	10.00			, 22	0,597 0,431 0,0271 37 1	0,661 0,541 0,0287 38 1	0,638 0,0302 41 1	0,750 0,730 0,0324 43 1	0,796 0,828 0,0346 45 1	0,880 0,950 0,0371 46 1	0,931
(va	8 00			0,611 0,434 0,0218 46 1	0,662 0,545 0,0228 48 1	0,740 0,620 0,0242 49 1	0,743 0,719 0,0256 55 1	0,820 0,820 0,0275 57 1	0,853 0,942 0,0294 63 1	0,947 0,906 0,0314 76 2	1,058
О _{СР} (процемт насоответствующих единиц продумции)	8.38	36.0	0,613 0,457 0,0170 59 1	0,663 0,0179 63 1	0,719 0,641 0,0189 65 1	0,780 0,730 0,0202 68 1	0,820 0,840 0,0217 76 1	0,860 0,960 0,0232 78 1	0,952 0,926 0,0247	1,050 1,200 0,0269 107 2	1,181
noc othern	5.00	0,451 0,451 0,0134 75 1	0,690 0,530 0,0142 77 1	0,706 0,641 0,0150 88 1	0,748 0,730 0,0159 93 1	0,800 0,831 0,0170 97 1	0,870 0,970 0,0184	0,961 0,923 0,0196 127 2	1,061 1 174 0,0212 133 2	1,235 1,324 0,0233 158 3	1,591
ветствующ	4,00	0,661 0,563 0,0112 102 1	0,715 0,644 0,0119 107	0,750 0,734 0,0127 118 1	0,797 0,840 0,0135 123 1	0,870 0,970 0,0146 127 1	1,005 0,930 0,0157 147 2	1,065 1,172 0,0169 167 2	1,227 1,305 0,0183 198 3	1,375 1,625 0,0198 240 4	1,581
зет нассот	3.15	1,098 1,013 0,880 0,830 0,787 0,741 1,250 0,939 0,970 0,840 0,740 0,645 0,00425 0,00429 0,00580 0,00579 0,00790 0,00935 692 2 490 2 320 1 238 1 184 1 140 1	0,771 0,741 5 0,0100 144 1	0,840 0,840 5 0,0108 150 1	0,880 0,970 2 0,0115 160 1	1,020 0,930 0,930 187 2	1.075 1.300 0.0133 219 2	1,245 1,330 0,0146 254 3	1,386 1,642 0,0156 307 4	1,630 1,817 0,0172 404 6	2,430 0,0184
S _{CR} (npode	250	0,787 0,740 9 0.00790 184 1	0,830 0,850 0,00855 192 1	0,880 0,980 7 0,00815 204 1	0,993 0,941 0,00972 245 2	1,248 1,248 2,0,0106 273 2	1,225 1,380 0,0114 323 3	1,390 1,645 0,0124 387 4	1,605 1,834 0,0135 517 6	1,925 2,451 0,0148 4 674 9	3,077
	2,00	0,830 0,840 0,00679 238 1	0,881 0,986 0,00729 259 1	0,990 0,938 0,00777 313 2	1,090 1,230 1,0,00850 343 2	1,245 1,330 5,00922 402,3	1,405 1,646 0,00996 483 4	1,647 1,839 0,0108 8 601 6	2,322 0,0118 4 818 9	2,465 3,085 0,0131 51137 14	3,181
	1,60	0,880 0,970 0,00580 320 1	1,006 0,938 0,00621 381 2	1,078 1,243 9 0,00670 429 2	1,320 1,320 0,00731 499 3	1,385 1,617 4 0,00785 6 600 4	1,634 1,871 0,00866	1,899 2,359 0,00938 4 1062 9	3,228 2,379 4,476 3,034 0,00896 0,0103 2892 251424 14	3,155 2,46 4,349 3,08 0,0114 0,01 2265 251137	
	1.25	1,013 0,939 6,00489 490 2	1,242 1,095 1,396 1,355 0,00458 0,00530 820 3 554 2	1,400 1,232 1,078 0,990 0,880 1,678 1,400 1,243 0,938 0,990 0,00494 0,00568 0,00670 0,00777 0,00815 977 4 653 3 428 2 313 2 204 1	1,846 1,406 1,240 1,090 1,860 1,666 1,320 1,230 0,00538 0,00620 0,00731 0,00850 1210 6 780 4 499 3 343 2	1,952 1,631 1,385 1,245 2,342 1,916 1,617 1,330 0,00588 0,00674 0,00785 0,00922 1627 9 1002 6 600 4 402 3	2,434 1,981 1,634 1,405 3,180 2,401 1,871 1,646 0,00649 0,00740 0,00866 0,00996 2289 14 1297 9 780 6 483 4	3,197 2,431 4,372 3,166 0,00715 0,00811 3636 25 1827 14	3,228 4,476 0,00896 2892 25		
	9 -	1,098 1,250 0,00425 692 2					2,434 3,180 0,00649 2289 14	3,197 4,372 0,00715 3636 25			
	0.800	1,239 1,331 0,00364 1004 3	1,401 1,681 0,00395 1225 4	1,650 1,865 0,00430 1513 6	1,920 2,355 0,00469 2100 9	2,405 3,036 0,0051 62852 14					
	0.630	1,392 1,658 0,00309 1541 4	1,936 0,00340 1954 6	1,987 2,361 0,00372 2555 9	2,430 3,088 0,00407 3595 14						
	0.500	1,869 0,002@9 2426 6	1,990 2,422 0,00298 3256 9								
Paper	_	7, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,	л _к В п, Ас,	7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	7 A A A A	7, AG,	7, AG	1 A A G	7, AG	7, AG	4 4 B
0	E	0,125	0,160	0,200	0,250	0,315	0,400	0,500	0,630	0,800	1,00

