ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р 57949— 2017 (ИСО 10928: 2009)

ТРУБЫ И ДЕТАЛИ ТРУБОПРОВОДОВ ИЗ РЕАКТОПЛАСТОВ, АРМИРОВАННЫХ СТЕКЛОВОЛОКНОМ

Методы регрессионного анализа

(ISO 10928:2009, Plastics piping systems —
Glassreinforced thermosetting plastics (GRP) pipes and fittings —
Methods for regression analysis and their use, MOD)

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Объединением юридических лиц «Союз производителей композитов» совместно с Автономной некоммерческой организацией «Центр нормирования, стандартизации и классификации композитов» на основе собственного перевода на русский язык указанного в пункте 4 стандарта
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 497 «Композиты, конструкции и изделия из них»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 16 ноября 2017 г. № 1748-ст
- 4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 10928:2009 «Трубопроводы пластмассовые. Трубы и фитинги из термореактивных стеклопластиков (GRP). Методы регрессионного анализа и их применение» [ISO 10928:2009 «Plastics piping systems. Glassreinforced thermosetting plastics (GRP) pipes and fittings Methods for regression analysis and their use», MOD], включая изменение Amd.1:2013, путем изменения содержания отдельных структурных элементов, которые выделены вертикальной линией, расположенной на полях напротив соответствующего текста. Оригинальный текст этих структурных элементов приведенного международного стандарта и объяснения причин внесения технических отклонений приведены в дополнительном приложении ДА.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5—2012 (пункт 3.5)

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет (www.gost.ru)

© Стандартинформ, 2017

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения
2 Сущность метода
3 Методика определения линейных взаимосвязей — методы А и В
4 Применение методов регрессионного анализа при испытаниях и проектировании продукции 1
Приложение A (обязательное) Порядок проектирования напорных труб и деталей трубопроводов из реактопластов, армированных стекловолокном 1
Приложение В (справочное) Полиномиальный анализ с использованием взаимосвязей второго порядка
Приложение С (справочное) Нелинейный метод анализа
Приложение D (справочное) Расчет нижних границ доверительного и прогнозируемого интервалов для метода А
Приложение ДА (справочное) Оригинальный текст модифицированных структурных элементов примененного международного стандарта
Библиография

Введение

В настоящем стандарте приведены методы регрессионного анализа данных, полученных в ходе испытаний в течение определенного времени, и использование результатов регрессионного анализа при проектировании изделий и оценке их соответствия эксплуатационным требованиям. Для регрессионного анализа используют данные, полученные в ходе испытаний образцов в соответствии с действующими стандартами, устанавливающими методы испытаний для расчета долговременных свойств труб и деталей трубопроводов из реактопластов, армированных стекловолокном, например начального окружного предела прочности при растяжении, долговременной кольцевой деформации, химической стойкости внутренней поверхности в условиях нагружения и долговременной удельной кольцевой жесткости при ползучести или при релаксации.

Был исследован ряд статистических методов, которые можно использовать для регрессионного анализа результатов разрушающих испытаний. Во многих из этих простых методов логарифмы данных должны удовлетворять следующим требованиям:

- а) должны иметь нормальное распределение;
- б) иметь линию регрессии с отрицательным наклоном:
- в) иметь достаточно высокий коэффициент корреляции (см. таблицу 1).

Исследования показали, что требования б) и в) могут быть выполнены, а требование а) — нет, так как в распределении существует асимметрия. Дальнейшие исследования методов, применимых к асимметричным распределениям, привели к принятию ковариационного метода регрессионного анализа таких данных в настоящем стандарте.

Результаты неразрушающих испытаний, например на определение долговременной удельной кольцевой жесткости при ползучести или при релаксации, как правило, удовлетворяют всем трем требованиям, поэтому в соответствии с настоящим стандартом к ним применим более простой метод с использованием времени в качестве независимой переменной.

Данные методы регрессионного анализа данных ограничиваются методами анализа, определенными в стандартах на продукцию или методы испытаний. Для экстраполяции и прогнозирования долговременных свойств труб и деталей трубопроводов из реактопластов, армированных стекловолокном, могут быть использованы другие методы анализа. Например, полиномиальный анализ с использованием взаимосвязей второго порядка допускается применять для экстраполяции данных долговременной удельной кольцевой жесткости при ползучести или при релаксации, особенно при анализе данных за короткий период, когда форма кривых долговременной удельной кольцевой жесткости при ползучести или при релаксации может сильно отличаться от линейной. Полиномиальный анализ с использованием взаимосвязей второго порядка приведен в приложении В. В приложении С приведен альтернативный метод нелинейного анализа. Приложения В и С имеют справочный характер, и нелинейные методы, приведенные в них, применимы только для труб и деталей трубопроводов из реактопластов, армированных стекловоложном, и могут быть не применимы при исследовании других труб.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТРУБЫ И ДЕТАЛИ ТРУБОПРОВОДОВ ИЗ РЕАКТОПЛАСТОВ, АРМИРОВАННЫХ СТЕКЛОВОЛОКНОМ

Методы регрессионного анализа

Fiberglass-reinforced thermosetting plastics pipes and parts of pipelines. Methods for regression analysis

Дата введения — 2018-06-01

1 Область применения

Настоящий стандарт устанавливает два метода регрессионного анализа данных, которые при преобразовании в логарифмические значения имеют нормальное или асимметричное распределение. Настоящий стандарт применяют совместно со стандартами на методы испытаний труб и деталей трубопроводов из реактопластов, армированных стекловолокном для анализа зависимости их свойств от времени. Настоящий стандарт может быть также применен для анализа других данных.

Порядок проведения испытаний для сбора данных, количество требуемых образцов и период времени сбора данных установлены в стандартах на методы испытаний труб и деталей трубопроводов из реактопластов, армированных стекловолокном.

2 Сущность метода

Регрессионный анализ проводят на основе метода наименьших квадратов, который можно адаптировать к асимметричному и/или нормальному распределениям. Используют два метода регрессионного анализа:

- метод А: ковариационный метод с использованием взаимосвязей первого порядка;
- метод В: метод наименьших квадратов с использованием взаимосвязей первого порядка, где в качестве независимой переменной используют время.

Методы регрессионного анализа включают в себя статистическую проверку корреляции данных и их пригодности к экстраполяции.

Экстраполяция с использованием методов регрессионного анализа позволяет продлить данные, полученные в течение 10 000 ч. для прогнозирования свойств на 50 лет, что, как правило, является максимальным временем экстраполяции.

В разделе 4 приведено применение методов регрессионного анализа при испытаниях и проектировании продукции.

3 Методика определения линейных взаимосвязей — методы A и B

3.1 Общие положения для методов А и В

Используя метод А (см. 3.2) или В (см. 3.3) строят прямую, задаваемую формулой

$$y = a + bx, \tag{1}$$

- где у десятичный логарифм значения исследуемого свойства;
 - а точка пересечения с осью Y;
 - b угол наклона прямой;
 - десятичный логарифм времени, ч.

3.2 Метод А — ковариационный метод

3.2.1 Общие положения

Рассчитывают переменные в соответствии с 3.2.2—3.2.5, используя формулы (2)—(4). Сумму квадратов регрессионных остатков, параллельных оси Y, Q_{ν} вычисляют по формуле

$$Q_{y} = \frac{\sum (y_{i} - Y)^{2}}{2},$$
 (2)

где y_i — отдельное измеренное значение;

У — среднеарифметическое значение по всем у, вычисляют по формуле (5);

п — общее количество результатов (соответствующие пары x, y,).

Сумму квадратов регрессионных остатков, параллельных оси X, Q_x вычисляют по формуле

$$Q_{x} = \frac{\sum (x_{i} - X)^{2}}{n},$$
(3)

где x; — отдельное измеренное значение;

Х — среднеарифметическое значение по всем х_г, вычисляют по формуле (6).

Сумму квадратов регрессионных остатков, перпендикулярных прямой, Q_{xv} вычисляют по формуле

$$Q_{xy} = \frac{\sum \left[\left(x_i - X \right) \cdot \left(y_i - Y \right) \right]}{n}, \tag{4}$$

где

$$Y = \frac{\sum y_i}{n},$$
 (5)

$$X = \frac{\sum x_i}{n}.$$
 (6)

П р и м е ч а н и е — Если значение Q_{xy} больше нуля, угол наклона прямой b положительный, если меньше нуля — отрицательный.

3.2.2 Пригодность данных

Квадратичный коэффициент корреляции r² вычисляют по формуле

$$r^2 = \frac{Q_{xy}^2}{Q_x Q_y}. (7)$$

Линейный коэффициент корреляции r вычисляют по формуле

$$r = |(r^2)^{0.5}|$$
 (8)

Данные непригодны для анализа, если выполняется неравенство

$$r < \frac{t(f)}{\sqrt{n-2+[t(f)]^2}}$$
, (9)

где t(f) — t-критерий Стьюдента.

В таблице 1 приведены минимальные допустимые значения линейного коэффициента корреляции *г* в зависимости от количества переменных *п*. Значения *t*-критерия Стьюдента основаны на двухстороннем уровне значимости 0,01.

Таблица 1 — Минимальные допустимые значения линейного коэффициента корреляции г

Количество переменных, л	Число степеней свободы, (n - 2)	t-критерий Стьюдента, t (0,01)	Минимальное значение, г
13	11	3,106	0,6835
14	12	3,055	0,6614

Окончание таблицы 1

Количество переменных, <i>п</i>	Число степеней свободы, (n - 2)	f-критерий Стьюдента, f (0,01)	Минимальное значение, л	
15	15 13		0,6411	
16	14	2,977	0,6226	
17	15	2,947	0,6055	
18	16	2,921	0,5897	
19	17	2,898	0,5751	
20	18	2,878	0,5614	
21	19	2,861	0,5487	
22	20	2,845	0,5368	
23 21		2,831	0,5256	
24	22	2,819	0,5151	
25	23	2,807	0,5052	
26	24	2,797	0,4958	
27	25	2,787	0,4869	
32	30	2,750	0,4487	
37	35	2,724	0,4182	
42	40	2,704	0,3932	
47	45	2,690	0,3721	
52	50	2,678	0,3542	
62 60		2,660	0,3248	
72	70	2,648	0,3017	
82	80	2,639	0,2830	
92	90	2,632	0,2673	
102	100	2,626	0,2540	

3.2.3 Функциональные зависимости

Чтобы найти a и b в формуле (1) вычисляют Γ по формуле

$$\Gamma = \frac{Q_y}{Q_y}$$
. (10)

Угол наклона прямой b вычисляют по формуле

$$b = -(\Gamma)^{0.5}. \tag{11}$$

Точку пересечения с осью У а вычисляют по формуле

$$a = Y - b \cdot X. \tag{12}$$

3.2.4 Расчет дисперсий

Десятичный логарифм времени до разрушения х,, вычисляют по формуле

$$X_u = |gt_u, \tag{13}$$

где t_u — время до разрушения, ч.

Для каждого отдельно измеренного значения от i = 1 до n вычисляют статистические показатели:

наилучшее значение для истинного значения x, x', по формуле

$$x_{i}' = \frac{\Gamma \cdot x_{i} + b(y_{i} - a)}{2\Gamma}; \tag{14}$$

наилучшее значение для истинного значения у, у, по формуле

$$y_i' = a + b \cdot x_i'. \tag{15}$$

Дисперсию ошибки σ_δ^2 для x вычисляют по формуле

$$\sigma_{\delta}^{2} = \frac{\left[\sum (y_{i} - y_{i}^{\prime})^{2} + \Gamma \cdot \sum (x_{i} - x_{i}^{\prime})^{2}\right]}{(n-2) \cdot \Gamma}.$$
(16)

Переменные E и D вычисляют по формулам (17) и (18) соответственно:

$$E = \frac{b \cdot \sigma_{\delta}^2}{2 \cdot Q_{xy}},\tag{17}$$

$$D = \frac{2 \cdot \Gamma \cdot b \cdot \sigma_{\delta}^2}{n \cdot Q_{xy}}.$$
 (18)

Дисперсию угла наклона прямой С вычисляют по формуле

$$C = D(1 + E)$$
. (19)

3.2.5 Проверка пригодности к экстраполяции

Если прямую предполагается экстраполировать, вычисляют значение Т по формуле

$$T = \frac{b}{(\text{var }b)^{0.5}} = \frac{b}{C^{0.5}}.$$
 (20)

Если абсолютное значение T, то есть |T|, равно или больше, чем применяемое значение t-критерия Стьюдента t,, приведенное в таблице 2 для степеней свободы (n-2), данные пригодны для экстраполяции.

Примечание — Расчет границ доверительного интервала не требуется, но в приложении D приведен порядок расчета нижних границ доверительного и прогнозируемого интервалов (LCL и LPL соответственно).

