ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ΓΟCT P 57851.4— 2017

СМЕСЬ ГАЗОКОНДЕНСАТНАЯ

Часть 4

Расчет компонентно-фракционного состава

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Научно-исследовательский институт природного газа и газовых технологий» (ООО «Газпром ВНИИГАЗ»)
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 52 «Природный и сжиженные газы»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 31 октября 2017 г. № 552-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Содержание

1 Область применения
2 Нормативные ссылки
3 Термины и определения
4 Обозначения и сокращения
5 Метод расчета
6 Исходные данные
7 Расчет массы газа сепарации, нестабильного газового конденсата, газоконденсатной смеси
8 Расчет компонентно-фракционного состава газоконденсатной смеси в единицах массовой доли
9 Расчет компонентно-фракционного состава газоконденсатной смеси в единицах молярной доли
10 Порядок оценивания неопределенности расчета
11 Оформление результатов
Приложение А (обязательное) Методика определения плотности нестабильного газового конденсата при термобарических условиях отбора
Приложение Б (справочное) Пример расчета компонентно-фракционного состава
газоконденсатной смеси
Приложение В (справочное) Пример оценки неопределенности молярной и массовой долей компонентов и фракций газоконденсатной смеси
Библиография

Введение

Комплекс национальных стандартов под общим наименованием «Смесь газоконденсатная» состоит из следующих частей:

- Часть 1. Газ сепарации. Определение компонентного состава методом газовой хроматографии;
- Часть 2. Конденсат газовый нестабильный. Определение компонентно-фракционного состава методом газовой хроматографии с предварительным разгазированием пробы;
- Часть 3. Конденсат газовый нестабильный. Определение компонентно-фракционного состава методом газовой хроматографии без предварительного разгазирования пробы;
 - Часть 4. Расчет компонентно-фракционного состава.

Комплекс стандартов устанавливает определение компонентно-фракционного состава газа сепарации и нестабильного газового конденсата методом газовой хроматографии с дальнейшим вычислением на основе полученных данных компонентно-фракционного состава газоконденсатной смеси.

ГОСТ Р 57851.1 устанавливает метод измерений молярной доли неуглеводородных компонентов (водорода, кислорода, гелия, азота, диоксида углерода), индивидуальных углеводородов C_1 —n- C_5 , фракций углеводородов C_6 — C_{10} (или фракции $C_{8*высшие}$), серосодержащих соединений (сероводорода, карбонилсульфида, дисульфида углерода, индивидуальных меркаптанов C_1 — C_4 , сульфидов, производных тиофена), метанола в газе сепарации методом газовой хроматографии.

ГОСТ Р 57851.2 устанавливает метод измерений молярной и массовой долей неуглеводородных компонентов (азота, диоксида углерода), индивидуальных углеводородов C_1 —H- C_5 , фракций углеводородов от C_6 до C_{44} (или до $C_{12+\mathrm{высшие}}$), серосодержащих соединений (сероводорода, карбонилсульфида, дисульфида углерода, индивидуальных меркаптанов C_1 — C_4 , сульфидов, производных тиофена), метанола в пробе нестабильного газового конденсата методом газовой хроматографии с предварительным разгазированием пробы.

ГОСТ Р 57851.3 устанавливает метод измерений молярной и массовой долей неуглеводородных компонентов (азота, диоксида углерода), индивидуальных углеводородов C_1 — μ - C_5 , фракций углеводородов от C_6 до C_{44} (или до $C_{12+высшме}$), серосодержащих соединений (сероводорода, карбонилсульфида, дисульфида углерода, индивидуальных меркаптанов C_1 — C_4 , сульфидов, производных тиофена), метанола в пробе нестабильного газового конденсата прямым вводом пробы в хроматограф (без предварительного разгазирования).

ГОСТ Р 57851.4 устанавливает метод вычисления компонентно-фракционного состава газоконденсатной смеси на основе результатов экспериментального определения компонентно-фракционного состава газа сепарации и нестабильного газового конденсата.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СМЕСЬ ГАЗОКОНДЕНСАТНАЯ

Часть 4

Расчет компонентно-фракционного состава

Gas-condensate mixture. Part 4. Calculation of the component-fraction composition

Дата введения — 2019—01—01

1 Область применения

- 1.1 Настоящий стандарт устанавливает метод расчета компонентно-фракционного состава газоконденсатной смеси на основе результатов экспериментального определения компонентно-фракционного состава газа сепарации и нестабильного газового конденсата.
- 1.2 Метод используют в аналитических (испытательных) лабораториях нефте- и газодобывающих, нефте- и газоперерабатывающих предприятий и организаций, осуществляющих расчет компонентно-фракционного состава добываемой газоконденсатной смеси по результатам газоконденсатных исследований скважин и исследований продуктов промысловой подготовки газа и газового конденсата, для научно-исследовательских целей, анализа показателей разработки месторождений, планирования и оптимизации процессов добычи, подготовки и переработки углеводородного сырья.
- 1.3 Метод не предназначен для использования в сфере государственного регулирования обеспечения единства измерений при операциях коммерческого учета и подсчета запасов природного газа и газового конденсата.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 8.611—2013 Государственная система обеспечения единства измерений. Расход и количество газа. Методика (метод) измерений с помощью ультразвуковых преобразователей расхода

ГОСТ OIML R 111-1—2009 Государственная система обеспечения единства измерений. Гири классов точности E_1 , E_2 , F_1 , F_2 , M_1 , $M_{1\cdot 2}$, M_2 , $M_{2\cdot 3}$ и M_3 . Часть 1. Метрологические и технические требования

ГОСТ 1770 (ИСО 1042—83, ИСО 4788—80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 2603 Реактивы. Ацетон. Технические условия

ГОСТ 5632 Стали высоколегированные и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки

ГОСТ 5962 Спирт этиловый ректификованный из пищевого сырья. Технические условия

ГОСТ 6709 Вода дистиллированная. Технические условия

ГОСТ 17310—2002 Газы. Пикнометрический метод определения плотности

ГОСТ 25336 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 28498 Термометры жидкостные стеклянные. Общие технические требования. Методы испытаний

ГОСТ 31369—2008 (ИСО 6976:1995) Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава

ГОСТ P 57851.4-2017

ГОСТ Р 8.740—2011 Государственная система обеспечения единства измерений. Расход и количество газа. Методика измерений с помощью турбинных, ротационных и вихревых расходомеров и счетчиков

ГОСТ Р 8.785—2012 Государственная система обеспечения единства измерений. Масса газового конденсата, сжиженного углеводородного газа и широкой фракции легких углеводородов. Общие требования к методикам (методам) измерений

ГОСТ Р ИСО 5725-6—2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 6. Использование значений точности на практике

ГОСТ Р ИСО 7870-2 Статистические методы, Контрольные карты. Часть 2. Контрольные карты Шухарта

ГОСТ Р ИСО 21748 Статистические методы. Руководство по использованию оценок повторяемости, воспроизводимости и правильности при оценке неопределенности измерений

ГОСТ Р 53228—2008 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

ГОСТ Р 54500.3—2011/Руководство ИСО/МЭК 98-3:2008 Неопределенность измерения. Часть 3. Руководство по выражению неопределенности измерения

ГОСТ Р 55609 Отбор проб газового конденсата, сжиженного углеводородного газа и широкой фракции легких углеводородов. Общие требования

ГОСТ Р 55878 Спирт этиловый технический гидролизный ректификованный. Технические условия ГОСТ Р 57851.1—2017 Газоконденсатная смесь. Часть 1. Газ сепарации. Определение компонентного состава методом газовой хроматографии

ГОСТ Р 57851.2—2017 Газоконденсатная смесь. Часть 2. Конденсат газовый нестабильный. Определение компонентно-фракционного состава методом газовой хроматографии с предварительным разгазированием пробы

ГОСТ Р 57851.3—2017 Газоконденсатная смесь. Часть 3. Конденсат газовый нестабильный. Определение компонентно-фракционного состава методом газовой хроматографии без предварительного разгазирования пробы

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями: 3.1

газоконденсатная смесь; ГКС: Природная ископаемая газожидкостная смесь, добываемая из газоконденсатных и нефтегазоконденсатных месторождений или залежей, содержащая природный газ, газовый конденсат и неуглеводородные компоненты.

[ГОСТ Р 53521-2009, статья 1]

3.2

газ сепарации: Газообразная смесь, получаемая при сепарации продукции газоконденсатной скважины.

Пр и м е ч а н и е — Газ сепарации, прошедший промысловую подготовку, является осушенным горючим газом. [ГОСТ Р 54910—2012, статья 15] нестабильный газовый конденсат: Газовый конденсат, содержащий в растворенном виде газообразные углеводороды, направляемый на переработку с целью очистки от примесей и выделения углеводородов C₁—C₄, отвечающий требованиям соответствующего нормативного документа.

Примечания — К примесям относятся вода (водные растворы ингибиторов коррозии и/или гидратообразования), хлористые сопи, сернистые соединения и механические примеси.

[ГОСТ Р 53521—2009, статья 7]

3.4 компонентно-фракционный состав (газа сепарации, нестабильного газового конденсата, газоконденсатной смеси): Состав (газа сепарации, нестабильного газового конденсата, газоконденсатной смеси), устанавливающий содержание индивидуальных компонентов (неуглеводородных компонентов, углеводородов С₁—н-С₅, серосодержащих соединений, метанола) и фракций углеводородов, выраженный в единицах молярной или массовой доли.

4 Обозначения и сокращения

- 4.1 В настоящем стандарте используют следующие обозначения:
- абсолютная расширенная неопределенность измерений;
- относительная расширенная неопределенность измерений;
- абсолютная стандартная неопределенность измерений;
- и° относительная стандартная неопределенность измерений;
- ж молярная доля,
- w массовая доля;
- М молярная масса;
- т масса;
- п количество вещества;
- V объем:
- р плотность;
- Р давление
- температура;
- к коэффициент;
- функция (функциональная зависимость);
- У результат вычисления.
- 4.2 В настоящем стандарте используют следующие сокращения:
- ГКС газоконденсатная смесь;
- ГС газ сепарации:
- НГК нестабильный газовый конденсат;
- СИ средства измерений.

5 Метод расчета

- 5.1 Компонентно-фракционный состав газоконденсатной смеси рассчитывают на основании данных о количестве газа сепарации и нестабильного газового конденсата, полученных после сепарации газоконденсатной смеси, и данных об их компонентно-фракционных составах.
- 5.2 Результаты расчета компонентно-фракционного состава газоконденсатной смеси приводят в единицах молярной или массовой доли.
- 5.3 Неопределенность результатов расчета компонентно-фракционного состава газоконденсатной смеси определяют в соответствии с индивидуальными методиками, разработанными и аттестованными в установленном порядке, руководствуясь общим порядком оценивания неопределенности, приведенным в разделе 10.

6 Исходные данные

- 6.1 Исходными данными для расчета компонентно-фракционного состава газоконденсатной смеси являются:
- компонентно-фракционный состав газа сепарации, представленный в единицах молярной \mathcal{E}^{CC} (%) или массовой w_i^{CC} (%) доли индивидуальных компонентов или углеводородных фракций,

ранжированных по числу атомов углерода или по температурам кипения, определенный по ГОСТ Р 57851.1;

- компонентно-фракционный состав нестабильного газового конденсата, представленный в единицах молярной x_j^{HFK} (%) или массовой w_j^{HFK} (%) доли индивидуальных компонентов и углеводородных фракций, ранжированных по числу атомов углерода или по температурам кипения, определенный по FOCT P 57851.2 или FOCT P 57851.3;
- молярная масса индивидуальных компонентов и фракций пробы газа сепарации, определяемая в соответствии с ГОСТ Р 57851.1;
- молярная масса индивидуальных компонентов и фракций пробы нестабильного газового конденсата, определяемая в соответствии с ГОСТ Р 57851.2, ГОСТ Р 57851.3.

Примечание — При наличии соответствующих аттестованных методик (методов) измерений допускается их применение для измерений молярных масс индивидуальных компонентов и фракций ГС и НГК, при этом при возникновении разногласий в качестве арбитражной методики (метода) измерений применяют аттестованные или референтные методики (методы) измерений, имеющие более высокие характеристики точности;

- объем газа сепарации V_{CC}, полученного в процессе сепарации газоконденсатной смеси за расчетный период времени (м³);
- плотность газа сепарации при стандартных условиях [температура 293,15 К (20,0 °С), давление 101,325 кПа] (кг/м³);
- объем нестабильного газового конденсата V_{НГК}, полученного в процессе сепарации газоконденсатной смеси за расчетный период времени (м³);
- плотность нестабильного газового конденсата при термобарических условиях измерения объема (кг/м³).

Примечание — Если учет количества нестабильного газового конденсата на узле измерений проводится в единицах массы (кг), то в качестве исходных данных принимают массу нестабильного газового конденсата $(m_{\rm HFK})$, полученного в процессе сепарации газоконденсатной смеси за расчетный период времени.

6.2 Объем газа сепарации, полученный за расчетный период, определяют по стандартизированным методикам измерений (ГОСТ Р 8.740, ГОСТ 8.611) или методикам (методам) измерений, разработанным и аттестованным в установленном порядке методом динамических измерений непосредственно в измерительной или пробоотборной линии при соответствующих условиях температуры и давления (далее — термобарические условия) с последующим приведением измеренного объема к стандартным условиям.

Примечание — Если абсолютное давление газа сепарации при условиях измерений отличается не более чем на 15 % от стандартного давления, то при вычислении объема газа сепарации, приведенного к стандартным условиям, допускается его коэффициент сжимаемости принимать равным единице.

6.3 Плотность газа сепарации при стандартных условиях измеряют по методикам (методам) измерений, устанавливающим пикнометрический метод определения плотности (например, по ГОСТ 17310). Допускается применять расчетный метод по ГОСТ 31369 для определения плотности при стандартных условиях на основе компонентного состава в случае соответствия перечня компонентов газа сепарации перечню компонентов, приведенных в ГОСТ 31369—2008, таблица 1.

В случае возникновения разногласий по измеренному или рассчитанному значению плотности ГС при стандартных условиях арбитражным является метод, изложенный в ГОСТ 17310.

6.4 Массу НГК, полученного за расчетный период, определяют с использованием прямых методов динамических измерений (с использованием кориолисовых массомеров) или прямых статических измерений гравиметрическим методом (с применением весов, например по ГОСТ Р 53228).

Допускается определять массу НГК косвенными методами измерений или расчетным способом согласно 7.2 по результатам измерений объема и плотности НГК.

При измерениях массы НГК косвенными методами статических или динамических измерений применяют стандартизованные или разработанные в установленном порядке методики (методы) измерений.

Общие требования к методикам (методам) измерений массы НГК приведены в ГОСТ Р 8.785.

- 6.4.1 При применении расчетного способа определения массы НГК его объем, полученный за расчетный период, измеряют методом динамических измерений.
- 6.4.2 Плотность НГК при термобарических условиях измерений объема определяют с использованием потоковых или лабораторных плотномеров.

Примечания

 Допускается определять плотность НГК при термобарических условиях измерений объема в соответствии с методикой, изложенной в приложении A, если термобарические условия измерений объема НГК соответствуют термобарическим условиям отбора проб НГК.

 Допускается определять плотность НГК при термобарических условиях измерений объема другими, в том числе расчетными, методами при наличии установленных метрологических характеристик и соответствующей аттестации, проведенной в установленном порядке, реализованными в специализированных программных продуктах.

7 Расчет массы газа сепарации, нестабильного газового конденсата, газоконденсатной смеси

7.1 Массу газа сепарации т_{ГС}, кг, полученного за расчетный период, вычисляют по формуле

$$m_{\Gamma C} = V_{\Gamma C(CT)} \rho_{\Gamma C}$$
, (1)

где $V_{\Gamma C(CT)}$ — объем газа сепарации при стандартных условиях [температура — 293,15 K (20,0 °C), давление — 101,325 кПа] по 6.2, м³;

— плотность газа сепарации при стандартных условиях [температура — 293,15 К (20,0 °C),
давление — 101,325 кПа] по 6.3, кг/м³.

Примечание — Применение ГОСТ 31369 для расчета плотности газа сепарации при стандартных условиях допускается в случае соответствия перечня компонентов газа сепарации перечню компонентов, приведенных в ГОСТ 31369—2008, таблица 1.

7.2 Массу нестабильного газового конденсата $m_{\rm HFK}$, кг, полученного за расчетный период, вычисляют по формуле

$$m_{H\Gamma K} = V_{H\Gamma K} \rho_{H\Gamma K}$$
, (2)

где V_{НГК} — объем нестабильного газового конденсата при термобарических условиях измерений, м³;
 плотность нестабильного газового конденсата при термобарических условиях измерений объема по 6.4.2, кг/м³.

7.3 Массу газоконденсатной смеси $m_{\Gamma KC}$, кг, полученной за расчетный период, вычисляют по формуле

$$m_{\Gamma KC} = m_{\Gamma C} + m_{H\Gamma K}. \qquad (3)$$

8 Расчет компонентно-фракционного состава газоконденсатной смеси в единицах массовой доли

8.1 Массу каждого *i*-го компонента, фракции, входящих в состав газа сепарации $m_i^{\Gamma C}$, кг, вычисляют по формуле

$$m_i^{\Gamma C} = \frac{w_i^{\Gamma C}}{100} m_{\Gamma C},$$
 (4)

где w; C — массовая доля i-го компонента, фракции газа сепарации, %;

100 — коэффициент для перевода долей в проценты;

тел. — масса газа сепарации, кг.