Продолжение таблицы 1

Opp						OCR (ripo	здент несоо	O _{CR} (гроцент несоответствующих единиц продукции)	и вдиниц пр	одукции)				
(%)	параметр	2,00	2.50	3,15	4,00	5,00	6,30	8,00	10,00	12,5	16,0	20,0	25.0	31.5
	hA		3,177	2,367	1,873	1,578	1,380	1,190	1,025	0,949	0,792	0,700	0,69,0	0,650
125	J'R		4,219	3,023	2,290	1,835	1,550	1,230	1,061	0,901	0,941	0,791	0,690	0,650
	g n, Ac,		1440 25	723 14	419 9	251 6	149 4	96 3	64 2	45 2	31 1	23 1	16 1	11 1
	1			3 2 2 2 2	2 383	1921	1567	1350	1.166	1 050	0.892	0.759	0.750	0.700
	4 6			4 506	3.057	2322	1880	1.565	1255	1,050	0.873	0.925	0.800	0.700
1,60	× 0			0.0227	00280	0.0298	0.0342	0.0398	0.0466	0.0540	0.0637	0.0758	0.0899	0.1084
	n, Ac,			1145 25	567 14	326 9	202 6	117 4	79 3	49 2	36 2	24 1	16 1	12 1
	1				3.156	2363	1882	1.532	1.346	1 212	1,000	0.900	0.800	0.700
	44				4.119	3.018	2.270	1.783	1.504	1.196	1.000	0,900	0.910	0.800
2,00	6				0,0287	0,0325	0,0374	0,0436	0,0499	0,0582	0690'0	0,0810	0,0958	0,1150
	n, Ac,				897 25	452 14	259 9	160 6	91 4	58 3	40 2	27 2	17 1	13 1
	ha					3,106	2,305	_	1,529	1,330	1,120	0,980	0,930	0,800
250	hR					4,094	2,921	2,175	1,742	1,485	1,150	0,950	0,880	0,880
200						0,0358	0,0408		0,0546	0,0630	0,0743	0,0869	0,1023	0,1223
	n, Ac,					717 25	358 14		121 6	71 4	46 3	29 2	20 2	13 1
	b,						3.060	2.271	1.808	1.521	1,300	1.125	0.980	0.816
4 0	ho						4,040	2,811	2,186	1,720	1,400	1,065	006'0	0,871
3,15	6						0,0451	0,0517	0.0596	0,0691	0,0805	0,0937	0,1099	0,1294
	n, Ac,						569 25	280 14	167 9	9 26	53 4	34 3	23 2	17 1
	ha							3,023	2,289	1,789	1,439	1,230	1,069	0,844
400	ha							3,936	2,826	2,170	1,652	1,800	1,051	0,860
1,00	6							0,0573	0,0655	0,0745	0,0871	0,1018	0,1187	0,1406
	nt Ac							445 25	224 14	127 9	75 6	38 3	27 3	18 2
	ήA								2,995	2,221	1,773	1,403	1,160	1,000
5,00	h								3,816	2,757	1,978	1,598	1,750	1,600
	n Ac								354 25	177 14	97 9	59 6	31 3	19 2
	1									2.947	2 0 9 7	1682	1.380	1.080
0	4 4									3,810	2,681	1,920	1,700	1,690
06,0				7						0,0901	0,1040	0,1201	0,1390	0,1599
	n, Ac,									283 25	132 13	77 9	42 5	25 3
	hA										2,889	2,088	1,613	1,303
8.00	h R										3,549	2,630	1,937	1,938
	6										0,1160	0,1310	0,1505	0,1771
											47 117	100 10	6 70	+ 17
	h'A											2,675	1,960	1,474
10,0	a,											0.1438	0.32	0.1003
	S AC											164 23	82 13	46 8
	1													1

Окончание таблицы 1

Примечания 1 Значение л₁ приведено с певой стороны ячейки таблицы. 2 Значение Ас, приведено с правой стороны ячейки таблицы. 3 Пустая ячейка обозначает отсутствие рекомецуемого последовательного плана выборочного контроля, следует выбрать другую комбинацию О_{РR} и О_{СR} 4 Знак * означает, что следует использовать единственное значение л₁, приведенное под звездочкой.

Таблица 2 — Параметры последовательных планов выборочного контроля числа несоответствий на 100 единиц продукции. (Основная таблица для α ≤ 0,05 и β ≤ 0,10)

c	Пара-					a	R (число нес	Q _{CR} (число несоответствий на 100 единиц продукции)	да 100 ен й	иниц прод	(митим)					
N N	метр	0,200	0.250	0,315	0,400	0.500	0.630	0.800	1,00	1,25	1,60	2,00	2,50	3,15	4,00	5,00
	hA	1,016	0,883	0,836	0,800	0,762	0,709	0,625								
0,020,0	a b	0.000776	0	0.00107	0.00127	0.00149	0.00177	0.00211								
	n, Ac,	3060 2			1119 1	825 1	616 1	486 1	231 0							
	hA	1,082	1,016	0,875	0,832	0,800	0,759	0,702	0,627							
0.0250	hR	1,286			0,848	0,743	0,651	0,555	0,463							
		3474 2	0,0000970	0,00113	0,00135	895 1	0,00187	0,00224	385 1	185 0						
	ha		1,091	1,014	0,886	0,832	0,799	092'0	0,705	0,630						
0.0315			1,315		0,980	0,852	0,743	0,646	0,560	0,465			Ì		Î	
2000	6		0,00105	0,0012		0,00169	0,00200	0,00238	0,00280	0,00331			7		ĺ	
	n, Ac,		2783 2	1941 2	1295 1	982 1	711 1	514 1	389 1	307 1	144 0					
	hA		1,247		1,022	0,895	0,835	008'0	0,760	0,714	069'0					
00000	ha		1,413		0,943	066'0	0,855	0,742	0,654	0,564	0,460		1			
2010	6		0,00114	0,001		0,00183	0,00214	0,00254	0,00298	0,00352	0,00423		ý			
	n, Ac,		3287 3	2217 2	1528 2	1036 1	782 1	560 1	413 1	310 1	238 1	116 0				
	hA			1,240	1,083	1,022	0,884	0,835	962'0	0,763	002'0	0,625				
0.0500	hR			1,390		0,942	0,988	0,848	0,745	0,650	0,555	0,465				
0,000,0	6	Î		0,00143	0,00167	0,00195	0,00228	0,00271	0,00317	0,00373	0,00447	0,00529				
	n, Ac,			2590 3	1738 2	1222 2	855 1	609 1	448 1	330 1	244 1	194 1	93 0			
	hA			1,415	1,236	1,083	1,017	0,885	0,835	0,800	191'0	902'0	0.630			
0.0830	ha			1,687	_	1,329	0,943	0,980	0,854	0,747	0,645	0,560	0,465			
0,000	8			26	0,0018	0,00209	-25	0,00290	0,00339	0,00397	0,00475	0,00560	0,00663			
	n, Ac,			3111 4	2032 3	1399 2	972 2	648 1	489 1	358 1	257 1	195 1	151 1	74 0		
hA	hA				1,415	1,239	1,101	1,021	068'0	0,835	008'0	092'0	0,715	0,630		
00000	hp.				1,688	1,417	1,352	0,941	0,990	0,860	0,745	0,650	0,570	0,470		
0,000,0	6				0,00198	0,00227	0,00267	0,00312	0,00364	0,00426	0,00507	0,00596	0,00703	0,00836		
	n, Ac				2449 4	1644 3	1112 2	764 2	518 1	396 1	279 1	207 1	154 1	123 1	58 0	
hA.	hA				1,646	1,410	1,245	1,096	1,033	0,891	0,838	0,795	0,765	0,710	0,635	
0 100	hR				1,884	1,692		1,280	0,940	066'0	0,847	0,745	0,650	0,560	0,460	
	8				0,00214	0,00214 0,0024719	0,0028	0,00338	0,00394	0,00455	0,00541	0,00634	0,00746	0,00884		
	n, Ac,				3039 6	65 4	1298 3	871 2	611 2	415 1	302 1	224 1	164 1	123 1	95 1	47 0