Таблица 2 — Значения t-критерия Стьюдента t_v (вероятность выхода за границы доверительного интервала 2,5 %, двусторонний уровень значимости 5 %, доверительная вероятность 97,5 %)

Число степе« ней свободы, (n - 2)	Значения <i>t</i> -критерия Стьюдента, <i>t</i>	Число степе- ней свободы, (n ~ 2)	Значения <i>t</i> -критерия Стьюдента, <i>t_v</i>	Число степе- ней свободы, (л - 2)	Значения f-критерия Стьюдента, f _v	Число степе- ней свободы, (л – 2)	Значения <i>1</i> -критерия Стьюдента, <i>t</i>
1	12,7062	26	2,0555	51	2,0076	76	1,9917
2	4,3027	27	2,0518	52	2,0066	77	1,9913
3	3,1824	28	2,0484	53	2,0057	78	1,9908
4	2,7764	29	2,0452	54	2,0049	79	1,9905
5	2,5706	30	2,0423	55	2,0040	80	1,9901
6	2,4469	31	2,0395	56	2,0032	81	1,9897
7	2,3646	32	2,0369	57	2,0025	82	1,9893
8	2,3060	33	2,0345	58	2,0017	83	1,9890
9	2,2622	34	2,0322	59	2,0010	84	1,9886
10	2,2281	35	2,0301	60	2,0003	85	1,9883

Окончание таблицы 2

Число степе- ней свободы, (л - 2)	Значения f-критерия Стьюдента, f _p	Число степе- ней свободы, (n - 2)	Значения t -критерия Стьюдента, t_y	Число степе- ней свободы, (n - 2)	Значения <i>1</i> -критерия Стьюдента, <i>t_y</i>	Число степе- ней свободы, (n = 2)	Значения І-критерия Стьюдента, і
11	2,2010	36	2,0281	61	1,9996	86	1,9879
12	2,1788	37	2,0262	62	1,9990	87	1,9876
13	2,1604	38	2,0244	63	1,9983	88	1,9873
14	2,1448	39	2,0227	64	1,9977	89	1,9870
15	2,1315	40	2,0211	65	1,9971	90	1,9867
16	2,1199	41	2,0195	66	1,9966	91	1,9864
17	2,1098	42	2,0181	67	1,9960	92	1,9861
18	2,1009	43	2,0167	68	1,9955	93	1,9858
19	2,0930	44	2,0154	69	1,9949	94	1,9855
20	2,0860	45	2,0141	70	1,9944	95	1,9853
21	2,0796	46	2,0129	71	1,9939	96	1,9850
22	2,0739	47	2,0112	72	1,9935	97	1,9847
23	2,0687	48	2,0106	73	1,9930	98	1,9845
24	2,0639	49	2,0096	74	1,9925	99	1,9842
25	2,0595	50	2,0086	75	1,9921	100	1,9840

3.2.6 Пример расчета

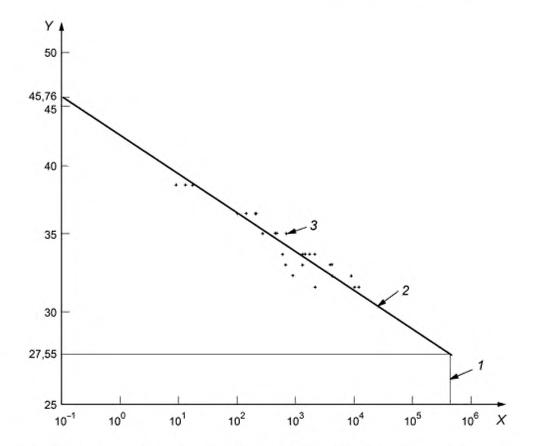
В таблице 3 приведены исходные данные для примера расчета метода A регрессионного анализа. В настоящем примере значение исследуемого свойства обозначено безразмерной величиной V.

Таблица 3 — Исходные данные для примера расчета метода А регрессионного анализа

n	V	y _p lg∀	Время ћ, ч	x, lgh
1	30,8	1,4886	5184	3,7147
2	30,8	1,4886	2230	3,3483
3	31,5	1,4983	2220	3,3464
4	31,5	1,4983	12 340	4,0913
5	31,5	1,4983	10 900	4,0374
6	31,5	1,4983	12 340	4,0913
7	31,5	1,4983	10 920	4,0382
8	32,2	1,5079	8900	3,9494
9	32,2	1,5079	4173	3,6204
10	32,2	1,5079	8900	3,9494
11	32,2	1,5079	878	2,9435
12	32,9	1,5172	4110	3,6138
13	32,9	1,5172	1301	3,1143
14	32,9	1,5172	3816	3,5816

ГОСТ Р 57949-2017

Окончание таблицы 3


n	v	y _p lgV	Время ћ, ч	x _j , lgħ
15	32,9	1,5172	669	2,8254
16	33,6	1,5263	1430	3,1553
17	33,6	1,5263	2103	3,3228
18	33,6	1,5263	589	2,7701
19	33,6	1,5263	1710	3,2330
20	33,6	1,5263	1299	3,1136
21	35,0	1,5441	272	2,4346
22	35,0	1,5441	446	2,6493
23	35,0	1,5441	466	2,6684
24	35,0	1,5441	684	2,8351
25	36,4	1,5611	104	2,0170
26	36,4	1,5611	142	2,1523
27	36,4	1,5611	204	2,3096
28	36,4	1,5611	209	2,3201
29	38,5	1,5855	9	0,9542
30	38,5	1,5855	13	1,1139
31	38,5	1,5855	17	1,2304
32	38,5	1,5855	17	1,2304
Средние:		Y = 1,5301		X = 2,9305

```
Суммы квадратов регрессионных остатков:
Q_v = 0.79812;
Q_v = 0.00088;
Q_{xy} = -0.02484.
Коэффициент корреляции:
r^2 = 0.87999;
r = 0.93808.
Функциональные зависимости:
\Gamma = 0,00110;
b = -0.03317;
a = 1,62731.
Расчет дисперсий (см. 3.2.4):
E = 3.5202 \cdot 10^{-2};
D = 4.8422 \cdot 10^{-6};
C = 5,0127 · 10<sup>-6</sup> (дисперсия угла наклона прямой);
\sigma_{\delta}^2 = 5,2711 \cdot 10^{-2} (дисперсия ошибки для x).
Проверка пригодности к экстраполяции (см. 3.2.5):
n = 32;
t_{c} = 2.0423;
T = -0.03317 / (5.0127 \cdot 10^{-6})^{0.5} = -14.8167;
|T| = 14,8167 > 2,0423.
```

Расчетные средние значения V_m в разные моменты времени приведены в таблице 4 и показаны на рисунке 1.

Таблица 4 — Расчетные средние значения V,	Таблица	4 —	Расчетные	средние	значения	V.,
---	---------	-----	-----------	---------	----------	-----

Время ћ, ч	V _m	
0,1	45,76	
1	42,39	
10	39,28	
100	36,39	
1000	33,71	
10 000	31,23	
100 000	28,94	
438 000	27,55	,1

Ось X — лотарифмическая шкала времени, ч; ось Y — лотарифмическая шкала значений исследуемого свойства; 1 — 438 000 ч (50 лет); 2 — линия регрессии, построенная по данным таблицы 4. 3 — точка данных

Рисунок 1 — Линия регрессии, построенная по данным таблицы 4

3.3 Метод В — Метод наименьших квадратов, где в качестве независимой переменной используют время

3.3.1 Общие положения

Сумму квадратов регрессионных остатков, параллельных оси Y, S_{ν} вычисляют по формуле

$$S_{y} = \sum (y_{i} - Y)^{2}. \tag{21}$$

Сумму квадратов регрессионных остатков, параллельных оси X, S, вычисляют по формуле

$$S_x = \sum (x_i - X)^2. \tag{22}$$

Сумму квадратов регрессионных остатков, перпендикулярных прямой, $S_{_{\chi\gamma}}$ вычисляют по формуле

$$S_{xy} = \sum \left[\left(x_i - X \right)^2 \cdot \left(y_i - Y \right)^2 \right]$$
 (23)

Среднеарифметическое значение по всем y_i . У вычисляют по формуле (5), среднеарифметическое значение по всем x_i . Х вычисляют по формуле (6).

Примечание — Если значение S_{xy} больше нуля, угол наклона прямой b положительный, если меньше нуля — отрицательный.

3.3.2 Пригодность данных

Квадратичный коэффициент корреляции г² вычисляют по формуле

$$r^2 = \frac{S_{xy}^2}{S_x S_y}$$
. (24)

Линейный коэффициент корреляции r вычисляют по формуле

$$r = (r^2)^{0.5}$$
. (25)

Данные не пригодны для анализа, если значение линейного коэффициента корреляции *г* меньше, чем соответствующее минимальное допустимое значение линейного коэффициента корреляции, приведенное в таблице 1, в зависимости от количества переменных *п*.

3.3.3 Функциональные зависимости

Угол наклона прямой b вычисляют по формуле

$$b = \frac{S_{xy}}{S}.$$
 (26)

Точку пересечения с осью У а вычисляют по формуле

$$a = Y - b \cdot X. \tag{27}$$

3.3.4 Проверка пригодности к экстраполяции

Если прямую предполагается экстраполировать, вычисляют значение М по формуле

$$M = \frac{S_x^2}{S_{xy}^2} - \frac{t_v^2 \left(S_x S_y - S_{xy}^2 \right)}{(n-2)S_y^2},$$
 (28)

где t, — значение t-критерия Стьюдента, приведенное в таблице 2.

Если значение М меньше или равно нулю, данные не пригодны для экстраполяции.

3.3.5 Пример расчета

В таблице 5 приведены исходные данные для примера расчета метода В регрессионного анализа. В настоящем примере значение исследуемого свойства обозначено безразмерной величиной V.

Таблица 5 — Исходные данные для примера расчета метода В регрессионного анализа

n	Время Т, ч	x, lgT	V	y _e lg∨
1	0,10	-1,0000	7114	3,8521

Окончание таблицы 5

n	Время Т, ч	x, lgT	V	y _p igV
2	0,27	-0,5686	6935	3,8410
3	0,50	-0,3010	6824	3,8341
4	1,00	0	6698	3,8259
5	3,28	0,5159	6533	3,8151
6	7,28	0,8621	6453	3,8098
7	20,0	1,3010	6307	3,7999
8	45,9	1,6618	6199	3,7923
9	72,0	1,8573	6133	3,7877
10	166	2,2201	5692	3,7552
11	219	2,3404	5508	3,7410
12	384	2,5843	5393	3,7318
13	504	2,7024	5364	3,7295
14	3000	3,4771	5200	3,7160
15	10 520	4,0220	4975	3,6968
Средние:		X = 1,4450		Y = 3,7819

Суммы квадратов регрессионных остатков:

 $S_x = 31,6811;$

 $\hat{S_v} = 0.0347$;

 $S'_{xy} = -1,0242.$

Коэффициент корреляции:

 $r^2 = 0.9556$;

r = 0.9775.

Функциональные зависимости (см. 3.3.3):

a = 3.8286:

b = -0.0323.

Проверка пригодности к экстраполяции (см. 3.3.4):

 $t_{\nu} = 2,1604;$

M = 942,21.

Расчетные средние значения V_m в разные моменты времени приведены в таблице 6.

Таблица 6 — Расчетные средние значения V_m

Время ћ, ч	v _m
0,1	7259
1	6739
10	6256
100	5808
1000	5391
10 000	5005
100 000	4646
438 000	4428

4 Применение методов регрессионного анализа при испытаниях и проектировании продукции

4.1 Общие положения

В стандартах на методы испытаний труб и деталей трубопроводов из реактопластов, армированных стекловолокном, установлены лимитирующие требования к долговременным свойствам. Некоторые из них установлены по результатам разрушающих испытаний, например, начальный окружной предел прочности при растяжении, другие — на основании фактических или расчетных физических свойств, например долговременная удельная кольцевая жесткость при ползучести или при релаксации.

Данные свойства необходимо экстраполировать на долговременный период (например, 50 лет) для утверждения проектирования продукции или ее соответствия установленным требованиям. Экстраполированное значение lgy, используя значения a и b, определенные в соответствии с 3.2 или 3.3, вычисляют по формуле

$$lgy = a + b \cdot t_{L}, \tag{29}$$

где t_{\perp} — десятичный логарифм долговременного периода, ч [для 50 лет (438 000 ч) t_{\perp} = 5,64147]. Регрессионный анализ проводят в трех случаях в соответствии с 4.2—4.4.

4.2 Проектирование продукции

В первом случае регрессионный анализ проводят для проектирования или расчета линейки продукции. При этом используют данные долговременных испытаний на определение начального окружного предела прочности при растяжении [1]. Данные долговременных разрушающих испытаний анализируют методом А регрессионного анализа. Для проектирования также необходимо анализировать данные кратковременных испытаний [2]. Проектирование напорных труб и деталей трубопроводов из реактопластов, армированных стекловолокном, проводят в соответствии с приложением А.

4.3 Сравнение с требуемым значением

Во втором случае регрессионный анализ проводят для сравнения экстраполированного значения с минимальным требуемым значением. При этом используют данные испытаний на определение долговременной кольцевой деформации [3] и химической стойкости внутренней поверхности в условиях нагружения [4]. Данные долговременных разрушающих испытаний анализируют методом А регрессионного анализа.

4.4 Определение долговременных свойств

В третьем случае регрессионный анализ проводят для определения долговременных свойств труб и деталей трубопроводов из реактопластов, армированных стекловолокном, путем расчета экстраполированного значения, которое в дальнейшем используется производителем. При этом используют данные испытаний на определение долговременной удельной кольцевой жесткости при ползучести [5] или при релаксации [6]. Данные долговременных неразрушающих испытаний анализируют методом В регрессионного анализа.

Приложение А (обязательное)

Порядок проектирования напорных труб и деталей трубопроводов из реактопластов, армированных стекловолокном

А.1 Основные положения

Порядок проектирования, описанный в настоящем приложении, используют для определения минимальных рабочих характеристик давления для труб и деталей трубопроводов из реактопластов, армированных стекловолокном, изготовленных в соответствии с [7]. В настоящем приложении приведены рекомендуемые минимальные долговременные коэффициенты запаса прочности при растяжении относительно рабочих характеристик изделия.