8.2 Массу каждого \dot{r} го компонента, фракции, входящих в состав нестабильного газового конденсата m_{τ}^{HFK} , кг, вычисляют по формуле

$$m_i^{H\Gamma K} = \frac{w_i^{H\Gamma K}}{100} m_{H\Gamma K}, \qquad (5)$$

где wiff — массовая доля Fro компонента, фракции нестабильного газового конденсата, %;

100 — коэффициент для перевода долей в проценты;

типи — масса нестабильного газового конденсата, кг.

8.3 Массу каждого i-го компонента, фракции в газоконденсатной смеси $m_i^{\Gamma KC}$, кг, вычисляют по формуле

 $m_{i}^{\Gamma KC} = m_{i}^{\Gamma C} + m_{i}^{H\Gamma K}$ (6)

где $m_i^{\Gamma C}$ — масса каждого i-го компонента, фракции газа сепарации, кг;

тінгк — масса каждого і-го компонента, фракции нестабильного газового конденсата, кг.

8.4 Массовую долю йго компонента и фракции в газоконденсатной смеси w; КС, , , вычисляют по формуле

$$w_i^{\text{FKC}} = \frac{m_i^{\text{FKC}}}{m_{\text{FKC}}} 100, \qquad (7)$$

где m; КС — масса каждого это компонента, фракции в газоконденсатной смеси, кг;

т_{ГКС} — масса газоконденсатной смеси, кг;

100 — коэффициент для перевода долей в проценты.

8.5 Пример расчета компонентно-фракционного состава газоконденсатной смеси в единицах массовой доли представлен в приложении Б.

9 Расчет компонентно-фракционного состава газоконденсатной смеси в единицах молярной доли

9.1 Количество газа сепарации $n^{\Gamma C}$, кмоль, полученного за расчетный период, вычисляют по формуле

$$n_{\Gamma C} = \frac{m_{\Gamma C}}{M_{\Gamma C}},$$
 (8)

где $m_{\Gamma C}$ — масса газа сепарации, кг, $M_{\Gamma C}$ — молярная масса газа сепарации, г/моль (кг/кмоль), вычисляемая по формуле

$$M_{\Gamma C} = \sum_{i=0}^{K_{\Gamma C}^{\Gamma C}} M_i, \qquad (9)$$

где x_i^{FC} — молярная доля і-го компонента или фракции газа сепарации, %; 100 — коэффициент для перевода долей в проценты;

 М; — молярная масса і-го компонента или фракции газа сепарации, определяемая в соответствии с 6.1, г/моль (кг/кмоль).

 9.2 Количество нестабильного газового конденсата n_{нгк}, кмоль, полученного за расчетный период, вычисляют по формуле

$$n_{\rm HFK} = \frac{m_{\rm HFK}}{M_{\rm HFK}}, \qquad (10)$$

где $m_{\rm HFK}$ — масса нестабильного газового конденсата, кг; $M_{\rm HFK}$ — молярная масса нестабильного газового конденсата, г/моль (кг/кмоль), вычисляемая по

$$M_{H\Gamma K} = \sum \frac{x_i^{H\Gamma K}}{100} M_{i\tau}$$
(11)

где x, HFK — молярная доля i-го компонента или фракции нестабильного газового конденсата, %;

100 — коэффициент для перевода долей в проценты;

 М. — молярная масса і-го компонента или фракции нестабильного газового конденсата, определяемая в соответствии с 6.1, г/моль (кг/кмоль).

9.3 Количество каждого \dot{r} го компонента, фракции, входящих в состав газа сепарации $n_i^{\Gamma C}$, кмоль, вычисляют по формуле

$$n_i^{\Gamma C} = \frac{x_i^{\Gamma C}}{100} n_{\Gamma C}, \qquad (12)$$

где x_i^{ГС} — молярная доля *i*-го компонента, фракции газа сепарации, %;

100 — коэффициент для перевода долей в проценты;

п_{гс} — количество газа сепарации, кмоль.

 9.4 Количество каждого і-го компонента и фракции, входящих в состав нестабильного газового конденсата п, кмоль, вычисляют по формуле

$$n_i^{\text{HFK}} = \frac{x_i^{\text{HFK}}}{100} n_{\text{HFK}}$$
, (13)

где x_i^{HFK} — молярная доля i-го компонента, фракции нестабильного газового конденсата, %; 100 — коэффициент для перевода долей в проценты;

п_{нгк} — количество нестабильного газового конденсата, кмоль.

9.5 Количество каждого i-го компонента, фракции в газоконденсатной смеси n_i^{FKC} , кмоль, вычисляют по формуле

$$n_i^{\Gamma KC} = n_i^{\Gamma C} + n_i^{H \Gamma K}$$
, (14)

где n_i^{FC} — количество каждого i-го компонента, фракции в газе сепарации, кмоль;

 n_i^{HTK} — количество каждого i-го компонента, фракции в нестабильном газовом конденсате, кмоль.

9.6 Количество газоконденсатной смеси $n^{\Gamma KC}$, кмоль, вычисляют по формуле

$$n^{\Gamma KC} = n^{\Gamma C} + n^{H\Gamma K}$$
, (15)

где n^{гс} — количество газа сепарации, кмоль:

п^{НГК} — количество нестабильного газового конденсата, кмоль.

 9.7 Молярную долю і-го компонента, фракции в газоконденсатной смеси хГКС, %, вычисляют по формуле

$$x_i^{\text{FKC}} = \frac{n_i^{\text{FKC}}}{n_i^{\text{FKC}}} 100,$$
 (16)

где n_i^{FKC} — количество каждого i-го компонента, фракции в газоконденсатной смеси, кмоль;

пГКС — количество газоконденсатной смеси, кмоль;

100 — коэффициент для перевода долей в проценты.

 9.8 Пример расчета компонентно-фракционного состава газоконденсатной смеси в единицах молярной доли представлен в приложении Б.

10 Порядок оценивания неопределенности расчета

- 10.1 В качестве показателей точности определения (расчета) массовой и молярной долей компонентов и фракций ГКС в настоящем стандарте применяют расширенную неопределенность измерений (при коэффициенте охвата k = 2).
- 10.2 Рекомендации по оцениванию неопределенности массовой и молярной долей компонентов и фракций ГКС, изложенные в настоящем разделе, могут быть использованы аналитическими лабораториями в качестве примера оценки неопределенности измерений при использовании конкретных средств измерений расхода ГС и НГК и могут применяться при разработке и аттестации индивидуальных методик определения компонентно-фракционного состава ГКС.
- 10.3 При оценивании расширенной (при коэффициенте охвата k = 2) неопределенности определения массовой и молярной долей компонентов и фракций ГКС применяют правила и методы оценки согласно ГОСТ Р 54500.3 и руководству [1].
- 10.4 Исходными данными для оценивания суммарных неопределенностей величин, определяемых (рассчитываемых) согласно разделам 8 и 9, являются неопределенности исходных (измеряемых или определяемых) величин, перечисленных в разделе 6.
- 10.5 Перечень составляющих неопределенности измерений исходных величин для оценивания суммарной стандартной неопределенности массовой или молярной доли компонентов и фракций ГКС, а также указания по их оцениванию приведены в таблице 1.

FOCT P 57851.4-2017

Таблица 1 — Перечень неопределенностей, составляющих суммарную стандартную неопределенность массовой и молярной долей компонентов и фракций ГКС, и указания по их оцениванию

Наименование неопределенности	в суммарной ности доли і	гь оценивания неопределен- компонентов СС для доли ¹⁾	Номер формулы для расчета стандартноя неопределенности	Дохумент для оценки неопределенности ²⁾	
	массовой	молярной	(no 10.9)		
Стандартная неопределенность молярной доли компонентов и фракций ГС	-	+	Формула (17) ⁵⁾	ГОСТ Р 57851.1 (таблица 2)	
Стандартная неопределенность массовой доли компонентов и фракций ГС	+	27	Формула (17) ⁵⁾	См. 10.8, ГОСТ Р 57851.1 (таблица 2)	
Стандартная неопределенность молярной доли компонентов и фракций НГК	-	+	Формула (17) ⁵⁾	ГОСТ Р 57851.2 (таблицы 3 и 4) или ГОСТ Р 57851.3 (таблица 2) ³⁾	
Стандартная неопределенность массовой доли компонентов и фракций НГК	+	-	Формула (17) ⁵⁾	ГОСТ Р 57851.2 (таблица 5) и 10.8 или ГОСТ Р 57851.3 (таблица 3) ³⁾	
Стандартная неопределенность объема ГС, приведенного к стандартным условиям	+	+	Формула (17)	ГОСТ Р 8.740 или ГОСТ 8.611—2013 (раздел 13), или 10.6 ³⁾	
Стандартная неопределенность плотности ГС при стандартных условиях, определяемой: - пикнометрическим методом по ГОСТ 17310; - расчетным методом по ГОСТ 31369; - по 10.6	+	,	 - Формула (20) - Формула (17) - Формулы (17)—(20)⁴⁾ 	ГОСТ 17310—2002 (разделы 8 и 9) совместно с ГОСТ Р ИСО 21748 или ГОСТ 31369—2008 (пункт N.2, приложение N) или по 10.6 3)	
Стандартная неопределенность массы НГК	+	+	Формула (18)	ГОСТ Р 8.785—2012 (подраздел 5.8)	
Стандартная неопределенность объема НГК	+	+	Формулы (17)—(20) ⁴⁾	См. 10.6	
Стандартная неопределенность плотности НГК, определяемой косвенным методом измерений	+	+	Формулы (17)—(20) ⁴⁾	См. 10.6	
Стандартная неопределенность плотности НГК, определяемой прямым методом (с использо- ванием средства измерений плотности)	+	+	Формулы (17)—(20) ⁴⁾	См. 10.7	

^{1) «+» —} неопределенность в общем случае оценивают, «-» — неопределенность не оценивают.

²⁾ Если в документе, применяемом для оценки неопределенности, указаны характеристики погрешности, то при их совместном использовании с неопределенностью учитывают рекомендации [2].

³⁾ В зависимости от применяемой методики (метода) измерений или средств измерений.

⁴⁾ Формулу выбирают в зависимости от характеристик неопределенности или погрешности измерений, приведенных в методике измерений.

⁶⁾ Если результат измерений молярной (массовой) доли компонента или фракции в ГС или НГК находятся ниже нижней границы диапазона измерений, то для проведения последующих расчетов значение стандартной неопределенности этого результата измерений допускается принимать равным 1/4 измеренного значения молярной (массовой) доли данного компонента (фракции).

- 10.6 При использовании косвенных методов (методик) измерений исходных величин стандартную неопределенность измерений этих величин устанавливают на основании показателей точности, приведенных в документах, регламентирующих применяемые методики (методы) измерений.
- 10.7 При использовании прямых методов измерений характеристики погрешности измерений исходной величины принимают в соответствии с метрологическими характеристиками применяемых СИ, установленными при утверждении типа СИ или указанными в эксплуатационной документации (руководстве по эксплуатации, свидетельствах о поверке или протоколах калибровки применяемого СИ).
- 10.8 При расчете состава ГС и НГК, выражаемого в единицах массовой доли, по измеренному составу, выраженному в единицах молярной доли, относительную стандартную неопределенность определения массовой доли компонентов и фракций ГС и НГК допускается принимать равной относительной стандартной неопределенности измерений исходного значения молярной доли компонентов и фракций в ГС и НГК.

10.9 Формулы для расчета стандартной неопределенности измерений

В зависимости от метода измерений, а также сведений о характеристиках неопределенности или погрешности измерений, приведенных в документе (см. таблицу 1), применяемом для оценки неопределенности (далее — документ), стандартную неопределенность u(y) исходной величины y определяют по формулам:

в случае если в документе указана расширенная неопределенность измерения исходной величины (при коэффициенте охвата k = 2),

u(y) = 0.5 U(y); (17)

в случае если в документе указана граница суммарной погрешности θ_{0,95}(у) измерения исходной величины (при доверительной вероятности P = 0,95), вычисляемая по правилу сложения границ неисключенной систематической погрешности (с применением коэффициента 1,1),

$$u(y) = \frac{\theta_{0,95}(y)}{11\sqrt{3}};$$
 (18)

в случае если в документе указан предел погрешности Δ₁(у) измерения исходной величины (доверительная вероятность P = 1),

$$u(y) = \frac{\Delta_1(y)}{\sqrt{3}};$$
 (19)

- в случае если в документе указана оценка предела воспроизводимости $R_{\rm B}(y)$ и показателя правильности $\Delta_{\rm n}(y)$ измеряемой величины,

$$u(y) = \left\{ \frac{R_{\rm B}(y)^2}{8} + \frac{\Delta_{\rm B}(y)^2}{3} \right\}^{0.5}.$$
 (20)

Примечания

- 1 Формулы (17)—(20) применяют при отсутствии в документе, используемом для оценки стандартной неопределенности исходной величины, других (более подробных) сведений о характеристиках исходной неопределенности или погрешности (например, таких как число степеней свободы, тип составляющих исходной неопределенности или погрешности измерений).
- 2 Формулы (17)—(20) справедливы как для оценки абсолютной стандартной неопределенности, так и для относительной стандартной неопределенности измерений u'(y), если только в качестве исходных значений для ее расчета выбраны когерентные (соответствующие абсолютные или относительные) характеристики неопределенности или погрешности измерений.
- 3 Пересчет относительных значений неопределенности или погрешности в абсолютные значения или наоборот (абсолютных значений в относительные) выполняют соответственно по формулам:

$$x(y) = 0.01x^{\circ}(y)y;$$
 (21)

$$x^{o}(y) = \frac{x(y)}{y} 100,$$
 (22)

- где x(y) характеристика абсолютной неопределенности или погрешности результата измерений величины y, выраженная в единицах этой величины y;
 - $x^{o}(y)$ характеристика относительной неопределенности или погрешности результата измерений величины y, выраженная в процентах относительно величины y.

10.10 Суммарную стандартную неопределенность (абсолютную или относительную) u_V^C результата вычисления величины Y по известной функциональной зависимости Y = $f(y_1, y_2, ..., y_N)$ от N независимых исходных величин y_i , обусловленную неопределенностью (абсолютной или относительной) измерений этих величин u_{v_i} , в общем случае оценивают по формуле

$$u_{\gamma}^{C} = \sqrt{\sum_{i}^{N} v_{i}^{2} u_{y_{i}}^{2}},$$
 (23)

где v_i — коэффициенты влияния исходной j-й величины на результат вычисления Y.

10.11 Коэффициенты влияния вычисляют по следующим формулам:

 если оцениваемая неопределенность и неопределенности исходных величин, подставляемых в формулу (23), являются абсолютными,

$$V_i = f'_{y_i}$$
; (24)

 если оцениваемая неопределенность и неопределенности исходных величин являются относительными,

$$v_i = f_{\gamma_i}' \frac{Y_i}{V}$$
, (25)

где f'_{y_i} — частная производная функции f по y_i

10.12 Допускается вычислять значение частной производной f_{v}' по формуле

$$f'_{y_i} = \frac{f(y_i + \Delta y_i) - f(y_i)}{\Delta y_i}. \tag{26}$$

При этом значение приращения аргумента Δy_i выбирают, как правило, не более абсолютной неопределенности $u(y_i)$.

10.13 Абсолютную расширенную (при k=2) неопределенность массовой доли $U(w_i^{\Gamma KC})$, %, компонентов и фракций ГКС оценивают по формуле

$$U(w_{i}^{\text{FKC}}) = \frac{2}{m_{\text{FKC}}} \left\{ \frac{(w_{i}^{\text{FC}} - w_{i}^{\text{FKC}})^{2} u(m_{\text{FC}})^{2} + (w_{i}^{\text{HFK}} - w_{i}^{\text{FKC}})^{2} u(m_{\text{HFK}})^{2} + m_{\text{FC}}^{2} u(w_{i}^{\text{FC}})^{2} + m_{\text{HFK}}^{2} u(w_{i}^{\text{HFK}})^{2}}{m_{\text{FC}}^{2} u(w_{i}^{\text{FC}})^{2} + m_{\text{HFK}}^{2} u(w_{i}^{\text{HFK}})^{2}} \right\}^{0.5}.$$
(27)

10.14 Абсолютную расширенную (при k=2) неопределенность молярной доли $U(x_i^{\text{FKC}})$, %, компонентов и фракций ГКС оценивают по формуле

$$U(x_{i}^{\text{FKC}}) = \frac{2}{\sum_{m}} \left\{ M_{\text{HFK}}^{2} (x_{i}^{\text{FKC}} - x_{i}^{\text{FC}})^{2} u(m_{\text{FC}})^{2} + M_{\text{FC}}^{2} (x_{i}^{\text{FKC}} - x_{i}^{\text{HFK}})^{2} u(m_{\text{HFK}})^{2} + M_{\text{FC}}^{2} (x_{i}^{\text{FKC}} - x_{i}^{\text{FC}})^{2} u(m_{\text{HFK}})^{2} + M_{\text{FC}}^{2} (x_{i}^{\text{FKC}} - x_{i}^{\text{FC}})^{2} u(m_{\text{HFK}})^{2} + M_{\text{HFK}}^{2} u(x_{i}^{\text{FC}})^{2} + M_{\text{FC}}^{2} u(x_{i}^{\text{FC}})^{2} + M_{\text{FC}}^{2} u(x_{i}^{\text{HFK}})^{2} \right\},$$
(28)

где $\sum_{m} = M_{\Gamma C} m_{H\Gamma K} + M_{H\Gamma K} m_{\Gamma C}$.