Тродолжение таблицы 2

										000-	008-
	31.5								8 0	0,630 0,450 0,0836 12 1	0,660 0,600 0,0884 14 1
	25.0							10 0	0,630 0,430 0,0667 15 1	0,704 0,540 0,0703 15 1	0,747 0.650 0,0746 16 1
	20.0						12 0	0,610 0,450 0,0529 19 1	0,700 0,580 0,0560 20 1	0,750 0,670 0,0596 21 1	0,720 0,720 0,0634 22 1
	16.0					15 0	0,610 0,470 0,0423 25 1	0,690 0,570 0,0447 25 1	0,740 0,640 0,0475 26 1	0,780 0,720 0,0507 28 1	0,840 0,860 0,0541 29 1
	12.5				19 0	0,610 0,450 0,0331 32 1	0,705 0,550 0,0352 32 1	0,760 0,650 0,0373 32 1	0,810 0,750 0,0397 34 1	0,830 0,850 0,0426 39 1	0,900 0,980 0,0455 40 1
	10.00			24 0	0,620 0,460 0,0284 38 1	0,720 0,560 0,0280 38 1	0,760 0,650 0,0298 41 1	0,810 0,740 0,0319 43 1	0,830 0,840 0,0339 48 1	0,880 0,970 0,0364 50 1	0,955 0,930 0,0368 62 2
	8.00		98 0	0,620 0,460 0,0211 48 1	0,700 0,570 0,0224 48 1	0,750 0,650 0,0238 52 1	0,800 0,740 0,0254 55 1	0,830 0,850 0,0271 61 1	0,880 0,980 0,0290 63 1	1,050 0,935 0,0324 77 2	1,110 1,220 0,0346 86 2
o dynamina)	989	37 0	0,680 0,450 0,0176 57 1	0,570 0,570 0,0177 60 1	0,760 0,660 0,0187 65 1	0,790 0,750 0,0200 72 1	0,850 0,860 0,0214 75 1	0,880 0,980 0,0229 82 1	1,010 0,940 0,0246 96 2	1,100 1,300 0,0267 106 2	1,240 1,360 0,0288 127 3
ди Ниниева	9 00	0,630 0,465 0,0132 76 1	0,710 0,570 0,0141 78 1	0,770 0,650 0,0149 81	0,800 0,740 0,0159 88 1	0,840 0,840 0,0169 95 1	0,880 0,990 0,0182 104 1	1,020 0,940 0,0195 120 2	1,090 1,310 0,0211 139 2	1,240 1,400 0,0229 164 3	1,417 1,680 0,0249 197 4
al sea 100	4.00	0,700 0,560 0,0112 98 1	0,755 0,650 0,0119 104 1	0,800 0,740 0,0127 112 1	0,830 0,850 0,0135 121 1	0.875 0.980 0.0144 131 1	0,950 0,950 0,0147 153 2	1,080 1,280 0,0168 175 2	1,238 1,350 0,0182 201 3	1,415 1,685 0,0199 243 4	1,650 2,340 0,0216 276 S
ответстви	3 15	0,765 0,650 0,00937 129 1	0,795 0,755 0,01000 143 1	0,840 0,850 0,0107 153 1	0,880 0,980 0,0114 163 1	1,030 0,945 0,0124 193 2	1,100 1,340 0,0134 220 2	1,385 0,0144 260 3	1,435 1,670 0,0158 312 4	1,684 1,918 0,0172 392 6	1,985 2,370 0,0186 514 9
О _{СВ} (число не соответствий на 100 единиц продукции	2.50	0.800 0,740 0,00793 179 1	0,840 0,860 0,00851 196 1	0,890 1,080 0,00911 213	1,030 0,941 0,00881 245 2	1,085 1,325 0,0105 279 2	1,265 1,395 0,0116 329 3	1,395 1,694 0,0123 394 4	1,960 1,906 0,0135 491 6	1,988 2,432 0,0148 654 9	2,473 3,186 0,0163 817 14
OCB (200	0,835 0,850 0,00676 242 1	0.898 0.990 0.00736 268 1	1,035 0,940 0,00789 304	1,090 1,270 0,00842 347 2	1,245 1,360 0,00912 405 3	1,419 1,682 0,00984 492 4	1,640 1,882 0,0107 609 6	1,968 2,617 0,0118 760 8	2,517 3,110 0,0131 1129 14	3,228 4,384 0,0143 1812 25
	180	0,885 0,975 0,00582 332 1	1,025 0,940 0,00627 383 2	1,100 1,260 0,00679 432	1,237 1,345 0,00726 506 3	1,408 1,629 0,00790 606 4	1,655 1,873 0,00861 761 6	1,940 2,580 0,00939 957 8	2,430 3,182 0,0103 1329 13	3,233 4,307 0,0114 2232 25	
	1.25	1,030 0,940 0,00491 490 2	1,100 1,405 9,00530 563 2	1,243 1,408 0,00570 656 3	1,693 0,00615 786 4	1,652 1,912 0,00672 982 6	2,003 2,428 0,00742 1308 9	2,447 3,235 0,00811 1843 14	3,272 4,368 0,00897 2987 26		
	1 00	1,091 1,280 0,00421 696 2	1,235 1,415 0,00454 823 3	1,416 1,683 0,00486 981 4	1,648 1,880 0,00536 1217 6	1,959 2,646 0,00589 1528 8	2,447 3,236 0,00649 2305 14	3,214 4,424 0,00714 3634 25	- 1		
	0.800	1,240 1,344 0,00363 1010 3	1,413 1,690 0,00396 1229 4	1,656 1,876 0,00430 1520 6	1,941 2,579 0,00469 1911 8	2,410 3,280 0,0055 2707 13	014	- 0,0			
	0.630	1,403 1,663 0,00310 1548 4	1,659 1,847 0,00340 1963 6	2,377 0,00372 2566 9	2,438 3,115 0,00407 3609 14	14					
	0.500	1,659 1,877 0,00269 2435 6	2,438 0,00296 3270 9 1	0.44	0,0	[. I .					
-ede-U	метр	Acı	AG	A AC.	R AC.	A A G	R AC	R AC,	R R A A C _t	R R A A C _t	AC,
-	KPR .	0.125 AR	0.160 AR	0.200 A	0.250 AR	0.315 A	0.400 A	0.500 PA	0.630 PA	2,800 Pr	1,00 p
			0	9	9	~	~	~	-	~	