Примечание — Аналогичный порядок проектирования напорных труб и деталей трубопроводов из реактопластов, армированных стекловолокном, приведен в [8] и [9].

Реактопласты, армированные стекловолокном, подвержены ползучести при прилагаемых нагрузках. Трубы и детали трубопроводов из реактопластов, армированных стекловолокном, испытывают для определения характеристик регрессионного анализа, поскольку эти характеристики зависят от технологии производства и используемого сырья.

Порядок проектирования, приведенный в настоящем приложении, основан на принципе производства, при котором трубы и детали трубопроводов из реактопластов, армированных стекловолокном, изготавливают по определенному проекту с использованием определенного технологического процесса и определенных материалов, а затем испытывают в соответствии с методом регрессионного анализа, например в [1], с аналогичными характеристиками регрессионного анализа. Данные, полученные в ходе испытаний, анализируют с помощью метода А настоящего стандарта. Угол наклона прямой, рассчитанный в результате регрессионного анализа, представляет собой общую характеристику регрессионного анализа изделий, изготовленных из аналогичных материалов с использованием аналогичных технологических процессов. Для изделий, изготовленных из аналогичных материалов с использованием аналогичных технологических процессов, характеристики регрессионного анализа сильно не отличается, то есть изделия разного диаметра и толщины дают схожие результаты.

Свойства изделий из реактопластов, армированных стекловолокном имеют внутреннюю изменчивость, но предполагается, что на производстве применяется система контроля качества, позволяющая определить коэффициент вариации и приемлемый уровень качества для начального окружного предела прочности при растяжении.

А.2 Минимальные значения долговременных коэффициентов запаса прочности при растяжении

Большинство напорных труб и деталей трубопровода из реактопластов, армированных стекловолокном, укладывают под землей, при этом они подвергаются воздействию нагрузок от внутреннего давления и испытывают деформацию в результате нагрузки от веса грунта и движения транспорта. Учет этих комбинированных нагрузок и анализ влияния этих значений на вероятность разрушения в течение 50 лет показал, что комбинированный коэффициент запаса прочности, η_{быт}, должен быть не менее 1,5.

Минимальное значение кольцевой деформации зависит от жесткости трубы, которая определяет пределы деформации из-за изгиба. Зная минимальное приемлемое значение комбинированного коэффициента запаса прочности η_{пат} и условия изгиба, рассчитывают минимальное приемлемое значение коэффициента запаса прочности при растяжении η₁. Используя эти принципы, были рассчитаны долговременные коэффициенты запаса прочности при растяжении, относящиеся к 97,5 % LCL и средним значениям (η_{1,PN,97,5%LCL} и η_{1,PN,среднее} соответственно), которые приведены в таблице А.1.

Таблица А.1 — Рекомендованные минимальные значения долговременных коэффициентов запаса прочности при растяжении $\eta_{LPN.97.5\%LCL}$ и $\eta_{LPN,cpequee}$

Коэффициент запаса прочности	PN 32	PN 25	PN 16	PN 10	PN 6	PN 4	PN 2,5
Минимальный долговременный коэффициент запаса прочности при растяжении, относящийся к 97.5 % LCL η _{4,PN,97,5%LCL}	1,3	1,3	1,45	1,55	1,6	1,65	1,7
Минимальный долговременный коэффициент запаса прочности при растяжении, относящийся к средним значениям п _{сРN,среднее}	1,6	1,6	1,8	1,9	2,0	2,05	2,1

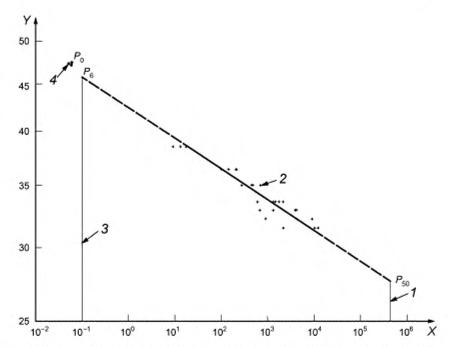
Примечание — $\eta_{\ell, \text{PN, coepsee}}$ основан на постоянном комбинированном коэффициенте запаса прочности (от давления и изгиба), который равен 1,5. Дополнительные положения см. в [10].

Минимальные долговременные коэффициенты запаса прочности при растяжении, приведенные в таблице А.1, применяют, когда коэффициент вариации У для среднего начального разрушающего давления Россиятельные не превышает 9 %. Если коэффициент вариации более 9 %, то применимый минимальный долговременный коэффициент запаса прочности при растяжении (n_{f.PN.97.6%LCL}) _{новыя} или (n_{f.PN.среднее}) _{новый} вычисляют по формулам:

$$\left(\eta_{tPN,97.5\text{NLGL}}\right)_{\text{MOBMR}} = \frac{1 \cdot 9 \cdot 0.01 \cdot 1.96}{1 - Y \cdot 0.01 \cdot 1.96} \cdot \eta_{tPN,97,5\%\text{LGL}},$$
 (A.1)

$$\left(\eta_{\ell,PN,cpeqhee}\right)_{HOBMR} = \frac{1 \cdot 9 \cdot 0.01 \cdot 1.96}{1 \cdot Y \cdot 0.01 \cdot 1.96} \cdot \eta_{\ell,PN,cpeqhee},$$
 (A.2)

- где η_{(,PN,97,5%LCL}, η_{(,PN,cpeq,ree} минимальные долговременные коэффициенты запаса прочности при растяжении из таблицы А.1:
 - Y коэффициент вариации для среднего начального разрушающего давления P_{0,среднее}, установленный по результатам работы системы контроля качества предприятия при регулярном тестировании труб определенного класса давле-₩я. %.


А.3 Определение коэффициента регрессии давления

Характеристики регрессионного анализа труб и деталей трубопроводов из реактопластов, армированных волокном, определяют на образцах, отобранных произвольно из труб одного класса давления и жесткости, в ходе серий испытаний по определению начального разрушения и характеристик регрессионного анализа для давления. Часть образцов используют в долговременных испытаниях на определение характеристик регрессионного анализа для давления в соответствии с [1], часть — для определения среднего начального разрушающего давления $(P_{0,\text{среднее}})$ в соответствии с [2].

На основе результатов испытаний по определению долговременного давления определяют линию регрессии с использованием метода А настоящего стандарта. По проецируемым точкам линии регрессии в точках 0.1 ч (6 мин.) и 438 000 ч (50 лет) определяют значения разрушающего давления P_6 и P_{50} (см. рисунок А.1).

Коэффициент регрессии давления R_{RP} определяют по формуле

$$R_{\rm RP} = \frac{P_{50}}{\rho_a}$$
 (A.3)

Ось X — логарифмическая шкапа времени, ч; ось Y — логарифмическая шкала давления, бар 1); 1 — 438 000 ч (50 лет); 2 — результаты испытаний по определению долговременного давления; 3 — 6 мин.; 4 — результаты испытаний по определению начального давления; P_0 — начальное разрушающее давление P_0 — разрушающее давление через 6 мин.; P_0 — разрушающее давление через 50 лет

Рисунок А.1 — Вычисление коэффициента регрессии давления R_{RP}

А.4 Определение расчетного давления

А.4.1 Определение P_{6,min}

Целью определения долговременного давления является установление характеристик регрессионного анализа. Долговременное разрушающее давление, полученное в ходе испытания, относится только к испытанным трубам. Если предполагаемое значение долговременного разрушающего давления не соответствует минимальным долговременным проектным требованиям для класса давления испытуемой трубы, характеристику регрессионного анализа можно использовать при проектировании. Однако в отношении оценки конкретного испытанного класса давления труб испытание показывает несоответствие изготовленной трубы требованиям по долговременным характеристикам.

Используя требуемое значение PN, определяют соответствующее значение $\eta_{LPN,97,5\%LCL}$ по таблице A.1 или по формуле (A.1) и вычисляют минимальное разрушающее давление через 50 лет $P_{50\,min}$ по формуле

$$P_{50,min} = PN \cdot \eta_{LPN,97,5\%LCL}$$
 (A.4)

где PN — номинальное давление, бар.

Используя значение коэффициента регрессии давления R_{RP} , рассчитанное по формуле (A.3), и значение минимального разрушающего давления через 50 лет $P_{50, \min}$, рассчитанное по формуле (A.4), минимальное разрушающее давление через 6 мин. $P_{6, \min}$ вычисляют по формуле

$$P_{\rm G,min} = \frac{P \dot{N} \, \eta_{\rm c,PN97,5\%LCL}}{R_{\rm RP}} = \frac{P_{\rm 50\,min}}{R_{\rm RP}}. \tag{A.5}$$

^{1) 1} $6ap = 1 M\Pi a = 0.1 H/mm^2 = 10^8 H/m^2$.

А.4.2 Определение расчетного минимального начального разрушающего давления $P_{0,d}$

На результаты испытаний по определению начального разрушающего давления влияет скорость увеличения давления: чем выше скорость увеличения давления, тем выше начальное разрушающее давление. Для учета скорости увеличения давления в порядок проектирования вводят поправочный коэффициент C.

Поправочный коэффициент С для начального разрушения вычисляют по формуле

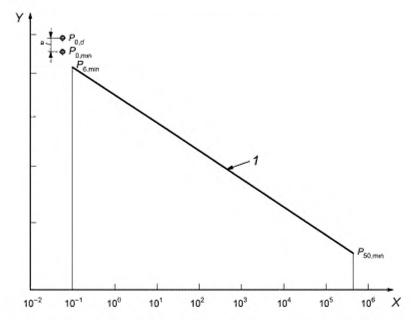
$$C = \frac{P_0}{P_0}, \quad (A.6)$$

где P_0 — начальное разрушающее давление, вычисленное в ходе регрессионных испытаний, описанных в A.3, бар:

Р_в — разрушающее давление через 6 мин., бар.

Нижнюю границу доверительного интервала при доверительной вероятности 97,5 % для начального разрушающего давления (минимальное начальное разрушающее давление) $P_{0,\mathrm{min}}$ вычисляют по формуле

$$P_{0,\min} = C \cdot P_{6,\min}. \tag{A.7}$$


Расчетное минимальное начальное разрушающее давление $P_{0,d}$ вычисляют по формуле

$$P_{0,d} = P_{0,\min} \frac{1}{1 \cdot Y \cdot 0.01 \cdot 1.96},$$
 (A.8)

где Y — коэффициент вариации для среднего начального разрушающего давления P_{0,среднее}, установленный по результатам работы системы контроля качества предприятия при регулярном тестировании труб определенного класса давления, %;

1.96 — множитель для доверительной вероятности 97.5 %.

Графическое представление данного расчета приведено на рисунке А.2.

Ось X — логарифмическая шкала времени, ч; ось Y — логарифмическая шкала давления, бар; 1 — линия нижней границы доверительного интервала при доверительной вероятности 97,5 %;

 $P_{0,\sigma}$ — расчетное минимальное начальное разрушающее давление; $P_{0,\min}$ — минимальное начальное разрушающее давление; a=1,96 · σ . где a= стандартное отклонение результатов начального разрушающего давления, полученное из системы контроля качества; $P_{6,\min}$ — минимальное разрушающее давление через 6 мин.;

P_{50,min} — минимальное разрушающее давление через 50 лет

Рисунок A.2 — Вычисление расчетного минимального начального разрушающего давления $P_{0,d}$

А.5 Порядок контроля Pod

Чтобы убедиться, что долговременный коэффициент запаса прочности при растяжении, относящийся к 97,5 % LCL через 50 лет $\eta_{\ell,PN,97,5\%LCL}$ и долговременный коэффициент запаса прочности, относящийся к среднему значению минимального разрушающего давления через 50 лет ($P_{50,cpeднеe,min}$) $\eta_{\ell,PN,cpeднee}$ соблюдаются, выполняют следующие расчеты по определению расчетного минимального начального разрушающего давления $P_{0,d}$ (см. рисунок A.3):

значение P_{6,среднее} вычисляют по формуле

$$P_{6,0,0,0,0,0,0} = \frac{P_{0,d}}{C};$$
 (A.9)

значение P_{50,среднее} вычисляют по формуле.

$$P_{50,\text{opeghee}} = P_{6,\text{opeghee}} \cdot R_{\text{RP}}; \qquad (A.10)$$

минимальное значение P_{50,среднее} вычисляют по формуле

$$P_{50 \text{ togarses min}} = PN \cdot \eta_{tPN \text{ coerses}},$$
 (A.11)

где $\eta_{\ell, \text{PN,cpequee}}$ — долговременный коэффициент запаса прочности при растяжении, относящийся к среднему значению минимального разрушающего давления через 50 лет ($P_{50,\text{cpequee,min}}$), из таблицы А.1 или рассчитанный по формуле (А.2);

если P_{50,среднее}, рассчитанное по формуле (А.10), больше или равно значению P_{50,среднее, min}, рассчитанному по формуле (А.11), то значение P_{0,d} является достаточным для удовлетворения требований по минимальному значению долговременного коэффициента запаса прочности, относящегося к среднему значению. В противном случае P_{0,d} необходимо увеличивать, пока данное требование не будет соблюдено. Соблюдение данного требования также обеспечивает удовлетворение требований по минимальному значению долговременного коэффициента запаса прочности при растяжении, относящегося к 97,5 % LCL через 50 лет, так как P_{50,среднее, min} включает в себя значение 1,96 - σ.