10.15 Абсолютные стандартные неопределенности вычисления молярной массы ГС и молярной массы НГК, $u(M_{\Gamma C})$ и $u(M_{H\Gamma K})$, %, обусловленные неопределенностью измерений молярной доли компонентов и фракций ГС и НГК, определяют соответственно по формулам

$$u(M_{\Gamma C}) = 0.01 \left\{ \sum_{i} (M_{i}^{\Gamma C})^{2} u(x_{i}^{\Gamma C})^{2} \right\}^{0.5};$$
 (29)

$$u(M_{HFK}) = 0.01 \left\{ \sum_{j} (M_{j}^{HFK})^{2} u(x_{j}^{HFK})^{2} \right\}^{0.5}$$
 (30)

10.16 Относительную расширенную (при коэффициенте охвата k = 2) неопределенность измерений массовой доли $U(w_j^{\text{KC}})$, %, компонентов и фракций ГКС вычисляют по формуле

$$U(w_i^{\text{FKC}}) = 100 U(w_i^{\text{FKC}}) / w_i. \tag{31}$$

10.17 Относительную расширенную (при коэффициенте охвата k = 2) неопределенность измерений молярной доли $U(x_i^{\text{FKC}})$, %, компонентов и фракций ГКС вычисляют по формуле

$$U(x_i^{\text{FKC}}) = 100 U(x_i^{\text{FKC}}) / x_i. \tag{32}$$

10.18 Пример оценки неопределенности молярной и массовой долей компонентов и фракций газоконденсатной смеси представлен в приложении В.

11 Оформление результатов

11.1 Результат расчета молярной доли компонентов и фракций в газоконденсатной смеси записывают в виде

$$x_i \pm U(x_i) \%, \tag{33}$$

- где x_i молярная доля i-го компонента или фракции в газоконденсатной смеси, %;
 - $U(x_i)$ абсолютная расширенная неопределенность значения молярной доли *i*-го компонента или фракции в газоконденсатной смеси при коэффициенте охвата k=2, рассчитанная по разделу 10.
- 11.2 Результат расчета массовой доли компонентов и фракций в газоконденсатной смеси записывают в виде

$$W_i \pm U(W_i)\%,$$
 (34)

- где w; массовая доля i-го компонента или фракции в газоконденсатной смеси, %;
- $U(w_i)$ абсолютная расширенная неопределенность значения массовой доли *i*-го компонента или фракции при коэффициенте охвата k = 2, рассчитанная согласно разделу 10.
- 11.3 Результат определения молярной или массовой доли компонентов и фракций газоконденсатной смеси округляют в соответствии с числовым разрядом значащей цифры расширенной неопределенности.

Округление проводят следующим образом.

Сначала проводят округление вычисленного значения абсолютной расширенной неопределенности $U(x_i)$ или $U(w_i)$, при этом сохраняют:

- две цифры, если первая значащая цифра равна 1 или 2;
- одну цифру, если первая значащая цифра равна 3 и более.

Затем проводят округление результата. Результат определения должен оканчиваться цифрой того же разряда, что и значение его абсолютной неопределенности $U(x_i)$ или $U(w_i)$.

- 11.4 Полученные результаты оформляют по форме, принятой в организации.
- 11.5 При выполнении расчетов для научно-исследовательских целей, планирования и проектирования результаты расчетов компонентно-фракционного состава газоконденсатной смеси используют без округления или округляют в соответствии с требованиями используемых расчетных алгоритмов.

Приложение А (обязательное)

Методика определения плотности нестабильного газового конденсата при термобарических условиях отбора

А.1 Метод измерения

- А.1.1 Сущность метода определения плотности НГК при термобарических условиях отбора (далее плотности) заключается в определении массы пробы НГК, отобранной в пробоотборник при термобарических условиях отбора из конденсатопровода, и последующем расчете плотности НГК с учетом известного внутреннего объема (водного числа) данного пробоотборника.
- А.1.2 Метод определения плотности НГК, изложенный в настоящем стандарте, распространяется на НГК с плотностью при рабочих условиях в диапазоне от 400,0 до 900,0 кг/м³, температурой от минус 10,0 до плюс 50,0 °C, абсолютным давлением от 0,1 до 10,0 МПа.

А.2 Средства измерения (СИ), оборудование и реактивы

Для выполнения измерений по определению плотности НГК используют следующие СИ, оборудование и реактивы:

- весы по ГОСТ Р 53228 с ценой деления не более 0,01 г, с наименьшим пределом взвешивания не более
 1,00 г и пределом абсолютной допускаемой погрешности не более ± 0,05 г;
 - гири по ГОСТ OIMLR 111-1;
- СИ температуры, обеспечивающие измерение в диапазоне от минус 10,0 до плюс 50,0 °C, с допускаемой погрешностью не более ± 0,3 °C.

Пример — Термометры ртутные стеклянные по ГОСТ 28498 I класса;

СИ давления, обеспечивающие измерение до 10,0 МПа, класса точности не ниже 0,25.

Пример — Манометры образцовые по [3];

- мерный цилиндр по ГОСТ 1770 вместимостью 100 (50) см³ с ценой деления 1,0 (0,5) см³;
- мерный цилиндр по ГОСТ 1770 вместимостью 1 дм³ с ценой деления 10 см³:
- пробоотборники, изготовленные из стали 12X18H10T по ГОСТ 5632 или аналогичной по свойствам и рассчитанные на рабочее давление в конденсатопроводе с учетом возможного нагрева при транспортировании и хранении, которое указывается на корпусе пробоотборника, но не менее 15,0 МПа;
 - склянку с тубусом (бутыль Вульфа) по ГОСТ 25336;
- петролейный эфир 40—70 или другую смесь жидких углеводородов (или индивидуальный углеводород), выкипающую в пределах от 40 до 70 °C;
 - спирт этиловый технический по ГОСТ Р 55878 или ГОСТ 5962;
 - ацетон по ГОСТ 2603;
 - воду дистиплированную по ГОСТ 6709;
- я-тексан квалификации с содержанием основного вещества не менее 99,8 % масс., например «ос. ч.», «для ВЭЖХ», «эталонный».

Примечание — Допускается применять другие средства измерения, оборудование и реактивы с характеристиками, не уступающими требованиям настоящего подраздела.

А.3 Требования безопасности, охраны окружающей среды

А.3.1 При проведении работ с нестабильным газовым конденсатом должны выполняться требования безопасности и охраны окружающей среды, изложенные в ГОСТ Р 57851.2.

А.4 Требования к квалификации операторов

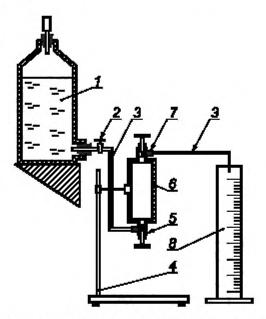
А.4.1 Измерения и обработку результатов выполняют специалисты с высшим техническим или среднеспециальным образованием, опытом работы с нестабильным газовым конденсатом, находящимся в баллонах под давлением, прошедшие инструктаж и проверку знаний по охране труда, инструктаж по безопасности и проверку знаний производственных инструкций по профессии, владеющих техникой лабораторных работ, включенных в настоящий стандарт, и процедурами обработки результатов, изучившие руководство по эксплуатации применяемого оборудования и настоящий стандарт.

А.5 Требования к условиям измерений

А.5.1 При выполнении измерений соблюдают следующие условия:

 температура окружающей среды, атмосферное давление, механические воздействия, внешние электрические и магнитные поля, влияющие на работу применяемых средств измерений, не должны превышать допустимых пределов, указанных в руководстве по эксплуатации средств измерений;

- содержание агрессивных газов и паров, уровни электромагнитного излучения не должны превышать санитарных норм.
 - А.5.2 Средства измерений должны быть внесены в Федеральный реестр средств измерений.
- А.5.3 Диапазоны измерений применяемых средств измерений должны соответствовать диапазонам изменений контролируемых параметров.
- А.5.4 Средства измерений применяют в соответствии с требованиями руководства по эксплуатации и безопасности их применения.
- А.5.5 Средства измерений должны быть поверены и иметь действующие свидетельства о поверке и/или клейма.
- А.5.6 Необходимо применять реактивы с действующим сроком годности, с соответствующей сопроводительной документацией (паспортами).


А.6 Подготовка к проведению измерений

А.6.1 Определение водного числа пробоотборника

Пробоотборник последовательно промывают петролейным эфиром и ацетоном, высушивают продувкой чистым (не содержащим капель и паров масла, механических примесей) воздухом. Для очистки от следов рассола пробоотборник последовательно промывают дистиллированной водой и ацетоном и высушивают продувкой чистым воздухом. Высушенный пробоотборник взвешивают.

Примечание — Для всех операций взвешивания пробоотборника, как пустого, так и заполненного, расхождение между двумя последовательными взвешиваниями не должно превышать 0,05 г, в противном случае продолжают высушивание пробоотборника или выявляют другие причины расхождения.

Затем пробоотборник устанавливают на штативе строго вертикально и через нижний вентиль заполняют свежепрокипяченной и охлажденной до температуры окружающей среды дистиллированной водой, используя бутыли Вульфа, как показано на рисунке А.1.

1 — склянка с тубусом (бутыль Вульфа); 2 — кран; 3 — соединительные шланги; 4 — штатив; 5, 7 — вентили пробоотборника; 6 — пробоотборник; 8 — мерный цилиндр

Рисунок A.1 — Схема установки для определения водного числа пробоотборника

Для полного смачивания стенок пробоотборника и удаления пузырьков воздуха через него пропускают 3—5-кратный объем дистиплированной воды. Объем пропущенной воды определяют мерным цилиндром. После этого закрывают сначала нижний, затем верхний вентили. Протирают внешнюю поверхность пробоотборника льняной тканью, смоченной спиртом, высушивают продувкой чистым воздухом и взвешивают. Записывают комнат-

ГОСТ P 57851.4-2017

ную температуру, округляя ее до значения, кратного 0,2 °C. Водное число пробоотборника V, дм3, вычисляют по формуле

$$V = 1000 \frac{m_{\text{BB}} - m_{\text{B+B}}}{\rho_{\text{B}} - 1,20445K},$$
(A1)

где 1000 — коэффициент для перевода м³ в дм³;

тпв — масса пробоотборника с дистиплированной водой, кт;

т_{п+в} — масса пробоотборника с воздухом, кг;

рв — плотность дистиллированной воды в зависимости от комнатной температуры, определяемая по таблице А.1, кг/м³;

1,20445 — плотность сухого воздуха стандартного состава при стандартных условиях, кт/м³;

К — коэффициент для приведения плотности сухого воздуха при стандартных условиях к фактическим условиям в лаборатории (t, P6), вычисляемый по формуле

$$K = \frac{293,15P_6}{(273,15+t)\cdot 101,325},$$
(A.2)

где 293,15 — стандартная температура, К;

Р₆ — барометрическое давление, кПа;
 273,15 — поправка для перевода температуры из градусов по шкале Цельсия в градусы по шкале Кельви-

температура воздуха, измеренная возле весов, при взвешивании пустого пробоотборника, "С;

101,325 — стандартное давление, кПа.

Таблица А.1 — Значения плотности дистиплированной воды при различных температурах, рассчитанные по данным таблиц ГСССД [4].

T 10		Плотност	гь дистиллированно	й воды, кг/м ³	
Температура, "С	0,0	0,2	0,4	0,6	8,0
15	999,10	999,07	999,04	999,01	998,98
16	998,94	998,91	998,88	998,84	998,81
17	998,78	998,74	998,70	998,67	998,63
18	998,60	998,56	998,52	998,48	998,44
19	998,41	998,37	998,33	998,29	998,25
20	998,20	998,16	998,12	998,08	998,04
21	997,99	997,95	997,91	997,86	997,82
22	997,77	997,73	997,68	997,63	997,59
23	997,54	997,49	997,44	997,39	997,35
24	997,30	997,25	997,20	997.15	997,10
25	997,05	996,99	996,94	996,89	996,84
26	996,78	996,73	996,68	996,62	996,57
27	996,51	996,46	996,40	996,35	996,29
28	996,23	996,18	996,12	996,06	996,00
29	995,95	995,89	995,83	995,77	995,71
30	995,65	995,59	995,53	995,46	995,40

За результат определения водного числа пробоотборника принимают среднеарифметическое значение результатов двух измерений, если выполняется условие приемлемости

$$\frac{2|V_1 - V_2|100}{(V_1 + V_2)} \le 0.3 \%, \tag{A.3}$$

где V_1, V_2 — результаты двух измерений водного числа пробоотборника, дм 3 , 100 — коэффициент для перевода долей в проценты.

Если условие по A.3 не выполняется, то выясняют причины неудовлетворительного результата, устраняют их и повторяют определение.

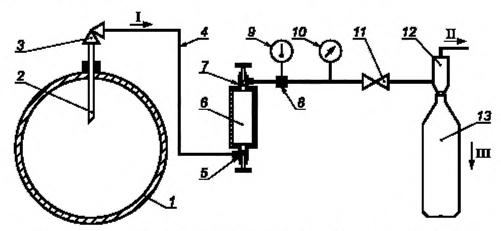
Результат определения водного числа пробоотборника регистрируют в кубических дециметрах с разрядностью до пятого десятичного знака.

Водное число пробоотборника определяют после его изготовления, ремонта, изменения конструкции или замены пробоотборника или оборудования и в период эксплуатации не реже одного раза в квартал.

А.7 Отбор проб

А.7.1 Отбор проб нестабильного газового конденсата проводят по ГОСТ Р 55609 с учетом требований настоящего раздела.

А.7.2 Отбор проб нестабильного газового конденсата для определения плотности НГК при термобарических условиях отбора проводят в пробоотборники, соответствующие требованиям А.2.


А.7.3 Перед отбором пробы НГК следует убедиться, что в точке отбора выполняется условие однофазности потока НГК, выражаемое соотношением

$$P \ge 0.5 + P_{_{\rm H}} + \Delta P_{_{\rm H}}, \tag{A.4}$$

где P — абсолютное давление НГК в рассматриваемой точке потока, МПа;

 $P_{\rm H} = -$ давление насыщения НГК на данном узле учета, полученное в результате измерения или расчета, МПа; $\Delta P_{\rm u} = -$ абсолютная погрещность определения величины $P_{\rm u}$, МПа.

А.7.4 Собирают систему пробоотбора по схеме, приведенной на рисунке А.2. Расстояние между выходным штуцером пробоотборника и карманом для термометра 8 должно быть по возможности минимальным. Необходимо обеспечить максимальную возможную близость температуры НГК в пробоотборнике к его температуре в конденсатопроводе. При необходимости пробоотборные линии и пробоотборник термоизолируют.

1 — конденсатопровод, 2 — пробоотборное устройство; 3 — запорный вентиль конденсатопровода;
 4 — пробоотборная линия; 5, 7 — вентили пробоотборника; 6 — пробоотборник; 8 — карман для термометра;
 9 — термометр, 10 — манометр, 11 — вентиль; 12 — селаратор; 13 — емкость для сбора жидкости.
 Материальные потоки: I — НГК, II — газ дегазации НГК на сброс, III — жидкий остаток дегазации НГК

Рисунок А.2 — Схема пробоотбора НГК

А.7.5 Перед началом отбора проб вентили 3, 5, 7 и 11 должны быть закрыты. Последовательно открывают вентили 3, 5, 7. После выравнивания давления в системе пробоотбора с давлением в конденсатопроводе закрывают вентиль 3. Пробоотборную систему проверяют на герметичность обмыливанием или лутем измерения значения относительного падения давления, которая за 10 мин. не должна превышать 1 % от начального давления. При наличии утечек стравливают давление из системы вентилем 11, находят и устраняют течи и повторяют последовательность действий по А.7.4—А.7.5.

А.7.6 Открывают вентиль 3, дожидаются прекращения изменения давления в системе, после чего приоткрывают вентиль 11, при этом давление в пробоотборной системе не должно быть ниже давления в конденсатопроводе более чем на 0,05 МПа, в противном случае понижают расход конденсата через систему, закручивая вентиль 11. Через пробоотборник пропускают 3—5-кратный объем НГК, для чего измеряют объем накапливающейся в емкости 13 жидкости. Если после пропускания 3—5 объемов НГК через пробоотборник температура в системе пробоотбора отличается от температуры в трубопроводе более чем на 0,5 °C, то пропускают НГК дальше, до необходимого

снижения разницы температур. После окончания пропускания НГК через систему перекрывают вентиль 11, через мин. последовательно закрывают вентили 7, 5 и 3, отсоединяют пробоотборник.

А.7.7 Записывают температуру и давление в системе пробоотбора кратностью 0,2 °C и 0,025 МПа соответственно.