Окончание таблицы 2

PR NeTP	200	2.50	3.15	4 00	900	6.30	8.00	10.00	12.50	16.00	20.00	25.00	31.60
	2	2	2	3		200	2000	2000	202	200	0.000	2000	8.10
e e	4,840	3,248	2,447	1,920	1,660	1,410	1,230	1,085	1,020	006'0	0.850	0,794	0,700
125 hR	6,415	4,330	3,105	2,600	1,860	1,625	1,350	1,285	0.920	0,950	0,830	0,700	0,670
ы		0,0179	0.0204	0,0234	0,0271	0,0313	0,0362	w.	0,0489	0,0579	0,0676	0,0793	0,0937
n, Ac	3567 56	1442 25	723 14	384 8	244 6	4 42	102 3	70 2	49 2	30 1	23 1	1 /1	14 1
4		4,964	3,336	2,447	2,005	1,875	1,407	1,225	1,100	1,070	00,800	0,800	0,750
_		7,036	4,397	3,207	2,405	1,910	1,640	1,410	1,365	0,830	0.930	0,870	0,750
6 00		0,0200	0.0227	0,0260	0,0298	0,0343	0,0401	0,0454	0,0530	0.0668	0,0729	0.0851	0,1003
n, Ac		3144 62	1171 26	575 14	327 9	196 6	123 4	83 3	55 2	38 2	24 1	20 1	45
η.			4.874	3.257	2.480	2,030	1.630	1,405	1.230	1,150	0.995	0.900	0.800
4			6 894	4312	3 190	2326	2 405	1.648	1370	1 135	0.925	0 9 1 0	0.840
2,00			0.0251	0.0287	0.0328	0.0377	0.0431	0.0501	0.0573	0.0717	0.0768	0.0900	0.1070
n. Ac.			2426 60	902 25	460 14	257 9	139 5	97 4	66 3	41 2	31.2	20 1	16 1
4				4682	3.288	2484	1 925	1840	1 3.88	1210	1.0.95	1000	0000
× .				8,000	4.330	3.076	2 510	1.845	1.580	1340	1348	0.630	0.885
2.50				0.0316	0.0389	0.0410	0.0473	0.0539	0.0627	0.0727	0.0842	0.0971	0.1161
n, Ac				1801 56	724 25	362 14	190 8	122 6	79 4	51 3	35 2	24 2	16 1
7					4.797	3.250	2.389	2.010	1,630	1410	1.187	1.115	1,000
2					6.713	4.295	3 244	2270	1.865	1 600	1.360	1220	0.890
3,15					0.0397	0.0452	0.0515	0.0598	0.0679	0.0791	0.0912	0,1114	0.1231
n, Ac,					1480 58	672 25	270 13	161 9	9 66	59 4	41 3	26 2	18 2
ħ,						4,854	3,225	2,440	2,010	1,640	1,350	1,200	1,145
100						6,914	4,332	3,185	2,370	1,840	1,700	1,350	1,140
8,00						0,0502	0,0573	0,0651	0,0751		9960'0	0,1146	0,1431
n, Ac,						1215 60	452 25	230 14	131 9	77 6	49 4	33 3	20 2
TA.							4,670	3,208	2,445	1,900	1,625	1,381	1,155
5.00 AR							6,792	4,431	3,175	2,585	1,800	1,620	1,350
6 5							0,0632	0,0714	0,0815	0,0937	0,1082	0,1265	0,1440
n, AG							000 000	304 50	104 14	80 08	0 80	80	6 02
ž.								4,754	3,225	2,390	1,900	1,640	1,350
6.30 AR								6,721	4,360	2,970	2,235	1,815	1,600
9 0								740 68	300 26	141 14	8,1178	47 6	31 4
10 4								3	4 000	0000	2 400	1 050	4 000
× 4									7.019	4300	3,150	2230	1800
8,00 R									0.0998	0.1147	0.1301	0.1501	0.1766
A, AG									628 62	226 25	115 14	6 99	39 6
η,										4,664	3,190	2,405	1,878
100 hB										6,607	4,265	3.140	2,300
g, c										0,1266	0,1436	0,1630	0,1876
7, 75										400 ag	101 23	92 14	95 8
M dil	примечания												
	Значение Ас, приведено с девои стороны ячейки таблицы.	ливедено с	правой стог	DOHN RVERING	и таблицы.								
,		Section in the											1
3	Tag syenica (DOCUMENTA OF T	OTCVTCTBME	Dekomentive	MOTO POCHE	10 Batte Just Of	оплана выб	DODO-HOP IN	итроля, сле	Пустая ячейка обозначает отсутствие рекомендуемого последовательного плана выборочного контроля, спедует выбрать другую комбинацию Qop и Qop	ITE ADVIVO IV	омбинацик	ON OO

Приложение А (справочное)

Статистические свойства последовательного плана выборочного контроля по альтернативному признаку

А.1 Значение среднего объема выборки

Основное преимущество последовательных планов выборочного контроля состоит в сокращении среднего объема выборки. Однако для них характерны и определенные трудности (см. введение). Чтобы оценить возможные преимущества сокращения среднего объема выборки, необходимо знать его значение для конкретного последовательного плана выборочного контроля. К сожалению, нет простой математической формулы для вычисления среднего объема выборки в случае последовательного контроля. Таким образом, средний объем выборки для конкретных последовательного плана выборочного контроля и качества продукции в виде процента несоответствующих единиц продукции или числа несоответствий на 100 единиц продукции может быть найден с помощью численных процедур. Приближенные значения среднего объема выборки (ASSI) для последовательных планов выборочного контроля в настоящем стандарте приведены в таблицах А.1 и А.2 для следующих основных уровней несоответствий:

- а) ноль (превосходное качество продукции, несоответствующие единицы продукции отсутствуют);
- b) Q_{DR} (соответствует одноступенчатому плану с вероятностью приемки 95 %);
- c) 100g (средний объем выборки близок к максимуму, g параметр последовательного плана выборочного контроля);
 - d) Q_{CR} (соответствует одноступенчатому плану с вероятностью приемки 10 %).

В таблице А.1 приведены значения для контроля процента несоответствующих единиц продукции, в таблице А.2 — для контроля числа несоответствий на 100 единиц продукции.