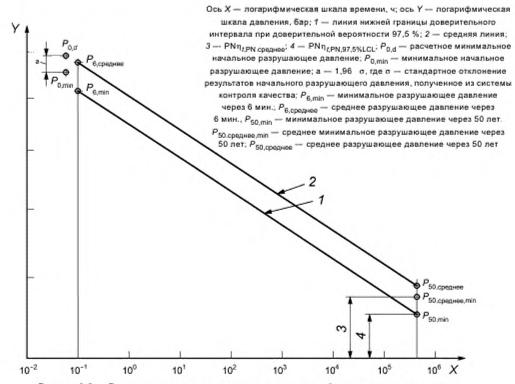


Рисунок А.3 — Вычисление долговременных средних значений разрушающего давления

А.6 Оценка характеристик напорных изделий

Используя результаты испытаний начального разрушающего давления, выполненных для определенного класса труб за определенный период времени, вычисляют среднее начальное разрушающее давление $P_{0,\text{среднее}}$ и стандартное отклонение σ начального разрушающего давления. Коэффициент вариации для среднего начального разрушающего давления Y, %, вычисляют по формуле

$$Y = \frac{\sigma}{P_{0.cpegner}} \cdot 100. \tag{A.12}$$

Для оценки изделия, спроектированного с использованием изложенного метода, система контроля качества должна быть способна подтвердить соответствие изделия требованиям по минимальному давлению, а также установить, является ли среднее начальное разрушающее давление $P_{0,\text{среднее}}$ большим или равным расчетному минимальному начальному разрушающему давлению $P_{0,d}$.

Приложение В (справочное)

Полиномиальный анализ с использованием взаимосвязей второго порядка

В.1 Общие положения

Используя данный метод, строят кривую, задаваемую формулой

$$y = c + dx + ex^2, \tag{B.1}$$

где у — десятичный логарифм значения исследуемого свойства;

- с точка пересечения с осью Y;
- d, е коэффициенты двух порядков переменной х;
 - десятичный логарифм времени, ч.

В.2 Переменные

Вычисляют следующие переменные:

- $\sum x_i^2$ сумму всех отдельно измеренных значений x_i^2 сумму квадратов всех отдельно измеренных значений x_i^2 сумму кубов всех отдельно измеренных значений x_i^2 сумму кубов всех отдельно измеренных значений x_i^2 сумму четвертых степеней всех отдельно измеренных значений x_i^2 сумму всех отдельно измеренных значений x_i^2 сумму всех отдельно измеренных значений x_i^2 квадрат суммы всех отдельно измеренных значений x_i^2

- $\sum y_i^2$ сумму квадратов всех отдельно измеренных значений y_i $\sum (x_i \cdot y_i)$ сумму произведений соответствующих отдельно измеренных значений x_i , y_i
- $\sum (x_i^2 \cdot y_i)$ сумму произведений соответствующих отдельно измеренных значений x_i^2 , y_i
- сумму квадратов остатков, парадлельных оси X, S, для линейного участка, вычисляют по формуле

$$S_v = \sum (x_i - X)^2, \quad (B.2)$$

где X — среднеарифметическое значение по всем x_{r} вычисляют по формуле (B.3)

$$X = \frac{\sum x_i}{n};$$
 (B.3)

- сумму квадратов остатков, параллельных оси X, S_{xx} для квадратичного участка вычисляют по формуле

$$S_{xx} = \sum (x_i^2 - X^2)^2;$$
 (B.4)

сумму квадратов остатков, параплельных оси Y, S_v вычисляют по формуле

$$S_{y} = \sum (y_{i} - Y)^{2}, \qquad (B.5)$$

где У — среднеарифметическое значение по всем у, вычисляют по формуле (В.6)

$$Y = \frac{\sum y_{j}}{n};$$
 (B.6)

сумму квадратов остатков, перпендикулярных кривой, \$_{xv} для линейного участка вычисляют по формуле

$$S_{xy} = \sum_{i=1}^{n} [(x_i - X) \cdot (y_i - Y)]$$
(B.7)

- сумму квадратов остатков, перлендикулярных кривой. S_{xxy} для квадратичного участка вычисляют по формуле

$$S_{xxy} = \sum [(x_i^2 - X^2) \cdot (y_i - Y)].$$
 (B.8)

В.3 Система решения

Переменные c, d и е вычисляют из следующей матрицы

$$\sum y_i = c \cdot n + d \cdot \sum x_i + e \cdot \sum x_i^2;$$

$$\sum (x_i \cdot y_i) = c \cdot \sum x_i + d \cdot \sum x_i^2 + e \cdot \sum x_i^3;$$

$$\sum (x_i^2 \cdot y_i) = c \cdot \sum x_i^2 + d \cdot \sum x_i^3 + e \cdot \sum x_i^4.$$
(B.9)

В.4 Пригодность данных

Квадратичный коэффициент корреляции г2 вычисляют по формуле

$$r^{2} = \frac{c \sum y_{i} + d \sum (x_{i} - y_{i}) + e \sum (x_{i}^{2} - y_{i}) \cdot \left[(\sum y_{i})^{2} / n \right]}{\sum y_{i}^{2} - \left[(\sum y_{i})^{2} / n \right]}.$$
 (B.10)

Линейный коэффициент корреляции гвычисляют по формуле

$$r = (r^2)^{0.5}$$
. (B.11)

Данные непригодны для анализа, если значение линейного коэффициента корреляции меньше, чем соответствующее минимально допустимое значение линейного коэффициента корреляции, приведенное в таблице 1, в зависимости от количества переменных п.

В.5 Проверка пригодности к экстраполяции

Если кривую предполагается экстраполировать, вычисляют значение М по формуле

$$M = \frac{S_x^2}{S_{xy}^2} + \frac{S_{xx}^2}{S_{xxy}^2} - \frac{t_x^2 \left(S_x S_y - S_{xy}^2 + S_{xx} S_y - S_{xxy}^2\right)}{(n-2)S_y^2},$$
(B.12)

Если значение М меньще или равно нулю, данные непригодны для экстраполяции.

В.6 Пример расчета

```
Исходные данные для примера расчета приведены в таблице 5.
```

Исходные данные для прими - $\sum x_i = 21,671$; - $\sum x_i^2 = 62,989$; - $\sum x_i^3 = 180,623$; - $\sum x_i^4 = 584,233$; - $\sum y_i = 56,728$; - $(\sum y_i)^2 = 3218,09$; - $\sum y_i^2 = 214,571$; - $\sum (x_i \cdot y_i) = 80,932$; - $\sum (x_i^2 \cdot y_i) = 235,175$. Суммы квадратов остатков: S = 31,6811;

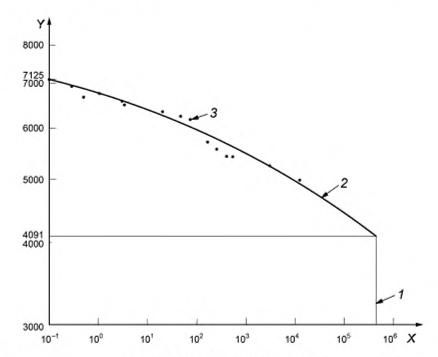
- S. = 31,6811;
- $S_{xx} = 386,638;$
- $S_y = 0.0347;$ $S_{xy} = -1.0242;$
- $S_{xxy} = -3,0418.$

Система решения:

- c = 3.8288:
- d = -0.0262:
- $\theta = -0.0022$.

Коэффициент корреляции:

- $r_2 = 0.9647$;
- r = 0.9822.


Проверка пригодности к экстраполяции:

- $t_{c} = 2,1604;$
- M = 15859.6.

Расчетные средние значения V_m в разные моменты времени приведены в таблице В.1 и показаны на рисунке В.1.

Таблица В.1 — Расчетные средние значения V_m	Таблица	B.1 —	Расчетные	средние	значения	V_m
--	---------	-------	-----------	---------	----------	-------

Время в, ч	v _m
0,1	7125
1	6742
10	6315
100	5856
1000	5375
10 000	4884
100 000	4393
438 000	4091
	l

Ось X — логарифмическая шкала времени, ч. ось Y — логарифмическая шкала значений исследуемого свойства; 1 — 438 000 ч (50 лет), 2 — линия регрессии, построенная по давным таблицы В.1; 3 — точка данных

Рисунок В.1 — Линия регрессии, построенная по данным таблицы В.1

Приложение С (справочное)

Нелинейный метод анализа

С.1 Общие положения

В настоящем приложении приведен нелинейный метод анализа данных, полученных по результатам долговременных испытаний образцов труб и деталей трубопроводов из реактопластов, армированных стекловолокном, на жесткость, выведены следующие формулы для расчета:

- четырех параметров метода, то есть a, b, c и d;
- доверительного и прогнозируемого интервалов для кривой.

Примечание — Данные и порядок проведения метода относятся к долговременным испытаниям на жесткость, но метод также может быть применен к данным, соответствующим математической модели и требующим экстраполяции на 50 лет.

С.2 Модель

Нелинейный метод анализа можно выразить как модель, состоящую из двух взаимосвязанных линейных регрессионных моделей — линия 1 и линия 2. Порядок расчета для линии 1 применяют в расчетах для линии 2 для получения четырех параметров модели, которые используют для расчета долговременного значения исследуемого свойства.

С.2.1 Порядок расчета для линии 1

С.2.1.1 Определение параметров У, х, и у,

У, вычисляют по формуле

$$Y_{j} = \lg S_{jr} \tag{C.1}$$

где S_i — значение исследуемого свойства.

х; вычисляют по формуле

$$x_i = \lg(60T_i + 1)$$
. (C.2)

где T_i — время, ч.

у; вычисляют по формуле

$$y_{i} = \ln \left(\frac{a + b \cdot Y_{i}}{Y_{i} - a} \right). \tag{C.3}$$

Среднеарифметическое значение x_i \overline{x} вычисляют по формуле

$$\overline{x} = \frac{\sum x_i}{2}$$
. (C.4)

Среднеарифметическое значение у, у вычисляют по формуле

$$\overline{y} = \frac{\sum y_j}{n}$$
. (C.5)

Формулы (C.1)—(C.5) относятся к отдельно измеренным значениям исследуемого свойства S_i через разные периоды времени проведения испытаний x_i .

С.2.1.2 Определение параметров а и b

Начальное значение параметра ал вычисляют по формуле

$$a_0 = 0.995(Y_i)_{min}$$
 (C.6)

Начальное значение параметра b₀ вычисляют по формуле

$$b_0 = 1,005(Y_i)_{\text{max}} - a_0.$$
 (C.7)

С.2.1.3 Определение методом наименьших квадратов оценок \hat{A} и \hat{B} и несмещенной оценки $\hat{\sigma}_{t}^{2}$ Оценку \hat{A} вычисляют по формуле

$$\hat{A} = \overline{y} - \hat{B}\overline{x}$$
. (C.8)

Оценку В вычисляют по формуле

$$\hat{B} = \frac{\sum (x_i \cdot \overline{x})(y_i \cdot \overline{y})}{\sum (x_i \cdot \overline{x})^2}.$$
(C.9)

Несмещенную оценку $\ddot{\sigma}_1^2$ вычисляют по формуле

$$\sigma_1^2 = \frac{\sum (y_r \cdot \hat{y}_i)^2}{(n-2)} = \frac{RSS}{(n-2)},$$
(C.10)

где RSS — сумма квадратов остатков, вычисляют по формуле (C.11)

$$RSS = \sum y_i^2 - \tilde{A} \sum y_i - \tilde{B} \sum x_i y_i. \qquad (C.11)$$

С.2.1.4 Определение оценки параметров с и d Оценку параметра с ĉ вычисляют по формуле

$$\hat{c} = -(\hat{A}\hat{B}^{-1} + \lg 60).$$
 (C.12)

Оценку параметра d \hat{d} вычисляют по формуле

$$\hat{d} = -\hat{B}^{-1}$$
. (C.13)

С.2.2 Порядок расчета для линии 2

С.2.2.1 Определение параметров $X_{\mu}, Y_{\mu}, \overline{X}$ и \overline{Y}

Х, вычисляют по формуле

$$X_{i} = \frac{1}{\left\{1 + \exp\left[-\frac{\lg(T_{i}) - \tilde{o}}{\tilde{d}}\right]\right\}}.$$
(C.14)

Примечание — Значения \hat{c} и \hat{d} рассчитывают по формулам (С.12) и (С.13).