Примечание — При транспортировании и последующем хранении пробоотборника с отобранной пробой НГК следует избегать нагрева пробоотборника до температуры, превышающей температуру НГК в конденсатопроводе при отборе проб более чем на 10,0 °C во избежание утечек НГК через уплотнения пробоотборника или его разрыва от давления расширяющейся жидкости.

А.8 Проведение измерений

А.8.1 Плотность НГК $\rho_{\rm ny}$, кг/м³, вычисляют по формуле

$$p_{py} = 1000 \frac{m_{np}}{V},$$
 (A.5)

где 1000 — коэффициент для перевода дм³ в м³;

А.8.1.1 Массу пробы НГК т_{пр}, кг, вычисляют по формуле

$$m_{np} = m - m_{no}, \qquad (A.6)$$

где m — масса пробоотборника с пробой НГК, кг,

масса пустого пробоотборника без воздуха, кг.

A.8.1.2 Maccy пустого пробоотборника без воздуха m_{no}, кг, вычисляют по формуле

$$m_{no} = m_{n+n} - 0.00120445VK,$$
 (A.7)

где $m_{\mathrm{n+B}}$ — масса пробоотборника с воздухом, кг; 0,00120445 — плотность сухого воздуха стандартного состава при стандартных условиях, кг/дм 3 ;

V — водное число пробоотборника по А.3, дм³;

К — коэффициент для приведения плотности сухого воздуха при стандартных условиях к фактическим условиям в лаборатории по А.3.

Примечание — Если температура $t_{
m p}$ в конденсатопроводе при отборе проботличается от температуры tв лаборатории при определении водного чися пробоотборника более чем на 10,0 °C, в формуле (17) используют приведенное к рабочей температуре I_p водное число пробоотборника V_p , дм 3 , которое вычисляют по формуле

$$V_{p} = V_{t} \left[1 - 3\alpha \cdot (t - t_{p}) \right], \tag{A.8}$$

где V₄ — водное число пробоотборника при температуре в лаборатории по А.З. дм³;

 температурный коэффициент линейного расширения материала пробоотборника для соответствующего диапазона температур, °C⁻¹. Например, для стали 12X18H10T α = 1,73 · 10⁻⁵ °C⁻¹ по данным таблиц ГСССД [5].

А.9 Обработка и оформление результатов измерений

А.9.1 За результат определения плотности НГК принимают среднеарифметическое значение результатов двух параллельных измерений, если выполняется условие приемлемости

$$\frac{2|\rho_{py1} - \rho_{py2}|}{(\rho_{out} + \rho_{out})} \le r,$$
(A9)

100 — коэффициент для перевода долей в проценты;

г — значение предела повторяемости (см. таблицу А.2), %.

А.9.2 Если условие по А.8 не выполняется, получают еще один результат в полном соответствии с методикой настоящего стандарта. За результат определения принимают среднеарифметическое значение результатов трех измерений, если выполняется условие

$$\frac{3|\rho_{py_{min}} - \rho_{py_{min}}|_{100}}{(\rho_{min} + \rho_{min} + \rho_{min})} \le CR_{0,95},$$
(A.10)

— максимальное и минимальное значения из полученных трех результатов параллельных изгде р_{румах}, р_{руми} мерений плотности НГК, кг/м3;

100 — коэффициент для перевода долей в проценты;

 $ho_{py1},
ho_{py2},
ho_{py3}$ — результаты параллельных измерений плотности НГК, кг/м 3 :

 $CR_{0.95}^{-}$ — значение критического диапазона для уровня вероятности P = 0,95 и π — результатов измерений, которое вычисляют по формуле

$$CR_{0.95} = f(n)\sigma_{r^*} \tag{A.11}$$

где f(n) — коэффициент критического диапазона для n — результатов измерений;

т. — показатель повторяемости (см. таблицу А.1), %.

Для количества измерений n = 3 коэффициент критического диапазона f(n) = 3,3.

Если условие по А.11 не выполняется, выясняют причины превышения критического диапазона, устраняют их и повторяют выполнение измерений.

А.9.3 Результат определения плотности НГК в документах, предусматривающих его использование, представляют в виде

$$\overline{\rho_{ov}} \pm 0.01 \delta \overline{\rho_{ov}}$$
, npu $P = 0.95$, (A.12)

где $\overline{
ho_{
m py}}$ — среднеарифметическое значение результатов n измерений, признанных приемлемыми по A.9.1 и

±δ — границы относительной погрешности определения плотности НГК, % (см. таблицу А.2).

Результат вычисления плотности НГК с учетом погрешности всего метода определения записывают с разрядностью до одного десятичного знака.

Все прочие промежуточные величины, используемые для расчета основных показателей, если специально не указана разрядность их записи, записываются с разрядностью до пяти значащих цифр.

А.10 Метрологические характеристики

При соблюдении всех регламентированных условий и проведении анализа в точном соответствии с данной методикой значение погрешности (и ее составляющих) результатов измерений не превышает значений, приведенных в таблице А.2.

Таблица A.2 — Метрологические характеристики методики определения плотности НГК

Диапазон измерений плотности НГК, кг/м ³	Показатель точности (границы относительной погрешности) ±8, %, при Р ≈ 0,95	Показатель повторяемости (относительное средне- квадратическое отклонение повторяемости) σ_{Γ} %	Предел повторяемости г, %, P = 0,95, n = 2
От 400,0 до 900,0 включ.	0,9	0,2	0,55

А.11 Контроль качества результатов измерений при реализации методики в лаборатории

А.11.1 Контроль качества результатов измерений в лаборатории при определении плотности НГК осуществляют по ГОСТ Р ИСО 5725-6, используя контроль стабильности среднеквадратического (стандартного) отклонения промежуточной прецизионности по ГОСТ Р ИСО 5725-6—2002 (пункт 6.2.3) и контроль погрешности. Проверку стабильности осуществляют с применёнием контрольных карт Шухарта по ГОСТ Р ИСО 7870-2.

А.11.2 Периодичность контроля стабильности результатов выполняемых измерений регламентируют в Руководстве по качеству лаборатории. Рекомендуется устанавливать контролируемый период таким образом, чтобы количество результатов контрольных измерений находилось в интервале от 20 до 30.

А.11.3 При неудовлетворительных результатах контроля, например при превышении предела действия или регулярном превышении предела предупреждения, выясняют причины этих отклонений, в том числе проводят смену используемых реактивов, проверяют качество работы исполнителя измерений.

А.12 Контроль погрешности измерений

А.12.1 Контроль погрешности измерений плотности НГК осуществляют путем определения плотности нормального гексана (далее — гексана) по A.8.

А.12.2 Пробоотборник заполняют гексаном таким же образом, как и водой при определении водного числа, затем протирают льняной тканью, смоченной спиртом, высущивают чистым воздухом и взвешивают, записывают фактическую температуру в лаборатории кратностью 0,2 °C. Значение плотности гексана ρ_{cav} , кг/м³, вычисляют по формуле

$$\rho_{rex} = 1000 \frac{m_{prex} - m_{no}}{V}$$
, (A.13)

где 1000 — коэффициент для перевода дм³ в м³;

т_{пгек} — масса пробоотборника с гексаном, кг;

 $m_{\rm no}$ — масса пустого пробоотборника без воздуха, кг; V — водное число пробоотборника по А.3, дм 3 .

FOCT P 57851.4-2017

А.12.3 За результат определения принимают среднеарифметическое значение результатов двух параллельных измерений плотности гексана, если выполняется условие приемлемости

$$\frac{2 \left| \rho_{rec}, -\rho_{rec2} \right| 100}{\left(\rho_{rec}, +\rho_{rec2} \right)} \le 0,55, \%, \tag{A.14}$$

где $\rho_{\rm rext}$, $\rho_{\rm rex2}$ — результаты параллельных измерений плотности гексана, кг/м³; 100 — коэффициент для перевода долей в проценты.

Если условие по А.14 не выполняется, то выясняют причины неудовлетворительного результата, устраняют их и повторяют определение плотности тексана.

Погрешность измерений определяют относительной разностью результата измерений плотности гексана и значения плотности гексана при данной температуре по таблице А.З.

Разность между полученным и табличным значениями плотности гексана не должна превышать ± 0.9 % табличного значения плотности гексана (см. таблицу А.3).

Контроль погрешности проводят в случае ремонта, изменения технических характеристик, конструкции, замены отдельных частей или всего оборудования, используемого для определения плотности НГК, но не реже одного раза в квартал.

Таблица А.3 — Значения плотности нормального гексана при различных температурах, рассчитанные по данным таблиц ГСССД [6]

T		Плотност	гь нормального гекс	вна, кг/м ³	
Температура, *С	0,0	0,2	0,4	0,6	8,0
15	663,92	663,74	663,55	663,37	663,19
16	663,01	662,83	662,64	662,46	662,28
17	662,10	661,92	661,73	661,55	661,37
18	661,19	661,01	660,82	660,64	660,46
19	660,28	660,09	659,91	659,73	659,55
20	659,36	659,18	659,00	658,81	658,63
21	658,45	658,27	658,08	657,90	657,72
22	657,53	657,35	657,17	656,98	656,80
23	656,62	656,43	656,25	656,07	655,88
24	655,70	655,51	655,33	655,15	654,96
25	654,78	654,60	654,41	654,23	654,04
26	653,86	653,67	653,49	653,31	653,12
27	652,94	652,75	652,57	652,38	652,20
28	652,01	651,83	651,64	651,46	651,27
29	651,09	650,90	650,72	650,53	650,35
30	650,16	649,98	649,79	649,61	649,42

Приложение Б (справочное)

Пример расчета компонентно-фракционного состава газоконденсатной смеси

Б.1 Исходные данные:

- объем газа сепарации $V_{CC(CT)}$ (при стандартных условиях), полученного в процессе сепарации газоконденсатной смеси за расчетный период времени, 9773 м 3 ;
- объем нестабильного газового конденсата V_{НГК}, полученного в процессе сепарации газоконденсатной смеси за расчетный период времени, 4,395 м³;
 - плотность газа сепарации $\, \rho_{\Gamma C} \,$ при стандартных условиях 0,698 кг/м³;
- плотность нестабильного газового конденсата $\rho_{H\Gamma K}$ при термобарических условиях измерения объема 723,5 кг/м³.
- компонентно-фракционный состав газа сепарации и нестабильного газового конденсата, ранжированных по числу атомов углерода или по температурам кипения, приведены в таблицах Б.1 и Б.2.

Таблица Б.1 — Компонентно-фракционный состав газа сепарации и нестабильного газового конденсата, ранжированный по температурам кипения фракций

			Доля компонентов и фракций, %					
Компонент, фракция	Температура кипения, °С	Молярная масса, г/моль (кг/кмоль)	Газ сепарации		Нестабильный газовы конденсат			
			молярная	массовая	молярная	массовая		
Сероводород	-59,7	34,1	0,0835	0,1697	0,4782	0,1937		
Карбонилсульфид	-50,2	60,1	0,0001	0,0002	0,0006	0,0004		
Метилмеркаптан	5,9	48,1	0,0007	0,0019	0,079221	0,0453		
Этилмеркаптан	35,1	62,1	8000,0	0,0028	0,349621	0,2583		
Диметилсульфид	37,4	62,1	0,0001	0,0002	0,03127	0,0231		
Азот	-195,6	28,0	0,4686	0,7824	0,0049	0,0016		
Диоксид углерода	-78,3	44,0	0,0500	0,1312	0,1205	0,0630		
Метан	-161,5	16,0	95,5382	91,3889	4,8471	0,9246		
Этан	-88,6	30,1	3,3660	6,0351	5,0287	1,7979		
Пропан	-42,0	44,1	0,3205	0,8426	4,1529	2,1774		
Изобутан	-11,7	58,1	0,0569	0,1971	3,0097	2,0799		
н-бутан	-0,5	58,1	0,0705	0,2445	6,2816	4,3411		
Изопентан	27,8	72,2	0,0158	0,0681	5,2471	4,5013		
н-пентан	36,1	72,2	0,0148	0,0637	7,2027	6,1789		
Фракция 45—60	52,5	79,2	0,0007	0,0034	0,7557	0,7116		
Фракция 60—70	65,0	84,6	0,0084	0,0421	15,5346	15,6212		
Фракция 70—80	75,0	89,1	0,0006	0,0034	1,8731	1,9852		
Фракция 80—90	85,0	93,9	0,0011	0,0062	5,2436	5,8521		
Фракция 90—100	95,0	98,6	0,0016	0,0096	12,2562	14,3669		
Фракция 100—110	105,0	103,6	0,0004	0,0022	4,2550	5,2409		
Фракция 110—120	115,0	108,7	0,0005	0,0029	8,6040	11,1242		
Фракция 120—130	125,0	113,9	0,0001	8000,0	3,4285	4,6426		
Фракция 130—140	135,0	119,4	0,0001	0,0006	4,1473	5,8898		

ΓΟCT P 57851.4-2017

Продолжение таблицы Б.1

			Доля компонентов и фракций, %				
Компонент, фракция	Температура кипения, °С	Молярная масса, г/моль (кг/кмоль)	Газ сел	арации		ый газовый энсат	
			молярная	массовая	молярная	массовая	
Фракция 140—150	145,0	125,0	0,0000	0,0002	2,0899	3,1067	
Фракция 150—160	155,0	130,8	0,0000	0,0001	1,7086	2,6569	
Фракция 160—170	165,0	136,8	0,0000	0,0001	1,2301	2,0008	
Фракция 170—180	175,0	142,9	0,0000	0,0000	0.6581	1,1178	
Фракция 180—190	185,0	149,3			0,3488	0,6191	
Фракция 190—200	195,0	155,7			0,2747	0,5086	
Фракция 200—210	205,0	162,6			0,1376	0,2660	
Фракция 210—220	215,0	169,4			0,1186	0,2390	
Фракция 220—230	225,0	176,7			0,0606	0,1273	
Фракция 230—240	235,0	184,1			0,0677	0,1482	
Фракция 240—250	245,0	191,8			0,0341	0,0778	
Фракция 250—260	255,0	199,6			0,0406	0,0963	
Фракция 260—270	265,0	207,8			0,0275	0,0678	
Фракция 270—280	275,0	216,1			0.0289	0,0743	
Фракция 280—290	285,0	224.8			0,0253	0,0677	
Фракция 290—300	295,0	233.7			0.0182	0,0505	
Фракция 300—310	305,0	242.8			0,0209	0,0604	
Фракция 310—320	315,0	252,3			0,0199	0,0596	
Фракция 320—330	325,0	262,2		1 = 1	0,0143	0,0446	
Фракция 330—340	335,0	272,2			0,0159	0,0515	
Фракция 340—350	345,0	282,6			0,0146	0,0491	
Фракция 350—360	355,0	293,3			0,0134	0,0467	
Фракция 360—370	365,0	304,3			0,0123	0,0443	
Фракция 370—380	375,0	315,6			0,0112	0,0420	
Фракция 380—390	385,0	327,4			0,0102	0,0396	
Фракция 390—400	395,0	339,4			0,0092	0,0372	
Фракция 400—410	405,0	351,8			0,0083	0,0348	
Фракция 410—420	415,0	364,7			0,0075	0,0324	
Фракция 420—430	425,0	377,9			0,0067	0,0300	
Фракция 430—440	435,0	391,5			0,0059	0,0277	
Фракция 440—450	445,0	405,5			0,0052	0,0253	
Фракция 450—460	455,0	420,0	7		0,0046	0,0229	
Фракция 460—470	465,0	434,9	T		0,0040	0,0205	

Окончание таблицы Б.1

			Д	оля компонент	ов и фракций,	%
Компонент, фракция	Температура кипения, °С	Молярная масса, г/моль (кг/кмоль)	Газ сепарации		Нестабильный газовы конденсат	
	12-13-2	114212	молярная	массовая	молярная	массовая
Фракция 470—480	475,0	450,3			0,0034	0,0181
Фракция 480—490	485,0	466,2			0,0028	0,0157
Фракция 490—500	495,0	482,6			0,0023	0,0134
Фракция 500—510	505,0	499,5			0,0018	0,0110
Фракция 510—520	515,0	516,8			0,0014	0,0086
Фракция 520—530	525,0	534,7			0,0010	0,0062
Фракция 530—540	535,0	553,2			0,0006	0,0038
Фракция 540—550	545,0	572,1			0,0005	0,0033
Фракция 550—560	555,0	591,8	-		0,0004	0,0028
Фракция 560—570	565,0	611,9	=======================================		0,0003	0,0023

Таблица Б.2— Компонентно-фракционный состав газа сепарации и нестабильного газового конденсата, ранжированный по числу атомов углерода