Пример — Организацию, представляющую потребителей, интересует оценка качества определенной продукции. Изготовитель продукции утверждает, что не менее 99 % его продукции соответствует установленным требованиям. Однако данные рынка показывают, что это может быть не так. Поэтому было принято решение проверить утверждение изготовителя против альтернативы, что реальный процент несоответствующих единиц продукции составляет 10 %. Следовательно, $Q_{PR} = 1$ %, и $Q_{CR} = 10$ %. Для последовательного плана выборочного контроля с $Q_{PR} = 1$ % и $Q_{CR} = 10$ % в соответствии с таблицей А.1 (для $Q_{PR} = 1$ % и $Q_{CR} = 10$) средний объем выборки, когда истинный процент несоответствующих единиц продукции составляет $Q_{PR} = 1$ %, равняется 29,5. Если истинный процент несоответствующих единиц продукции составляет $Q_{CR} = 10$ %, средний объем выборки равняется 18,6. Для истинного процента несоответствующих единиц продукции 100g = 3,94 % средний объем выборки составляет 30,7.

Для выбранного последовательного плана выборочного контроля (см. 7.2) n_t = 65. Таким образом, объем выборки эквивалентного одноступенчатого плана (см. примечание к таблице А.1) составляет 0,667 n_t = 44 (для эквивалентного одноступенчатого плана n = 44 и Ac = 1). Поэтому, применяя последовательный план выборочного контроля, можно уменьшить средний объем выборки не менее чем на 30 %.

Следует отметить, что в конкретном случае количество проверенных единиц продукции может быть существенно больше объема выборки эквивалентного одноступенчатого плана. Такая ситуация имеет место в случае, рассмотренном в 7.2, когда контроль был завершен после проверки 50 единиц продукции.

Таблица А.1 — Средний объем выборки для последовательных планов выборочного контроля процента несоответствующих единиц продукции

			Номи	нальные и						етствую:			укции)	
Q _{PR} (%)	P (%)	2,00	2,50	3,15	4,00	5,00	6,30	8,00	10,0	12,5	16,0	20,0	25,0	31,5
		18	10	6	4	3	2	(1,4)	1	(0,7)	(0,5)	(0,3)	(0,2)	(0,1)
0,0200	0 Q _{PR} 100g Q _{CR}								1309 1537 1565 921	977 1127 1141 716	781 840 812 467	629 643 584 316	510 507 437 227	399 392 321 163
0,0250	0 Q _{PR} 100g Q _{CR}							1297 1640 1765 1110	1047 1229 1251 736	775 892 900 563	616 659 635 363	503 514 467 253	405 402 345 179	313 307 251 128
0,0315	0 Q _{PR} 100g Q _{CR}				5 1			1040 1317 1419 896	832 977 995 585	610 700 706 441	492 528 509 292	399 408 371 201	319 317 271 141	251 246 202 103
0,0400	0 Q _{PR} 100g Q _{CR}						1092 1479 1647 1035	823 1048 1139 723	654 768 782 460	488 563 569 358	390 420 406 233	314 321 292 158	255 254 218 113	201 197 162 82,7
0,0500	0 Q _{PR} 100g Q _{CR}						866 1169 1298 812	648 819 881 554	524 614 623 368	387 450 282	308 329 317 181	251 256 233 126	204 203 174 90,7	156 153 125 63,9
0,0630	0 Q _{PR} 100g Q _{CR}					906 1343 1566 1023	682 917 1014 632	518 657 711 449	415 487 496 292	304 359 353 221	246 264 254 146	201 205 187 101	159 158 135 70,4	125 123 101 51,3
0,0800	0 Q _{PR} 100g Q _{CR}					713 1057 1232 805	545 738 822 517	411 523 568 361	326 383 390 230	243 280 284 178	196 211 204 118	157 160 145 78,7	127 126 109 56,7	100 98,2 81,0 41,4
0,100	0 Q _{PR} 100g Q _{CR}				768 1261 1509 985	570 845 985 643	433 583 647 405	323 408 440 276	261 306 311 184	195 224 226 142	154 164 158 90,8	125 128 116 63,3	102 101 87,1 45,5	79 77,6 63,8 32,7
0,125	0 Q _{PR} 100g Q _{CR}				616 1008 1205 788	451 667 776 503	341 456 502 312	259 326 350 221	209 245 249 147	152 173 174 109	123 131 126 72,3	100 102 93,1 50,6	80 79,5 68,5 35,8	62 60,9 49,8 25,6
0,160	0 Q _{PR} 100g Q _{CR}			673 1286 1619 1100	487 808 974 643	355 527 615 402	272 368 410 258	207 264 286 183	163 191 195 115	121 140 142 89,7	98 105 101 58,7	79 80,8 73,9 40,3	63 62,6 54,0 28,3	49 48,1 39,7 20,5
0,200	0 Q _{PR} 100g Q _{CR}			535 1013 1267 853	384 629 752 492	284 421 491 321	217 294 328 206	161 203 219 138	130 153 156 92,2	97 111 112 70,6	78 83,3 80,0 46,3	62 63,3 57,9 31,6	50 49,7 43,0 22,6	39 38,3 31,6 16,4

ΓΟCT P 50779.75-2018

Продолжение таблицы А.1

0			Номин					роцента одностуг				иц прод) ^а	укции)	
Q _{PR} (%)	P (%)	2,00	2,50	3.15	4,00	5,00	6,30	8.00	10,0	12,5	16,0	20,0	25,0	31,5
		18	10	6	4	3	2	(1,4)	1	(0.7)	(0,5)	(0,3)	(0,2)	(0.1)
	0		598	412	307	227	170	129	104	77	61	50	40	30
0,250	Q _{PR}		1361	781	502	336	227	162	122	87,9	65,1	50,9	39,8	29,5
0,230	100g		1785	995	601	392	249	174	124	88,6	62,9	46.2	34,3	24,5
	Q _{CR}		1249	699	393	256	155	110	73,5	55,7	36,4	25,3	18,1	12,8
	0		466	330	244	177	136	103	83	60	49	39	31	24
0.245	Q _{PR}		1058	630	406	260	182	130	96,8	68,5	52,0	39,7	30,7	23.6
0,315	100g		1404	806	500	301	200	140	98,1	69,2	50,0	36,2	26,3	19,6
	Q _{CR}		1011	572	359	194	125	88,7	58,1	43,4	29,0	19,8	13,9	10,3
	0		376	268	189	141	108	81	65	48	38	31	25	19
0.400	Q _{PR}		864	512	313	209	146	103	75,8	54,9	40,8	31.5	24,9	18,7
0,400	100g		1144	644	387	244	162	112	76,9	55,6	39,6	28.6	21,6	15,4
	QCR		810	437	277	159	102	71,2	45,6	35,3	23,0	15,7	11,4	8,18