У, вычисляют по формуле

$$Y_{i} = \lg(S_{i}). \tag{C.15}$$

Среднеарифметическое значение $X,\ \overline{X}\$ вычисляют по формуле

$$\overline{X} = \frac{\sum X_i}{n}.$$
(C.16)

Среднеарифметическое значение У; У вычисляют по формуле

$$\overline{Y} = \frac{\sum Y_j}{n}$$
. (C.17)

C.2.2.2 Определение методом наименьших квадратов оценок \hat{a} и \hat{b} и несмещенной оценки $\hat{\sigma}_2^2$ Оценку \hat{b} вычисляют по формуле

$$\hat{b} = \frac{\sum (X_i \cdot \overline{X})(Y_i \cdot \overline{Y})}{\sum (X_i \cdot \overline{X})^2} = \frac{(n \sum X_i Y_i \cdot \sum X_i \sum Y_i)}{(n \sum X_i^2 - \sum X_i \sum X_i)}.$$
(C.18)

Оценку а вычисляют по формуле

$$\hat{a} = \overline{Y} - \hat{b}\overline{X}$$
. (C.19)

Несмещенную оценку б², вычисляют по формуле

$$\hat{\sigma}_{2}^{2} = \frac{\sum (y_{r} - \hat{y}_{r})^{2}}{(n + 2)} = \frac{RSS}{(n - 2)},$$
(C.20)

где RSS — сумма квадратов остатков, вычисляют по формуле

$$RSS = \sum_i Y_i^2 - \hat{a} \sum_i Y_i - \hat{b} \sum_i X_i Y_i. \qquad (C.21)$$

При этом должно соблюдаться неравенство

$$\tilde{a} + \tilde{b} > Y_{j} > \hat{a}$$
. (C.22)

С.2.2.3 Определение доверительного и прогнозируемого интервалов Дисперсию для â вычисляют по формуле

Дисперсия
$$(\hat{a}) = \frac{\left(\hat{\sigma}_{2}^{2} \sum X_{i}^{2}\right)}{\left[n \sum X_{i}^{2} \cdot \left(\sum X_{i}\right)^{2}\right]} = \frac{\left(\hat{\sigma}_{2}^{2} \sum X_{i}^{2}\right)}{\left[n \sum \left(X_{i} \cdot \overline{X}\right)^{2}\right]}.$$
 (C.23)

Дисперсию для \hat{b} вычисляют по формуле

Дисперсия
$$(\hat{b}) = \frac{\left(n\hat{\sigma}_{2}^{2}\right)}{\left[n\sum X_{i}^{2} \cdot \left(\sum X_{i}\right)^{2}\right]} = \frac{\left(n\hat{\sigma}_{2}^{2}\right)}{\left[n\sum \left(X_{i} \cdot \overline{X}\right)^{2}\right]}.$$
 (C.24)

Оценку среднеквадратической ошибки для \hat{a} $\epsilon(\hat{a})$ вычисляют по формуле

$$\epsilon(\tilde{a}) = \sqrt{\text{Дисперсия }(\tilde{a})}$$
. (C.25)

Оценку среднеквадратической ошибки для $\hat{b} \in (\hat{b})$ вычисляют по формуле

$$\varepsilon(\hat{b}) = \sqrt{\text{Дисперсия}(\hat{b})}$$
. (C.26)

Доверительный интервал при доверительной вероятности 100 % μ_X для линии 2 как функция от X вычисляют по формуле

$$\mu_X = \hat{\mu}_X \pm \mu_{\text{rogswu}}, \quad (C.27)$$

где µ_× — вычисляют по формуле (C.31);

µ_{границ} — вычисляют по формуле

$$\mu_{\text{границ}} = t_{\rho} \hat{\sigma}_{2} \left[\frac{1}{n} + \frac{(x \cdot \overline{x})^{2}}{\sum (x_{i} - \overline{x})^{2}} \right]. \tag{C.28}$$

Прогнозируемый интервал при доверительной вероятности 100 % Y_X для линии 2 как функция от X вычисляют по формуле

$$Y_{\chi} = \hat{Y}_{\chi} \pm Y_{\text{грании}}, \qquad (C.29)$$

где \hat{Y}_X — вычисляют по формуле (C.31);

Y_{грании} — вычисляют по формуле

$$Y_{\text{границ}} = t_p \hat{\sigma}_2 \left[1 + \frac{1}{n} + \frac{(X - \overline{X})^2}{\sum (X_i - \overline{X})^2} \right].$$
 (C.30)

$$\hat{Y}_{X} = \hat{\mu}_{X} = \hat{a} + \hat{b}X. \tag{C.31}$$

С.2.2.4 Проверка параметров а и b по t-критерию Стьюдента

Чтобы проверить, равны ли нулю å или b, используют формулу

$$Pr(|t| < t_p) = P,$$
 (C.32)

где t — t-критерий Стьюдента с числом степеней свободы (n - 2).

Из статистических таблиц для P = 90 % t = 1,771.

Из статистических таблиц для P = 95 % t = 2,160.

Если значения t для \hat{a} и \hat{b} , рассчитанные по формулам (C.33) и (C.34) соответственно, больше значений t, указанных для P = 90 % или P = 95 %, то \hat{a} и \hat{b} не равны 0

$$t$$
 для $\hat{a} = \frac{\hat{a}}{\epsilon(\hat{a})}$, (С.33)

$$t$$
 для $\vec{b} = \frac{\vec{b}}{v(\vec{b})}$. (C.34)

С.2.2.5 Расчет долговременной (50 лет) жесткости

Формулы, приведенные в C.2.1 и C.2.2, являются стандартными формулами линейной регрессии. Значение долговременной жесткости, его доверительный и прогнозируемый интервалы рассчитывают по формулам (C.35)—(C.37).

Используя формулу (С.31), экстраполированную долговременную жесткость \hat{Y}_{Signer} вычисляют по формуле

$$\hat{Y}_{50neT} = \hat{\mu}_{50neT} = \hat{a} + \hat{b}X.$$
 (C.35)

Используя формулу (С.27), доверительный интервал для экстраполированной долговременной жесткости $\mu_{50, ner}$ вычисляют по формуле

$$\mu_{50,\text{net}} = \hat{\mu}_{50,\text{net}} \pm \mu_{\text{границ}}$$
 (C.36)

Используя формулу (С.29), прогнозируемый интервал для экстраполированной долговременной жесткости Y_{50 лет} вычисляют по формуле

 $Y_{50,\text{per}} = \hat{Y}_{50,\text{per}} \pm Y_{\text{FDaHmu}}. \tag{C.37}$

Преобразуют логарифмические значения формул (C.35)—(C.37) обратно в значения жесткости по формулам (C.38)—(C.40).

Экстраполированную долговременную жесткость S_{50 лет} H/м², вычисляют по формуле

$$S_{50,\text{net}} = 10^{\hat{Y}_{50,\text{net}}}$$
 (C.38)

Доверительный интервал при доверительной вероятности 90 % для экстраполированной долговременной жесткости $\mu(S)_{S0,nep}$ H/m^2 , вычисляют по формуле

$$\mu(S)_{50 \text{ net}} = 10^{\hat{\mu}_{50 \text{ net}} \pm \mu_{\text{rpshew}}}$$
 (C.39)

Прогнозируемый интервал при доверительной вероятности 90 % для экстраполированной долговременной жесткости Y(S)_{50 лет} H/м², вычисляют по формуле

$$Y(S)_{50,ner} = 10^{\tilde{Y}_{50,ner} \pm Y_{ppensu}}$$
 (C.40)

С.3 Пример расчета

В таблице С.1 приведены исходные данные для примера расчета нелинейного метода анализа.

Таблица C.1 — Исходные данные для примера расчета нелинейного метода анализа

	Исходнь	ие данные		П	роизводные значен	ия	
i	Время, Т _р ч	Жесткость S _I , H/м ²	$\lg(S_j), Y_j$	Ig(607 _j + 1), x _j	Линейное значение Y _j , y _j	Линейное зна- чение времени, Х ₁	$\lg(T_i)$
0	0	-	-	0,000000		-	
1	0,10	7114	3,852114	0.845098	-2,199873	0,900981089	-1,000000
2	0,27	6935	3,841046	1,235528	-1,680067	0,864045469	-0,568636
3	0,50	6824	3,834039	1,491362	-1,428181	0,835713323	-0,301030
4	1,00	6698	3,825945	1,785330	-1,178593	0,798385481	0,000000
5	3,28	6533	3,815113	2,296226	-0,888531	0,720523173	0,515874
6	7,28	6453	3,809762	2,641276	-0,757777	0,659034121	0,862131
7	20,0	6307	3,799823	3,079543	-0,529608	0,572939842	1,301030
8	45,9	6199	3,792322	3,440122	-0,366192	0,498426628	1,661813
9	72,0	6133	3,787673	3,635584	-0,267424	0,457861654	1,857332
10	166	5692	3,755265	3,998303	0,411303	0,384436030	2,220108
11	219	5508	3,740994	4,118628	0,732338	0,361035235	2,340444
12	384	5393	3,731830	4,362501	0,958300	0,315663484	2,584331
13	504	5364	3,729489	4,480596	1,019680	0,294833214	2,702431
14	3000	5200	3,716003	5,255275	1,416309	0,179974497	3,477121

Окончание таблицы С.1

	Исходны	е данные		п	ооизводные значен	я	
L	Время, <i>Т</i> _j , ч	Жесткость S _j , H/м ²	$lg(S_i), Y_i$	Ig(60 <i>T_i</i> + 1), x _i	Линейное значение Y _F , y _f	Линейное зна- чение времени. Х ₁	$ig(T_i)$
15	10 520	4975	3,696793	5,800168	2,245487	0,122406128	4,022016
16	438 300	() — . T	-	7,419923	_	0,034979805	5,641771

Примечания

- 1 Линейное значение У, у, вычисляют по формуле (С.3).
- 2 Линейное значение времени Х, вычисляют по формуле (С.14).
- 3 Исходные данные в настоящей таблице аналогичны исходным данным в таблице 5.
- 4 Значения для i = 0 и i = 16 расчетные, а для i от 1 до 15 включ. измеренные или полученные из результатов измерений.

С.3.1 Порядок расчета для линии 1

С.3.1.1 Определение параметров Y_i, x_i и y_i Значения Y_i, x_i и y_i приведены в таблице С.1.

$$\overline{x} = \frac{\sum x_r}{n} = \frac{48,465540}{15} = 3,231036.$$
 (C.41)

$$\overline{y} = \frac{\sum y_i}{n} = \frac{-2.512828}{15} = -0.167522.$$
 (C.42)

С.3.1.2 Определение параметров а и b

$$a_0 = 0.995(Y_i)_{min} = 0.995 \cdot 3.696793 = 3.678309.$$
 (C.43)

$$b_0 = 1.005(Y_i)_{max} - a_0 = 1.005 \cdot 3.852114 - 3.678309 = 0.193066.$$
 (C.44)

С.3.1.3 Определение методом наименьших квадратов оценок \hat{A} и \hat{B} и несмещенной оценки σ_1^2 Используя значения из таблицы С.2, рассчитывают \hat{B}

$$\hat{B} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2} = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 + (\sum x_i)^2} = \frac{15 \cdot 17.8 \cdot 48.47 \cdot 2.51}{15 \cdot 187.75 \cdot 2349.34} = 0.8319.$$
 (C.45)

$$\hat{A} = \overline{y} - \hat{B}\overline{x} = -0,1675 - 0,8319 \cdot 3,231036 = -2,8555.$$
 (C.46)

Используя значения \hat{A} и \hat{B} и значения из таблицы С.2 рассчитывают $\check{\sigma}_1^2$

$$\tilde{\sigma}_{1}^{2} = \frac{\sum (y_{r} \cdot \tilde{y}_{r})^{2}}{(n \cdot 2)} = \frac{RSS}{(n \cdot 2)} = \frac{0.6853}{13} = 0.0512,$$
(C.47)

где

$$RSS = \sum y_i^2 - \hat{A} \sum y_i - \hat{B} \sum x_i y_i = 22,6524 - 2,8555 \cdot 2,51 - 0,8319 \cdot 17,8 = 0,6653. \tag{C.48}$$

С.3.1.4 Определение оценки параметров с и d

Используя значения \hat{A} и \hat{B} , рассчитывают значения \hat{c} и \hat{d}

$$\hat{c} = -(\hat{A}\hat{B}^{-1} + \lg 60) = 1,65353;$$
 (C.49)

$$\hat{d} = -\hat{B}^{-1} = -1,202.$$
 (C.50)

Результаты расчета для линии 1 приведены в таблице С.2.