		Доля компонентов и фракций, %					
Компонент, фракция	Температура кипения, °С	Молярная масса, г/моль (кг/кмоль)	Газ сепарации		Нестабильный газовы конденсат		
			молярная	массовая	молярная	массовая	
Сероводород	-59,7	34,1	0,0835	0,1697	0,4728	0,1937	
Карбонилсульфид	-50,2	60,1	0,0001	0,0002	0,0006	0,0004	
Метилмеркаптан	5,9	48,1	0,0007	0,0019	0,078337	0,0453	
Этилмеркаптан	35,1	62,1	0,0008	0,0028	0,345719	0,2583	
Диметилсульфид	37.4	62,1	0,0001	0,0002	0,03092	0,0231	
Азот	-195,6	28,0	0,4686	0,7822	0,0048	0,0016	
Диоксид углерода	-78,3	44.0	0,0500	0,1311	0,1191	0,0630	
Метан	-161,5	16,0	95,5317	91,3612	4.7930	0,9246	
Этан	-88,6	30,1	3,3658	6,0332	4,9725	1,7979	
Пропан	-42,0	44.1	0,3204	0,8423	4,1066	2,1774	
Изобутан	-11,7	58,1	0,0569	0,1971	2,9761	2,0799	
<i>н</i> -бутан	-0,5	58,1	0,0705	0,2444	6,2115	4,3411	
Изопентан	27,8	72,2	0,0158	0,0680	5,1886	4,5013	
н-пентан	36,1	72,2	0,0148	0,0637	7,1223	6,1789	
Фракция С6	52,4	79,2	0,0147	0,0693	15,0744	14,3490	
Фракция С7	83,6	93,2	0,0045	0,0249	19,5603	21,9181	
Фракция С8	112,0	107,2	0,0010	0,0065	16,4949	21,2652	
Фракция С9	138,2	121,2	0,0001	0,0010	7,6970	11,2211	

ΓΟCT P 57851.4-2017

Окончание таблицы Б.2

			Доля компонентов и фражций, %					
Компонент, фракция	Температура кипения, °С	Молярная масса, г/моль (кг/кмоль)	Fas cer	арации		ный газовый енсат		
			молярная	массовая	молярная	массовая		
Фракция С10	162,5	135,3	0,0000	0,0001	3,0166	4,9065		
Фракция С11	185,0	149,3			0,8780	1,5761		
Фракция С12	206,1	163,3			0,3183	0,6250		
Фракция С13	225,9	177,4			0,1387	0,2957		
Фракция С14	244,5	191,4			0,0781	0,1797		
Фракция С16	278,8	219,4			0,0439	0,1158		
Фракция С17	294,7	233,5			0,0309	0,0866		
Фракция С18	309,9	247,5			0,0298	0,0888		
Фракция С19	324,4	261,5			0,0216	0,0679		
Фракция С20	338,2	275,5			0,0208	0,0688		
Фракция С21	351,6	289,6	[0,0179	0,0624		
Фракция С22	364,4	303,6			0,0154	0,0562		
Фракция С23	376,7	317,6			0,0130	0,0497		
Фракция С24	388,6	331,7			0,0113	0,0453		
Фракция С25	400,1	345,7			0,0098	0,0407		
Фракция С26	411,2	359,7			0,0084	0,0364		
Фракция С27	421,9	373,7			0,0072	0,0324		
Фракция С28	432,3	387,8			0,0063	0,0292		
Фракция С29	442,4	401,8			0,0053	0,0256		
Фракция С30	452,1	415,8			0,0045	0,0226		
Фракция С32	470,9	443,9			0,0033	0,0174		
Фракция С33	479,8	457,9			0,0027	0,0150		
Фракция С34	488,5	471,9			0,0023	0,0129		
Фракция С35	497,0	485,9			0,0019	0,0109		
Фракция С36	505,3	500,0			0,0015	0,0090		
Фракция С37	513,4	514,0			0,0011	0,0070		
Фракция С38	521,3	528,0			0,0009	0,0055		
Фракция СЗ9	529,0	542,1			0,0006	0,0041		
Фракция С40	536,6	556,1			0,0004	0,0029		
Фракция С41	544,0	570,1			0,0004	0,0024		
Фракция С42	551,2	584,1			0,0003	0,0021		
Фракция С43	558,2	598,2			0,0003	0,0019		
Фракция С44	565,2	612,2			0,0003	0,0019		

Б.2 Расчет массы газа сепарации, нестабильного газового конденсата, газоконденсатной смеси

Б.2.1 Массу газа сепарации вычисляют по формуле

$$m_{rc} = V_{rc,(cr)}\rho_{rc} = 9773 \cdot 0,6981 = 6822,5 \text{ kr.}$$
 (5.1)

Б.2.2 Массу нестабильного газового конденсата вычисляют по формуле

$$m_{H\Gamma K} = V_{H\Gamma K} \rho_{H\Gamma K} = 4,3953 \cdot 723,5 = 3180 \text{ kg.}$$
 (6.2)

Б.2.3 Массу газоконденсатной смеси вычисляют по формуле

$$m_{\Gamma KC} = m_{\Gamma C} + m_{H\Gamma K} = 6822,5 + 3180 = 10002,5 \text{ kr.}$$
 (5.3)

Б.3 Расчет компонентно-фракционного состава газоконденсатной смеси, ранжированный по температурам кипения фракций, в единицах массовой доли

- Б.3.1 Массу каждого і-го компонента, фракции, входящих в состав газа сепарации и в состав нестабильного газового конденсата вычисляют по формулам (4) и (5) настоящего стандарта.
- Б.3.2 Массу каждого ўго компонента, фракции в газоконденсатной смеси вычисляют по формуле (6) настоящего стандарта.
- Б.3.3 Массовую долю го компонента и фракции в газоконденсатной смеси вычисляют по формуле (7) настоящего стандарта.
- Б.3.4 Результаты расчетов масс компонентов и фракций ГС, НГК, ГКС, массовых долей компонентов и фракций ГКС приведены в таблице Б.3.

Таблица Б.3— Результаты расчета масс компонентов и фракций ГС, НГК, ГКС, массовых долей компонентов и фракций ГКС, ранжированных по температурам кипения

Компонент, фракция		я компонентов кций, %	Масса ко	Массовая доля компонентов и фракций, %		
	rc	HLK	re	нгк	LKC	ГКС
Сероводород	0,16975	0,19374	11,58097	6,16093	17,74190	0,17737
Карбонилсульфид	0,00024	0,00042	0,01615	0,01335	0,02950	0,00029
Метилмеркаптан	0,00189	0,04531	0,12908	1,44096	1,57004	0,01570
Этилмеркаптан	0,00279	0,25829	0,19066	8,21349	8,40415	0,08402
Диметилсульфид	0,00022	0,02310	0,01533	0,73454	0,74987	0,00750
Азот	0,78241	0,00163	53,37968	0,05173	53,43142	0,53418
Диоксид углерода	0,13118	0,06303	8,94995	2,00420	10,95415	0,10951
Метан	91,38886	0,92458	6235,00471	29,40168	6264,40639	62,62841
Этан	6,03506	1,79788	411,74219	57,17260	468,91479	4,68798
Пропан	0,84259	2,17740	57,48578	69,24139	126,72718	1,26696
Изобутан	0,19713	2,07994	13,44889	66,14211	79,59100	0,79571
<i>н</i> -бутан	0,24445	4,34112	16,67784	138,04752	154,72535	1,54687
Изопентан	0,06805	4,50134	4,64294	143,14249	147,78543	1,47748
н-пентан	0,06368	6,17892	4,34425	196,48980	200,83405	2,00784
Фракция 45—60	0,00343	0,71163	0,23376	22,62985	22,86361	0,22858
Фракция 60—70	0.04211	15,62124	2,87307	496,75542	499,62849	4,99504
Фракция 70—80	0,00336	1,98518	0,22957	63,12875	63,35832	0,63342
Фракция 80—90	0,00624	5,85207	0,42552	186,09595	186,52147	1,86475
Фракция 90—100	0,00963	14,36689	0,65683	456,86715	457,52398	4,57410

ΓΟCT P 57851.4-2017

Продолжение таблицы Б.3

Компонент, фракция		я компонентов щий, %	Macca	омпонентов и фр	акций, кг	Массовая доля компонентов и фракций, %
	гс	нгк	rc	HLK	ГКС	FKC
Фракция 100—110	0,00221	5,24091	0,15066	166,66098	166,81163	1,66770
Фракция 110—120	0,00295	11,12424	0,20107	353,75081	353,95187	3,53863
Фракция 120—130	0,00077	4,64261	0,05276	147,63505	147,68781	1,47651
Фракция 130—140	0,00062	5,88984	0.04209	187,29684	187,33893	1,87292
Фракция 140—150	0,00020	3,10669	0.01396	98,79287	98,80682	0,98782
Фракция 150—160	0,00011	2,65691	0,00751	84,48989	84,49740	0,84476
Фракция 160—170	0,00005	2,00077	0,00355	63,62443	63,62799	0,63612
Фракция 170—180	0,00002	1,11782	0,00125	35,54668	35,54793	0,35539
Фракция 180—190		0,61912		19,68798	19,68798	0,19683
Фракция 190—200		0,50862		16,17396	16,17396	0,16170
Фракция 200—210		0,26597		8,45776	8,45776	0,08456
Фракция 210—220		0,23896		7,59906	7,59906	0,07597
Фракция 220—230		0,12730		4,04803	4,04803	0,04047
Фракция 230—240		0,14816		4,71165	4,71165	0,04710
Фракция 240—250		0,07779		2,47375	2,47375	0,02473
Фракция 250—260		0,09632		3,06291	3,06291	0,03062
Фракция 260—270		0,06782		2,15661	2,15661	0,02156
Фракция 270—280		0,07432		2,36344	2,36344	0,02363
Фракция 280—290		0,06767		2,15196	2,15196	0,02151
Фракция 290—300		0,05054		1,60708	1,60708	0,01607
Фракция 300—310		0,06036		1,91958	1,91958	0,01919
Фракция 310—320		0,05956		1,89403	1,89403	0,01894
Фракция 320—330		0,04460		1,41839	1,41839	0,01418
Фракция 330—340		0,05149		1,63727	1,63727	0,01637
Фракция 340—350		0,04910		1,56150	1,56150	0,01561
Фракция 350—360		0,04672		1,48574	1,48574	0,01485
Фракция 360—370	1 == 1	0,04434		1,40997	1,40997	0,01410
Фракция 370—380		0,04196		1,33421	1,33421	0,01334
Фракция 380—390		0,03957		1,25844	1,25844	0,01258
Фракция 390—400		0,03719		1,18267	1,18267	0,01182
Фракция 400—410		0,03481		1,10691	1,10691	0,01107
Фракция 410—420		0,03243		1,03114	1,03114	0,01031
Фракция 420—430		0,03004		0,95538	0,95538	0,00955

Окончание таблицы Б.3

Компонент, фракция	Массовая доля компонентов и фракций, %		Масса компонентов и фракций, кг			Массовая доля компонентов и фракций, %
	гс	нгк	гс	нгк	ГКС	rkc:
Фракция 430—440		0,02766		0,87961	0,87961	0,00879
Фракция 440—450		0,02528		0,80385	0,80385	0,00804
Фракция 450—460		0,02290		0,72808	0,72808	0,00728
Фракция 460—470		0,02051		0,65232	0,65232	0,00652
Фракция 470—480		0,01813		0,57655	0,57655	0,00576
Фракция 480—490		0,01575		0,50079	0,50079	0,00501
Фракция 490—500		0,01337		0,42502	0,42502	0,00425
Фракция 500—510		0,01098		0,34925	0,34925	0,00349
Фракция 510—520		0,00860		0,27349	0,27349	0,00273
Фракция 520—530		0,00622		0,19772	0,19772	0,00198
Фракция 530—540	1	0,00384		0,12196	0,12196	0,00122
Фракция 540—550		0,00334		0,10606	0,10606	0,00106
Фракция 550—560		0,00284		0,09016	0,09016	0,00090
Фракция 560—570		0,00234		0,07426	0,07426	0,00074

Б.4 Расчет компонентно-фракционного состава газоконденсатной смеси, ранжированного по числу атомов углерода, в единицах массовой доли

- Б.4.1 Массу каждого і-го компонента, группы, входящих в состав газа сепарации и в состав нестабильного газового конденсата, вычисляют по формулам (4), (5) настоящего стандарта.
- Б.4.2 Массу каждого і-го компонента, группы в газоконденсатной смеси вычисляют по формуле (6) настоящего стандарта.
- Б.4.3 Массовую долю і-го компонента и группы в газоконденсатной смеси вычисляют по формуле (7) настоящего стандарта.
- Б.4.4 Результаты расчетов масс компонентов и групп ГС, НГК, ГКС, массовых долей компонентов и фракций ГКС приведены в таблице Б.4.

Та бл и ца Б.4— Результаты расчета масс компонентов и фракций ГС, НГК, ГКС, массовых долей компонентов и фракций ГКС, ранжированных по числу атомов углерода

Компонент, фракция	Массовая доля компонентов и фракций, %		Масса компонентов и фракций, кг			Массовая доля компонентов и фракций, %
	гс	нгк	ГC	нгк	гкс	ГКС
Сероводород	0,1697	0,1937	11,5775	6,1609	17,7384	0,1773
Карбонилсульфид	0,0002	0.0004	0,0161	0,0133	0,0295	0,0003
Метилмеркаптан	0,0019	0,0453	0,1290	1,4410	1,5700	0,0157
Этилмеркаптан	0,0028	0,2583	0,1906	8,2135	8,4041	0,0840
Диметилсульфид	0,0002	0.0231	0,0153	0,7345	0,7499	0,0075
Азот	0,7822	0.0016	53,3635	0,0517	53,4153	0,5341
Диоксид углерода	0,1311	0,0630	8,9472	2,0042	10,9514	0,1095
Метан	91,3612	0,9246	6233,1200	29,4017	6262,5217	62,6221

ΓΟCT P 57851.4-2017

Продолжение таблицы Б.4

Компонент, фракция		вая доля и фракций, %	Масса компонентов и фракций, кг			Массовая доля компонентов и фракций, %
	rc	нгк	rc	HFK	FKC	ГКС
Этан	6,0332	1,7979	411,6177	57,1726	468,7903	4,6873
Пропан	0,8423	2,1774	57,4684	69,2414	126,7098	1,2666
Изобутан	0,1971	2,0799	13,4448	66,1421	79,5869	0,7954
н-бутан	0,2444	4,3411	16,6728	138,0475	154,7203	1,5462
Изопентан	0,0680	4,5013	4,6415	143,1425	147,7840	1,4769
н-пентан	0,0637	6,1789	4,3429	196,4898	200,8327	2,0070
Фракция С6	0,0693	14,3490	4,7307	456,2975	461,0282	4,6071
Фракция С7	0,0249	21,9181	1,7021	696,9945	698,6967	6,9822
Фракция С8	0,0065	21,2652	0,4408	676,2321	676,6729	6,7621
Фракция С9	0,0010	11,2211	0,0690	356,8318	356,9008	3,5666
Фракция С10	0,0001	4,9065	0,0098	156,0279	156,0377	1,5593
Фракция С11		1,5761		50,1214	50,1214	0,5009
Фракция С12		0,6250		19,8765	19,8765	0,1986
Фракция С13		0,2957		9,4040	9,4040	0,0940
Фракция С14		0,1797		5,7131	5,7131	0,0571
Фракция С15	2:	0,1356		4,3129	4,3129	0,0431
Фракция С16		0,1158		3,6829	3,6829	0,0368
Фракция С17		0,0866		2,7541	2,7541	0,0275
Фракция С18		8880,0		2,8223	2,8223	0,0282
Фракция С19		0,0679		2,1590	2,1590	0,0216
Фракция С20		0,0688		2,1888	2,1888	0,0219
Фракция С21		0,0624		1,9842	1,9842	0,0198
Фракция С22		0,0562		1,7857	1,7857	0,0178
Фракция С23		0,0497		1,5806	1,5806	0,0158
Фракция С24		0,0453		1,4390	1,4390	0,0144
Фракция С25		0,0407		1,2932	1.2932	0,0129
Фракция С26		0,0364		1,1565	1,1565	0,0116
Фракция С27		0,0324		1,0289	1,0289	0,0103
Фракция С28		0,0292		0,9280	0,9280	0,0093
Фракция С29		0,0256		0,8155	0,8155	0,0081
Фракция С30		0,0226		0,7194	0,7194	0,0072
Фракция С31		0,0200	1 = 1	0,6367	0,6367	0,0064
Фракция С32		0,0174		0,5527	0,5527	0,0055
Фракция С33		0,0150		0,4755	0,4755	0,0048
Фракция С34		0,0129		0,4095	0,4095	0,0041

Окончание таблицы Б.4

Компонент, фракция	Массовая доля компонентов и фракций, %		Масса компонентов и фракций, кг			Массовая доля компонентов и фракций, %	
	гс	нгк	ГС	нгк	ГКС	ГКС	
Фракция С35		0,0109		0,3479	0,3479	0,0035	
Фракция С36		0,0090		0,2864	0,2864	0,0029	
Фракция С37		0,0070		0,2233	0,2233	0,0022	
Фракция С38		0,0055		0,1739	0,1739	0,0017	
Фракция С39		0,0041		0,1291	0,1291	0,0013	
Фракция С40		0,0029		0,0910	0,0910	0,0009	
Фракция С41		0,0024		0,0774	0,0774	0,0008	
Фракция С42		0,0021		0,0678	0,0678	0,0007	
Фракция С43		0,0019		0,0604	0,0604	0,0006	
Фракция С44		0,0019		0,0616	0,0616	0,0006	

Б.5 Расчет компонентно-фракционного состава газоконденсатной смеси в единицах молярной доли

Б.5.1 Молярную массу газа сепарации вычисляют по формуле (9) настоящего стандарта

$$M_{\Gamma C} = \sum \frac{x_i^{f C}}{100} M_i = 16,775 \frac{\kappa r}{\kappa_{MOJD}}$$
 (6.4)

Б.5.2 Количество газа сепарации вычисляют по формуле (8) настоящего стандарта

$$n_{\Gamma C} = \frac{m_{\Gamma C}}{M_{\Gamma C}} = \frac{6822.5}{16.775} \frac{\kappa \Gamma}{\kappa \kappa \kappa_{MODD}} = 406,706 \text{ кмоль.}$$
 (Б.5)

- Б.5.3 Молярную массу нестабильного газового конденсата вычисляют по формуле (11) настоящего стандарта.
- Б.5.4 Количество нестабильного газового конденсата вычисляют по формуле (10) настоящего стандарта

$$n_{\text{HTK}} = \frac{m_{\text{HTK}}}{M_{\text{HTK}}} = \frac{3180}{84,105} = 37,810 \text{ кмоль.}$$
 (Б.7)

- Б.5.5 Количество каждого ∔го компонента, фракции, входящих в состав газа сепарации и нестабильного газового конденсата, вычисляют по формулам (12), (13) настоящего стандарта.
- Б.5.6 Количество каждого і-го компонента, фракции в газоконденсатной смеси вычисляют по формуле (14) настоящего стандарта.
 - Б.5.7 Количество газоконденсатной смеси вычисляют по формуле (15) настоящего стандарта

$$n^{\Gamma KC} = n^{\Gamma C} + n^{\Gamma C} = 406.706 + 37.810 = 444.516 \text{ кмоль.}$$
 (5.8)

Б.5.8 Молярную долю і́-го компонента, фракции в газоконденсатной смеси вычисляют по формуле (16) настоящего стандарта

$$x_i^{\text{TKC}} = \frac{n_i^{\text{TKC}}}{n_i^{\text{TKC}}} 100.$$
 (5.9)

- Б.5.9 Результаты расчетов количества компонентов и фракций ГС, НГК, ГКС, молярных долей компонентов и фракций ГКС, ранжированных по температурам кипения, приведены в таблице Б.5.
- Б.5.10 Результаты расчетов количества компонентов и фракций ГС, НГК, ГКС, молярных долей компонентов и фракций ГКС, ранжированных по числу атомов углерода, приведены в таблице Б.6.
- Б.6 Результаты расчета компонентно-фракционного состава газоконденсатной смеси, ранжированного по температурам кипения фракций, в единицах молярной и массовой долей приведены в таблице Б.7.