Продолжение таблицы А.1

			Hos	инальн			_R /Q _{PR} (д валентн						продук	іми)	
Q _{PR} (%)	P (%)	1,60	2,00	2,50	3,15	4,00	5,00	6,30	8,00	10,0	12,5	16,0	20,0	25,0	31,5
		38	18	10	.6	4		2	(1,4)	1	(0,7)	(0,5)	(0,3)	(0,2)	(0,1)
0,500	Q _{PR} 100g Q _{CR}		448 1315 1821 1335	300 690 913 646	204 388 495 348	150 250 311 224	113 167 194 127	86 115 127 80,0	64 80,2 85,8 54,2	52 60,7 61,7 36,7	38 43,2 43,8 27,8	30 31,8 30,6 17,8	24 24,5 22,6 12,5	20 19,8 17,0 9,07	15 14,7 12,0 6,30
0,630	0 Q _{PR} 100g Q _{CR}		361 1072 1483 1097	232 526 695 498	165 313 398 281	121 201 248 178	89 132 154 101	67 89,8 99,3 62,2	51 63,9 68,6 43,5	40 47,3 48,9 29,0	29 33,5 34,4 21,6	24 25,6 24,9 14,8	19 19,5 18,1 10,2	15 14,9 13,0 7.03	12 11,8 9,77 5,22
0,800	0 Q _{PR} 100g Q _{CR}		277 818 1131 827	189 429 565 400	132 254 328 236	96 160 198 144	70 103 121 78,7	54 72,0 79,5 50,3	40 50,4 54,3 34,6	32 37,3 37,9 22,7	24 26,8 27,0 17,2	19 20,3 20,0 11,9	15 15,2 13,9 7,80	12 12,0 10,6 5,83	9 8,85 7,37 4,04
1,00	Q _{PR} 100g Q _{CR}		223 653 898 654	150 342 450 317	104 199 254 181	75 123 150 106	56 82,1 95,4 62,4	42 56,5 62,8 39,6	32 39,3 41,2 26,2	25 29,5 30,7 18,6	19 21,2 21,4 13,6	15 15,7 15,0 8,89	12 12,1 11,0 6,22	9 9,01 8,11 4,58	7 6,88 5,69 3,16
1,25	0 Q _{PR} 100g Q _{CR}	298 1232 1765 1329	178 520 715 520	117 267 356 258	81 152 194 136	60 97,8 119 84,0	44 64,2 74,4 48,4	33 43,7 48,0 30,1	25 30,9 32,8 21,0	20 23,4 24,1 14,7	14 16,2 17,1 11,3	12 12,6 12,1 7,37	9 9,19 8,63 5,01	7 7,00 6,31 3,65	
1,60	0 Q _{PR} 100g Q _{CR}	244 1073 1544 1168	142 425 588 430	92 212 283 206	65 125 160 114	47 78,1 96,9 69,9	34 50,4 58,8 38,3	26 34,9 38,8 24,6	20 24,7 26,2 16,8	15 17,5 18,1 11,1	11 12,7 13,5 9,08	9 9,41 9,10 5,56	7 7,17 6,88 4,14		

Окончание таблицы А.1

			Hos	инальн	и Ас _в (д	эния Q _{СЕ} для экви	_қ /О _{РК} (д валентн	ля проце ого одно	ента нес оступенч	оответс атого пл	гвующих зана кон	единиц гроля) ^а	продук	ции)	
Q _{PR} (%)	P (%)	1,60	2,00	2,50	3,15	4,00	5,00	6,30	8,00	10,0	12.5	16,0	20,0	25,0	31.5
		38	18	10	6	4		2	(1,4)	1	(0.7)	(0,5)	(0,3)	(0,2)	(0,1)
2,00	0 Q _{PR} 100g Q _{CR}	189 821 1188 906	110 321 444 328	73 168 224 162	51 96,8 124 88,4	36 59,7 73,9 52,2	27 39,8 46,7 30,6	21 28,0 30,9 19,7	15 18,5 19,9 12,8	12 13,9 14,4 8,85	9 10,1 10,6 7,31	7 7,48 7,61 4,84			
2,50	0 Q _{PR} 100g Q _{CR}	143 605 875 666	87 255 353 261	57 130 173 124	39 73,9 94,0 65,3	29 47,0 57,4 40,3	22 31,5 36,3 23,6	16 20,9 23,0 14,6	12 14,6 15,5 10,1	10 11,4 11,5 7,01	7 7,83 8,33 5,83				
3,15	0 Q _{PR} 100g Q _{CR}	116 494 712 538	68 200 277 204	44 99,8 132 93,6	31 58,6 75,1 52,6	23 37,0 45,3 31,9	17 24,1 27,6 17,9	13 16,8 18,2 11,6	9 11,2 12,0 7,93	7 8,40 9,26 6,12					
4,00	0 Q _{PR} 100g Q _{CR}	92 399 578 441	53 155 214 156	35 80,3 107 77,5	25 46,8 60,2 42,7	17 28,0 34,4 24,1	13 18,6 22,2 16,5	10 12,7 14,0 9,32	7 8,58 9,25 6,26						
5,00	0 Q _{PR} 100g Q _{CR}	70 292 418 315	42 122 169 126	28 62,9 83,9 60,3	19 34,7 43,8 30,2	13 21,7 26,9 18,8	10 14,3 17,4 13,1	7 9,42 11,1 8,40							
6,30	0 Q _{PR} 100g Q _{CR}	55 236 342 262	33 97,2 136 102	21 46,6 62,5 45,6	15 27,2 34,7 25,3	10 16,7 20,8 14,6	7 10,7 13,3 10,0								
8,00	0 Q _{PR} 100g Q _{CR}	45 195 284 217	25 72,1 101 75,4	16 36,9 49,8 36,6	11 21,2 27,7 20,4	8 13,0 16,0 12,0									
10,0	O Q _{PR} 100g Q _{CR}	32 135 196 151	19 55,6 78,3 59,1	12 28,2 38,3 28,9	9 15,9 20,0 14,4										

 $^{^{}a}$ Ac $_{0}$ — приемочное число для эквивалентного одноступенчатого плана контроля. n_{0} — объем выборки соответствующего одноступенчатого плана контроля, равный $0.667n_{\rm l}$. Для дробных значений Ac $_{0}$ нет соответствующих одноступенчатых планов выборочного контроля.