Таблица С.2 — Результаты расчета для линии 1

1	×į	У,	x_i^2	y_i^2	$x_i y_i$	\hat{y}_i , $A + Bx_i$	Остатки, $y_i = \hat{y}_j$
0	0,000000	-2,855548	0,000000	8,154155	0,000000	-2,855548	0,000000
1	0,845098	-2,199873	0,714191	4,839439	-1,859108	-2,152478	-0,047395
2	1,235528	-1,680067	1,526531	2,822626	-2,075771	-1,827663	0,147596
3	1,491362	-1,428181	2,224160	2,039700	-2,129934	-1,614826	0,186645
4	1,785330	-1,178593	3,187403	1,389081	-2,104177	-1,370262	0,191669
5	2,296226	-0,888531	5,272655	0,789487	-2,040267	-0,945227	0,056696
6	2,641276	-0,757777	6,976338	0,574226	-2,001498	-0,658167	-0,099610
7	3,079543	-0,529608	9,483585	0,280485	-1,630951	-0,293555	-0,236053
8	3,440122	-0,366192	11,834437	0,134097	-1,259746	0,006425	-0,372617
9	3,635584	-0,267424	13,217473	0,071516	-0,972242	0,169038	-0,436462
10	3,998303	0,411303	15,986426	0,169170	1,644515	0,470798	-0,059495
11	4,118628	0,732338	16,963100	0,536319	3,016228	0,570901	0,161437
12	4,362501	0,958300	19,031418	0,918339	4,180586	0,773789	0,184512
13	4,480596	1,019680	20,075742	1,039746	4,568772	0,872036	0,147643
14	5,255275	1,416309	27,617914	2,005933	7,443096	1,516522	-0,100213
15	5,800168	2,245487	33,641945	5,042213	13,024202	1,969840	0,275647
16	7,419923	3,317378	55,055253	11,004998	24,614690	3,317378	0,000000
Сумма	48,465540	-2,512828	187,753317	22,652377	17,803704	37,464846	0,000000

Примечания

С.3.2 Порядок расчета для линии 2

С.3.2.1 Определение параметров X_{μ} Y_{μ} \overline{X} и \overline{Y} Значения Х, и У, приведены в таблице С.3.

$$\overline{X} = \frac{\sum X_i}{n} = \frac{7,966259}{15} = 0,531084.$$
 (C.51)

$$\overline{Y} = \frac{\sum Y_i}{n} = \frac{56,728211}{15} = 3,781881.$$
 (C.52)

С.3.2.2 Определение методом наименьших квадратов оценок \hat{a} и \hat{b} и несмещенной оценки $\hat{\sigma}_{2}^{2}$ Оценку в вычисляют по формуле

$$\hat{b} = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2} = \frac{(n \sum X_i Y_i - \sum X_i \sum Y_i)}{(n \sum X_i^2 - \sum X_i \sum X_i)} =
= \frac{(15 \ 30,302557 - 7,966259 \ 56,728211)}{(15 \ 5,146085 \ 7,966259 \cdot 7,966259)} = \frac{2,626734}{13,729893} = 0,191318.$$
(C.53)

Оценку а вычисляют по формуле

$$\hat{a} = \vec{Y} - \vec{b}\vec{X} = 3,781881 - 0,191318 \cdot 0,5310834 = 3,680275.$$
 (C.54)

 x_i вычисляют по формуле (C.2). x_i^2 у x_i^2 — это линейное значение Y_i^2 — 33 значения для i=0 и i=16 — расчетные, а для i от 1 до 15 включ. — измеренные или полученные из результатов измерений. Значения для i = 0 и i = 16 не включены в суммарный расчет, приведенный под строкой для i = 16.

Сумму квадратов остатков RSS вычисляют по формуле

RSS =
$$\sum Y_i^2 - \hat{a} \sum Y_i - \hat{b} \sum X_j Y_j = 214,573977 - 3,680275 \cdot 56,728211 - 0.191318 \cdot 30.302557 = 0.001136.$$
 (C.55)

Несмещенную оценку $\hat{\sigma}_2^2$ вычисляют по формуле

$$\tilde{\sigma}_2^2 = \frac{\sum (\gamma_i \cdot \hat{\gamma}_i)^2}{(n-2)} = \frac{RSS}{(n-2)} = \frac{0.001136}{13} = 0.000087.$$
 (C.56)

Проверяют соблюдения неравенства

$$\hat{a} + \hat{b} > Y_i > \hat{a}$$
. (C.57)

Расчет значений $(Y)_{\text{max}} = 3.852114$, $(Y)_{\text{min}} = 3.696793$, $\hat{a} = 3.680275$ и $\hat{a} + \hat{b} = 3.680275 + 0.191318 = 3.871593$ показывает, что неравенство (C.57) соблюдается.

С.3.2.3 Определение доверительного и прогнозируемого интервалов

Дисперсию для à вычисляют по формуле

Дисперсия (
$$\tilde{\mathbf{a}}$$
) = $\frac{\left(\hat{\sigma}_{2}^{2} \sum X_{i}^{2}\right)}{\left|n \sum X_{i}^{2} \cdot \left(\sum X_{i}\right)^{2}\right|} = \frac{\left(\hat{\sigma}_{2}^{2} \sum X_{i}^{2}\right)}{\left|n \sum \left(X_{i} \cdot \overline{X}\right)^{2}\right|} = 0,000033.$ (C.58)

Дисперсию для b вычисляют по формуле

Дисперсия
$$(\hat{b}) = \frac{(n\hat{\sigma}_2^2)}{\left[n\sum X_i^2 - (\sum X_i)^2\right]} = \frac{(n\hat{\sigma}_2^2)}{\left[n\sum (X_i - \overline{X})^2\right]} = 0,000097.$$
 (C.59)

Используя значение \hat{a} , вычисляют оценку среднеквадратической ошибки для \hat{a} $\epsilon(\hat{a})$ по формуле

$$\varepsilon(\hat{a}) = \sqrt{\mu_0} = \sqrt{0.000033} = 0.005756.$$
 (C.60)

Используя значение \hat{b} , вычисляют оценку среднеквадратической ошибки для \hat{b} $\epsilon(\hat{b})$ по формуле

$$\varepsilon(\hat{b}) = \sqrt{\text{Дисперсия}(\hat{b})} = \sqrt{0,000097} = 0,009828.$$
 (C.61)

Доверительный интервал при доверительной вероятности 90% μ_X для линии 2 как функция от X вычисляют по формуле (C.27), а прогнозируемый интервал при доверительной вероятности 90% Y_X для линии 2 как функция от X вычисляют по формуле (C.29). Расчетные значения нижней и верхней границ доверительного интервала при доверительной вероятности 90% (μ_L и μ_U соответственно) и нижней и верхней границ прогнозируемого интервала при доверительной вероятности 90% (Y_L и Y_U соответственно) приведены в таблице C.3. При этом экстраполированную долговременную жесткость \hat{Y}_X вычисляют по формуле (C.31), а $t_p = 1,771$ для P = 90%.

С.3.2.4 Проверка параметров a и b по t-критерию Стьюдента

Чтобы проверить, равны ли нулю â или b, используют формулу

$$Pr(|t| < t_p) = P,$$
 (C.62)

где t — t-критерий Стьюдента с числом степеней свободы (n – 2).

Из статистических таблиц для P = 90 % t = 1,771.

Из статистических таблиц для P = 95 % t = 2,160.

Если значения t для \hat{a} и \hat{b} , рассчитанные по формулам (C.63) и (C.64) соответственно, больше значений t, указанных для P = 90 % или P = 95 %, то \hat{a} и \hat{b} не равны 0

$$t$$
 для $\hat{a} = \frac{\hat{a}}{\varepsilon(\hat{a})} = \frac{3,6803}{0.005756} = 639,33753,$ (C.63)

$$t$$
 для $\hat{b} = \frac{\hat{b}}{\epsilon(\hat{b})} = \frac{0.1913}{0.009828} = 19.4666323.$ (C.64)

Согласно результатам проверки а и b не равны 0.

С.3.2.5 Расчет долговременной (50 лет) жесткости . Экстраполированную долговременную жесткость $\hat{Y}_{50\,\mathrm{ner}}$ вычисляют по формуле

$$\hat{Y}_{50 \text{ ner}} = \hat{\mu}_{50 \text{ ner}} = \hat{a} + \hat{b}X = 3,6803 + 0,1913 \cdot 0,035 = 3,686968.$$
 (C.65)

Доверительный интервал для экстраполированной долговременной жесткости µ50 лет вычисляют по формуле

$$\mu_{50 \text{ net}} = \hat{\mu}_{50 \text{ net}} \pm \mu_{\text{границ}} = 3,686968 \pm 0,0096 = (3,677322; 3,696614).$$
 (C.66)

Прогнозируемый интервал для экстраполированной долговременной жесткости Y_{50 лет} вычисляют по формуле

$$Y_{50 \text{ net}} = \hat{Y}_{50 \text{ net}} \pm Y_{\text{Dahmu}} = 3,686968 \pm 0,0192 = (3,667725; 3,70621).$$
 (C.67)

Преобразуя логарифмические значения формул (С.65)—(С.67) обратно в значения жесткости по формулам, получают:

экстраполированная долговременная жесткость S_{50 лет} H/м², равна

$$S_{50 \text{ net}} = 10^{\hat{Y}_{50 \text{ net}}} = 10^{3.586968} = 4864;$$
 (C.68)

 доверительный интервал при доверительной вероятности 90 % для экстраполированной долговременной жесткости $\mu(S)_{50 \text{ лет}}$ H/м², равен

$$\mu(S)_{50~\text{BH}T} = 10^{\hat{\mu}_{50~\text{BH}T} \pm \mu_{\text{границ}}} = 10^{3.686968 \pm 0.0098} = (4757; 4973);$$
 (C.69)

- прогнозируемый интервал при доверительной вероятности 90 % для экстраполированной долговременной жесткости $Y(S)_{50 \text{ лет.}} \text{ H/м}^2$, равен

$$Y(S)_{50 \text{ ner}} = 10^{\hat{Y}_{50 \text{ ner}} \pm Y_{\text{passes}}} = 10^{3.686968 \pm 0.0192} = (4653; 5084).$$
 (C.70)

Результаты расчета для линии 2 приведены в таблице С.3, преобразованные логарифмические значения нелинейного метода анализа приведены в таблице С.4.

Таблица С.3 — Результаты расчета для линии 2

~	×	, x	x's	2/4	X,Y,	Ý, (A + BX,)	Octation, $(Y_i - \hat{Y_k})$	Pioneeds A	У _L (У _X – У _Г	Y _U (Y _x + Y _T Y _{TPRMU})	hweeds	$\frac{\mu_L}{(\dot{Y}_X^* - \mu_{\rm Typesety})}$	Hrpanau)	ошибка	у [*] - ошибка граници	ў, + ошибка границы
0	1,000000	3,871582	1,000000	14,989224	3,871592	3,871592	0,00000	0,019036	3,852556	3,890628	0.009224	3,862367	3,880816	0,016651	3,854941	3,888243
-	0,900981	3,852114	0,811767	14,838781	3,470682	3,852648	0,000534	0,018363	3,834285	3,871011	0.007742	3,844906	886098'8	0,016651	3,835997	3,869299
N	0,864045	3,841046	0,746575	14,753638	3,318839	3,845582	0,004535	0,018148	3,827434	3,863729	0,007216	3,838366	3,852797	0,018651	3,828930	3,862233
6	0,835713	3,834039	0,698417	14,699855	3,204157	3,840161	0,006122	966210'0	3,822165	3,858157	0,006826	3,833335	3,846987	0,016851	3,823510	3,856813
4	0,798385	3,825945	0,637419	14,637856	3,054579	3,833020	0,007075	0,017816	3,815204	3,850835	0,006335	3,826685	3,839354	0,016651	3,816369	3,849671
3	0,720523	3,815113	0,519154	14,555085	2,748877	3,818123	0,003011	115710,0	3,800613	3,835634	0,005418	3,812705	3,823542	0,016651	3,801472	3,834775
49	0,659034	3,809762	0,434326	14,514284	2,510763	3,806360	0,003402	146710,0	3,789019	3,823701	0.004842	3,801518	3,811201	0,016651	3,789708	3,823011
7	0,572940	3,799823	0,328260	14,438654	2,177070	3,789888	0,009934	0,017213	3,772676	3,807101	0,004361	3,785528	3,794249	0,016851	3,773237	3,806540
00	0,498427	3,792322	0,248429	14,381703	1,890194	3,775633	0,016689	0,017207	3,758426	3,792840	0,004337	3,771296	3,779970	0,018651	3,758982	3,792284
60	0,457862	3,787673	0,209637	14,346466	1,734230	3,767872	0,019801	0,017245	3,750628	3,785117	0,004484	3,763388	3,772356	0,016651	3,751221	3,784523
10	0,384436	3,755265	0,147791	14,102014	1,443659	3,753825	0,001440	9822100	3,736439	3,771210	0,005000	3,748825	3,758824	0,016651	3,737173	3.770476
7	0,381035	3,740994	0,130346	13,995036	1,350631	3,749348	0,008354	0.017450	3,731897	3,766798	0,005220	3,744128	3,754567	0,016651	3,732696	3,765999
12	0,315663	3,731830	0,099643	13,926558	1,178003	3,740667	758800,0	1092100	3,723066	3,758269	\$0.2500,0	3,734963	3,746372	0,016651	3,724016	3,757319
13	0,294833	3,729489	0,086927	13,909086	1,099577	3,736682	0,007193	0,017682	3,719000	3,754364	0,005949	3,730733	3,742631	0,016651	3,720031	3,753333
4	0,179974	3,716003	0,032391	13,808681	0,668786	3,714708	0,001296	0,018251	3,696457	3,732959	0,007472	3,707236	3,722180	0,016851	3,698057	3,731359
15	0,122406	3,696793	0,014983	13,666279	0,452510	3,703694	0,006901	0,018610	3,685084	3,722304	0,008311	3,695383	3,712005	0,016851	3,687043	3,720345
16	0.034980	3,686968	0,001224	13,593733	0,128969	3,686968	0,000000	0,019243	3,667725	3,706211	999600'0	3,677322	3,696614	0,016851	3,670317	3,703619
CyM-	7,966259	56,728211 5,146065	5,146065		214,573977 30,302557	6,204350	0,00000	-	-	1	1	1	1	I	1	I
	Прим	Примечания														

примечания: Пинейное значение времени Х, вычисляют по формуле (С.14).

2 У, вычисляют по формуле (С.1).

У границ вычисляют по формуле (С.30). ⁴ границ вычисляют по формуле (С.28). ⁵ Ошибку границы вычисляют по формуле

⁶ Значения для *i* = 0 и *i* = 16 — расчетные, а для гот 1 до 15 включ — измеренные или полученные из результатов измерений. Значения для *i* = 0 и *i* = 16 не включены в суммарный расчет, приведенный под строкой для *i* = 16.