Результаты расчета компонентно-фракционного состава газоконденсатной смеси, ранжированного по числу атомов углерода, в единицах молярной и массовой долей приведены в таблице Б.8.

ГОСТ P 57851.4-2017

T а блица 6.5 — Результаты расчетов количества компонентов и фракций ГС, НГК, ГКС, молярных долей компонентов и фракций ГКС, ранжированных по температурам кипения

Компонент, фракция		ля компонентов кций, %	Количество компонентов и фракций, кмоль			Молярная доля компонентов и фракций, %
	гс	нгк	rc	HLK	ГКС	ГКС
Сероводород	0,0835	0,4782	0,33978	0,18080	0,52059	0,11711
Карбонилсульфид	0,0001	0,0006	0,00027	0,00022	0,00049	0,00011
Метилмеркаптан	0,0007	0,079221	0,00268	0,02995	0,03264	0,00734
Этилмеркаптан	0,0008	0,349621	0,00307	0,13219	0,13526	0,03043
Диметилсульфид	0,0001	0,03127	0,00025	0,01182	0,01207	0,00272
Азот	0,4686	0,0049	1,90601	0,00185	1,90785	0,42920
Диоксид углерода	0,0500	0,1205	0,20336	0,04555	0,24891	0,05600
Метан	95,5382	4,8471	388,55965	1,83270	390,39235	87,82414
Этан	3,3660	5,0287	13,68984	1,90133	15,59118	3,50745
Пропан	0,3205	4,1529	1,30334	1,57022	2,87356	0,64645
Изобутан	0,0569	3,0097	0,23133	1,13796	1,36929	0,30804
н-бутан	0,0705	6,2816	0,28687	2,37507	2,66195	0,59884
Изопентан	0,0158	5,2471	0,06434	1,98395	2,04828	0,46079
<i>н</i> -пентан	0,0148	7,2027	0,06020	2,72334	2,78353	0,62619
Фракция 45—60	0,0007	0,7557	0,00295	0,28573	0,28868	0,06494
Фракция 60—70	0,0084	15,5346	0,03396	5,87363	5,90759	1,32899
Фракция 70—80	0,0006	1,8731	0,00257	0,70820	0,71078	0,15990
Фракция 80—90	0,0011	5,2436	0,00453	1,98261	1,98715	0,44704
Фракция 90—100	0,0016	12,2562	0,00666	4,63409	4,64075	1,04400
Фракция 100—110	0,0004	4,2550	0,00145	1,60882	1,61028	0,36225
Фракция 110—120	0,0005	8,6040	0,00185	3,25317	3,25502	0,73226
Фракция 120—130	0,0001	3,4285	0,00046	1,29631	1,29677	0,29173
Фракция 130—140	0,0001	4,1473	0,00035	1,56811	1,56846	0,35285
Фракция 140—150	0,0000	2,0899	0,00011	0,79020	0,79032	0,17779
Фракция 150—160	0,0000	1,7086	0,00006	0,64602	0,64608	0,14534
Фракция 160—170	0,0000	1,2301	0,00003	0,46510	0,46512	0,10464
Фракция 170—180	0,0000	0,6581	0,00001	0,24884	0,24885	0,05598
Фракция 180—190		0,3488		0,13188	0,13188	0,02967
Фракция 190—200		0,2747		0,10386	0,10386	0,02336
Фракция 200—210		0,1376		0,05203	0,05203	0,01170
Фракция 210—220		0.1186		0,04485	0,04485	0,01009
Фракция 220—230		0,0606		0,02291	0,02291	0,00515
Фракция 230—240		0,0677		0,02560	0,02560	0,00576

Окончание таблицы Б.5

Компонент, фракция		ля компонентов вкций, %	Количество	компонентов и ф	ракция, кмодь	Молярная доля компонентов и фракций, %	
	гс	нгк	гс	нгк	ГКС	гкс	
Фракция 240—250		0.0341		0,01290	0,01290	0,00290	
Фракция 250—260		0,0406		0,01534	0,01534	0,00345	
Фракция 260—270		0,0275		0,01040	0,01040	0,00234	
Фракция 270—280		0,0289		0,01093	0,01093	0,00246	
Фракция 280—290		0,0253		0,00957	0,00957	0,00215	
Фракция 290—300		0,0182		0,00688	0,00688	0,00155	
Фракция 300—310		0,0209		0,00790	0,00790	0,00178	
Фракция 310—320		0,0199		0,00751	0,00751	0,00169	
Фракция 320—330		0,0143		0,00541	0,00541	0,00122	
Фракция 330—340		0,0159		0,00601	0,00601	0,00135	
Фракция 340—350		0,0146		0,00553	0,00553	0,00124	
Фракция 350—360		0,0134		0,00507	0,00507	0,00114	
Фракция 360—370		0,0123		0,00463	0,00463	0,00104	
Фракция 370—380		0,0112		0,00423	0,00423	0,00095	
Фракция 380—390		0,0102		0,00384	0,00384	0,00086	
Фракция 390—400		0,0092		0,00348	0,00348	0,00078	
Фракция 400—410		0,0083		0,00315	0,00315	0,00071	
Фракция 410—420		0,0075		0,00283	0,00283	0,00064	
Фракция 420—430		0,0067		0,00253	0,00253	0,00057	
Фракция 430—440		0,0059		0,00225	0,00225	0,00051	
Фракция 440—450		0,0052	+	0,00198	0,00198	0,00045	
Фракция 450—460		0,0046		0,00173	0,00173	0,00039	
Фракция 460—470		0,0040		0,00150	0,00150	0,00034	
Фракция 470—480		0,0034		0,00128	0,00128	0,00029	
Фракция 480—490		0,0028		0,00107	0,00107	0,00024	
Фракция 490—500		0,0023		88000,0	0,00088	0,00020	
Фракция 500—510		0,0018		0,00070	0,00070	0,00016	
Фракция 510—520		0.0014		0,00053	0,00053	0,00012	
Фракция 520—530		0,0010		0,00037	0,00037	0,00008	
Фракция 530—540		0,0006		0,00022	0,00022	0,00005	
Фракция 540—550		0,0005		0,00019	0,00019	0,00004	
Фракция 550—560		0,0004		0,00015	0,00015	0,00003	
Фракция 560—570		0,0003	17	0,00012	0,00012	0,00003	

ГОСТ P 57851.4-2017

 Γ а блица Б.6 — Результаты расчетов количества компонентов и фракций ГС, НГК, ГКС, молярных долей компонентов и фракций ГКС, ранжированных по числу атомов углерода

Компонент, фракция		пя компонентов кций, %	Количество компонентов и фракций, кмоль			Молярная доля компонентов и фракций, %
	гс	HFK	гс	HFK	ГКС	ГКС
Сероводород	0,0835	0,4728	0,3398	0,1788	0,5185	0,1167
Карбонилсульфид	0,0001	0,0006	0,0003	0,0002	0,0005	0,0001
Метилмеркаптан	0,0007	0,078337	0,0027	0,0296	0,0323	0,0073
Этилмеркаптан	8000,0	0,345719	0,0031	0,1307	0,1338	0,0301
Диметилсульфид	0,0001	0,03092	0,0002	0,0117	0,0119	0,0027
Азот	0,4686	0,0048	1,9059	0,0018	1,9077	0,4292
Диоксид углерода	0,0500	0,1191	0,2034	0,0450	0,2484	0,0559
Метан	95,5317	4,7930	388,5331	1,8122	390,3454	87,8136
Этан	3,3658	4,9725	13,6889	1,8801	15,5690	3,5025
Пропан	0,3204	4,1066	1,3033	1,5527	2,8559	0,6425
Изобутан	0,0569	2,9761	0,2313	1,1253	1,3566	0,3052
н-бутан	0,0705	6,2115	0,2869	2,3486	2,6354	0,5929
Изопентан	0,0158	5,1886	0,0643	1,9618	2,0261	0,4558
н-пентан	0,0148	7,1223	0,0602	2,6929	2,7531	0,6194
Фракция С6	0,0147	15,0744	0,0598	5,6996	5,7594	1,2957
Фракция С7	0,0045	19,5603	0,0183	7,3958	7,4140	1,6679
Фракция С8	0,0010	16,4949	0,0041	6,2367	6,2408	1,4040
Фракция С9	0,0001	7,6970	0,0006	2,9102	2,9108	0,6548
Фракция С10	0,0000	3,0166	0,0001	1,1406	1,1406	0,2566
Фракция С11		0,8780		0,3320	0,3320	0,0747
Фракция С12		0,3183		0,1203	0,1203	0,0271
Фракция С13		0,1387		0,0524	0,0524	0,0118
Фракция С14		0,0781	(e ====)	0,0295	0,0295	0,0066
Фракция С15		0,0549		0,0208	0,0208	0,0047
Фракция С16		0,0439		0,0166	0,0166	0,0037
Фракция С17		0,0309		0.0117	0,0117	0,0026
Фракция С18		0,0298		0,0113	0,0113	0,0025
Фракция С19		0,0216		0,0082	0,0082	0,0018
Фракция С20		0,0208		0,0079	0,0079	0,0018
Фракция С21		0,0179		0,0068	0,0068	0,0015
Фракция С22		0,0154	1	0,0058	0,0058	0,0013
Фракция С23		0,0130		0,0049	0,0049	0,0011
Фракция С24	1	0,0113		0,0043	0,0043	0,0010

Окончание таблицы Б.6

Компонент, фракция	Молярная доля компонентов и фракций, %		Количество компонентов и фракций, кмоль			Молярная доля компонентов и фракций, %
	гс	нгк	rc	нгк	гкс	ГКС
Фракция С25		0,0098		0,0037	0,0037	0,0008
Фракция С26		0,0084		0,0032	0,0032	0,0007
Фракция С27		0,0072		0,0027	0,0027	0,0006
Фракция С28		0,0063		0,0024	0,0024	0,0005
Фракция С29		0,0053		0,0020	0,0020	0,0005
Фракция С30		0,0045		0,0017	0,0017	0,0004
Фракция С31		0,0039		0,0015	0,0015	0,0003
Фракция С32		0,0033		0,0012	0,0012	0,0003
Фракция С33		0,0027		0,0010	0,0010	0,0002
Фракция С34		0,0023		0,0009	0,0009	0,0002
Фракция С35		0,0019		0,0007	0,0007	0,0002
Фракция С36		0,0015		0,0006	0,0006	0,0001
Фракция С37		0,0011		0,0004	0,0004	0,0001
Фракция С38		0,0009		0.0003	0,0003	0,0001
Фракция С39		0,0006		0,0002	0,0002	0,0001
Фракция С40		0,0004		0,0002	0,0002	0,0000
Фракция С41		0,0004		0,0001	0,0001	0,0000
Фракция С42		0,0003		0,0001	0,0001	0,0000
Фракция C43		0,0003		0,0001	0,0001	0,0000
Фракция С44		0,0003		0,0001	0,0001	0,0000

Таблица Б.7— Компонентно-фракционный состав газоконденсатной смеси, ранжированный по температурам кипения фракций

Компонент, фракция	Доля компонентов и фракций, %					
компонент, фракция	молярная	массовая				
Сероводород	0,117 ± 0,012	0,177 ± 0,019				
Карбонилсульфид	0,00011 ± 0,00004*	0,00030 ± 0,00010*				
Метилмеркаптан	0,0073 ± 0,0021	0,016 ± 0,004				
Этилмеркаптан	0,030 ± 0,008	0,084 ± 0,022				
Диметилсульфид	0.0027 ± 0,0008	0,0075 ± 0,0022				
Азот	0,43 ± 0,04	0,53 ± 0,06				
Диоксид углерода	0,056 ± 0,008	0,110 ± 0,015				
Метан	87,8 ± 0,6	62,6 ± 0,9				
Этан	3,51 ± 0,18	4,69 ± 0,25				
Пропан	0,65 ± 0,07	1,27 ± 0,14				

ΓΟCT P 57851.4-2017

Продолжение таблицы Б.7

Mariana de autoria	Доля компонентов и фракций, %				
Компонент, фракция	молярная	массовая			
Изобутан	0,31 ± 0,05	0,80 ± 0,13			
н-бутан	0,60 ± 0,10	1,55 ± 0,24			
Изопентан	0,46 ± 0,08	1,48 ± 0,25			
н-пентан	0.63 ± 0,11	2,0 ± 0,3			
Фракция 45—60	0,065 ± 0,015	0,23 ± 0,05			
Фракция 60—70	1,33 ± 0,19	5,0 ± 0,7			
Фракция 70—80	0,16 ± 0,03	0,63 ± 0,12			
Фракция 80—90	0,45 ± 0,08	1,9 ± 0,3			
Фракция 90—100	1,04 ± 0,16	4,6 ± 0,7			
Фракция 100—110	0,36 ± 0,07	1,7 ± 0,3			
Фракция 110—120	0,73 ± 0,12	3,5 ± 0,6			
Фракция 120—130	0,29 ± 0,06	1,48 ± 0,27			
Фракция 130—140	0,35 ± 0,07	1,9 ± 0,3			
Фракция 140—150	0,18 ± 0,04	0,99 ± 0,19			
Фракция 150—160	0,145 ± 0,029	0,84 ± 0,16			
Фракция 160—170	0,105 ± 0,021	0,64 ± 0,12			
Фракция 170—180	0,056 ± 0,013	0,36 ± 0,08			
Фракция 180—190	0,030 ± 0,008	0,20 ± 0,05			
Фракция 190—200	0,023 ± 0,006	0,16 ± 0,04			
Фракция 200—210	0.012 ± 0,003	0,085 ± 0,024			
Фракция 210—220	0,0101 ± 0,0030	0,076 ± 0,022			
Фракция 220—230	0,0052 ± 0,0016	0,040 ± 0,012			
Фракция 230—240	0,0058 ± 0,0018	0,047 ± 0,014			
Фракция 240—250	0,0029 ± 0,0009	0,025 ± 0,007			
Фракция 250—260	0,0035 ± 0,0011	0,031 ± 0,009			
Фракция 260—270	0,0023 ± 0,0007	0,022 ± 0,007			
Фракция 270—280	0,0025 ± 0,0007	0,024 ± 0,007			
Фракция 280—290	0,0022 ± 0,0007	0,022 ± 0,006			
Фракция 290—300	0,0016 ± 0,0005	0,016 ± 0,005			
Фракция 300—310	0,0018 ± 0,0005	0,019 ± 0,006			
Фракция 310—320	0,0017 ± 0,0005	0,019 ± 0,006			
Фракция 320—330	0,0012 ± 0,0004	0,014 ± 0,004			
Фракция 330—340	0,0014 ± 0,0004	0,016 ± 0,005			
Фракция 340—350	0,0012 ± 0,0004	0,016 ± 0,005			
Фракция 350—360	0,0011 ± 0,0003	0,015 ± 0,004			

4	Доля компонентов и	фракций, %	
Компонент, фракция	молярная	массовая	
Фракция 360—370	0,0010 ± 0,0003	0,014 ± 0,004	
Фракция 370—380	0,00095 ± 0,00029	0,013 ± 0,004	
Фракция 380—390	0,00086 ± 0,00026	0,013 ± 0,004	
Фракция 390—400	0,00078 ± 0,00024	0,012 ± 0,004	
Фракция 400—410	0,00071 ± 0,00022	0,011 ± 0,003	
Фракция 410—420	0,00064 ± 0,00019	0,010 ± 0,003	
Фракция 420—430	0,00057 ± 0,00017	0,0096 ± 0,0029	
Фракция 430—440	0,00051 ± 0,00015	0,0088 ± 0,0027	
Фракция 440—450	0,00045 ± 0,00014	0,0080 ± 0,0024	
Фракция 450—460	0,00039 ± 0,00020*	0,007 ± 0,004*	
Фракция 460—470	0,00034 ± 0,00017*	0,007 ± 0,003*	
Фракция 470—480	0,00029 ± 0,00014*	0,0058 ± 0,0029*	
Фракция 480—490	0,00024 ± 0,00012*	0,0050 ± 0,0025*	
Фракция 490—500	0,00020 ± 0,00010*	0,0043 ± 0,0021*	
Фракция 500—510	0,00016 ± 0,00008*	0,0035 ± 0,0017*	
Фракция 510—520	0,00012 ± 0,00006*	0,0027 ± 0,0014*	
Фракция 520—530	0,00008 ± 0,00004*	0,0020 ± 0,0010*	
Фракция 530—540	0.000050 ± 0,000025*	0,0012 ± 0,0006*	
Фракция 540—550	0,000042 ± 0,000021*	0,0011 ± 0,0005*	
Фракция 550—560	0,000034 ± 0,000017*	0,0009 ± 0,0005*	
Фракция 560—570	0,000027 ± 0,000014*	0,0007 ± 0,0004*	

Ориентировочные значения неопределенности (для результатов измерений долей компонентов ГС и НГК, значения которых ниже нижней границы диапазона измерений).