ГОСТ Р 50779.75-2018

Таблица А.2— Средний объем выборки для последовательных планов выборочного контроля числа несоответствий на 100 единиц продукции

О _{РР} (%) для числа несоот- ветствий на 100 еди-	P (%)	Номинальные значения Q_{CR}/Q_{PR} и Ac_0 для числа несоответствий на 100 единиц продукции ^а													
		2,00	2,50	3,15 6	4,00	5,00	6,30	8,00	10,0	12,5	16,0	20.0	25,0	31.6	
ниц продукции		10	10	-	-	3	-	(1,4)	A Section of						
	0		1					-	1310	978	782	630	512	40	
0,0200	Q _{PR}								1538	1129	842	644	509	39	
	100g								1565	1143	813	586	439	32	
	Q _{CR}								922	717	467	317	228	16	
	0							1298	1048	775	617	504	406	31	
0.0250	Q _{PR}							1642	1231	894	661	515	404	30	
0,0250	100g							1769	1253	905	637	469	347	25	
	Q _{CR}							1112	738	565	364	254	180	12	
	0						1 - 7	1040	832	612	493	400	320	25	
	QPR							1319	977	702	529	409	318	24	
0,0315	100g							1424	995	707	511	372	273	203	
	Q _{CR}							900	586	441	293	201	142	10	
	0						1094	825	656	490	391	315	256	20	
0.0400	Q _{PR}						1483	1051	770	565	421	322	255	19	
	100g						1650	1141	783	570	407	293	219	16	
	Q _{CR}						1037	725	462	358	234	159	114	83,	
	0						868	649	525	388	309	252	205	15	
	Q _{PR}						1172	821	616	447	331	258	204	15	
0,0500	100g						1300	885	626	452	318	235	176	12	
	Q _{CR}						813	556	369	283	182	127	91,3	64,	
	0					908	683	519	416	306	247	202	160	126	
	Q _{PR}					1346	920	659	488	351	265	207	159	124	
0,0630	100g					1569	1018	714	497	354	256	189	137	102	
	Q _{CR}					1025	635	452	293	221	147	102	71,0	51,	
	0					715	546	413	328	245	197	158	128	10	
0.0000	Q _{PR}					1060	741	525	385	282	213	161	127	100	
0,0800	100g					1236	826	570	391	286	206	147	110	82,	
	Q _{CR}					808	519	363	231	180	119	79,8	57,3	42,	
	0				770	571	434	325	263	196	155	126	103	81	
0.400	Q _{PR}				1265	848	586	411	308	226	166	129	102	79,	
0,100	100g				1513	989	650	442	312	228	159	118	88,3	65,	
	Q _{CR}				988	647	408	279	185	144	91,4	63,9	46,1	33,	
	0				617	453	342	260	210	153	124	101	82	63	
0.407	Q _{PR}				1011	669	458	328	246	175	133	103	81,4	61,	
0,125	100g				1210	778	505	353	250	176	128	94,2	70,0	51,	
27°C 041	Q _{CR}				791	506	314	223	148	110	73.5	51,2	36,5	26,	

Продолжение таблицы А.2

Q _{PR} (%)		Номинальные значения $Q_{\mathrm{CR}}/Q_{\mathrm{PR}}$ и Ac_{O} для числа несоответствий на 100 единиц продукции $^{\mathrm{a}}$													
для числа несоот-	P (%)	2,00	2,50	3,15	4,00	5,00	6.30	8,00	10,0	12,5	16,0	20,0	25,0 (0,2)	31,5	
ветствия на 100 еди- ниц продукции		18	10	6	4	3	2	(1,4)	- 1	(0,7)	(0,5)	(0.3)			
	0			674	488	357	273	208	164	123	99	80	64	51	
0.160	Q _{PR}			1290	811	530	370	266	192	142	107	82,1	63,7	50,1	
0,100	100g			1626	979	618	413	290	196	143	103	75.6	55,1	41.5	
	Q _{CR}			1106	647	405	260	186	116	90,2	59,9	41,4	28,9	21,4	
	0			536	386	286	219	163	132	98	79	63	52	41	
0,200	Q _{PR}			1017	632	424	296	205	155	113	84,7	64,4	51,7	40,2	
0,200	100g			1273	756	494	330	220	157	115	81,9	58,9	44,4	33,1	
	Q_{CR}			859	495	323	208	139	93,2	73,0	47,5	32,2	23,3	17.0	
	0		600	414	308	228	171	130	105	78	62	51	41	32	
	Q _{PR}		1366	786	506	339	229	164	123	89,5	66,4	52,0	40,8	31,4	
0,250	100g		1795	1000	605	396	253	177	125	90,6	64,0	47,3	35,4	26,0	
	Q _{CR}		1258	703	396	259	157	111	74,2	57,1	37,0	25,9	18,7	13,5	
	0		468	333	246	179	137	104	84	61	50	40	32	26	
0.045	Q _{PR}		1066	635	407	262	184	132	98,6	70,3	53,3	41.1	31,9	25,5	
0,315	100g		1413	811	489	304	203	143	100	71,3	51,1	38.0	27,9	21,1	
	Q _{CR}		1018	576	322	197	127	90,8	59,8	44,8	29,6	20,9	14,8	11,0	
	0		378	270	193	143	110	83	65	49	40	32	26	21	
0.400	Q _{PR}		870	516	316	212	148	105	77,0	56,7	42,8	32,6	25,9	20,7	
0,400	100g		1156	650	378	247	165	114	79,3	57.7	41,5	29,7	22,6	17,2	
	Q _{CR}		822	443	248	162	104	72,8	46,6	36,7	24,3	16.4	12,1	8,92	