Ошибка границы = 1_р62-

Та бли ца С.4 — Преобразованные логарифмические значения нелинейного метода анализа

~	4	*	S, (10½)	Shat (10 ^V x)	Остатки $(S_j - S_{lost})$	SYppseu (10 ^V ppseu)	Y(S) _L (10 ^Y _L)	Y(S) _U (10%)	Strpmen. (10 ^K rpmen.)	μ(S) _L (10 ^R .)	μ(S) _U (10 ⁴ U)	S ошибка границы (10 ошбеа границы)	S _{рык} — S ошибка границы (10 ^ (У - сшибка границы)	Sounding Sounding (10 ^ (ȳ + ounded rpsensels)
0	0'0	0,000000	7440	7440	0	1,044806	7121	7774	1,021467	7284	7600	1,039085	7160	7731
-	1,0	0,845098	7114	7123	6-	1,043189	6828	7430	1,017985	2669	7251	1,039085	6855	7401
2	6,0	1,235528	9835	7008	-73	1,042672	6721	7307	1,016754	6892	7125	1,039085	6744	7282
m	0,5	1,491362	6824	6921	-97	1,042308	6640	7214	1,015842	6813	7031	1,039085	6661	7191
4	1,0	1,785330	8699	8089	-110	1,041875	6534	7093	1,014693	6209	8069	1,039085	6552	7074
2	3,3	2,296226	6533	82.59	45	1,041143	6318	6849	1,012554	6497	1999	1,039085	6331	9839
9	7,3	2,641276	6453	6403	90	1,040737	6152	6663	1,011211	6332	6474	1,039085	6162	6653
7	20,0	3,079543	6307	6164	143	1,040430	5925	6414	1,010091	6103	6227	1,039085	5932	6405
8	45,9	3,440122	6199	2962	234	1,040415	5734	9079	1,010036	9069	6025	1,039085	5741	6198
6	72,0	3,635584	6133	5860	273	1,040506	5632	2609	1,010379	5799	5920	1,039085	5639	6809
10	166,0	3,998303	2695	5673	19	1,040844	5451	5905	1,011579	5608	5739	1,039085	5460	9889
11	219,0	4,118628	2508	5615	-107	1,040999	5394	5845	1,012091	5548	5683	1,039085	5404	5834
12	384,0	4,362501	5393	5504	-111	1,041361	5285	57.32	1,013222	5432	5577	1,039085	5297	5719
13	504,0	4,480596	5364	5454	06-	1,041555	5236	2680	1,013793	5379	5529	1,039085	5248	2999
4	0'0000	5,255275	5200	5185	15	1,042920	4971	2407	1,017353	5096	5274	1,039085	4989	5387
15	10520,0	5,800168	4975	5055	-80	1,043783	4843	5276	1,019322	4959	5152	1,039085	4865	5252
16	438300,0	7,419923	4864	4864	0	1,045306	4653	5084	1,022458	4757	4973	1,039085	4681	5054
	Примечания: 1 х; вычисляют по 2 Значения для <i>i</i> =	1 ри м еч ания; 1_{X_j} вычисляют по формуле (2 Значения для $i=0$ и $i=16$		2). расчетные,	адля / от 1	до 15 вклк	изме	ренные ил	(С.2). — расчетные, а для ї от 1 до 15 включ. — измеренные или полученные из результатов измерений.	не из резуп	ътатов изм	ерений.		

С.4 Описание и комментарии по данным и модели

В настоящем приложении использована процедура последовательной линеаризации. Эта процедура недостаточно оптимальна для целей настоящего стандарта. Например, при прогнозировании значения жесткости на 50 лет (экстраполированная долговременная жесткость S_{50лет}) важны только параметр а и связанные с ним оценки погрешностей измерения для S и а. Четырехпараметрическая модель для процедуры линеаризации выражается формулой

$$Y_i = \lg(S_i) = \frac{a+b}{1+\exp\left[-\frac{\lg(T_i)-c}{d}\right]}, i = 1, ..., n,$$
 (C.71)

где S — жесткость, H/м²;

Т — время, ч;

индекс отдельного измерения.

Четырехпараметрическая модель линейна по параметрам a и b и нелинейна по параметрам c и d. Поэтому разработанный статистический анализ, предназначенный для получения всех необходимых оценок и интервалов, требует объемных алгебраических расчетов.

С.4.1 Линия 1

Линия 1 — перезапись модели, выраженной формулой (С.71), для отображения времени как функции от жесткости с добавлением компоненты случайной ошибки для полного описания стандартной линейной регрессионной модели. Модель линии 1 вычисляют преобразованием оси У с использованием предварительных оценок для а и b по формуле

$$y_i = \ln\left(\frac{a+b-Y_i}{Y_j-a}\right) = A + Bx_i + \theta_{i,i}, i = 1, ..., n,$$
 (C.72)

где x_i — логарифмическое значение времени, вычисляют по формуле (С.73); $e_{1,i} \sim$ N (0, σ_1^2) — случайная ошибка.

$$x_i = \lg(60T_i + 1) = \lg60 + \lg T_i$$
. (C.73)

Примечания

- 1 Случайная ошибка е_{1,1} указывает на нормальное распределение результатов измерений и изменение образца при постоянных условиях испытания.
- 2 1 мин. в формуле (С.73) добавлена для обеспечения примерного совпадения нулей по осям времени и логарифма времени.

Соответственно А и В вычисляют по формулам:

$$A = \frac{c + \lg 60}{d},$$
 (C.74)

$$B = -\frac{1}{d}$$
 (C.75)

с и d вычисляют по формулам:

$$c = -(AB^{-1} + \lg 60).$$
 (C.76)

$$d = -B^{-1}$$
. (C.77)

Для оценки параметров c и d могут быть использованы начальные значения параметров a и b, получаемые из минимального и максимального значений жесткости. Но при этом модель для линии 1 требует выполнения неравенства $\hat{a} + \hat{b} > Y_i > \hat{a}$, которов может не выполняться для начальных значений. Принимая, что модель для линии 1 хорошо соответствует данным и ошибка измерений мала, формулу (С.72) заменяют на следующую формулу

$$y_{j} = \ln \left[\text{абсолютное значение} \left(\frac{a+b\cdot Y_{j}}{Y_{j}-a} \right) \right].$$
 (С.78)

Начальные значения параметров a_0 и b_0 вычисляют по формулам (C.6) и (C.7) соответственно.

В качестве альтернативного варианта, можно получить значения параметров a, b, c и d, используя подходящее статистическое программное обеспечение, способное рассчитать точные значения этих переменных путем итераций или с использованием правильно заданного критерия наименьших квадратов. Но такое программное обеспечение не способно рассчитать стандартные погрешности или доверительные интервалы.

С.4.2 Линия 2

Линия 2 — перезапись модели, выраженной формулой (С.71), в виде простой линейной зависимости жесткости от преобразованного времени с использованием оценок линии 1 для параметров с и d. Модель линии 2 вычисляют по формуле

$$Y_i = a + bX_i + e_{2,i}, i = 1, ..., n,$$
 (C.79)

где X_i — преобразованное значение времени, вычисляют по формуле (C.80); $e_{2,i} \sim N(0, \sigma_2^2)$ — случайная ошибка.

$$X_{i} = \frac{1}{\left\{1 + \exp\left[-\frac{\lg(T_{i}) - c}{\sigma}\right]\right\}}.$$
(C.80)

Примечание — Случайная ошибка $e_{2,j}$ указывает на нормальное распределение результатов измерений и изменение образца при постоянных условиях испытания.

С учетом оценок для параметров с и d, полученных по расчету для линии 1 или с использованием подходящего статистического программного обеспечения, модель линии 2 можно использовать для повторной оценки параметров а и b. Доверительные и прогнозируемые интервалы для линии 2 получают с использованием стандартных статистических методов для линейных моделей и путем обратного преобразования жесткости как функции времени.

С.4.3 Дополнительные данные

С.4.3.1 Расчет начальной жесткости

Используя результаты измерений жесткости за период до 10 000 ч, вычисляют начальные значения параметров a_0 и b_0 по формулам (C.6) и (C.7) соответственно. Для этих данных начальное значение параметра a_0 является также логарифмическим значением экстраполированной долговременной жесткости $S_{50~\mathrm{ner}}$ которое можно рассчитать по формуле

$$a_0 = \lg(S_{50 \text{ per}}).$$
 (C.81)

Используя формулу (С.81), экстраполированную долговременную жесткость $S_{50 \text{ лет}}$ H/m^2 , можно рассчитать по формуле

$$S_{60apx} = 10^{a_0} = 10^{3.678309} = 4768.$$
 (C.82)

Начальное значение параметра b_0 — это изменение между логарифмическими значениями начальной жесткости S_0 и экстраполированной долговременной жесткости $S_{50\,\mathrm{ner}}$ которое можно рассчитать по формуле

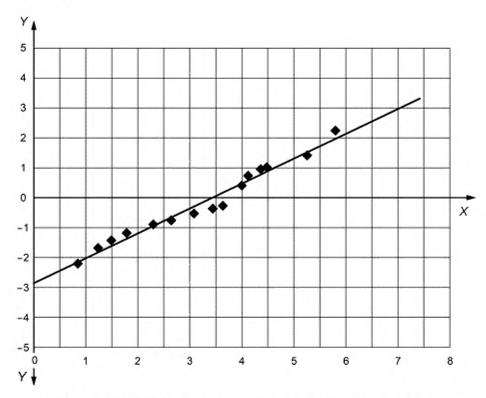
$$b_0 = \lg(S_0/S_{50 \text{ par}}).$$
 (C.83)

Используя формулу (С.83), начальную жесткость S₀, H/м², вычисляют по формуле

$$S_0 = 10^{b_0} \cdot S_{50 \text{ ner}} = 10^{0.193066} \cdot 4768 = 7437,$$
 (C.84)

или, используя формулу

$$a_0 + b_0 = \lg(S_0),$$
 (C.85)

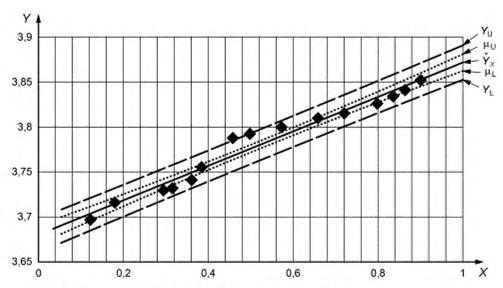

начальную жесткость So, H/м2, вычисляют по формуле

$$S_n = 10^{a_0 + b_0} = 10^{3,871375} = 7437.$$
 (C.86)

С.4.3.2 Аппроксимация линии 1

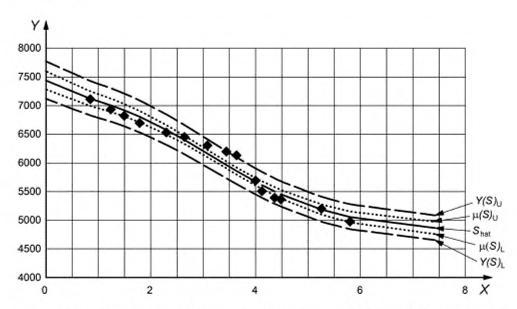
Аппроксимация линии 1 приведена на рисунке С.1.

Примечание — Данные для построения рисунка С.1 приведены в таблице С.2.


Ось X — значения x_i ось Y — значения y_j линия тренда — $(\hat{y} = A + Bx)$; \bullet — точки данных Рисунок С.1 — Аппроксимация линии 1

С.4.3.3 Алпроксимация линии 2

Алпроксимация линии 2 и кривые зависимости жесткости от времени с наложением доверительных и прогнозируемых интервалов приведены на рисунках C.2—C.4.


Примечания

- 1 Данные для построения рисунка С.2 приведены в таблице С.3.
- 2 Данные для построения рисунков С.3 и С.4 приведены в таблице С.4.

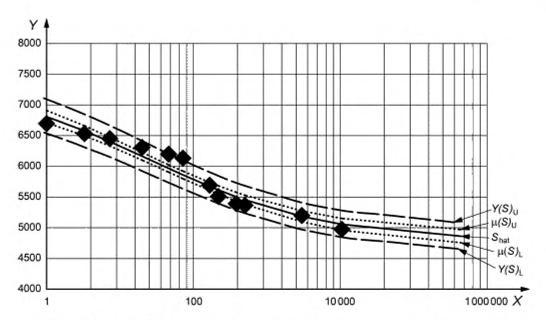

Ось X — значения X_i ось Y — значения Y_i μ_L — нижняя граница доверительного интервала при доверительной вероятности 90 %; μ_U — верхняя граница доверительного интервала при доверительной вероятности 90 %; \hat{Y}_X — лимия тренда для лимии 2, Y_L — нижняя граница прогнозируемого интервала при доверительной вероятности 90 %; Y_U — верхняя граница прогнозируемого интервала при доверительной вероятности 90 %; Y_U — верхняя граница прогнозируемого интервала при доверительной вероятности 90 %; Y_U — точки даниых

Рисунок C.2 — Аппроксимация линии 2, включая доверительные и прогнозируемые интервалы

Ось X — значения x_ℓ ось Y — значения $S_\ell \mu(S)_L$ — преобразованная нижняя граница доверительного интервала при доверительной вероятности 90 %; $\mu(S)_U$ — преобразованная верхняя граница доверительного интервала при доверительной вероятности 90 %; S_{hat} — линия тренда для линии 2; $Y(S)_L$ — преобразованная нижняя граница прогнозируемого интервала при доверительной вероятности 90 %; $Y(S)_U$ — преобразованная верхняя граница прогнозируемого интервала при доверительной вероятности 90 %; \mathbf{z} — точки данных

Рисунок C.3 — Зависимость жесткости от логарифма времени, включая доверительные и прогнозируемые интервалы

Ось X — значения T_j ось Y — значения S_j : $\mu(S)_L$ — преобразованная нижняя граница доверительного интервала при доверительной вероятности 90 %; $\mu(S)_U$ — преобразованная верхняя граница доверительного интервала при доверительной вероятности 90 %; S_{hat} — линия тренда для линии 2; $Y(S)_L$ — преобразованная нижняя граница прогнозируемого интервала при доверительной вероятности 90 %; $Y(S)_U$ — преобразованная верхняя граница прогнозируемого интервала при доверительной вероятности 90 %; \blacksquare — точки данных

Рисунок С.4 — Зависимость жесткости от времени, включая доверительные и прогнозируемые интервалы

Приложение D (справочное)

Расчет нижних границ доверительного и прогнозируемого интервалов для метода А

D.1 Расчет величин и дисперсий

Величину В вычисляют по формуле

$$B = -D \cdot X(1+E). \tag{D.1}$$

Дисперсию А для а вычисляют по формуле

$$A = D \left[X^{2}(1+E) + \frac{Q_{xy}}{b} \right]. \tag{D.2}$$

Дисперсию $\sigma_0^{\ 2}$ для прямой при x_L вычисляют по формуле

$$\sigma_n^2 = A + 2Bx_i + Cx_i^2. \tag{D.3}$$

где $x_{\mathbb{L}}$ — логарифм времени h, ч.