Таблица Б.8— Компонентно-фракционный состав газоконденсатной смеси, ранжированный по числу атомов углерода

Компонент, фракция	Доля компонентов и фракций, %			
компонент, фракция	молярная	массовая		
Сероводород	0,117 ± 0,012	0,177 ± 0,019		
Карбонилсульфид	0,00011 ± 0,00004*	0,00030 ± 0,00010*		
Метилмеркаптан	0,0073 ± 0,0021	0,016 ± 0,004		
Этилмеркаптан	0,030 ± 0,008	0,084 ± 0,022		
Диметилсульфид	0,0027 ± 0,0008	0,0075 ± 0,0022		
Азот	0,43 ± 0,04	0,53 ± 0,06		
Диоксид углерода	0,056 ± 0,008	0,110 ± 0,015		
Метан	87,7 ± 0,6	62,6 ± 0,9		

Продолжение таблицы Б.8

Kanaanan daanna	Доля компонентов	и фракций, %
Компонент, фракция	молярная	массовая
Этан	3,50 ± 0,18	4,69 ± 0,25
Пропан	0.65 ± 0.07	1,27 ± 0,14
Изобутан	0.31 ± 0.05	0,80 ± 0,13
н-бутан	0.60 ± 0.10	1,55 ± 0,24
Изопентан	0,46 ± 0,08	1,48 ± 0,25
н-пентан	0,63 ± 0,11	2,0 ± 0,3
Фракция Сб	1,31 ± 0,19	4,6 ± 0,6
Фракция С7	1,68 ± 0,23	7,0 ± 0,9
Фракция С8	1,42 ± 0,20	6,8 ± 0,9
Фракция С9	0,66 ± 0,11	3,6 ± 0,6
Фракция С10	0,26 ± 0,05	1,56 ± 0,29
Фракция С11	0,075 ± 0,017	0.50 ± 0,11
Фракция С12	0,027 ± 0,008	0,20 ± 0,05
Фракция С13	0,012 ± 0,003	0,094 ± 0,027
Фракция С14	0,0067 ± 0,0020	0,057 ± 0,017
Фракция С15	0,0047 ± 0,0014	0,043 ± 0,013
Фракция С16	0,0038 ± 0,0012	0,037 ± 0,011
Фракция С17	0,0027 ± 0,0008	0,028 ± 0,008
Фракция С18	0,0026 ± 0,0008	0,028 ± 0,009
Фракция С19	0,0019 ± 0,0006	0,022 ± 0,007
Фракция С20	0,0018 ± 0,0005	0,022 ± 0,007
Фракция С21	0,0015 ± 0,0005	0,020 ± 0,006
Фракция С22	0,0013 ± 0,0004	0,018 ± 0,005
Фракция С23	0,0011 ± 0,0003	0,016 ± 0,005
Фракция С24	0,00097 ± 0,00030	0.014 ± 0,004
Фракция С25	0,00084 ± 0,00026	0,013 ± 0,004
Фракция С26	0,00072 ± 0,00022	0,012 ± 0,003
Фракция С27	0,00062 ± 0,00019	0,010 ± 0,003
Фракция С28	0,00054 ± 0,00016	0,0093 ± 0,0028
Фракция С29	0,00046 ± 0,00014	0,0082 ± 0,0025
Фракция С30	0,00039 ± 0,00020*	0,007 ± 0,004*
Фракция С31	0,00033 ± 0,00017*	0,006 ± 0,003*
Фракция С32	0,00028 ± 0,00014*	0,0055 ± 0,0028*
Фракция С33	0,00023 ± 0,00012*	0,0048 ± 0,0024*
Фракция С34	0,00020 ± 0,00010*	0,0041 ± 0,0021*

V-11-11-11-11-11-11-11-11-11-11-11-11-11	Доля компонентов и фракций, %			
Компонент, фракция	молярная	массовая 0,0035 ± 0,0017*		
Фракция С35	0,00016 ± 0,00008*			
Фракция С36	0,00013 ± 0,00006*	0,0029 ± 0,0014*		
Фракция С37	0,00010 ± 0,00005*	0,0022 ± 0,0011*		
Фракция С38	0,00007 ± 0,00004*	0,0017 ± 0,0009*		
Фракция С39	0,000053 ± 0,000027*	0,0013 ± 0,0006*		
Фракция С40	0,000037 ± 0,000019*	0,0009 ± 0,0005*		
Фракция С41	0,000031 ± 0,000016*	0,0008 ± 0,0004*		
Фракция С42	0,000026 ± 0,000013*	0,0007 ± 0,0003*		
Фракция С43	0,000023 ± 0,000011*	0,0006 ± 0,0003*		
Фракция С44	0,000023 ± 0,000011*	0,0006 ± 0,0003*		

П р и м е ч а н и е $\,$ — Приведенные в таблицах Б.7 и Б.8 значения абсолютной расширенной неопределенности вычислены в соответствии с приложением В.

Приложение В (справочное)

Пример оценки неопределенности молярной и массовой долей компонентов и фракций газоконденсатной смеси

В.1 Исходные данные и неопределенности исходных величин

- В.1.1 При оценке неопределенности молярной и массовой долей компонентов и фракций газоконденсатной смеси учитывают специфику применяемых методов измерений и анализа:
 - анализ состава ГС выполняют по ГОСТ Р 57851.1 с градуировкой в единицах молярной доли;
- анализ состава НГК выполняют по ГОСТ Р 57851.3 без предварительного разгазирования пробы с градуировкой в единицах молярной доли с использованием абсолютных молярных градуировочных коэффициентов;
- измерение полученного за расчетный период времени объема ГС, приведенного к стандартным условиям, выполняют по ГОСТ Р 8.740;
 - измерение плотности ГС при стандартных условиях выполняют по ГОСТ 17310 или ГОСТ 31369;
- измерения массы и плотности НГК выполняют по аттестованным в установленном порядке методикам (методам) измерений.
- В.1.2 Вычисляют значения абсолютной расширенной неопределенности для измеренных значений молярной доли компонентов ГС по формулам, приведенным в ГОСТ Р 57851.1 (таблица 2), и относительной расширенной неопределенности измерений молярной доли компонентов и фракций НГК по формулам, приведенным в ГОСТ Р 57851.3 (таблица 3).
- В.1.3 Относительную расширенную неопределенность $U(V_{\Gamma C(CT)})$ измерений накопленного объема ГС, приведенного к стандартным условиям, вычисляют по ГОСТ Р 8.740—2011 (раздел 13). Например, для дальнейших расчетов принимают, что указанная неопределенность составляет 4 % [что соответствует уровню точности измерений «Д» по ГОСТ Р 8.740—2011 (таблица 2)].
- В.1.4 Сходимость результатов определений плотности при стандартных условиях соответствует требованиям ГОСТ 17310—2002 (подраздел 8.1).

Показатели воспроизводимости и правильности результатов определения плотности ГС при стандартных условиях соответствуют ГОСТ 17310—2002 (подраздел 8.1 и раздел 9):

- предел воспроизводимости R_B(p_C) составляет 0,005 кг/м³;
- контролируемая погрешность измерений не превышает предел допускаемой погрешности $\Delta_{\Pi}(\rho_{\Gamma C})$, который составляет 0,004 кг/м³.
- В.1.5 Граница относительной приписанной погрешности измерений (при P = 0.95) массы НГК $\theta_{0.95}^o(B_{\rm HFK})$ по применяемой методике составляет 0,8 %.
- В.1.6 Для исходных величин в соответствии с указаниями, приведенными в 10.5 настоящего стандарта, вычисляют стандартные неопределенности измерений:
- абсолютную стандартную неопределенность υ(x_i^C) измерений компонентов и фракций ГС, выраженную в единице молярной доли, по формуле (17) настоящего стандарта или

$$u(x_i^{\Gamma C}) = 0.5U(x_i^{\Gamma C});$$
 (B.1)

- относительную стандартную неопределенность $u^{o}(x_{i}^{\mathsf{HFK}})$ измерений компонентов и фракций НГК по формуле

$$u^{o}(x_{i}^{H\Gamma K}) = 0.5U^{o}(x_{i}^{H\Gamma K});$$
 (B.2)

- абсолютную стандартную неопределенность $u(x_i^{\mathsf{HFK}})$ измерений компонентов и фракций НГК по формуле (21) настоящего стандарта или

$$u(x_i^{HFK}) = 0.01u(x_i^{HFK})x_i^{HFK};$$
 (B.3)

 относительную стандартную неопределенность u^o(V_{CC(CT)}) измерений объема ГС, приведенного к стандартным условиям, по формуле

$$u^{0}(V_{\Gamma C(CT)}) = 0.5U^{0}(V_{\Gamma C(CT)}) = 0.5 \cdot 4 \% = 2 \%;$$
 (B.4)

- абсолютную стандартную неопределенность $u(\rho_{\Gamma C})$ измерений плотности ГС при стандартных условиях по формуле (20) настоящего стандарта или

$$U(\rho_{\Gamma C}) = \left\{ \frac{R_B(\rho_{\Gamma C})^2}{8} + \frac{\Delta_D(\rho_{\Gamma C})^2}{3} \right\}^{0.5} = \left\{ (0.005 \, \text{kg/m}^3)^2 \, / \, 8 + (0.004 \, \text{kg/m}^3)^2 \, / \, 3 \right\}^{0.5} = \\ = 0.002.91 \, \text{kg/m}^3; \tag{B.5}$$

относительную стандартную неопределенность u° (р_{ГС}) измерений плотности ГС при стандартных условиях по формуле (22) настоящего стандарта или

$$u(\rho_{\Gamma C}) = \frac{u(\rho_{\Gamma C})}{\rho_{\rho C}} 100 = \frac{0.00291}{0.6981} 100 = 0.417 \%$$
 (B.6)

- относительную $u^{\circ}(m_{\Gamma C})$ и абсолютную $u(m_{\Gamma C})$ стандартные неопределенности измерений массы ГС по формулам:

$$u^{o}(m_{\Gamma C}) = \left\{u^{o}(V_{\Gamma C(CT)})^{2} + u^{o}(\rho_{\Gamma C})^{2}\right\}^{0.5} = \left\{2^{2} + 0.417^{2}\right\}^{0.5} = 2.043\%;$$
 (B.7)

$$u(m_{rc}) = 0.01u^{o}(m_{rc})m_{rc} = 0.01 \cdot 2.043 \cdot 6822.5 \text{ kr} = 139.4 \text{ kr};$$
 (B.8)

 - относительную u⁰(m_{нгк}) и абсолютную u(m_{нгк}) суммарные стандартные неопределенности измерений массы НГК по формуле (18) настоящего стандарта и формуле (21) настоящего стандарта соответственно или

$$u^{o}(m_{HFK}) = \frac{\theta_{0.95}^{o}(m_{HFK})}{1.1 \cdot \sqrt{3}} = \frac{0.8}{1.1 \cdot 1.732} = 0.42 \%;$$
 (B.9)

$$u(m_{H\Gamma K}) = 0.01 \cdot 0.42 \cdot 3180 \text{ kr} = 13.36 \text{ kr}.$$
 (B.19)

Результаты расчета стандартных неопределенностей $u^o(x_i^{\text{FC}})$, $u^o(x_i^{\text{FC}})$ приведены в таблицах В.1 и В.2, стандартных неопределенностей $u(x_i^{\text{FC}})$ и $u(x_i^{\text{FC}})$ — в таблицах В.3 и В.4.

В.2 Оценка неопределенности массовой доли компонентов и фракций газоконденсатной смеси

В.2.1 Пересчитывают состав ГС и состав НГК, выраженные в единице молярной доли, в составы, выраженные в единице массовой доли, по формуле

$$w_i = \frac{x_i M_i}{\sum x_i M_i} 100. \tag{B.11}$$

Учитывая допущение, приведенное в 10.8 настоящего стандарта, принимают, что пересчитанное значение массовой доли компонентов и фракций ГС и НГК имеет приблизительно то же значение относительной стандартной неопределенности, что и исходное значение их молярной доли: $u^{\circ}(w_i^{\Gamma C}) = u^{\circ}(x_i^{\Gamma C})$ и $u^{\circ}(w_i^{\mu \Gamma K}) \equiv u^{\circ}(x_i^{\mu \Gamma K})$.

Примечание — При точной оценке относительную стандартную неопределенность массовой доли компонентов и фракций, обусловленную неопределенностью результатов измерений молярной доли, можно вычислить по формуле

$$u^{\alpha}(w_{i}) = \left\{ (1 - 0.02w_{i})u^{\alpha}(x_{i})^{2} + \sum_{i} \left[M_{i}x_{i}u^{\alpha}(x_{i}) \right]^{2} / \left[\sum_{i} (M_{i}x_{i}) \right]^{2} \right\}^{0.5}.$$
(B.12)

где x_i — измеренное значение молярной доли i-го компонента или фракции, %;

w_i — рассчитаннов значение массовой доли i-го компонента или фракции, %;

М, — молярная масса для і-го компонента или фракции, кг/кмоль.

В.2.2 Полученные значения стандартных неопределенностей $u(m_{\Gamma C})$, $u(m_{H\Gamma K})$, $u(w_j^{\Gamma C})$, $u(w_j^{H\Gamma K})$ используют для вычисления по формуле (27) настоящего стандарта абсолютной расширенной (при k=2) неопределенности $U(w_j^{\Gamma KC})$ массовой доли компонентов и фракций ГКС.

Результаты расчета неопределенностей $u(w_i^{FC})$, $u(w_i^{HFK})$ и $U(w_i^{FKC})$ приведены таблицах В.1 и В.2.

Таблица В.1— Результаты расчета неопределенности массовой доли компонентов и фракций, ранжированных по температурам кипения, газа сепарации, нестабильного газового конденсата и газоконденсатной смеси

2.145					D inpudgain
Наименование фракции или компонента	$u^{\circ}(x_{i}^{\Gamma C})$	no(xiHLK)	u(w ^{FC})	u(w HFK)	U(w _j rkc)
Сероводород	4,42	12,61	0,008	0,024	0,019
Карбонилсульфид	25*	25	0,00006*	0,00011*	0,00010*
Метилмеркаптан	25*	15	0,0005*	0,007	0,004
Этилмеркаптан	25*	13,25	0,0007*	0,03	0,022

Продолжение таблицы В.1

Наименование фракции или компонента	u°(x ^{FC})	$u^o(x_{H\Gamma K}^i)$	u(w ^{FC})	$u(w_j^{HFK})$	$U(w_i^{\text{FKC}})$
Диметилсульфид	25*	15	0.00006*	0,003	0,0022
Азот	5,14	25*	0,04	0,0004*	0,06
Диоксид углерода	7,75	14,4	0,010	0,009	0,015
Метан	0,21	8,79	0,19	80,0	0,9
Этан	2,69	8,745	0,16	0,16	0,25
Пропан	5,435	8,96	0,05	0,20	0,14
Изобутан	7,69	9,25	0,015	0,19	0,13
<i>н</i> -бутан	7,605	8,43	0,019	0,4	0,24
Изопентан	8,83	8,69	0,006	0,4	0,25
к-пентан	8,94	8,2	0,006	0,5	0,3
Фракция 45—60	25*	11,22	0,0009*	0,08	0,05
Фракция 60—70	10,99	6,67	0,005	1,0	0,7
Фракция 70—80	25*	9,53	0,0008*	0.19	0,12
Фракция 80—90	15	8,69	0,0009	0,5	0,3
Фракция 90—100	15	7,16	0,0014	1,0	0,7
Фракция 100—110	25*	8,935	0,0006*	0,5	0,3
Фракция 110—120	25*	7,85	0,0007*	0,9	0,6
Фракция 120—130	25*	9,145	0,00019*	0,4	0,27
Фракция 130—140	25*	8,965	0,00016*	0,5	0,3
Фракция 140—150	25*	9,48	0,00005*	0,29	0,19
Фракция 150—160	25*	9,575	0,000028*	0,25	0,16
Фракция 160—170	25*	9,695	0,000013*	0,19	0,12
Фракция 170—180	25"	11,71	0,000005*	0,13	80,0
Фракция 180—190		13,255		0,08	0,05
Фракция 190—200		13,625		0,07	0,04
Фракция 200—210		14,31		0,04	0,024
Фракция 210—220		14,405		0,03	0,022
Фракция 220—230		15		0,019	0,012
Фракция 230—240		15		0,022	0,014
Фракция 240—250		15	1 20	0,012	0,007
Фракция 250—260		15		0,014	0,009
Фракция 260—270		15	7	0,010	0,007
Фракция 270—280		15		0,011	0,007

Наименование фракции или компонента	$n_o(x_{LC}^i)$	$u^{o}(x_{i}^{H\Gamma K})$	$u(w_i^{\Gamma C})$	$u(w_i^{HFK})$	U(w, FKC)
Фракция 280—290		15		0,010	0,006
Фракция 290—300		15		0,008	0,005
Фракция 300—310		15		0,009	0,006
Фракция 310—320		15		0,009	900,0
Фракция 320—330		15		0,007	0,004
Фракция 330—340		15		0,008	0,005
Фракция 340—350		15		0,007	0,005
Фракция 350—360		15		0,007	0,004
Фракция 360—370		15		0,007	0,004
Фракция 370—380		15		0,006	0,004
Фракция 380—390		15	Ç	0,006	0,004
Фракция 390—400		15		0,006	0,004
Фракция 400—410		15		0,005	0,003
Фракция 410—420		15		0,005	0,003
Фракция 420—430		15		0,005	0,0029
Фракция 430—440		15		0,004	0,0027
Фракция 440—450		15		0,004	0,0024
Фракция 450—460		25*	(h	0,006*	0,004*
Фракция 460—470		25*		0,005*	0,003*
Фракция 470—480		25*		0,005*	0,0029*
Фракция 480—490		25*		0,004*	0,0025*
Фракция 490—500		25*		0,003*	0,0021*
Фракция 500—510		25*		0,0027*	0,0017*
Фракция 510—520		25*		0,0022*	0,0014*
Фракция 520—530		25*		0.0016*	0,0010*
Фракция 530—540	ļ	25*		0,0010*	0,0006*
Фракция 540—550		25*		0,0008*	0,0005*
Фракция 550—560		25*		0,0007*	0,0005*
Фракция 560—570		25*		0,0006*	0,0004*

^{*} Неопределенности для значений, выходящих за нижнюю границу диапазонов измерений молярной (массовой) доли, установленных в ГОСТ Р 57851.1, ГОСТ Р 57851.2 и ГОСТ Р 57851.3, приведены здесь в качестве ориентировочных и рассчитаны с использованием допущения, приведенного в таблице 1 [см. сноску 5)].

ГОСТ P 57851.4-2017

Таблица В.2— Результаты расчета неопределенности массовой доли компонентов и фракций, ранжированных по числу атомов углерода, газа сепарации, нестабильного газового конденсата и газоконденсатной смеси

Наименование фракции или компонента	$u^{o}(x_{i}^{\Gamma C})$	$u^{o}(x_{j}^{H\Gamma K})$	$u(w_i^{FC})$	u(w _i ^{HEK})	$U(w_i^{FKC})$
Сероводород	4,42	12,635	0,008	0,024	0,019
Карбонилсульфид	25*	25*	0,00006*	0,00011*	0,00010*
Метилмеркаптан	25*	15	0,0005*	0,007	0,004
Этилмеркаптан	25*	13,27	0,0007*	0,03	0,022
Диметилсульфид	25*	15	0,00006*	0,003	0,0022
Азот	5,14	25*	0,04	0,0004*	0,06
Диоксид углерода	7,75	14,405	0,010	0,009	0,015
Метан	0,21	8,8	0,19	0,08	0,9
Этан	2,69	8,755	0,16	0,16	0,25
Пропан	5,435	8,975	0,05	0,20	0,14
Изобутан	7,69	9,255	0,015	0,19	0,13
н-бутан	7,605	8,445	0,019	0,4	0,24
Изопентан	8,83	8,705	0,006	0,4	0,25
н-пентан	8,94	8,22	0,006	0,5	0,3
Фракция С6	8,95	6,74	0,006	1,0	0,6
Фракция С7	15	6,065	0,004	1,3	0,9
Фракция С8	15	6,525	0,0010	1,4	0,9
Фракция С9	25*	8,075	0,00025*	0,9	0,6
Фракция С10	25*	9,245	0,00004*	0,5	0,29
Фракция С11		10,61		0,17	0,11
Фракция С12		13,41		0,08	0,05
Фракция С13		14,305		0,04	0,027
Фракция С14		15		0,027	0,017
Фракция С15		15		0,020	0,013
Фракция С16		15		0,017	0,011
Фракция С17		15		0,013	0,008
Фракция С18		15		0,013	0,009
Фракция С19		15		0,010	0,007
Фракция С20		15		0,010	0,007
Фракция С21		15		0,009	0,006
Фракция С22		15		0,008	0,005
Фракция С23		15		0,007	0,005
Фракция С24		15		0,007	0,004
Фракция С25		15		0,006	0,004
Фракция С26		15		0,005	0,003

Наименование фракции или компонента	$n_o(x_{LC}^1)$	$u^{o}(x_{i}^{H\Gamma K})$	$u(w_i^{\Gamma C})$	$u(w_j^{HFK})$	U(w, TKC)
Фракция С27		15		0,005	0,003
Фракция С28		15		0,004	0,0028
Фракция С29		15		0,004	0,0025
Фракция С30		25*		0,006*	0,004*
Фракция С31		25*		0,005*	0,003*
Фракция С32		25*		0,004*	0,0028*
Фракция С33		25*		0,004"	0,0024*
Фракция С34		25*		0,003"	0,0021*
Фракция С35		25*		0,0027*	0,0017*
Фракция С36		25*		0,0023*	0,0014*
Фракция С37		25*		0,0018*	0,0011*
Фракция С38		25*		0,0014*	0,0009*
Фракция С39		25*		0,0010*	0,0006*
Фракция С40		25*		0,0007*	0,0005*
Фракция С41		25*		0,0006*	0,0004*
Фракция С42		25*		0,0005*	0,0003*
Фракция С43		25*		0,0005*	0,0003*
Фракция С44		25*		0,0005*	0,0003*

В.3 Оценка неопределенности молярной доли компонентов и фракций газоконденсатной смеси

В.3.1 По вычисленным в соответствии с В.1.6 значениям $u(x_i^{FC})$ и $u(x_i^{FCK})$ оценивают по формулам (29) и (30) настоящего стандарта абсолютную стандартную неопределенность $u(M_{FC})$ молярной массы FC и неопределенность $u(M_{FC})$ ленность $u(M_{H\Gamma K})$ молярной массы НГК, обусловленные неопределенностью измерений молярной доли компонентов и фракций ГС и НКГ.

Значения стандартных неопределенностей $u(M_{\Gamma C})$ и $u(M_{H\Gamma K})$ составляют соответственно 0,0437 и

В.3.2 Используя результаты оценивания неопределенностей $u(M_{\Gamma C})$ и $u(M_{H\Gamma K})$, а также неопределенностей исходных величин $u(x_i^{\Gamma C})$, $u(x_i^{H\Gamma K})$, $u(B_{\Gamma C})$ и $u(B_{H\Gamma K})$ (см. В.1.6), оценивают по формуле (28) настоящего стандарта абсолютную расширенную (при k=2) неопределенность $U(x_i^{\Gamma KC})$ молярной доли компонентов и фракций ГКС. Результаты расчета неопределенностей $u(x_i^{\Gamma C})$, $u(x_i^{H\Gamma K})$ и $U(x_i^{\Gamma KC})$ приведены в таблицах В.3 и В.4.

Таблица В.3 — Результаты расчета неопределенности молярной доли компонентов и фракций, ранжированных по температурам кипения, газа сепарации, нестабильного газового конденсата и газоконденсатной смеси

Наименование фракции или компонента	u(x _I ^{CC})	n(xiHLK)	U(x _i ^{FKC})
Сероводород	0,004	0,06	0,012
Карбонилсульфид	0,000017*	0,00015*	0,00004*
Метилмеркаптан	0,00017*	0,012	0,0021
Этилмеркаптан	0,00019*	0,05	800,0

Продолжение таблицы В.3

Наименование фракции или компонента	$n(x_{LC}^i)$	$u(x_i^{HFK})$	$U(x_j^{\Gamma KC})$
Диметилсульфид	0,000015*	0,005	0,0008
Азот	0,024	0,0012*	0,04
Диоксид углерода	0,004	0,017	800,0
Метан	0.20	0,4	0,6
Этан	0,09	0,4	0,18
Пропан	0,017	0,4	0,07
Изобутан	0,004	0,28	0,05
н-бутан	0,005	0,5	0,10
Изопентан	0,0014	0,5	0,08
н-пентан	0,0013	0,6	0,11
Фракция 45—60	0,00018*	80,0	0,015
Фракция 60—70	0,0009	1,0	0,19
Фракция 70—80	0,00016*	0,18	0,03
Фракция 80—90	0,00017	0,5	0,08
Фракция 90—100	0,00025	0,9	0,16
Фракция 100—110	0,00009*	0,4	0,07
Фракция 110—120	0,00011*	0,7	0,12
Фракция 120—130	0,000029*	0,3	0,06
Фракция 130—140	0,000022*	0,4	0,07
Фракция 140—150	0,000007*	0,20	0,04
Фракция 150—160	0,000004*	0,16	0,029
Фракция 160—170	0,0000015*	0,12	0,021
Фракция 170—180	0,0000006*	80,0	0,013
Фракция 180—190		0,05	0,008
Фракция 190—200		0,04	0,006
Фракция 200—210		0,020	0,003
Фракция 210—220		0,017	0,0030
Фракция 220—230		0,009	0,0016
Фракция 230—240		0,010	0,0018
Фракция 240—250		0,005	0,0009
Фракция 250—260		0,006	0,0011
Фракция 260—270		0,004	0,0007
Фракция 270—280		0,004	0,0007
Фракция 280—290		0,004	0,0007
Фракция 290—300		0,0027	0,0005
Фракция 300—310		0,003	0,0005

Наименование фракции или компонента	$u(\mathbf{x}_i^{FC})$	n(x _{HLK})	$U(x_i^{\text{FKC}})$
Фракция 310—320		0,0030	0,0005
Фракция 320—330		0,0021	0,0004
Фракция 330—340		0,0024	0,0004
Фракция 340—350		0,0022	0,0004
Фракция 350—360		0,0020	0,0003
Фракция 360—370		0,0018	0,0003
Фракция 370—380		0,0017	0,00029
Фракция 380—390		0,0015	0,00026
Фракция 390—400		0,0014	0,00024
Фракция 400—410		0,0012	0,00022
Фракция 410—420		0,0011	0,00019
Фракция 420—430		0,0010	0,00017
Фракция 430—440		0,0009	0,00015
Фракция 440—450		8000,0	0,00014
Фракция 450—460	1	0,0011*	0,00020*
Фракция 460—470		0,0010*	0,00017*
Фракция 470—480		0,0008*	0,00014*
Фракция 480—490		0,0007*	0,00012*
Фракция 490—500		0,0006*	0,00010*
Фракция 500—510		0,0005*	0,00008*
Фракция 510—520		0,0004*	0,00006*
Фракция 520—530		0,00025*	0,00004*
Фракция 530—540		0,00015*	0,000025*
Фракция 540—550		0,00012*	0,000021*
Фракция 550—560		0,00010*	0,000017*
Фракция 560—570		0,00008*	0.000014*

Таблица В.4 — Результаты расчета неопределенности молярной доли компонентов и фракций, ранжированных по числу атомов углерода, газа сепарации, нестабильного газового конденсата и газоконденсатной смеси

Наименование фракции или компонента	u(x _i ^{CC})	u(x,HFK)	$U(x_i^{\Gamma KC})$
Сероводород	0,004	0,06	0,012
Карбонилсульфид	0,000017*	0,00015*	0,00004*
Метилмеркаптан	0,00017*	0,012	0,0021
Этилмеркаптан	0,00019*	0,05	0,008
Диметилсульфид	0,000015*	0,005	8000,0

Продолжение таблицы В.4

Наименование фракции или компонента	n(x ⁱ _{LC})	u(x ^{Hrk})	$U(x_j^{FKG})$
Азот	0,024	0,0012*	0,04
Диоксид углерода	0,004	0,017	0,008
Метан	0,20	0,4	0,6
Этан	0,09	0,4	0,18
Пропан	0,017	0,4	0,07
Изобутан	0,004	0,28	0,05
н-бутан	0,005	0,5	0,10
Изолентан	0,0014	0,5	0,08
н-пентан	0,0013	0,6	0,11
Фракция С6	0,0013	1,0	0,19
Фракция С7	0,0007	1,2	0,23
Фракция С8	0,00015	1,1	0,20
Фракция С9	0,00004*	0,6	0,11
Фракция С10	0,000005*	0,28	0,05
Фракция С11		0,09	0,017
Фракция С12		0,04	0,008
Фракция С13		0,020	0,003
Фракция С14		0,012	0,0020
Фракция С15		0,008	0,0014
Фракция С16		0,007	0,0012
Фракция С17		0,005	8000,0
Фракция С18		0,004	8000,0
Фракция С19		0,003	0,0006
Фракция С20)	0,003	0,0005
Фракция С21		0,0027	0,0005
Фракция С22		0,0023	0,0004
Фракция С23		0,0020	0,0003
Фракция С24		0,0017	0,00030
Фракция С25		0,0015	0,00026
Фракция С26		0,0013	0,00022
Фракция С27		0,0011	0,00019
Фракция С28		0,0009	0,00016
Фракция С29		0,0008	0,00014
Фракция С30		0,0011*	0,00020*
Фракция СЗ1		0,0010*	0,00017*

[1] Руководство ЕВРАХИМ/СИТАК

Наименование фракции или компонента	u(x ^{FC})	$u(x_i^{HFK})$	$U(x_l^{\Gamma KC})$
Фракция С32		0,0008*	0,00014*
Фракция С33		0,0007*	0,00012*
Фракция С34		0,0006*	0,00010*
Фракция С35		0,0005*	0,00008*
Фракция С36		0,0004*	0,00006*
Фракция С37		0,00029*	0,00005*
Фракция С38		0,00022*	0,00004*
Фракция С39		0,00016*	0,000027*
Фракция С40		0,00011*	0,000019*
Фракция С41		0,00009*	0,000016*
Фракция С42		0,00008*	0,000013*
Фракция С43		0,00007*	0,000011*
Фракция С44		0,00007*	0,000011*

Библиография

Количественное описание неопределенности в аналитических изме-

	рениях (2-е изд., 2000) / Пер. с англ. СПб: ВНИИМ им. Д.И. Менделе- ева, 2002
Рекомендации по метрологии РМГ 91—2009	Государственная система обеспечения единства измерений. Со- вместное использование понятий «погрешность измерения» и «не- определенность измерения». Общие принципы
ТУ 25-05-1664—74	Манометры и вакуумметры деформационные образцовые с условны- ми шкалами типов МО и ВО. Технические условия
Государственная служба стандартных справочных данных. Таблицы стандартных справочных данных ГСССД 187—99	Вода. Удельный объем и энтальпия при температурах 01000 °C и давлениях 0,0011000 МПа
Государственная служба стандартных справочных данных. Таблицы стандартных справочных данных ГСССД 59—83	Молибден, монокристаллическая окись алюминия, сталь 12X18H10T. Температурный коэффициент линейного расширения
Государственная служба стандартных справочных данных. Таблицы стандартных справочных данных ГСССД 90—85	н-Гексан. Термодинамические свойства при температурах 180630 К и давлениях 0,1100 МПа
	РМГ 91—2009 ТУ 25-05-1664—74 Государственная служба стандартных справочных данных. Таблицы стандартных справочных данных ГСССД 187—99 Государственная служба стандартных справочных данных. Таблицы стандартных справочных данных ГСССД 59—83 Государственная служба стандартных справочных данных. Таблицы стандартных справочных данных справочных данных

УДК 543.631:006.354 OKC 75.060

Ключевые слова: газоконденсатная смесь, расчет компонентно-фракционного состава

Б3 10-2017/163

Редактор Л.И. Нахимова Технический редактор И.Е. Черепкова Корректор Е.И. Рычкова Компьютерная верстка Л.В. Софейчук

Сдано в набор 02.11.2017 — Подписано в печать 13.12.2017. — Формат 60×84 $^{1}\!I_{8}$. — Гаринтура Ариал Усл., печ. л. 5,58. — Уч.-изд. л. 5.02. — Тираж 23 экз. — Зак. 2552 — Подготовлено на основе электрониой версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Моская, ул. Орджоникидзе, 11. www.junsizdat.ru y-book@mail.ru