ΓΟCT P 50779.75-2018

Продолжение таблицы А.2

Q _{PR} (%) для числа несоот- ветствий на		Номинальные значения Q_{CR}/Q_{PR} и Ac_0 для чиспа несоответствий на 100 единиц продукции														
	F (10)	1,60	2,00	2,50	3.15	4,00	5,00	6,30	8,00	10,0	12,5	16,0	20,0	25,0	31,5	
100 единиц продукции		38	18	10	6	4	3	2	(1,4)	1	(0,7)	(0.5)	(0,3)	(0,2)	(0,1	
0,500	0 Q _{PR} 100g		451 1327 1835	302 696 925	207 393 501	154 253 303	114 170 198	87 117 130	65 82,2 88,8	53 62,0 63,0	39 45,0 45,8	31 33,4 32,5	26 26,4 23,9	21 20,9 18,0	16 15, 13,	
	Q _{CR}		1347	658	352	198	130	82,1	56,3	37,3	29,3	19.0	13,2	9,68	7.1	
0,630	0 Q _{PR} 100g Q _{CR}		365 1081 1488 1082	236 535 699 498	167 318 405 287	123 203 245 161	91 135 157 103	69 92,3 102 63,8	52 66,1 71,6 45,6	42 49,3 50,3 30,0	31 35,5 36,1 23,2	25 26,8 26,1 15,3	21 21,4 19,5 10,9	16 16,0 14,0 7,64	13 12, 10, 5,8	
0,800	0 Q _{PR} 100g Q _{CR}		284 833 1135 823	193 437 572 404	135 258 325 222	98 162 195 130	72 106 123 80,9	55 74,2 82,6 52,3	42 52,8 56,7 36,2	33 38,6 39,4 23,7	25 28,6 29,0 18,6	20 21,6 21,1 12,5	16 16,4 15,1 8,43	13 13,1 11,7 6,44	11 10, 8,8 4,7	
1,00	0 Q _{PR} 100g Q _{CR}		226 664 915 671	152 348 461 327	107 203 255 172	77 127 156 112	57 84,8 99,2 65,3	44 58,9 65,0 40,9	33 41,2 44,0 28,1	26 31,0 32,1 19,0	20 22,9 23,2 15,0	16 17.1 16,8 10,1	13 13,3 12,2 6,85	11 11,0 9,63 5,30	8 8,0 7,1 3,9	
1,25	0 Q _{PR} 100g Q _{CR}	305 1256 1787 1335	182 531 730 533	120 274 360 253	83 157 201 142	62 101 121 79,7	46 67,2 78,0 51,0	34 45,9 51,2 32,3	26 33,0 36,0 23,0	21 24,8 25,4 15,3	16 18,0 18,3 11,9	13 13,8 13,3 7,96	11 11,2 10,1 5,73	8 8,11 7,50 4,30		
1,60	0 Q _{PR} 100g Q _{CR}	249 1096 1581 1197	147 439 600 438	95 218 289 205	68 129 163 111	49 81,2 97,9 65,1	36 53,0 61,8 40,8	27 37.1 41,8 26,6	21 26,8 29,4 19,2	17 19,6 19,8 12,1	13 14,6 14,8 9,60	10 11,0 11,1 6,85	8 8,35 8,07 4,76			
2,00	0 Q _{PR} 100g Q _{CR}	195 844 1215 920	114 332 456 333	76 174 231 164	54 102 127 86,4	38 63,6 78,9 57,1	29 42,6 49,6 32,7	22 29,7 33,2 21,3	17 20,8 21,7 14,0	13 15,8 16,6 10,3	10 11,4 11,7 7,73	8 8,74 8,76 5,39				
2,50	0 Q _{PR} 100g Q _{CR}	149 627 902 682	91 265 366 268	60 137 180 127	42 78,7 99,8 70,3	31 50,6 60,7 40,1	23 34,0 39,8 26,4	17 22,9 25,6 16,2	13 16,5 18,1 11.7	11 13,1 13,6 8,46	8 9,16 9,42 6,24					
3,15	0 Q _{PR} 100g Q _{CR}	121 517 741 558	72 211 290 212	47 107 141 102	34 63,6 79,4 53,7	25 40,7 49,0 32,7	18 26,6 30,8 20,0	14 18,5 20,7 13,3	11 13,4 14,2 9,35	9 10,6 10,9 6,79						

Окончание таблицы А.2

Q _{PR} (%) для числа несоот-	P(%)		Номинальные значения $Q_{\mathrm{CR}}/Q_{\mathrm{PR}}$ и Ac_0 для числа несоответствий на 100 единиц продукции														
ветствий на	P (30)	1,60	2,00	2,50	3,15	4.00	5,00	6,30	8,00	10,0	12,5	16,0	20,0	25,0	31,5		
100 единиц продукции		38	18	10	6	4	3	2	(1.4)	1	(0,7)	(0,5)	(0,3)	(0,2)	(0,1		
\$ 31	0	97	57	38	27	19	14	11	9								
4.00	QPR	422	166	87,1	51,6	31,6	21,3	15,0	10.8				16 (1)				
4,00	100g	609	229	116	65,2	38,2	25,3	16,8	11,2								
	Q_{CR}	462	168	82,5	44.7	25,4	16.7	10,9	7,42				1				
	0	74	45	30	21	16	12	9		-							
F 00	QPR	314	133	69,7	39,4	25,7	17,2	11,8									
5,00	100g	453	184	92,6	50,5	30,4	20,1	13,3									
	Q_{CR}	346	136	66,1	35,9	20,1	13,4	8,72									
	0	60	36	24	17	13	9										
0.00	QPR	258	108	53,3	31,8	20,8	13,6										
6,30	100g	371	149	69,6	39,8	24,6	16,1										
	Q _{CR}	279	109	48,7	27,1	16,5	10,8	0.00									
	0	49	28	19	14	10											
0.00	Q _{PR}	220	83,0	43,6	25,9	16,3											
8,00	100g	316	115	57,9	32,9	19,6											
	Q _{CR}	239	84.1	41,4	22,9	13,4											
	0	37	23	15	11								1, 31				
10.0	QpR	157	66,4	34,9	20,3												
10,0	100g	226	91,6	46,5	25,6												
	Q _{CR}	171	67.5	33,4	17,7								-5-41				

 $[^]a$ Ac $_0$ — приемочное число для эквивалентного одноступенчатого плана контроля. n_0 — объем выборки соответствующего одноступенчатого плана контроля, равный 0,667 $n_{\rm L}$ Для дробных значений Ac $_0$ нет соответствующих одноступенчатых планов выборочного контроля.

Приложение ДА (справочное)

Сведения о соответствии ссылочных национальных стандартов международным стандартам, использованным в качестве ссылочных в примененном международном стандарте

Таблица ДА.1

Обозначение ссылочного национального стандарта	Степень соответствия	Обозначение и наименование соответствующего международного стандарта
ГОСТ Р ИСО 2859-1—2007	IDT	ISO 2859-1:1999 «Процедуры выборочного контроля по альтернативному признаку. Часть 1. Планы выборочного контроля последовательных партий на основе приемлемого уровня качества AQL»
ГОСТ Р ИСО 2859-5—2009	IDT	ISO 2859-5:2005 «Процедуры выборочного контроля по альтер- нативному признаку. Часть 5. Система последовательных пла- нов выборочного контроля на основе предела приемлемого ка- чества (AQL) для контроля последовательных партий»
ГОСТ Р 50779.11—2000 (ИСО 3534-2:93)	IDT	ISO 3534-2:1993 «Статистика. Словарь и условные обозначения. Часть 2. Статистическое управление качеством»

П р и м е ч а н и е — В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

⁻ IDT — идентичные стандарты.

УДК 658.562.012.7:65.012.122:006.352

OKC 03.120.30

T59

Ключевые слова: статистический приемочный контроль, контроль по альтернативному признаку, план статистического приемочного контроля, уровень несоответствий, соответствующий риску потребителя, уровень несоответствий, соответствующий риску изготовителя, показатель контроля, приемочное число, браковочное число, таблица приемки, приемочная карта, выборка, партия, единица продукции, несоответствие, несоответствующая единица продукции, процент несоответствующих единиц продукции, число несоответствий на 100 единиц продукции в выборке, объем партии

БЗ 9-2018/69

Редактор Л.В. Коретникова Технический редактор И.Е. Черепкова Корректор М.В. Бучная Компьютерная верстка Л.А. Круговой

Сдано в набор 01.08.2018. Подписано в лечать 16.08.2018. Формат 60×84 1/8. Гарнитура Ариал. Усл. печ. л. 3,72. Уч.-изд. л. 3,34. Подготовлено на основе электронноя версии, предоставленной разработчиком стандарта