Дисперсию ошибки σ_c^2 вычисляют по формуле

$$\sigma_{\epsilon}^{2} = 2\Gamma \sigma_{\delta}^{2}. \tag{D.4}$$

Общую дисперсию σ_y^2 для будущих значений y_L при x_L вычисляют по формуле

$$\sigma_{\gamma}^{2} = \sigma_{\rho}^{2} + \sigma_{s}^{2}. \tag{D.5}$$

Стандартное отклонение $\sigma_{_{V}}$ для $y_{_{\mathbb{E}}}$ вычисляют по формуле

$$\sigma_{y} = (\sigma_{n} + \sigma_{s})^{0.5}. \tag{D.6}$$

D.2 Расчет нижних границ доверительного и прогнозируемого интервалов

Прогнозируемое значение у, для у при х, вычисляют по формуле

$$y_1 = a + b \cdot x_1, \tag{D.7}$$

где а — точка пересечения с осью Y, вычисляют по формуле (12);

b — угол наклона прямой, вычисляют по формуле (11).

Нижнюю границу прогнозируемого интервала при доверительной вероятности 95 % $y_{L0,95}$ для y_L вычисляют по формуле

$$y_{L0.95} = y_L - t_v \cdot \sigma_v, \qquad (D.8)$$

где t_y — значение t-критерия Стьюдента из таблицы 2.

Преобразованное погарифмическое значение нижней границы прогнозируемого интервала LPL при доверительной вероятности 95 % для x₁ вычисляют по формуле

$$LPL_{0.95} = 10^{y_{L0.95}}$$
. (D.9)

Если в формуле (D.5) задать значение $\sigma_y^2 = \sigma_n^2$, это позволит рассчитать нижнюю границу доверительного интервала LCL при доверительной вероятности 95 %.

D.3 Пример расчета

Для примера расчета нижних границ доверительного и прогнозируемого интервалов использованы данные, приведенные в 3.2.6 и таблице 4.

Величины и дисперсии:

 $B = -1.469 \cdot 10^{-5}$;

 $A = 4.6673 \cdot 10^{-5}$

Для 50 лет (438 000 ч): $\sigma_n^2 = 4,0466 \cdot 10^{-5};$ $\sigma_i^2 = 1,1601 \cdot 10^{-4}.$

В таблице D.1 приведены расчетные значения LCL и LPL (см. таблицу 4).

Таблица D.1 — Расчетные значения V_m , LCL и LPL

Время ћ, ч	V _m	LCL	LPL
0,1	45,76	43,86	42,83
1	42,39	41,05	39,93
10	39,28	38,41	37,16
100	36,39	35,91	34,53
1000	33,71	33,41	32,03
10 000	31,23	30,79	29,63
100 000	28,94	28,26	27,36
438 000	27,55	26,74	25,98

Приложение ДА (справочное)

Оригинальный текст модифицированных структурных элементов примененного международного стандарта

ДА.1

3.2.6 Оценка статистических процедур примером расчета

Данные, приведенные в таблице 3, использованы в следующем примере для помощи в проверке статистических процедур, а также компьютерных программ и электронных таблиц, принятых пользователями. Они должны давать результаты, аналогичные тем, которые получают при расчете по формулам, приведенным в настоящем международном стандарте. В данном примере исследуемое свойство обозначено V, значения которого имеют типичные модули и не имеют особых элементов. Из-за погрешностей округления точное совпадение результатов маловероятно, поэтому для того, чтобы процедура расчета была приемлемой, результаты, полученные для r, r², b, а и средних значений V и V_т должны совпадать в пределах ±1 % от значений, приведенных в примере. Значения других статистических величин приведены для упрощения проверки процедуры.

Примечание — Данный раздел международного стандарта изменен в соответствии с требованиями ГОСТ 1.5—2001 (п. 4.1.2).

ΠΑ.2

3.3.5 Оценка статистических процедур примером расчета

Данные, приведенные в таблице 5, использованы в следующем примере для помощи в проверке статистических процедур, а также компьютерных программ и электронных таблиц, принятых пользователями. Они должны давать результаты, аналогичные тем, которые получаются при расчете по формулам, приведенным в настоящем международном стандарте. Используют данные таблицы 5 для расчета в соответствии с процедурами, описанными в п. 3.3.2—3.3.4, чтобы убедиться, что статистические процедуры, используемые совместно с данным методом, дают результаты для r, r^2 , b, a и V_m , совпадающие в пределах ± 1 % со значениями, приведенными в примере.

Примечание — Данный раздел международного стандарта изменен в соответствии с требованиями ГОСТ 1.5—2001 (п. 4.1.2).

ДА.3

В.6 Оценка статистических процедур на примере расчета

Используют данные таблицы 5 в процедурах расчета, описанных в разделах В.1—В.5, чтобы убедиться, что статистические процедуры, используемые с данным методом, дают результаты для r, r^2 , b, a и V_m , совпадающие в пределах ±0,1 % со значениями, приведенными в примере (n = 15).

Примечание — Данный раздел международного стандарта изменен в соответствии с требованиями ГОСТ 1.5—2001 (п. 4.1.2).

ДА.4

С.3 Оценка статистических процедур на примере расчета

Используют данные таблицы С.1 в процедурах расчета, описанных в разделах С.2.1—С.2.5, чтобы убедиться, что статистические процедуры, используемые с данным методом, дают результаты, совпадающие в пределах ±0,1 % со значениями, приведенными в примере (n = 15).

Примечание — Данный раздел международного стандарта изменен в соответствии с требованиями ГОСТ 1.5—2001 (п. 4.1.2).

Библиография

[1]	ISO 7509:2015 ¹⁾	Системы пластмассовых трубопроводов. Трубы из термореактивных стеклопла- стиков (GRP). Определение времени до разрушения под воздействием постоян- ного внутреннего давления [Plastics piping systems. Glass-reinforced thermosetting plastics (GRP) pipes. Determination of time to failure under sustained internal pressure!
[2]	ISO 8521:2009 ²⁾	Системы пластмассовых трубопроводов. Трубы из термореактивных стеклопла- стиков. Методы испытания для определения кажущегося начального кольцево- го предела прочности при растяжении [Plastics piping systems. Glassreinforced thermosetting plastics (GRP) pipes. Test methods for the determination of the apparent initial circumferential tensile strength]
[3]	ISO 10471:2003 ³)	Трубы из термореактивных стеклопластиков (GRP). Определение долговременной предельной деформации изгиба и долговременной предельной относительной кольцевой деформации во влажных условиях [Glass-reinforced thermosetting plastics (GRP) pipes. Determination of the longterm ultimate bending strain and the longterm ultimate relative ring deflection under wet conditions]
[4]	ISO 10952:2014 ⁴⁾	Системы пластмассовых трубопроводов. Трубы и фитинги из термореактив- ных стеклопластиков (GRP). Определение стойкости к химическому воздей- ствию с внутренней стороны деформированного участка [Plastics piping systems. Glass-reinforced thermosetting plastics (GRP) pipes and fittings. Determination of the resistance to chemical attack for the inside of a section in a deflected condition]
[5]	ISO 10468:2003 ⁵⁾	Трубы из термореактивных стеклопластиков (GRP). Определение долговременной удельной кольцевой жесткости при ползучести во влажных условиях и расчет коэффициента ползучести во влажных условиях [Glass-reinforced thermosetting plastics (GRP) pipes. Determination of the longterm specific ring creep stiffness under wet conditions and calculation of the wet creep factor]
[6]	ISO 14828:2003 ⁶⁾	Термоотверждающиеся пластмассы, армированные стеклом. Определение дол- госрочной удельной кольцевой жесткости при релаксации при влажных услови- ях и расчет коэффициента релаксации при влажных условиях [Glass-reinforced thermosetting plastics (GRP) pipes. Determination of the longterm specific ring relaxation stiffness under wet conditions and calculation of the wet relaxation factor]
[7]	ISO 10639:2004 ⁷⁾	Пластиковые трубопроводные системы для напорного и безнапорного водоснаб- жения. Армированные стекловолокном термореактивные пластики (GRP) на ос- нове ненасыщенных полиэфирных смол (UP) [Plastics piping systems for pressure and non-pressure water supply. Glass-reinforced thermosetting plastics (GRP) systems based on unsaturated polyester (UP) resin]

¹⁾ На территории Российской Федерации рекомендуется применять ГОСТ Р 55076—2012 «Трубы и детали трубопроводов из реактопластов, армированных стекловолокном. Методы определения наработки до отказа под действием постоянного внутреннего давления».

²⁾ На территории Российской Федерации рекомендуется применять ГОСТ Р 54925—2012 «Трубы и детали трубопроводов из реактопластов, армированных стекловолокном. Методы определения начального окружного предела прочности при растяжении».

³⁾ На территории Российской Федерации рекомендуется применять ГОСТ Р 57030—2016 (ИСО 10471:2003) «Трубы и детали трубопроводов из реактопластов, армированных стекловоложном. Метод определения долговременной предельной деформации изгиба и долговременной предельной относительной кольцевой деформации при воздействии влаги».

⁴⁾ На территории Российской Федерации рекомендуется применять ГОСТ Р 55077—2012 «Трубы и детали трубопроводов из реактопластов, армированных стекловолокном. Методы определения химической стойкости внутренней поверхности в условиях нагружения».

⁵⁾ На территории Российской Федерации рекомендуется применять ГОСТ Р 57006—2016 (ИСО 10468:2003) «Трубы и детали трубопроводов из реактопластов, армированных стекловолокном. Метод определения долговременной удельной кольцевой жесткости при ползучести и коэффициента ползучести при воздействии влаги».

⁶⁾ На территории Российской Федерации рекомендуется применять ГОСТ Р 57008—2016 (ИСО 14828:2003) «Трубы и детали трубопроводов из реактопластов, армированных стекловоложном. Метод определения долговременной удельной кольцевой жесткости при релаксации и коэффициента релаксации при воздействии влаги».

⁷⁾ На территории Российской Федерации рекомендуется применять ГОСТ Р 54560—2015 «Трубы и детали трубопроводов из реактопластов, армированных стекловолокном, для водоснабжения, водоотведения, дренажа и канализации. Технические условия».

ГОСТ Р 57949-2017

[8]	EN 1766:2000	Продукты и системы для защиты и ремонта бетонных конструкций. Методы испытаний. Эталонные бетоны для испытания (Products and systems for the protection and repair of concrete structures. Test methods. Reference concretes for testing)
[9]	EN 14364:2013	Системы трубопроводные пластиковые для напорной и безнапорной канализации и дренажа. Армированные стекловоложном термореактивные пластики (GRP) на основе ненасыщенных полиэфирных смол. Спецификации для труб, фитингов и соединений [Plastics piping systems for drainage and sewerage with or without pressure. Glass-reinforced thermosetting plastics (GRP) based on unsaturated polyester resin (UP). Specifications for pipes, fittings and joints]
[10]	ИСО/ТР 10465-3:2007 ¹⁾	

¹⁾ На территории Российской Федерации рекомендуется применять ГОСТ 32661—2014 «Трубы и детали трубопроводов из реактопластов, армированных волокном. Общие технические условия» (приложение Е).

УДК 691.462:006.354 OKC 23.040.20; 23.040.45

Ключевые слова: трубы, детали трубопроводов, реактопласты, стекловолокно, регрессионный анализ

БЗ 12-2017/84

Редактор А.А. Кабанов Технический редактор И.Е. Черелкова Корректор Е.И. Рычкова Компьютерная верстка Ю.В. Половой

Сдано в набор 20 11.2017. Подписано в печать 21.12.2017. Формат $60 \times 84^{11}/_{8}$. Гарнитура Ариал. Усл. леч. л. 5,12. Уч. изд. л. 4,80. Тираж 24 экз. Зак. 2567

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru

Издано и отпечатано во ФГУП «СТАНДАРТИНФОРМ», 123001. Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru