ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 57430— 2017

ТРУБЫ, СОЕДИНИТЕЛЬНЫЕ ЧАСТИ ИЗ ВЫСОКОПРОЧНОГО ЧУГУНА С ШАРОВИДНЫМ ГРАФИТОМ И ИХ СОЕДИНЕНИЯ ДЛЯ ПРОМЫСЛОВЫХ НЕФТЕПРОВОДОВ

Технические условия

Издание официальное

Предисловие

- 1 РАЗРАБОТАН Открытым акционерным обществом «Российский научно-исследовательский институт трубной промышленности» (ОАО «РосНИТИ»)
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 357 «Стальные и чугунные трубы и баллоны»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 28 марта 2017 г. № 200-ст
 - 4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Содержание

1	Область применения	. 1
	Нормативные ссылки	
3	Термины, определения, обозначения и сокращения	2
	3.1 Термины и определения	2
	3.2 Обозначения и сокращения	. 3
4	Сортамент	. 3
	4.1 Размеры	. 3
	4.2 Классы	. 7
	4.3 Толщина стенки	. 7
	4.4 Длина	. 7
	4.5 Macca	. 7
	4.6 Примеры условных обозначений	7
	4.7 Сведения, указываемые в заказе	
5	Технические требования	
•	5.1 Способ производства	
	5.2 Химический состав	
	5.3 Механические свойства	
	5.4 Твердость	
	5.5 Микроструктура	
	5.6 Предельные отклонения размеров, длины, формы и массы	
	5.7 Качество поверхности	
	5.8 Качество поверхности	
	5.9 Герметичность	
	5.10 Угол загиба	
	5.11 Отделка концов	
	5.12 Маркировка и упаковка	
_	5.13 Защитные покрытия	
	Требования безопасности и охраны окружающей среды	
	Правила приемки	
	Методы контроля и испытаний	
	Комплектность	
	Э Транспортирование и хранение	
	I Погрузка и разгрузка	
	2 Указания по применению	
	риложение A (рекомендуемое) Раструбно-замковое соединение «RJ»	
П	риложение Б (обязательное) Соединительные части литые	19
	риложение В (обязательное) Соединительные части сварные	
П	риложение Г (рекомендуемое) Рекомендуемый химический состав ВЧШГ	42
	риложение Д (обязательное) Классификатор допустимых поверхностных дефектов труб	
	и соединительных частей из ВЧШГ	43
П	риложение Е (рекомендуемое) Диагностирование трубопроводов	53
	ибпиография	54

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТРУБЫ, СОЕДИНИТЕЛЬНЫЕ ЧАСТИ ИЗ ВЫСОКОПРОЧНОГО ЧУГУНА С ШАРОВИДНЫМ ГРАФИТОМ И ИХ СОЕДИНЕНИЯ ДЛЯ ПРОМЫСЛОВЫХ НЕФТЕПРОВОДОВ

Технические условия

Pipes, fitting from ductile iron with spherical graphite and their connections for trade oil pipelines. Specifications

Дата введения — 2017—09—01

1 Область применения

Настоящий стандарт устанавливает требования к трубам и соединительным частям из высокопрочного чугуна с шаровидным графитом и их соединениям, используемым для подземной и надземной прокладки при строительстве трубопроводов внутрипромыслового сбора, транспорта нефти и сопутствующих ей компонентов — примесей, газа и пластовых вод.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 9.602 Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии

ГОСТ 166 Штангенциркули. Технические условия

ГОСТ 577 Индикаторы часового типа с ценой деления 0,01 мм. Технические условия

ГОСТ 969 Цементы глиноземистые и высокоглиноземистые. Технические условия

ГОСТ 1497 Металлы. Методы испытаний на растяжение

ГОСТ 2216 Калибры-скобы гладкие регулируемые. Технические условия

ГОСТ 3443 Отливки из чугуна с различной формой графита. Методы определения структуры

ГОСТ 6507 Микрометры. Технические условия

ГОСТ 7293 Чугун с шаровидным графитом для отливок

ГОСТ 7565 Чугун, сталь и сплавы. Метод отбора проб для определения химического состава

ГОСТ 8026 Линейки поверочные. Технические условия

ГОСТ 8736 Песок для строительных работ. Технические условия

ГОСТ 9012 Металлы. Метод измерения твердости по Бринеллю

ГОСТ 9454 Металлы. Методы испытания на ударный изгиб при пониженных, комнатной и повышенных температурах

ГОСТ 10692 Трубы стальные, чугунные и соединительные части к ним. Приемка, маркировка, упаковка, транспортирование и хранение

ГОСТ 12821 Фланцы стальные приварные встык на $P_{\rm y}$ от 0,1 до 20,0 МПа (от 1 до 200 кгс/см²). Конструкция и размеры

ГОСТ 13841 Ящики из гофрированного картона для химической продукции. Технические условия

ГОСТ 14192 Маркировка грузов

ГОСТ 15140 Материалы лакокрасочные. Методы определения адгезии

ГОСТ 18360 Калибры-скобы листовые для диаметров от 3 до 260 мм. Размеры

ГОСТ 18365 Калибры-скобы листовые со сменными губками для диаметров свыше 100 до 360 мм. Размеры

ГОСТ 19200 Отливки из чугуна и стали. Термины и определения дефектов

ГОСТ 27208 Отливки из чугуна. Методы механических испытаний

ГОСТ ISO 2531 Трубы, фитинги, арматура и их соединения из чугуна с шаровидным графитом для водо- и газоснабжения. Технические условия

Примензть в имеечамие — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется принять в части, не затрагивающей эту ссылку.

3 Термины, определения, обозначения и сокращения

3.1 Термины и определения

В настоящем стандарте применены термины по ГОСТ 19200, а также следующие термины с соответствующими определениями:

- 3.1.1 **высокопрочный чугун с шаровидным графитом**; ВЧШГ: Тип чугуна, в котором графит присутствует преимущественно в шаровидной форме.
- 3.1.2 гладкий конец: Конец трубы или соединительной части, помещаемый в раструбное соединение.
 - 3.1.3 длина: Действительная длина трубы или соединительной части (см. рисунок 1).

Примечани е — Для фланцевых соединений действительная длина равна полной длине. Для раструбных соединений действительная длина равна полной длине минус глубина, на которую входит гладкий конец в раструб.

- 3.1.4 допустимое рабочее давление: Внутреннее давление, исключая скачки давления, которое компоненты трубопровода должны безопасно выдерживать при постоянной работе.
- 3.1.5 **класс трубы или соединительной части**; К: Коэффициент обозначения толщины стенки трубы или соединительной части, выбираемый из целого ряда чисел 9, 10, 11, 12...
 - 3.1.6 номинальная масса: Справочная масса отливки с номинальными размерами.
- 3.1.7 **номинальное давление**; **РN**, МПа: Цифровое обозначение давления, выраженное числом, которое носит справочный характер для всех компонентов трубопровода одного номинального размера, имеющих сопряженные размеры.
- 3.1.8 **овальность**; **О**, %: Отклонение от окружности поперечного сечения трубы, определяемое по формуле

 $O = \frac{D_{\text{max}} - D_{\text{min}}}{D} 100, \tag{1}$

где D_{\max} — максимальный наружный диаметр, мм;

 D_{\min} — минимальный наружный диаметр, мм;

D — номинальный наружный диаметр, мм.

- 3.1.9 **отросток:** Ответвление от основной цилиндрической части отливки, расположенное под углом к ней, с равным или меньшим условным проходом *DN*.
 - 3.1.10 партия: Количество отливок, из которого выбирается образец для испытаний.

П р и м е ч а н и е — За партию принимается количество труб или соединительных частей, отлитых из металла одной плавки, одного типоразмера, одного вида термообработки.

- 3.1.11 **раструб**: Конец трубы или соединительной части, охватывающий гладкий конец трубы или соединительной части.
- 3.1.12 раструбно-замковое соединение: Фиксированное соединение труб или соединительных частей, в котором предусмотрено устройство, предотвращающее разъединение собранного соединения при сохранении его герметичности, подвижности и прочности.

П р и м е ч а н и е — Раструбно-замковое соединение включает в себя уплотнительное кольцо и комплект стопоров. Данные элементы и раструб трубы могут иметь различное конструктивное исполнение.

- 3.1.13 соединительная часть: Присоединяемое к трубе изделие, которое обеспечивает отклонение и/или изменение направления трубопровода.
- 3.1.14 труба: Отливка с равнопроходным каналом, с прямой осью, имеющая гладкий и раструбный или фланцевый концы.
- 3.1.15 условный проход; DN, мм: Округленное цифровое обозначение внутреннего проходного сечения, которое является общим для всех компонентов трубопроводной системы.
- 3.1.16 эффективная длина; L, мм: Для раструбных труб и соединительных частей L равна полной длине минус глубина раструба I_1 , на которую входит гладкий конец (см. рисунок 1).

3.2 Обозначения и сокращения

3.2.1 Обозначения

```
b — ширина кольцевого валика, мм;
```

D — наружный диаметр раструба, мм;

D_{max} — максимальный наружный диаметр, мм;

 D_{\min}^{\max} — минимальный наружный диаметр, мм; DE — наружный диаметр трубы, мм;

DN — условный проход, мм;

h — высота кольцевого валика, мм;

I — расстояние от торца трубы до кольцевого валика, мм;

 I_1 — длина раструба, мм;

L — эффективная длина, мм;

О — овальность, %;

PN — номинальное давление, МПа;

S — толщина стенки трубы, мм;

 S_1 — толщина внутреннего покрытия, мм;

 $\sigma_{\rm T}$ — предел текучести, H/мм²;

 $\sigma_{\rm B}$ — временное сопротивление, H/мм²;

 δ_5 — относительное удлинение, %.

3.2.2 Сокращения

ВЧШГ — высокопрочный чугун с шаровидным графитом;

К — класс трубы или соединительной части;

ДРК — двойной раструб компенсационный;

МС — муфта свертная;

МН — муфта надвижная;

ОР — отвод раструбный;

ОРГ — отвод, раструб — гладкий конец;

ПРГ — патрубок, раструб — гладкий конец;

ПФР — патрубок, фланец — раструб;

ПФГ — патрубок, фланец — гладкий конец;

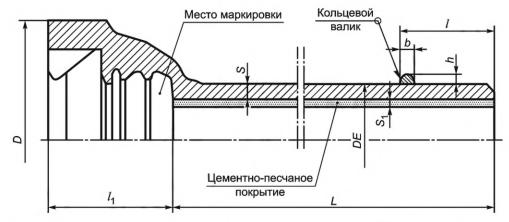
ПРГ ст. — патрубок, раструб — гладкий конец сталь;

ТР — тройник раструбный;

ТРГ — тройник, раструб — гладкий конец;

ТРФГ — тройник, раструб — фланец — гладкий конец;

ТРФ — тройник, раструб — фланец;


УР — колено раструбное;

УРГ — колено, раструб — гладкий конец.

4 Сортамент

4.1 Размеры

4.1.1 Трубы и соединительные части изготавливают условным проходом DN 80, 100, 125, 150, 200, 250, 300, 350, 400 и 500 мм. Основные размеры гладких концов труб приведены на рисунке 1 и в таблице 1.

b — ширина кольцевого валика; D — наружный диаметр раструба; DE — наружный диаметр трубы; h — высота кольцевого валика; l — расстояние от торца трубы до кольцевого валика; l — длина раструба; L — эффективная длина; S — толщина стенки трубы; S — толщина внутреннего покрытия

Рисунок 1 — Основные размеры труб и их гладких концов

Таблица 1 — Основные размеры и масса труб

	Размеры, мм							Номинальная масса трубі без цементного покрытия		
Услов- ный	На- ружный	На- ружный	Толщина стенки	Толщина внутрен-	торца коль- трубы до цевого	Высота коль-	Ширина коль-	цементным п при эффект	го покрытия/с юкрытием, кг, ивной длине мм	
проход DN	диаметр раструба <i>D</i>	диаметр трубы <i>DE</i> ¹⁾	трубы S ¹⁾²⁾	него по- крытия Ѕ ₁		цевого валика <i>h</i>	цевого валика <i>b</i>	5800	6000	
80	156	98 ^{+1,0} _{-2,7}	6,0 _{-1,3}	3 ^{+2,0} _{-1,5}	85	5,0	8 ± 2,0	76,0/87,0	78,5/90,0	
100	176	118 ^{+1,0} _{-2,8}	6,0 _{-1,3}	3 ^{+2,0} _{-1,5}	91	5,0	8 ± 2,0	95,0/108,0	98,0/12,0	
125	205	144 ^{+1,0} -2,8	6,0 _{-1,3}	3 ^{+2,0} _{-1,5}	95	5,0	8 ± 2,0	118,0/135,0	122,0/139,0	
150	230	170 ^{+1,0} _{-2,9}	6,0 _{-1,3}	3 ^{+2,0} _{-1,5}	101	5,0	8 ± 2,0	143,0/163,0	148,0/168,0	
200	288	222_3,0	6,3 _{-1,5}	3 ^{+2,0} _{-1,5}	106	5,5	9 ± 2,0	194,0/222,0	200,5/229,0	
250	346	274 ^{+1,0} _{-3,0}	6,8 _{-1,6}	3 ^{+2,0} _{-1,5}	106	5,5	9 ± 2,0	255,0/290,0	264,0/299,0	
300	402	326 ^{+1,0} _{-3,3}	7,2 _{-1,6}	3 ^{+2,0} _{-1,5}	106	5,5	9 ± 2,0	323,0/363,0	334,0/375,0	
350	452	378 ^{+1,0} _{-3,4}	7,7 _{-1,7}	5 ^{+3,5} _{-2,0}	110	6,0	10 ± 2,0	401,0/473,0	415,0/488,0	
400	513	429 ^{+1,0} _{-3,5}	8,1 _{-1,7}	5 ^{+3,5} _{-2,0}	115	6,0	10 ± 2,0	480,0/568,0	497,0/586,0	
500	618	532 _{-3,8}	9,0 _{-1,8}	5 ^{+3,5} _{-2,0}	120	6,0	10 ± 2,0	666,0/776,0	689,0/800,0	

¹⁾ Допуски для DE и S приведены для труб без покрытий. На другие размеры допуски не регламентируют.
2) Номинальная масса и толщина стенки трубы приведены для класса К9. Для других классов данные параметры могут незначительно отличаться.

Примечания

¹ Толщина наружных покрытий — по [1] и [2].

² Длину раструба /₁ не регламентируют.

Трубы и соединительные части могут иметь различные типы раструбно-замкового соединения (например «RJ», см. приложение A). Тип раструбно-замкового соединения устанавливают по согласованию между изготовителем и заказчиком.

- 4.1.2 Литые соединительные части из ВЧШГ изготавливают:
- с раструбной частью с одной стороны и гладким концом с другой;
- с фланцем с одной стороны и гладким концом с другой;
- с раструбными частями с двух или трех (для тройников) сторон.

Наименования и обозначения литых соединительных частей приведены в таблице 2, конфигурация и размеры — в приложении Б.

Таблица 2 — Литые соединительные части

Наштанаранна	Обоз	начение	Конфигурация и основные раз-	
Наименование	в схемах	в документе	меры	
Тройник раструбный	ککر	TP	Рисунок Б.2, таблица Б.2	
Колено раструбное	۲,	УР	Рисунок Б.3, таблица Б.3	
Колено, раструб — гладкий конец	/ ر	УРГ	Рисунок Б.4, таблица Б.4	
Отвод раструбный	~	OP	Рисунок Б.5, таблица Б.5	
Отвод, раструб — гладкий конец	~	ОРГ	Рисунок Б.6, таблица Б.6	
Патрубок, раструб — гладкий конец	—	ПРГ	Рисунок Б.7, таблица Б.7	
Патрубок, фланец — раструб	> —	ПФР	Рисунок Б.8, таблица Б.8	
Патрубок, фланец — гладкий конец	⊢	ПФГ	Рисунок Б.9, таблица Б.9	
Двойной раструб компенсационный	IXI	дрк	Рисунок Б.10, таблица Б.10	
Муфта свертная	—	MC	Рисунок Б.11, таблица Б.12	
Муфта надвижная	\bowtie	МН	Рисунок Б.12, таблица Б.13	

FOCT P 57430—2017

- 4.1.3 Сварные соединительные части из ВЧШГ изготавливают:
- с раструбной частью с одной стороны и гладким концом с другой;
- с фланцем с одной стороны и гладким концом с другой;
- с раструбными частями с двух или трех (для тройников) сторон;
- с раструбной частью, фланцем и гладким концом (для тройников).

П р и м е ч а н и е — По согласованию между изготовителем и заказчиком возможны другие варианты изготовления сварных соединительных частей.

Наименования и обозначения сварных соединительных частей приведены в таблице 3, конфигурация и размеры — в приложении В.

Таблица 3 — Сварные соединительные части

Hamania	Обозначе	Конфигурация и основ-	
Наименование	в схемах	в документе	ные размеры
Тройник, раструб — гладкий конец	۲(ТРГ	Рисунок В.1, таблица В.1
Тройник, раструб — фланец — гладкий конец	<u>-</u> (ТРФГ	Рисунок В.1, таблица В.1
Тройник раструбный	يكر	TP	Рисунок В.2, таблица В.2
Тройник, раструб — фланец	ہتر	ТРФ	Рисунок В.2, таблица В.2
Колено, раструб — гладкий конец	~	УРГ	Рисунок В.3, таблица В.3
Колено раструбное	~	УР	Рисунок В.4, таблица В.3
Отвод раструбный	~	OP	Рисунки В.5, В.6, таблицы В.4, В.5
Отвод, раструб — гладкий конец	~	ОРГ	Рисунки В.5, В.6, таблицы В.4, В.5
Патрубок, фланец — гладкий конец	—	ПФГ	Рисунок В.7, таблица В.6
Патрубок, фланец — раструб)—	ПФР	Рисунок В.8, таблица В.7
Патрубок, раструб — гладкий конец сталь) •	ПРГ ст.	Рисунок В.9, таблица В.8

4.2 Классы

Трубы и соединительные части изготавливают следующих классов: К9, К10, К11, К12...

4.3 Толщина стенки

Номинальную толщину стенки труб и соединительных частей *S*, мм, рассчитывают по следующей формуле, при этом толщина стенки труб должна быть не менее 6 мм, соединительных частей — не менее 7 мм:

$$S = K (0.5 + 0.001 DN), \tag{2}$$

где К — класс трубы или соединительной части;

DN — условный проход, мм.

4.4 Длина

Трубы с раструбным соединением поставляют эффективной длины, равной 5800 и 6000 мм.

П р и м е ч а н и е — При заказе труб общей длины, изготовитель может определить требуемое к поставке количество труб любой мерной длины путем суммирования эффективных длин отдельных труб.

4.5 Macca

Номинальная масса труб приведена в таблице 1.

4.6 Примеры условных обозначений

Труба раструбная (труба ВЧШГ) под соединение «RJ» (RJ), с условным проходом *DN* 200 мм (200), мерной длины 6000 мм (6000), класса K10 (K10), изготовленная по ГОСТ Р:

Тройник раструбный (TP) со стволом условного прохода *DN* 200 мм (200) и отростком условного прохода *DN* 100 мм (100), с раструбным соединением «RJ» (RJ), изготовленный по ГОСТ Р:

Колено раструбное (УР) с условным проходом DN 300 мм (300), с раструбным соединением «RJ» (RJ), изготовленное по ГОСТ Р:

Колено, раструб — гладкий конец (УРГ), с условным проходом *DN* 300 мм (300), с раструбным соединением «RJ» (RJ), изготовленное по ГОСТ Р:

Отвод раструбный (OP) с условным проходом *DN* 300 мм (300), с центральным углом 45° (45°), с раструбным соединением «RJ» (RJ), изготовленный по ГОСТ Р:

Отвод, раструб — гладкий конец (ОРГ) с условным проходом DN 400 мм (400), центральным углом 30° (30°), с раструбным соединением «RJ» (RJ), изготовленный по ГОСТ Р:

Патрубок, раструб — гладкий конец (ПРГ) с условным проходом *DN* 250 мм (250), с раструбным соединением «RJ» (RJ), изготовленный по ГОСТ Р:

Патрубок, фланец — раструб (ПФР) с условным проходом DN 500 мм (500), с раструбным соединением «RJ» (RJ), изготовленный по ГОСТ Р:

ГОСТ Р 57430-2017

Патрубок, фланец — гладкий конец (ПФГ) с условным проходом *DN* 80 мм (80), с раструбным соединением «RJ» (RJ), изготовленный по ГОСТ Р:

Двойной раструб компенсационный (ДРК) с условным проходом *DN* 150 мм (150), изготовленный по ГОСТ Р:

ДРК 150— ГОСТ Р 57430—2017

Муфта свертная (МС) с условным проходом DN 250 мм (250), изготовленная по ГОСТ Р:

Муфта надвижная (МН) с условным проходом DN 200 мм (200), изготовленная по ГОСТ Р:

MH 200 — ΓΟCT P 57430—2017

Сварной тройник, раструб — гладкий конец (ТРГ), со стволом условного прохода *DN* 200 мм (200) и отростком условного прохода *DN* 100 мм (100), с раструбным соединением «RJ» (RJ) под номинальное давление 4,0 МПа (PN4,0), изготовленный по ГОСТ Р:

Сварной патрубок, фланец — гладкий конец (ПФГ), с условным проходом *DN* 100 мм (100), с раструбным соединением «RJ» (RJ), длиной 555 мм (L555) под номинальное давление 4,0 МПа (PN4,0), изготовленный по ГОСТ Р, фланец исполнения 1 (фланец 1) по ГОСТ 12821 из стали 20 (Ст20):

Сварное колено, раструб — гладкий конец (УРГ), с условным проходом *DN* 200 мм (200), с раструбным соединением «RJ» (RJ) под номинальное давление 4,0 МПа (PN4,0), изготовленные по ГОСТ Р:

4.7 Сведения, указываемые в заказе

- 4.7.1 При оформлении заказа на трубы и соединительные части из ВЧШГ, изготовляемые по настоящему стандарту, заказчик должен указать в заказе следующие обязательные требования:
 - а) обозначение настоящего стандарта;
 - б) характеристики и классификацию транспортируемых сред (см. 12.5, таблица 6);
 - в) условный проход труб (см. 4.1.1, таблица 1);
 - г) наименование литой соединительной части, при необходимости (см. 4.1.2, таблица 2);
 - д) наименование сварной соединительной части, при необходимости (см. 4.1.3, таблица 3);
 - е) класс трубы или соединительной части (см. 4.2);
 - ж) длину труб мерной длины, или общую эффективную длину труб в заказе (см. 4.4);
 - и) тип раструбно-замкового соединения (см. приложение А):
 - к) условный проход литой соединительной части (см. приложение Б);
 - л) условный проход сварной соединительной части (см. приложение В).
 - 4.7.2 При необходимости заказчик может указать в заказе следующие требования:
 - а) дополнительную маркировку краской на наружной поверхности трубы (см. 5.12.6);
 - б) поставку труб с наружным защитным покрытием (см. 5.13.1);
 - в) поставку труб с внутренним защитным покрытием (см. 5.13.1);
 - г) поставку труб с наружным и внутренним защитными покрытиями (см. 5.13.1);
 - д) поставку соединительных частей с наружным защитным покрытием (см. 5.13.2);
 - е) поставку соединительных частей с внутренним защитным покрытием (см. 5.13.2);
 - ж) поставку соединительных частей с наружным и внутренним защитными покрытиями (см. 5.13.2);
- и) увеличение толщины внутреннего покрытия эпоксидной композиции или полиуретанового материала до 2 мм (см. 5.13.4);
 - к) поставку в комплекте с полиэтиленовой пленкой (рукавом) (см. 9.4);
 - л) увеличение длины тройника L_4 до 1,5 м (см. таблицу В.1, приложение В);
 - м) изменение угла α для отвода в пределах от 5° до 45° (см. таблицу В.4, приложение В);

- н) изменение угла α для отвода в пределах от 45° до 88° (см. таблицу В.5, приложение В);
- п) изменение длины патрубка фланец гладкий конец в пределах до 2 м (см. таблицу В.6, приложение В);
 - р) изменение длины патрубка фланец раструб в пределах до 2 м (см. таблицу В.7, приложение В);
- с) изменение длины патрубка раструб гладкий конец сталь в пределах до 2 м (см. таблицу В.8, приложение В).
- 4.7.3 При необходимости между заказчиком и изготовителем могут быть согласованы и указаны в заказе следующие требования:
 - а) тип раструбно-замкового соединения (см. 4.1.1);
 - б) другие варианты изготовления сварных соединительных частей (см. 4.1.3);
 - в) другой вид упаковки (см. 5.12.7);
 - г) комплектность поставки (см. 9.1).

5 Технические требования

5.1 Способ производства

- 5.1.1 Трубы из ВЧШГ изготавливают центробежнолитыми.
- 5.1.2 Литые соединительные части из ВЧШГ изготавливают любым способом литейного производства.
- 5.1.3 Сварные соединительные части изготавливают методом сварки заготовок из труб ВЧШГ с использованием в ряде случаев заготовок из углеродистой конструкционной стали.
- 5.1.4 На наружную поверхность гладких концов труб и сварных соединительных частей методом электродуговой сварки наплавляются кольцевые валики согласно размерам, указанным на рисунке 1 и в таблице 1. На литых соединительных частях кольцевые валики выполняются при отливке соединительных частей.

5.2 Химический состав

Рекомендуемый химический состав чугуна труб и соединительных частей приведен в приложении Г.

5.3 Механические свойства

- 5.3.1 Механические свойства труб и соединительных частей должны соответствовать таблице 4.
- 5.3.2 Временное сопротивление сварных швов в сварных соединительных частях должно быть не менее 400 H/mm^2 .

Таблица 4 — Механические свойства труб и соединительных частей

Изделие	Предел текучести $\sigma_{_{\rm T}}$, Н/мм 2	Временное сопротивление $\sigma_{_{\rm B}}$, Н/мм 2	Относительное удлинение $\delta_5,\%$	Ударная вязкость, Дж/см ²			
	не менее						
Трубы и сварные соединитель- ные части	300	420	10	3,0			
Литые соединительные части и стопора	300	420	5	0,0			

5.4 Твердость

- 5.4.1 Твердость металла труб и сварных соединительных частей не должна превышать 230 НВ.
- 5.4.2 Твердость металла литых соединительных частей на наружной поверхности не должна превышать 250 HB.
 - 5.4.3 Твердость в околошовной зоне сварных соединительных частей не должна превышать 230 НВ.

5.5 Микроструктура

5.5.1 Микроструктура металла труб должна быть ферритная с шаровидной формой графита. Доля перлитной составляющей не должна превышать 20 %. Доля шаровидного графита должна быть не менее 95 %. Количество структурно-свободного цементита в микроструктуре не должно превышать 5 %.

ГОСТ Р 57430-2017

5.5.2 Микроструктура металла соединительных частей должна быть ферритно-перлитная с шаровидной формой графита. Доля перлитной составляющей не должна превышать 40 %. Доля шаровидного графита должна быть не менее 95 %. Количество структурно-свободного цементита не должно превышать 5 %.

5.6 Предельные отклонения размеров, длины, формы и массы

5.6.1 Предельные отклонения размеров

- 5.6.1.1 Предельные отклонения размеров гладких концов труб и соединительных частей приведены в таблице 1.
- П р и м е ч а н и е Для труб с внутренним покрытием допускается уменьшение условного прохода *DN* на 10 мм.
- 5.6.1.2 Предельные отклонения по толщине стенки S и по наружному диаметру цилиндрической части труб DE не должны превышать величин, указанных в таблице 1. Плюсовой допуск по толщине стенки трубы ограничивается допуском на массу.
- 5.6.1.3 Предельные отклонения по толщине стенки *S* цилиндрических участков соединительных частей не должны превышать величин, указанных в приложениях Б и В. Плюсовой допуск по толщине стенки соединительных частей ограничивается допуском на массу.

5.6.2 Предельные отклонения длины

- 5.6.2.1 Предельные отклонения длины труб не должны превышать $^{+70}_{-30}$ мм.
- 5.6.2.2 При поставке партии труб одной мерной длины количество труб с минусовым допуском не должно быть более 10 %.
- 5.6.2.3 Предельные отклонения длины сварных соединительных частей не должны превышать ± 2 % от длины.
- 5.6.2.4 Предельные отклонения длины литых соединительных частей с раструбами, с фланцем и раструбом, с фланцем и гладким концом не должны превышать \pm 20 мм, а по длине фланцевых соединительных частей \pm 10 мм.

5.6.3 Предельные отклонения формы

- 5.6.3.1 Отклонение от прямолинейности всей трубы не должно быть более 0,125 % длины трубы. 5.6.3.2 Овальность гладких концов труб и соединительных частей должна:
- оставаться в пределах допусков наружного диаметра для DN от 80 до 200 мм включительно;
- составлять не более 1 % наружного диаметра для DN от 250 до 500 мм включительно.

5.6.4 Предельные отклонения массы

Отклонения фактической массы от номинальной расчетной массы не должны превышать:

- ± 8 % для труб и литых соединительных частей *DN* от 80 до 200 мм включительно;
- ± 5 % для труб и литых соединительных частей DN от 250 до 500 мм включительно;
- ± 8 % для сварных соединительных частей.

Примечания

- 1 Значение массы выше максимально допустимой не является браковочным признаком при условии обеспечения установленной величины условного прохода *DN*.
- 2 Значение массы ниже минимально допустимой не является браковочным признаком при условии обеспечения толщины стенки трубы в пределах установленного допуска.

5.7 Качество поверхности

- 5.7.1 На наружной и внутренней поверхностях труб и соединительных частей допускаются дефекты, обусловленные способом производства, не выводящие толщину стенки за минимальные допустимые значения и не влияющие на прочность и герметичность труб при гидростатическом испытании. В приложении Д приведены допустимые дефекты для труб и соединительных частей из ВЧШГ с учетом терминов по ГОСТ 19200.
- 5.7.2 В месте контакта уплотнительного кольца с наружной поверхностью гладкого конца трубы и соединительных частей углубления подлежат заделке шпаклевками на основе полиэфирных смол. Допускается заделка шпаклевками на основе полиэфирных смол дефектных мест, расположенных на других участках наружной поверхности трубы и соединительных частей, если они ухудшают товарный вид.

5.7.3 В месте контакта резинового уплотнительного кольца с внутренней поверхностью раструба углубления подлежат заделке шпаклевками на основе полиэфирных смол.

5.8 Качество сварки швов

- 5.8.1 В сварных швах сварных соединительных частей не допускаются:
- трещины любых размеров, всех видов и направлений, расположенные в металле сварного шва и околошовной зоне;
- непровары в корне одностороннего шва глубиной более 10 % толщины стенки или суммарной длиной более 30 % его протяженности независимо от глубины;
 - поры и шлаковые включения согласно требованям [3].
- 5.8.2 Поверхность сварных швов сварных соединительных частей должна быть слегка выпуклой. Подрезы, кратеры и прожоги не допускаются.
- 5.8.3 Допускается исправление дефектов сварного шва сварной соединительной части, если общая длина участка с недопустимыми дефектами не превышает 30 % его общей длины при глубине этих дефектов не более 50 % толщины стенки, а длина трещины не более 50 мм.
- 5.8.4 Дефектные места должны быть устранены, заварены вновь и подвергнуты контролю неразрушающими методами. Односторонний шов с непроваром корня сварного шва может быть исправлен подваркой корня.

5.9 Герметичность

- 5.9.1 Трубы должны выдерживать испытательное гидростатическое давление:
- не менее 6.0 МПа для *DN* от 80 до 300 мм;
- не менее 4,0 МПа для *DN* от 350 до 500 мм.
- 5.9.2 Сварные соединительные части должны выдерживать испытательное гидростатическое давление, равное 1,25 от рабочего давления.

5.10 Угол загиба

Угол загиба сварных швов в сварных соединительных частях α должен быть не менее 18°.

5.11 Отделка концов

Торец гладкого конца у наружной поверхности трубы должен иметь скругление радиусом 5 мм.

5.12 Маркировка и упаковка

- 5.12.1 На внутреннюю поверхность раструба трубы должна быть нанесена литая маркировка, со-держащая:
 - наименование или товарный знак изготовителя;
 - условный проход;
 - номер плавки;
 - номер ковша;
 - номер трубы;
 - год и квартал изготовления;
 - обозначение материала («GGG»).
- 5.12.2 На наружной поверхности соединительной части должна быть нанесена маркировка, содержащая:
 - товарный знак изготовителя;
 - условное обозначение соединительной части;
 - год изготовления (допускается указывать две последние цифры);
 - обозначение материала («GGG»);
 - номинальное давление для фланцевых соединений (PN).
- 5.12.3 Маркировка на сварные соединительные части наносится на нерабочую поверхность ударным способом. Высота шрифта 10—40 мм. Допускается нанесение маркировки краской.
- 5.12.4 Маркировка на литых соединительных частях отливается на нерабочей поверхности. Обозначение номинального давления для фланцев (*PN*) разрешается выполнять штамповкой. Высота шрифта 10—40 мм.

ГОСТ Р 57430-2017

- 5.12.5 При маркировке краской труб и соединительных частей наносят следующую информацию:
- ссылку на настоящий стандарт;
- обозначение материала («GGG95»);
- допустимое рабочее давление.
- 5.12.6 Упаковка труб и соединительных частей, а также дополнительная маркировка по ГОСТ 10692. По требованию заказчика допускается нанесение дополнительной маркировки краской на наружной поверхности трубы.
- 5.12.7 Уплотнительные резиновые кольца упаковывают в картонные коробки по ГОСТ 13841 (не более 30 кг), стопоры в специальные контейнеры (ящики). По согласованию между изготовителем и заказчиком допускается другой вид упаковки. Транспортная маркировка по ГОСТ 14192.

5.13 Защитные покрытия

- 5.13.1 По требованию заказчика на трубы наносят наружное или внутреннее защитные покрытия или их различные комбинации.
 - 5.13.1.1 Наружные покрытия:
 - а) металлический цинк по [1];
- б) металлический цинк по [1] с нанесением поверх цинка дополнительного покрытия одним из следующих материалов:
 - грунтовка на основе акриловой смолы по [4];
 - эпоксидная композиция по ГОСТ 9.602, [5], [6];
 - полиуретан по ГОСТ 9.602, [5], [6];
 - клейкие полимерные ленты по ГОСТ 9.602;
 - в) допускается нанесение защитных покрытий на трубы без цинкового покрытия.
- 5.13.1.2 Вес цинкового покрытия (не менее 130 г/м^2) и толщина завершающего наружного покрытия (не менее 70 мкм) по [1].
 - 5.13.1.3 Внутренние покрытия:
 - а) цементно-песчаное из высокоглиноземистого цемента по ГОСТ 969, [7];
 - б) эпоксидные композиции или полиуретановые материалы по ГОСТ 9.602, [5], [6].
- 5.13.2 По требованию заказчика на соединительные части наносят наружное или внутреннее защитное покрытие или их различные комбинации.
 - 5.13.2.1 Наружные покрытия:
 - а) цинкнаполненная краска по [2];
- б) цинкнаполненная краска по [2], с нанесением поверх нее дополнительного покрытия одним из следующих материалов:
 - грунтовка на основе акриловой смолы по [4];
 - эпоксидная композиция по ГОСТ 9.602, [5], [6];
 - полиуретан по ГОСТ 9.602, [5], [6];
 - клейкие полимерные ленты по ГОСТ 9.602;
- в) допускается нанесение защитных покрытий на соединительные части без покрытия цинкнаполненной краской.
- 5.13.2.2 Вес покрытия цинковой краской (не менее 150 г/м²) и толщина завершающего наружного покрытия (не менее 70 мкм) по [2].
 - 5.13.2.3 Внутренние покрытия:
 - а) цементно-песчаное из высокоглиноземистого цемента по ГОСТ 969, [7];
 - б) эпоксидные композиции или полиуретановые материалы по ГОСТ 9.602, [5], [6].
 - 5.13.3 Адгезия нанесенных наружных покрытий должна быть не более 1 балла.
- 5.13.4 Толщина внутреннего цементно-песчаного покрытия по [8]. Средняя толщина нанесенного внутреннего покрытия, состоящего из эпоксидной композиции или полиуретанового материала, должна составлять не менее 70 мкм. По требованию заказчика возможно увеличение толщины слоя до 2 мм.

6 Требования безопасности и охраны окружающей среды

6.1 Трубы и соединительные части изготовляют из взрывобезопасных, нетоксичных и радиационнобезопасных материалов. Специальных мер безопасности в течение всего срока службы труб и соединительных частей не требуется.

- 6.2 При хранении, транспортировке и эксплуатации трубы и соединительные части являются экологически безопасной продукцией.
 - 6.3 Трубы и соединительные части по окончании эксплуатации подлежат переработке.

7 Правила приемки

- 7.1 Трубы и соединительные части принимают партиями. Количество проверяемых в партии отливок устанавливается изготовителем.
 - 7.2 Трубы и соединительные части из ВЧШГ подвергают следующим видам контроля:
 - химического состава;
 - на растяжение;
 - на ударную вязкость;
 - твердости;
 - микроструктуры;
 - измерительному;
 - визуальному;
 - гидростатическому;
 - качества покрытия.
- У сварных соединительных частей дополнительно контролируют механические свойства сварного шва и угол загиба.
- 7.3 Контроль химического состава чугуна труб и соединительных частей проводят на пробах, изготовленных из жидкого металла одной партии. Микроструктура и химический состав (кроме содержания серы и фосфора) чугуна являются факультативными характеристиками и не считаются браковочными признаками при соблюдении механических свойств металла.
- 7.4 Контроль механических свойств, твердости и микроструктуры металла труб и соединительных частей проводят на образцах, изготовленных из любой трубы, а на соединительных частях из приливных образцов в проверяемой партии.
- 7.5 Гидростатическому испытанию, визуальному и измерительному контролю должны быть подвергнуты каждые труба или соединительная часть.
- 7.6 Результаты гидростатического испытания труб и соединительных частей считают удовлетворительными, если на их наружной поверхности не обнаружено видимой протечки, выпотевания или другого признака повреждения.
- 7.7 При получении неудовлетворительных результатов испытаний по временному сопротивлению, относительному удлинению или ударной вязкости проводят повторные испытания по этому показателю удвоенного количества образцов взятых от той же трубы или соединительной части. Результаты повторных испытаний распространяют на всю партию.
- 7.8 Допускается в случае неудовлетворительных результатов повторных испытаний подвергать каждое изделие поштучному контролю по невыполняемому показателю.

8 Методы контроля и испытаний

8.1 Пробы и образцы для химического анализа отбирают по ГОСТ 7565.

Химический состав чугуна определяют стандартными методами контроля.

При возникновении разногласий в определении химического состава применяют методы химического анализа.

8.2 Для проведения механических испытаний, определения микроструктуры и твердости металла от гладкого конца отобранной трубы отрезают кольцо, из которого изготавливают один образец для испытания на растяжение и три образца для определения ударной вязкости. Изготовление образцов — по ГОСТ ISO 2531. Для соединительных частей отдельно отлитые заготовки — по ГОСТ 7293.

Испытания на растяжение проводят по ГОСТ 1497 или ГОСТ 27208.

- 8.3 Испытания на ударную вязкость металла труб и соединительных частей проводят по ГОСТ 9454 при температуре 20 °C на образцах без надреза. Результат испытаний оформляют как среднеарифметическое значение по [9].
 - 8.4 Контроль твердости проводят по ГОСТ 9012.
 - 8.5 Контроль микроструктуры проводят по ГОСТ 3443.

- 8.6 Геометрические размеры труб, соединительных частей и наплавленного валика контролируют калибром-скобой по ГОСТ 18360, ГОСТ 18365, ГОСТ 2216, штангенциркулем по ГОСТ 166, микрометром по ГОСТ 6507, или шаблоном, изготовленным по чертежам изготовителя.
- 8.7 Контроль прямолинейности всей трубы проводят визуально. При возникновении разногласий, отклонение от прямолинейности любого участка трубы длиной 1 м может быть измерено при помощи поверочной линейки по ГОСТ 8026 и набором щупов или другими способами по методике завода-изготовителя.
- 8.8 Толщину стенки труб и соединительных частей контролируют способом ультразвукового контроля по ГОСТ ISO 2531.
- 8.9 Определение массы труб и соединительных частей производят на весах по методике изготовителя.
- 8.10 Контроль качества наружной и внутренней поверхностей труб и соединительных частей проводят визуально без применения увеличительных приспособлений.

Для определении влияния на прочностные и эксплуатационные характеристики труб таких дефектов, как газовая шероховатость, раковины, углубления, царапины, необходимо определить глубину дефекта для последующего определения толщины бездефектного металла под дефектом.

Глубину дефектов определяют индикатором часового типа по ГОСТ 577. Индикатор должен быть адаптирован для измерений углублений и раковин диаметром от 1,0 мм и более. Допускается применение аналогичных измерительных устройств с таким же или более высоким классом точности.

Замеры производят на поверхности с наиболее характерными дефектами, в любых пяти точках.

- 8.11 Гидростатическое испытание труб и соединительных частей проводят по ГОСТ ISO 2531.
- 8.12 Радиус скругления торца труб контролируют по документации предприятия-изготовителя.
- 8.13 Состав и свойства цементно-песчаного покрытия регламентируют по ГОСТ 969 и ГОСТ 8736 или по документации предприятия-изготовителя.
- 8.13.1 Контроль качества цементно-песчаного покрытия, нанесенного на трубу, проводят визуально и с помощью инструментальных методов контроля по [7].
 - 8.13.2 Толщину внутреннего цементно-песчаного покрытия труб контролируют:
- непосредственно после его нанесения путем прокалывания специальным щупом, изготовленным по чертежам завода-изготовителя;
 - после отверждения цементно-песчаного покрытия толщиномером покрытий.
- 8.13.3 Среднее значение толщины внутреннего цементно-песчаного покрытия измеряют в любом сечении, перпендикулярном оси трубы в четырех точках, разделенных интервалами в 90°, на расстоянии не менее 200 мм от гладкого конца.
- 8.13.4 Контроль качества наружного защитного покрытия производят визуально. Толщину защитного покрытия измеряют по [10].
- 8.13.5 Адгезию наружного завершающего покрытия определяют методом решетчатых надрезов по ГОСТ 15140 на расстоянии 200—500 мм от края трубы. Контроль производится не ранее 24 ч после нанесения покрытия на трубы и соединительные части.
 - 8.13.6 Контроль массы цинкового покрытия производят по [1].
 - 8.14 Контроль качества уплотнительных резиновых колец и стопоров производят по [11] и [12].

9 Комплектность

- 9.1 Комплектность поставки труб и соединительных частей определяется по согласованию между изготовителем и заказчиком с учетом требований настоящего раздела.
- 9.2 Трубы и соединительные части поставляют заказчику в комплекте с уплотнительными резиновыми кольцами. Размеры и масса уплотнительных колец определяются типом раструбно-замкового соединения. Технические требования по [11].
- 9.3 Трубы и соединительные части поставляют заказчику в комплекте со стопорами. Размеры и масса стопоров определяются типом раструбно-замкового соединения. Технические требования по [12].
- 9.4 По требованию заказчика трубы могут поставляться в комплекте с полиэтиленовой пленкой (рукавом), предназначенной для обеспечения дополнительной защиты трубопроводов от коррозии. Рукав надевается на трубы непосредственно перед их прокладкой.
- 9.5 На каждую отгружаемую заказчику партию труб изготовитель должен выдать документ о качестве труб, в котором должны быть указаны:
 - обозначение настоящего стандарта;

- наименование изготовителя;
- наименование заказчика;
- условный проход и класс труб;
- количество труб и общая длина в метрах;
- номер партии и номер плавки;
- номинальная расчетная масса труб;
- тип и количество уплотнительных резиновых колец;
- величина испытательного гидростатического давления;
- временное сопротивление, относительное удлинение, предел текучести;
- величина ударной вязкости;
- твердость металла труб;
- химический состав чугуна;
- металлографический анализ;
- виды наружного и внутреннего покрытия;
- дата выписки документа.

9.6 На каждую отгружаемую заказчику партию соединительных частей изготовитель должен выдать документ о качестве, в котором должны быть указаны:

- обозначение настоящего стандарта;
- наименование изготовителя;
- наименование заказчика;
- номер заказа;
- наименование и обозначение соединительных частей;
- количество соединительных частей в штуках и массу партии;
- номер партии и номер плавки;
- величина испытательного гидростатического давления;
- тип и количество уплотнительных резиновых колец;
- подтверждение о соответствии изделий требованиям настоящего стандарта;
- виды наружного и внутреннего покрытия;
- дату выписки документа о качестве.

10 Транспортирование и хранение

- 10.1 Транспортирование и хранение труб и соединительных частей осуществляют в соответствии с ГОСТ 10692.
- 10.2 Трубы *DN* от 80 до 300 мм транспортируют в пакетах. В пакете каждый слой труб располагают на специальных деревянных прокладках. Количество труб в пакетах регламентируется документацией завода-изготовителя. Трубы *DN* от 350 до 500 мм транспортируют без пакетов.

Соединительные части транспортируют в специальных контейнерах или россыпью. Транспортная маркировка — по ГОСТ 14192.

- 10.3 Транспортные средства должны быть подходящими для перевозки, погрузки и разгрузки труб. Во время транспортировки должны соблюдаться следующие правила:
 - не допускают прямого контакта труб с дном транспортного средства;
 - при транспортировке используют боковые упоры;
 - закрепляют груз при помощи текстильных ремней и натягивающих устройств;
- при перевозке труб автотранспортом длина свисающих концов не должна превышать 25 % от длины трубы;
 - не допускают соприкосновений труб с металлическими поверхностями транспортного средства.
- 10.4 Хранение труб на складах и строительных площадках производят в транспортных пакетах или без пакетов в специально оборудованных штабелях.

Соединительные части могут храниться на складах, в неотапливаемых помещениях и под навесами.

10.4.1 Пакеты труб могут быть сложены в штабель, на брусьях размером 80×80×2600 мм, по 3 или 4 пакета в каждом ряду. Каждый последующий ярус пакетов отделяют от предыдущего брусьями, толщина которых больше чем численное значение разницы диаметров раструба и цилиндра трубы. Общая высота штабеля не должна превышать 2,5 м.

FOCT P 57430-2017

- 10.4.2 Штабелирование непакетированных труб должно производиться на ровных прочных основаниях. Ряды труб в штабеле должны быть уложены на деревянные прокладки. При этом необходимо предусматривать боковые опоры, предотвращающие самопроизвольное раскатывание труб.
 - 10.5 Стопоры хранят в открытой таре, рассортированные по диаметрам.
 - 10.6 Уплотнительные резиновые кольца транспортируются и хранятся в соответствии с [11].

11 Погрузка и разгрузка

- 11.1 При погрузочных и разгрузочных работах с трубами и соединительными частями необходимо избегать раскачивания, ударов или трения труб и соединительных частей о другие трубы или соединительные части, землю, опоры трейлера, борта вагона.
- 11.2 Погрузка и выгрузка пакетов должна осуществляться приспособлениями, обеспечивающими сохранность и целостность пакетов. Для перемещения следует применять приспособления с использованием нейлоновых канатов или ремней с четырехкратным запасом по грузоподъемности.
- 11.3 При перевозке, погрузке и разгрузке соединительных частей и пакетов труб запрещается сбрасывать, ронять и подвергать их ударным нагрузкам.
- 11.4 Погрузка и разгрузка пакетов должна производиться захватом всего пакета. Запрещается захват пакета за одну трубу.
- 11.5 Для непакетированных труб и соединительных частей следует использовать крюки с эластичным покрытием, при этом важно не допускать контакта металла с внутренним покрытием во избежание его повреждения.

12 Указания по применению

12.1 Трубы, изготовленные по настоящему стандарту, предназначены для эксплуатации в трубопроводах с температурой транспортируемой среды до 95 °C.

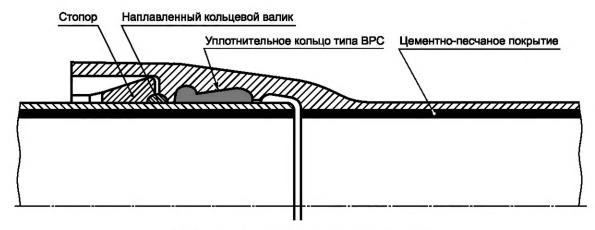
П р и м е ч а н и е — Возможно кратковременное повышение температуры до плюс 130 $^{\circ}$ С (до 15 ч один раз в 2 мес).

12.2 Допустимое рабочее давление приведено в таблице 5.

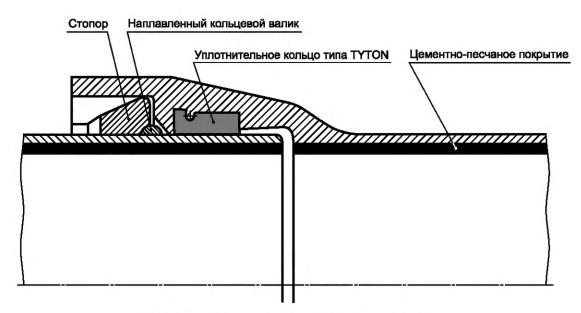
Таблица 5 — Допустимое рабочее давление

Условный проход <i>DN</i> , мм	Допустимое рабочее давление, МПа
80	4,0
100	4,0
125	4,0
150	4,0
200	4,0
250	3,6
300	3,4
350	3,0
400	2,5
500	2,5

- 12.3 Допустимая температура эксплуатации и строительства трубопроводов до минус 40 °C.
- 12.4 Трубы и соединительные части из ВЧШГ с наружным защитным покрытием могут применяться во всех типах почв.
- 12.5 Характеристики допустимых к транспортированию сред по трубопроводам из ВЧШГ приведены в таблице 6.
 - 12.6 Характеристики и классификацию транспортируемых сред заказчик указывает в заказе.


Таблица 6 — Характеристики транспортируемых сред

			S	Содержание агрессивных компонентов	ссивных комі	понентов		
Среда	рН	Минерализация, г/дм ³	CBE	H ₂ S, мг/дм ³	СО ₂ , мг/дм ³	О ₂ , мг/дм ³	Взвешенные частицы, мг/дм ³	отепень агрессивного воздействия
Вода пресная (техническая) неаэрированная аэрированная	7~	менее 5 менее 5	11	11	1.1	менее 0,5 более 0,5	11	Неагрессивная Слабоагрессивная
Воды подземных горизонтов								
- He codepwalue H ₂ S, CO ₂	68	любая	+	——————————————————————————————————————	1	менее 0,1	100	Слабоагрессивная
- codepxative $n_2 > 0$ - codepxative CO_2	менее 7	любая	+	0,1 == 1,0	более 20	менее 0,1	100	Среднеагрессивная
аэрированные	œ	0000				0.00000	007	Den an accompany
- не содержащие п ₂ о, со ₂ - содержащие Н ₂ о	09	любая	+	 более 1.0		более 0,1	9 6	Среднеагрессивная
- содержащие С $oldot_2$	89	любая	1	1	более 20	более 0,1	100	Среднеагрессивная
Промысловые сточные воды								
неазрированные - не содержащие H ₂ S, CO ₂	L~	любая	I	менее 1,0	I	менее 0,1	1	Неагрессивная
- содержащие H ₂ S	менее 7	любая	+	более 1,0	1	менее 0,1	— (FeS)	Среднеагрессивная
- содержащие CO ₂	менее 7	любая	1	1	более 20	менее 0,1	I	Среднеагрессивная
аэрированные - не солержашие H.S. CO.	Менее 7	любая	I	менее 1.0	I	более 0.1	1	Среднеагрессивная
- содержащие H ₂ S		любая	+	6олее 1,0	1	более 0,1	— (FeS)	Среднеагрессивная
- содержащие CO ₂	менее /	любая	١	I	оолее 20	ролее 0,1	I	Среднеагрессивная
Устойчивые водонефтяные эмульсии - не содержащие агрессивных компонен-	L~	1	1	1	1	1	до 0,05	Неагрессивная
TOB								
- содержащие агрессивные компоненты	_ 7	I	+	более 1,0 в водной фазе	более 5,0	1	более 0,05	Слабоагрессивная
Неустойчивые водонефтяные эмульсии								
 не содержащие агрессивных компонентов 	_ ~	1	1	1	I	до 0,1 в	ı	Неагрессивная
- содержащие агрессивные компоненты	менее 7	1	+	более 1,0	5,0	более 0,1 в вод. фазе	1	Среднеагрессивная
Газоводонефтяные смеси								
- не содержащие агрессивных компонен-	~ 7	Ī	1	1	1	1	1	Неагрессивная
тов - солержашие агрессивные компоненты	Менее 7	1	+	следы	1	I	ı	Среднеагрессивная
- החלייהיים מו לפרסגופנופוס שליים ויים ויים ויים ויים ויים ויים ויים	MODIO			O ICHOI				Opedineal possesional


Приложение A (рекомендуемое)

Раструбно-замковое соединение «RJ»

Раструбно-замковое соединение «RJ» изготовляют в соответствии с рисунком А.1. Размеры раструбно-замкового соединения «RJ» приведены в [12].

а) С уплотнительным резиновым кольцом типа «ВРС»

б) С уплотнительным резиновым кольцом типа «ТҮТОN»

Рисунок А.1 — Раструбно-замковое соединение «RJ»

Приложение Б (обязательное)

Соединительные части литые

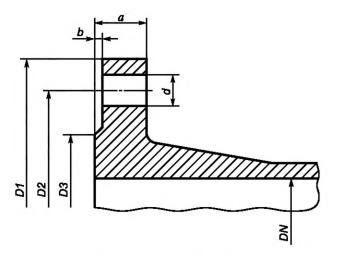


Рисунок Б.1 — Фланец

Таблица Б.1 — Основные размеры фланцев

DN	<i>PN</i> , МПа	D1	D2	D3	d	Количество отверстий, шт.	а	b
80	2,5	200	160	133	19	8	19,0	3
00	4,0	200	100	133	19	0	19,0	3
100	2,5	235	190	159	23	8	10.0	3
100	4,0	235	190	159	23	0	19,0	3
125	2,5	270	220	184	19	8	19,0	3
125	4,0	270	220	184	19	8	23,5	3
150	2,5	300	250	214	28	8	20,0	3
150	4,0	300	250	214	28	8	26,0	3
200	2,5	360	310	274	28	12	22,0	3
200	4,0	375	320	281	31	12	30,0	3
250	2,5	425	370	331	31	12	24,5	3
250	4,0	450	385	343	34	12	34,5	3
300	2,5	485	430	389	31	16	27,5	4
300	4,0	515	450	406	34	16	39,5	4
400	2,5	620	550	503	37	16	32,0	4
400	4,0	660	585	835	40	16	48,0	4
500	2,5	730	660	613	37	20	36,5	4
500	4,0	755	670	617	43	20	52,0	4

ГОСТ Р 57430—2017

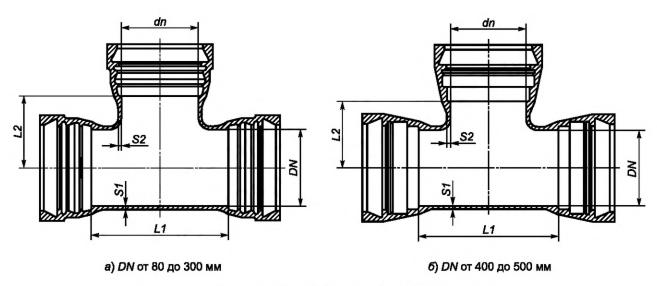


Рисунок Б.2 — Тройник раструбный (ТР)

Таблица Б.2 — Основные размеры тройников раструбных (ТР)

DN × dn	Ст	вол	Отро	сток	DN × dn	Ст	зол	Отро	сток
DIV × all	S1	L1	S2	L2	DIV × dII	S1	L1	S2	L2
80x80	8,1 _{-2,4}	175	8,1 _{-2,4}	85	300x100	11,2 _{-2,6}	210	8,4 -2,4	220
100x80	8,4 -2,4	165	8,1 _{-2,4}	90	300x150	11,2 _{-2,6}	265	9,1 _{-2,5}	220
100x100	8,4 -2,4	195	8,4 -2,4	100	300x200	11,2 _{-2,6}	325	9,8 _{-2,5}	220
125x80	8,8 -2,4	175	8,1 _{-2,4}	105	300x250	11,2 _{-2,6}	380	10,5 -2,6	220
125x100	8,8 -2,4	195	8,4 -2,4	115	300x300	11,2 _{-2,6}	440	11,2 _{-2,6}	220
125x125	8,8 -2,4	225	8,4 -2,4	115	400x200	12,6 _{-2,7}	325	9,8 _{-2,5}	260
150x80	9,1 _{-2,5}	180	8,1 _{-2,4}	120	400x250	12,6 _{-2,7}	440	10,5 -2,6	265
150x100	9,1 _{-2,5}	200	8,4 -2,4	125	400x300	12,6 _{-2,7}	440	11,2 _{-2,6}	270
150x150	9,1 _{-2,5}	260	9,1 -2,5	130	400x400	12,6 _{-2,7}	560	12,6 _{-2,7}	280
200x80	9,8 -2,5	180	8,1 _{-2,4}	145	500x100	14,0 _{-2,8}	215	8,4 -2,4	295
200x100	9,8 _{-2,5}	200	8,4 -2,4	150	500x200	14,0 _{-2,8}	330	9,8 _{-2,5}	310
200x150	9,8 _{-2,5}	260	9,1 _{-2,5}	155	500x300	14,0 _{-2,8}	450	11,2 _{-2,6}	315
200x200	9,8 _{-2,5}	320	9,8 -2,5	160	500x400	14,0 _{-2,8}	565	12,6 _{-2,7}	335
250x100	10,5 -2,6	205	8,4 -2,4	190	500x500	14,0 _{-2,8}	680	14,0 _{-2,8}	350
250x150	10,5 -2,6	265	9,1 _{-2,5}	190	-	-	-	-	-
250x200	10,5 -2,6	320	9,8 -2,5	190	-	-	-	-	-
250x250	10,5 _{-2,6}	380	10,5 -2,6	190	-	-	-	-	-

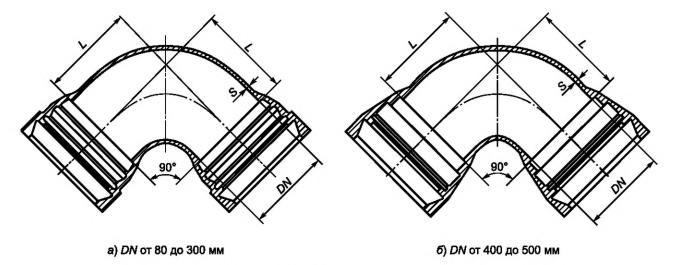


Рисунок Б.3 — Колено раструбное (УР)

Таблица Б.3 — Основные размеры колен раструбных (УР)

DN	S	L
80	8,1 _{-2,4}	100
100	8,4 -2,4	120
125	8,8 _{-2,4}	145
150	9,1 _{-2,5}	170
200	9,8 _{-2,5}	220
250	10,5 _{-2,6}	270
300	11,2 _{-2,6}	320
400	12,6 _{-2,7}	430
500	14,0 _{-2,8}	550

ГОСТ Р 57430—2017

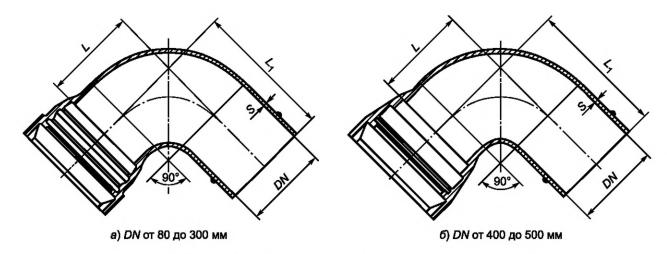


Рисунок Б.4 — Колено, раструб — гладкий конец (УРГ)

Таблица Б.4 — Основные размеры колен, раструб — гладкий конец (УРГ)

DN	S	L	L1
80	8,1 -2,4	102	312
100	8,4 -2,4	123	333
125	8,8 -2,4	150	374
150	9,1 _{-2,5}	175	419
200	9,8 -2,5	226	491
250	10,5 _{-2,6}	280	580
300	11,2 _{-2,6}	330	600
400	12,6 _{-2,7}	430	700
500	12,6 _{-2,7} 14,0 _{-2,8}	550	795

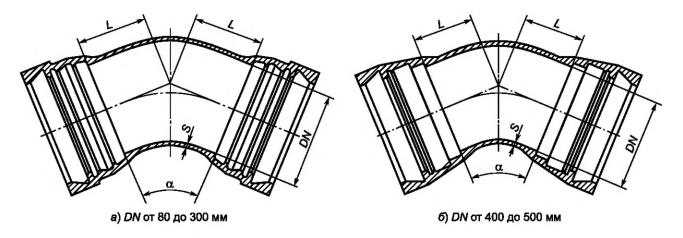


Рисунок Б.5 — Отвод раструбный (ОР)

Таблица Б.5 — Основные размеры отводов раструбных (ОР)

DM		α = 11°15′	α = 22°30′	$\alpha = 45^{\circ}$	
DN	S	L	L	L	
80	8,1 -2,4	30	40	55	
100	8,4 -2,4	30	40	65	
125	8,8 -2,4	35	50	75	
150	9,1 _{-2,5}	35	55	85	
200	9,8 -2,5	40	65	110	
250	10,5 -2,6	50	75	130	
300	11,2 _{-2,6}	55	85	150	
400	12,6 -2,7	65	110	195	
500	14,0 -2,8	75	130	240	

ΓΟCT P 57430—2017

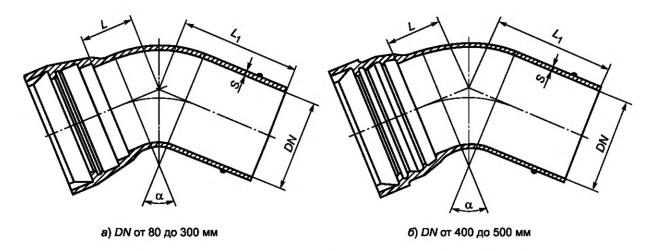


Рисунок Б.6 — Отвод, раструб — гладкий конец (ОРГ)

Таблица Б.6 — Основные размеры отводов, раструб — гладкий конец (ОРГ)

DN	DN S	α = 45°		α = 30°		α = 22°30′		α = 11°15′	
DIV		L	L1	L	L1	L	L1	L	L1
80	8,1 _{-2,4}	65	265	55	253	55	248	45	240
100	8,4 -2,4	70	274	60	260	60	253	50	243
125	8,8 -2,4	80	301	70	283	65	274	55	261
150	9,1 _{-2,5}	87	331	80	309	70	299	60	284
200	9,8 _{-2,5}	109	374	90	345	80	330	70	311
250	10,5 -2,6	130	380	100	345	90	330	75	315
300	11,2 _{-2,6}	155	390	110	345	95	330	80	315
400	12,6 _{-2,7}	200	443	140	383	110	353	90	315
500	14,0 -2,8	240	485	170	415	135	380	95	330

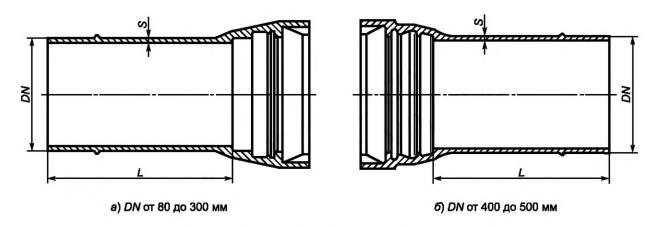


Рисунок Б.7 — Патрубок, раструб — гладкий конец (ПРГ)

Таблица Б.7 — Основные размеры патрубков, раструб — гладкий конец (ПРГ)

DN	S	L
80	8,1 -2,4	350
100	8,4 -2,4	360
125	8,8 -2,4	370
150	9,1 _{-2,5}	380
200	9,8 _{-2,5}	400
250	10,5 _{-2,6}	420
300	11,2 _{-2,6}	440
400	12,6 _{-2,7}	480
500	14,0 _{-2,8}	520

ГОСТ Р 57430—2017

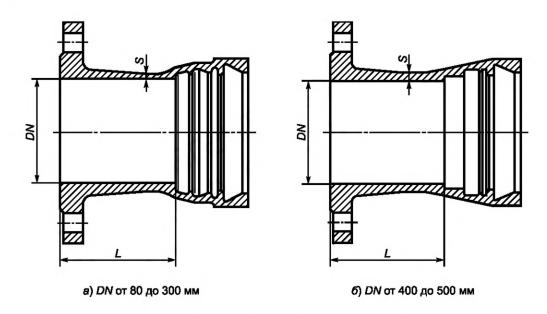


Рисунок Б.8 — Патрубок фланец — раструб (ПФР)

Т а б л и ц а Б.8 — Основные размеры патрубков, фланец — раструб (ПФР)

DN	S	L
80	8,1 _{-2,4}	130
100	8,4 -2,4	130
125	8,8 -2,4	135
150	9,1 _{-2,5}	135
200	9,8 -2,5	140
250	10,5 -2,6	145
300	11,2 -2,6	150
400	12,6 _{-2,7}	160
500	14,0 -2,8	170

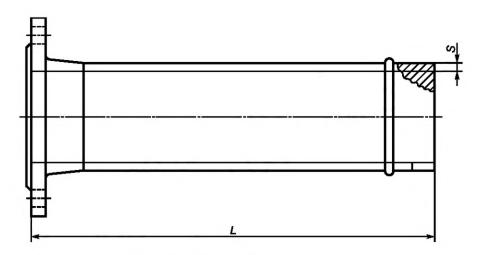


Рисунок Б.9 — Патрубок, фланец — гладкий конец (ПФГ)

Таблица Б.9 — Основные размеры патрубков, фланец — гладкий конец (ПФГ)

DN	S	L
80	8,1 _{-2,4}	350
100	8,4 -2,4	360
125	8,8 -2,4	370
150	9,1 _{-2,5}	380
200	9,8 _{-2,5}	400
250	10,5 -2,6	420
300	11,2 -2,6	440
400	12,6 _{-2,7}	480
500	14,0 -2,8	520

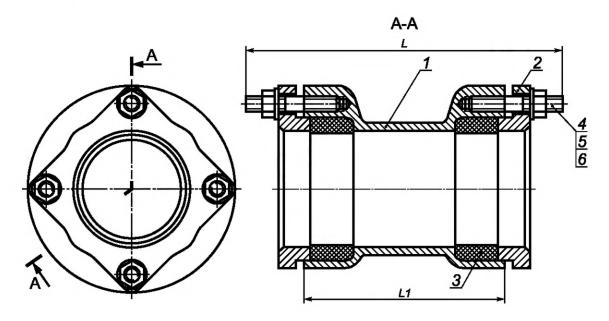


Рисунок Б.10 — Двойной раструб компенсационный (ДРК)

Таблица Б.10 — Двойной раструб компенсационный (ДРК), детали

Поз.	Наименование	DN 100	DN 150	DN 200	DN 250	DN 300
1103.	паименование			шт.		
1	Корпус	1	1	1	1	1
2	Крышка	2	2	2	2	2
3	Резиновый уплотнитель	2	2	2	2	2
4	Шпилька M20-6g*65.58	8	12	16	24	12
5	Гайка М20	8	12	16	24	12
6	Шайба 20	8	12	16	24	12

Таблица Б.11 — Основные размеры двойного раструба компенсационного (ДРК)

DN	D	L	L1	d	количество, шт.
100	180	320	200	M20	4+4
150	240	340	210	M20	6+6
200	295	340	210	M20	8+8
250	350	350	220	M20	12+12
300	400	350	220	M20	6+6

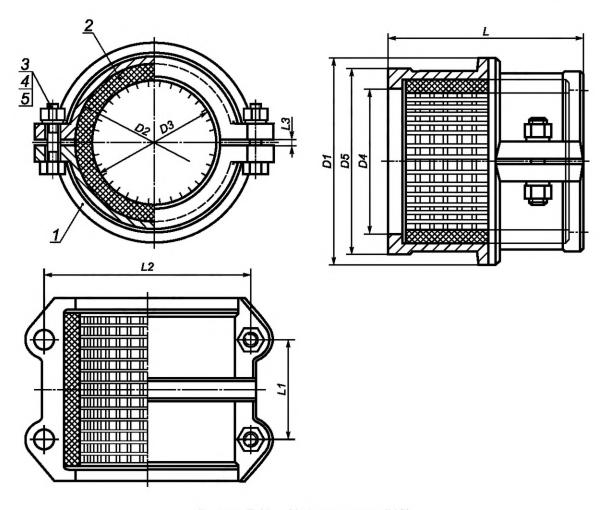


Рисунок Б.11 — Муфта свертная (МС)

Таблица Б.12 — Основные размеры муфты свертной (МС)

		73.76					L1 L2			Болты	
DN	D1	D2	D3	D4	D5	L		L3	Количество, шт.	Резьба	
100	220	155	118	143	185	180	85	210	10	4	M16
150	265	205	170	193	232	230	130	258	10	4	M20
200	320	251	222	239	285	230	110	320	12	4	M20
250	370	309	274	297	350	300	180	390	12	4	M24
300	435	358	326	346	398	325	200	440	12	4	M24
400	504	464	429	454	504	340	220	540	15	6	M24
500	610	569	532	560	610	368	250	646	15	6	M24

ГОСТ Р 57430—2017

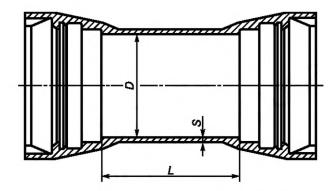


Рисунок Б.12 — Муфта надвижная (МН)

Таблица Б.13 — Основные размеры муфты надвижной (МН)

DN	D	S	L
80	109	8,1 _{-2,4}	160
100	130	8,4 _{-2,4}	160
125	156	8,8 _2,4	165
150	183	9,1 _{-2,5}	165
200	235	9,8 _{-2,5}	170
250	288	10,5 _{-2,6}	175
300	340	11,2 _{-2,6}	180
350	393	11,9 _{-2,7}	185
400	445	12,6 -2,7	190
500	550	14,0 -2,8	200

Приложение В (обязательное)

Соединительные части сварные

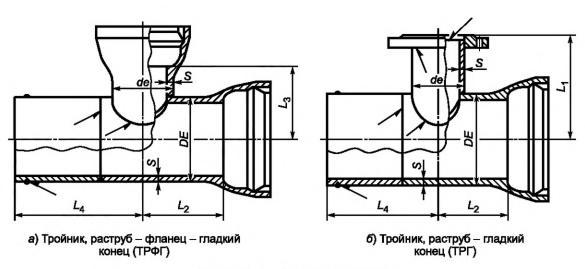


Рисунок В.1 — Тройник (ТРФГ, ТРГ)

Таблица В.1 — Основные размеры тройников (ТРФГ, ТРГ)

Условный проход		DE 45	E do	,	,	,	s
DN	dn	DE, de	L ₁	L ₂	L ₃	L ₄	5
80	80	98 ^{+1,0} _{-2,7}	150	125	125	252	6,0_1,
100	100	118 ^{+1,0} _{-2,8}	200	150	150	285	6,0_1,
125	125	144 _{-2,8}	225	200	200	343	6,0_1,
150	100	170 ^{+1,0} _{-2,9}	200	150	150	300	6.0
150	150	170_2,9	250	200	200	350	6,0 _{-1,5}
	100	222 ^{+1,0} 222 _{-3,0}	225	200	200	360	6,3 _{-1,5}
200	150		225	200	200	360	
	200		300	250	250	410	
- %	100		250	200	200	365	
250	150	+1,0 274 _{-3,0}	250	200	250	365] 60
250	200	274_3,0	275	250	250	415	6,8 _{-1,0}
	250		300	250	250	415	
	100		275	200	250	370	
	150		275	200	250	370	1
300	200	326 ^{+1,0} _{-3,3}	300	250	250	420	7,2 _{-1,6}
	250		300	250	250	420	
	300	1	300	300	300	470	1

ГОСТ Р 57430—2017

Окончание таблицы В.1

Условный проход		DE, de	1		,	1	s
DN	dn	_ DE, de	<i>L</i> ₁	L ₂	L ₃	L_4	
	100		300	200	250	380	
	150] [300	200	300	380]
350	200	378 ^{+1,0} _{-3,4}	300	250	300	430	77
330	250	3/8_3,4	325	250	300	430	7,7 _{-1,1}
	300		325	300	300	480	
	350	1.	350	300	300	480	
	100		325	200	300	390	9.1
	150] [325	250	300	440	
400	200	429 ^{+1,0} _{-3,5}	350	250	300	440	
400	250	429_3,5	350	250	300	440	8,1 _{-1,}
	300		350	300	300	490	
	400		400	300	350	490	
	100		375	200	350	400	9,0 _{-1,8}
	150		375	250	350	450	
	200		400	250	350	450	
500	250	532 ^{+1,0} _{-3,8}	400	250	350	450	
	300		425	300	350	500	
	400] [425	400	400	600]
	500	1	500	400	400	600	1

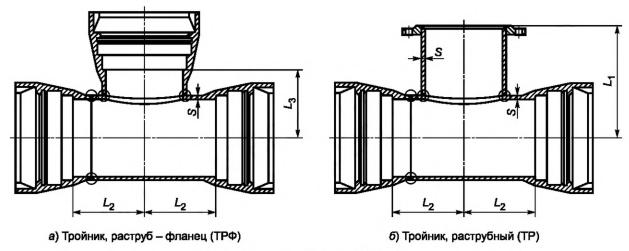
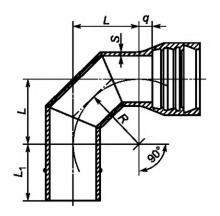
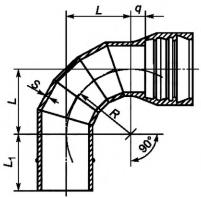
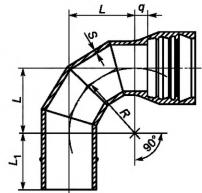


Рисунок В.2 — Тройник (ТРФ, ТР)


Таблица В.2 — Основные размеры тройников (ТРФ, ТР)


Условны	ій проход	DE, de	,	,	1	s
DN	dn	DE, de	L ₁	L ₂	L ₃	5
80	80	98 ^{+1,0} _{-2,7}	150	125	125	6,0 _{-1,3}
100	100	118 ^{+1,0} _{-2,8}	200	150	150	6,0 _{-1,3}
125	125	144 _{-2,8}	225	200	200	6,0 _{-1,3}
150	100	170 ^{+1,0} _{-2,9}	200	150	150	6.0
150	150	170 _{–2,9}	250	200	200	6,0 _{-1,3}
	100		225	200	200	
200	150	222 ^{+1,0} _{-3,0}	225	200	200	6,3 _{-1,5}
	200		300	250	250	
	100		250	200	200	4
250	150	274 ^{+1,0} _{-3,0}	250	200	250	60
250	200	274_3,0	275	250	250	6,8 _{-1,6}
	250] [300	250	250	14
	100		275	275 200	250	
	150] [275	200	250	
300	200	326 ^{+1,0} _{-3,3}	300	250	250	7,2 _{-1,6}
	250		300	250	250	
<u></u>	300		300	300	300	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	100		300	200	250	
	150] [300	200	300	17
350	200	378 ^{+1,0} _{-3,4}	300	250	300	77
330	250	3/8_3,4	325	250	300	7,7 _{-1,7}
	300] [325	300	300	7-
	350] [350	300	300	


ГОСТ Р 57430—2017

Окончание таблицы В.2

Условнь	ій проход	DE do	,	,	,	
DN	dn	DE, de	<i>L</i> ₁	L ₂	L ₃	S
	100		325	200	300	
	150	1 [325	250	300	1
400	200	+1,0 429 _{-3,5}	350	250	300] ,,
400	250	429 _3,5	350	250	300	8,1 _{-1,7}
	300] [350	300	300	
	400		400	300	350	
	100		375	200	350	
	150	1 [375	250	350]
	200] [400	250	350	
500	250	532 ^{+1,0} _{-3,8}	400	250	350	9,0 _{-1,8}
	300	1 [425	300	350	
	400] [425	400	400	1
	500	1 [500	400	400	1

- а) Колено, раструб гладкий конец (трехсекторный) (УРГ)
- б) Колено, раструб гладкий конец (четырехсекторный) (УРГ)
- є) Колено, раструб гладкий конец (пятисекторный) (УРГ)

Рисунок В.3 — Колено (УРГ)

Таблица В.3 — Основные размеры колен (УРГ, УР) и варианты исполнений

				R = 1	,5 <i>DE</i>	R=	2DE	R	= 3 <i>DE</i>	R=	5DE					
DN	DE	S	q	L	<i>L</i> ₁	L	L ₁	L	L ₁	L	L ₁					
						В	ариант исп	олнения								
80	+1,0	6.0	6.0	30	147	127	196	127	294	127	490	127				
00	98 _2,7	6,0 _{-1,3}	30	трехсек	торное	трехсен	сторное	четыре	хсекторное	пятисе	кторное					
100	118 ^{+1,0} _{-2,8}	6.0	40	177	135	236	135	354	135	590	135					
100	118 _2,8	6,0 _{-1,3}	40	трехсекторное четырехсекторное			пятисекторное									
125	+1,0	6.0	40	216	143	288	143	432	143	720	143					
123	144 _2,8	6,0 _{-1,3}	40	трехсек	трехсекторное четырехсекторное пятисектор				орное							
150	170 +1,0	6.0	6.0	6.0	6.0	6.0	6.0	40	255	150	340	150	510	150	850	150
130	$0 170_{-2,9}^{+1,0} 6,0_{-1,3}$		40	четырехсекторное пятисекторное												
200	+1,0	6,3 _{-1,5}	40	333	160	444	160	666	160	1110	160					
200	222 _3,0		40	четырехс	четырехсекторное пятисекторное											
250	+1,0	6,8 _{-1,6}	40	411	165	548	165	822	165	1370	165					
200	274 _3,0 6,	274 _3,0 0,0-1,6					пятисекто	рное								
300	+1,0	+1,0 -3,3 7,2 _{-1,6}	7,2 _{-1,6}	7.2	72	40	489	170	652	170	978	170	1630	170		
300	326 _3,3			40				пятисекто	рное							
350	270 +1,0	378 ^{+1,0} _{-3,4} 7,7 _{-1,7}	378 +1,0 7,7,-1,7	+1,0 -3,4 7,7 _{-1,7} 50	50	567	180	756	180	1134	180	1890	180			
330	378 _3,4				7,7-1,7	7,7-1,7	¹ , ¹ -1,7	¹ , ¹ -1,7	50				пятисекто	торное		
400	+1,0	Ω 1	50	643,5	190	858	190	1287	190	2145	190					
400	429 _3,5	8,1 _{-1,7}	50				пятисекто	рное								
500	+1,0	9.0	50	798	200	1064	200	1596	200	2660	200					
300	532 _3,8	9,0 _{-1,8}	50				пятисекто	рное								

ГОСТ Р 57430-2017

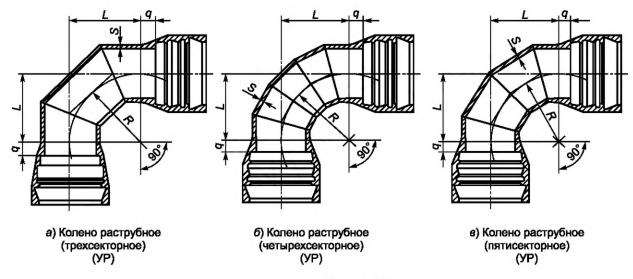


Рисунок В.4 — Колено (УР)

Таблица В.4 — Основные размеры отводов (ОР, ОРГ)

В миллиметрах

DN	DE	s	~	α =	= 10°	α =	15°	α =	30°
DIV	DE	3	q	L	L ₁	L	<i>L</i> ₁	L	L ₁
80	98 ^{+1,0} _{-2,7}	6,0 _{-1,3}	30	95	127	95	127	96	127
100	118 ^{+1,0} _{-2,8}	6,0 _{-1,3}	40	126	135	127	135	129	135
125	144 ^{+1,0} _{-2,8}	6,0 _{-1,3}	40	146	143	147	143	149	143
150	170 +1,0	6,0 _{-1,3}	40	165	150	166	150	169	150
200	222 +1,0	6,3 _{-1,5}	40	205	160	206	160	209	160
250	274 ^{+1,0} _{-3,0}	6,8 _{-1,6}	40	205	165	206	165	209	165
300	326 ^{+1,0} _{-3,3}	7,2 _{-1,6}	40	205	170	206	170	209	170
350	378 ^{+1,0} _{-3,4}	7,7 _{-1,7}	50	236	180	238	180	241	180
400	429 ^{+1,0} _{-3,5}	8,1 _{-1,7}	50	276	190	277	190	281	190
500	532 ^{+1,0} _{-3,8}	9,0 _{-1,8}	60	354	200	356	200	362	200

П р и м е ч а н и е — Угол α по требованию заказчика может быть изменен в пределах от 5° до 45°.

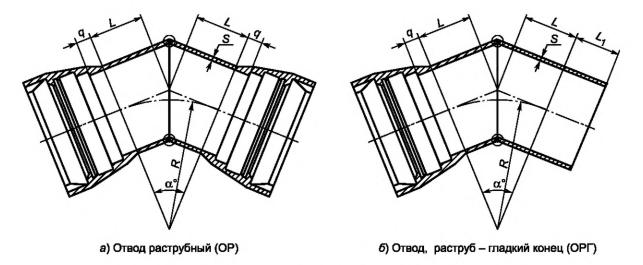


Рисунок В.5 — Отвод $\alpha = 10^{\circ}/15^{\circ}/30^{\circ}$ (ОР, ОРГ)

Таблица В.5 — Основные размеры отводов (ОР, ОРГ)

В миллиметрах

DM	55			α =	45°	α =	60°
DN	DE	S	q	L	L ₁	L	L ₁
80	98 ^{+1,0} _{-2,7}	6,0 _{-1,3}	30	99	127	104	127
100	118 ^{+1,0} _{-2,8}	6,0 _{-1,3}	40	132	135	139	135
125	144 +1,0	6,0 _{-1,3}	40	153	143	159	143
150	170 ^{+1,0} _{-2,9}	6,0 _{-1,3}	40	174	150	181	150
200	222+1,0	6,3 _{-1,5}	40	215	160	225	160
250	274 ^{+1,0} _{-3,0}	6,8 _{-1,6}	40	215	165	225	165
300	326 ^{+1,0} _{-3,3}	7,2 _{-1,6}	40	215	170	225	170
350	378 ^{+1,0} _{-3,4}	7,7 _{-1,7}	50	248	180	259	180
400	429 ^{+1,0} _{-3,5}	8,1 _{-1,7}	50	290	190	303	190
500	532 ^{+1,0} _{-3,8}	9,0 _{-1,8}	60	373	200	387	200

П р и м е ч а н и е — Угол α по требованию заказчика может быть изменен в пределах от 45 $^\circ$ до 88 $^\circ$.

ГОСТ Р 57430-2017

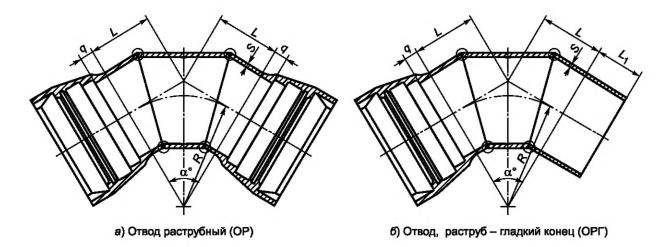


Рисунок В.6 — Отвод $\alpha = 45^{\circ}/60^{\circ}$ (ОР, ОРГ)

Таблица В.6 — Основные размеры патрубков (ПФГ)

DN	DE	S	L
80	98 ^{+1,0} _{-2,7}	6,0 _{-1,3}	560
100	118 +1,0	6,0 _{-1,3}	565
125	144 ^{+1,0} -2,8	6,0 _{-1,3}	570
150	170 +1,0 -2,9	6,0 _{-1,3}	569
200	222+1,0	6,3 _{-1,5}	585
250	274 +1,0	6,8 _{-1,6}	595
300	326 ^{+1,0} _{-3,3}	7,2 _{-1,6}	512
350	378 ^{+1,0} _{-3,4}	7,7 _{-1,7}	610
400	429 ^{+1,0} _{-3,5}	8,1 _{-1,7}	635
500	532 ^{+1,0} _{-3,8}	9,0 _{-1,8}	640

Примечания

¹ Длина патрубка по требованию заказчика может быть изменена в пределах до 2 м. 2 Патрубок может быть изготовлен с двумя фланцами (патрубок фланцевый — ПФ) или с двумя гладкими концами (патрубок — гладкий конец — ПГ).

³ Расположение сварного шва зависит от вида фланца.

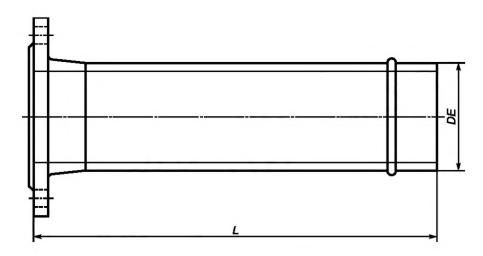


Рисунок В.7 — Патрубок, фланец — гладкий конец (ПФГ)

Таблица В.7 — Основные размеры патрубков (ПФР)

DN	DE	S	L
80	98 ^{+1,0} _{-2,7}	6,0 _{-1,3}	100
100	118 +1,0	6,0 _{-1,3}	100
125	144 _{-2,8}	6,0 _{-1,3}	100
150	170 +1,0 -2,9	6,0 _{-1,3}	100
200	222+1,0	6,3 _{-1,5}	100
250	274 ^{+1,0} _{-3,0}	6,8 _{-1,6}	150
300	326 ^{+1,0} _{-3,3}	7,2 _{-1,6}	150
350	378 ^{+1,0} _{-3,4}	7,7 _{-1,7}	150
400	429 ^{+1,0} _{-3,5}	8,1 _{-1,7}	150
500	532 ^{+1,0} _{-3,8}	9,0 _{-1,8}	150

Примечания

¹ Длина патрубка по требованию заказчика может быть изменена в пределах до 2 м. 2 Расположение сварного шва зависит от вида фланца.

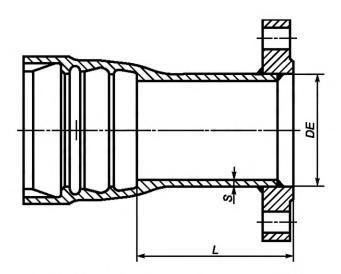


Рисунок В.8 — Патрубок, фланец — раструб (ПФР)

Таблица В.8 — Основные размеры патрубков (ПРГст.)

DN	DE	S	L
80	98 ^{+1,0} 98 _{-2,7}	6,0 _{-1,3}	200
100	118 +1,0	6,0 _{-1,3}	200
125	144 +1,0	6,0 _{-1,3}	200
150	170 +1,0	6,0 _{-1,3}	200
200	222+1,0	6,3 _{-1,5}	200
250	274 +1,0	6,8 _{-1,6}	250
300	326 ^{+1,0} _{-3,3}	7,2 _{-1,6}	250
350	378 ^{+1,0} _{-3,4}	7,7 _{-1,7}	250
400	429 ^{+1,0} _{-3,5}	8,1 _{-1,7}	250
500	532 ^{+1,0} _{-3,8}	9,0 _{-1,8}	250

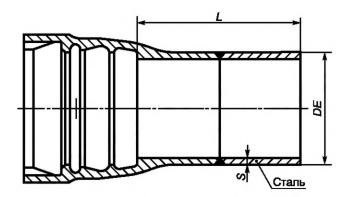


Рисунок В.9 — Патрубок, раструб — гладкий конец сталь (ПРГст.)

Приложение Г (рекомендуемое)

Рекомендуемый химический состав ВЧШГ

Рекомендуемый химический состав ВЧШГ для изготовления труб и соединительных частей приведен в таблице Г.1.

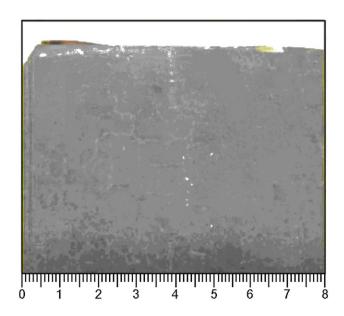
Таблица Г.1 — Рекомендуемый химический состав ВЧШГ

C ¹⁾	Si -	Mn	Ma	S	Р
	31	Не более	Mg	Не более	
3,300 — 3,900	1,900 — 2,900	0,400 ²⁾	0,025 — 0,050	0,015	0,100

Приложение Д (обязательное)

Классификатор допустимых поверхностных дефектов труб и соединительных частей из ВЧШГ

Д.1 Методика контроля допустимых поверхностных дефектов


Данный вид контроля заключается:

- в поисках дефектов поверхности путем осмотра;
- в определении влияния данного дефекта на прочностные и эксплуатационные характеристики труб и соединительных частей.

В случае сомнения необходимо выполнить шлифование до бездефектного металла и измерить остаточную толщину, которая должна быть больше или равна минимально допустимой.

Д.2 Виды допустимых дефектов

Д.2.1 Сетка разгара металлоформы (см. рисунок Д.1) — отпечаток на наружной поверхности трубы или соединительной части в виде сетки неправильной формы. Дефект обусловлен способом производства и не влияет на прочность и герметичность изделия.

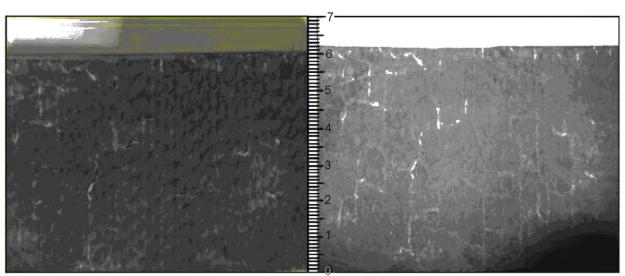
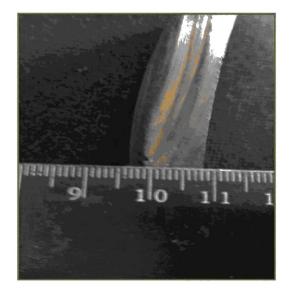


Рисунок Д.1 — Сетка разгара металлоформы


FOCT P 57430—2017

Д.2.2 Газовая шероховатость (см. рисунок Д.2) — дефект отливки в виде сферообразных углублений на наружной поверхности трубы или соединительной части, занимающий до 50 % площади, в т. ч. в месте контакта резинового уплотнительного кольца с наружной поверхностью гладкого конца трубы или соединительной части, возникающий вследствие роста газовых раковин на поверхности раздела металл — форма. Дефект обусловлен способом производства, не превышает по глубине минусового допуска на толщину стенки трубы или соединительной части и не влияет на прочность и герметичность изделия.

В месте контакта резинового уплотнительного кольца с наружной поверхностью гладкого конца трубы или соединительной части углубления подлежат заделке шпаклевками на основе полиэфирных смол и последующему выравниванию отремонтированного участка в одной плоскости с прилегаемой поверхностью.

Допускается заделка шпаклевками на основе полиэфирных смол дефектных мест, расположенных на других участках наружной поверхности трубы или соединительной части, если они ухудшают товарный вид.

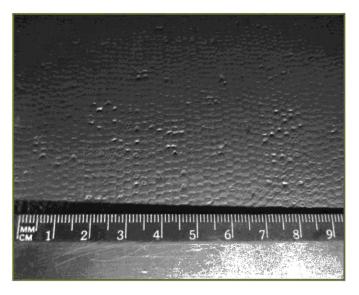
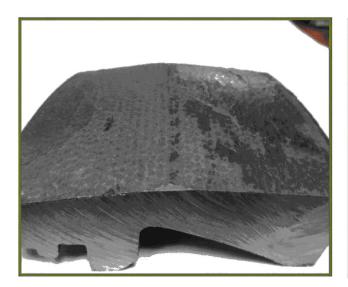
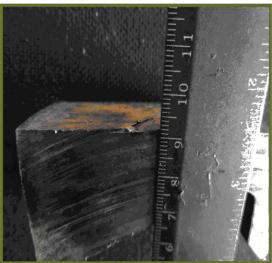
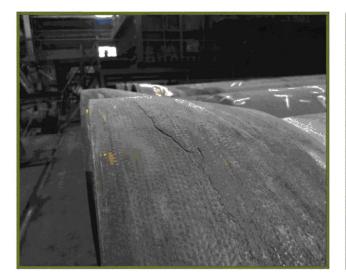
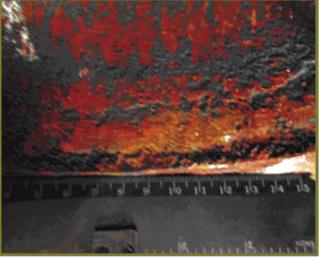




Рисунок Д.2 — Газовая шероховатость

Д.2.3 Плена (см. рисунок Д.3) — дефект наружной поверхности раструба в виде самостоятельного металлического или окисного слоя на поверхности отливки, образовавшегося при недостаточно спокойной заливке. Дефект обусловлен способом производства и не влияет на прочность и герметичность изделия.

Допускается наличие дефекта на раструбе по всей длине окружности.




Рисунок Д.3 — Плена

ГОСТ Р 57430—2017

Д.2.4 Утяжина (см. рисунок Д.4) — дефект в виде углубления с закругленными краями на внутренней поверхности трубы или соединительной части, расположенный по окружности на переходе от раструба к ствольной части. Образуется вследствие усадки металла при затвердевании. Дефект обусловлен способом производства и не влияет на прочность и герметичность изделия.

Допускается наличие дефекта по всей длине окружности, имеющего глубину, не превышающую 25 % толщины дефектного участка.

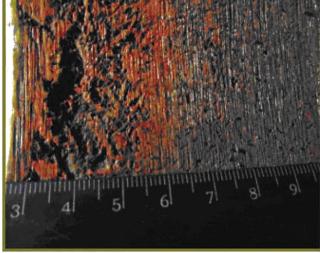


Рисунок Д.4 — Утяжина

Д.2.5 Засор (см. рисунок Д.5) — дефект, расположенный на внутренней поверхности раструба, в т.ч. на поверхности прилегания резинового уплотнительного кольца к раструбу, в виде включений шлака, огнеупорного покрытия дозировочных и секторных ковшей, защитной краски металлоприемников и желобов захваченных потоками жидкого металла и внедрившихся в поверхностный слой отливки. После зачистки раструба дефект представляет собой поверхностные углубления неправильной формы, расположенные на месте включений. Дефект обусловлен способом производства и не влияет на прочность и герметичность изделия.

В месте контакта резинового уплотнительного кольца с внутренней поверхностью раструба, углубления подлежат заделке шпаклевками на основе полиэфирных смол и последующему выравниванию отремонтированного участка в одной плоскости с прилегаемой поверхностью.

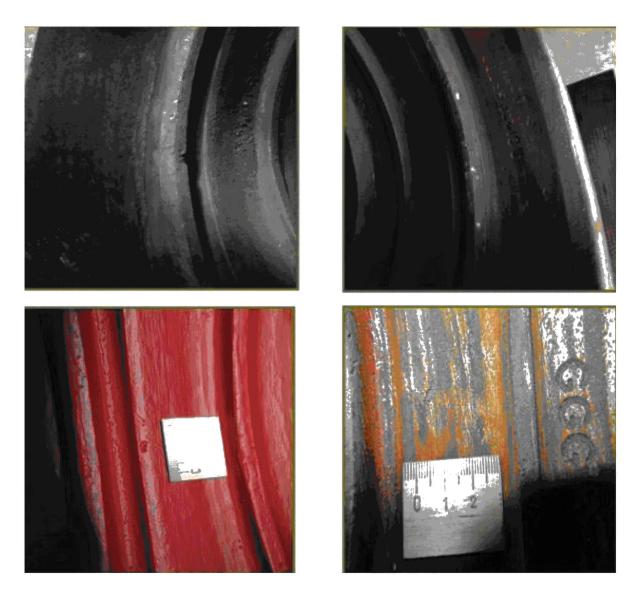
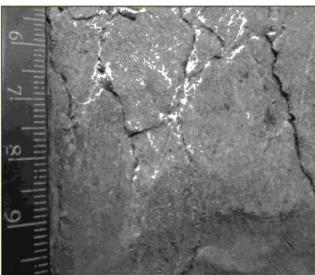



Рисунок Д.5 — Засор

ΓΟCT P 57430—2017

Д.2.6 Складчатость (слоновья кожа) (см. рисунок Д.6) — дефект на внутренней поверхности ствольной части отливки в виде незначительных гладких возвышений и углублений поверхности, возникающих вследствие пониженной жидкотекучести металла. Дефект обусловлен способом производства, не превышает по глубине минусовой допуск на толщину стенки трубы или соединительной части и не влияет на прочность и герметичность изделия.

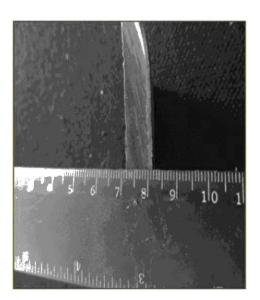


Рисунок Д.6 — Складчатость (слоновья кожа)

Д.2.7 Утонение гладкого конца (см. рисунок Д.7) — дефект в виде уменьшения толщины стенки трубы или соединительной части по всей окружности. Наличие утонения допускается на участке, расположенном за местом установки резинового уплотнительного кольца, т.к. не влияет на эксплуатационные характеристики отливки. Максимальное утонение торца гладкого конца может достигать двойного минусового допуска на толщину стенки трубы или соединительной части. Утонение участка под местом установки резинового уплотнительного кольца не превышает минусовой допуск на толщину стенки. Допустимая протяженность утоненного участка L — согласно таблице Д.1.

Т а б л и ц а Д.1 — Допустимая протяженность утоненного участка на гладком конце

DN, mm	Протяженность утоненного участка на гладком конце трубы L , мм
80	35
100	41
125	43
150	44
200	46
250	50
300	51
350	55
400	56
500	57

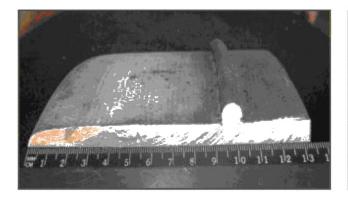


Рисунок Д.7 — Утонение гладкого конца трубы

ΓΟCT P 57430—2017

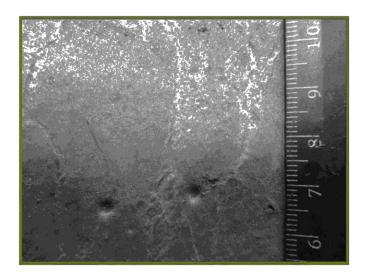

Д.2.8 Царапина (см. рисунок Д.8) — дефект на наружной поверхности трубы или соединительной части, возникший в результате механического повреждения при отливке по транспортным системам технологического потока. По глубине дефект не превышает минусового допуска на толщину стенки трубы или соединительной части и не влияет на прочность и герметичность изделия.

Рисунок Д.8 — Царапина

Д.2.9. Раковина (см. рисунок Д.9) — дефект на внутренней поверхности трубы или соединительной части в виде незначительных углублений поверхности, возникающих в результате попадания шлаковых включений, захваченных потоками жидкого металла, и внедрившихся в поверхностный слой отливки. После удаления шлаковых включений образуются углубления неправильной формы, не превышающие по глубине минусовой допуск на толщину стенки трубы или соединительные части.

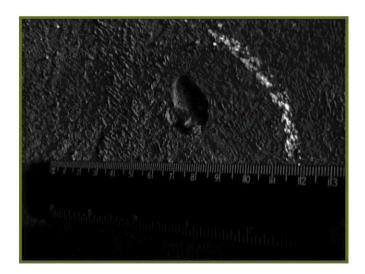
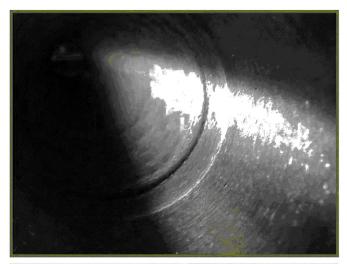




Рисунок Д.9 — Раковина

ΓΟCT P 57430—2017

Д.2.10 Нарост, залив, грубая поверхность (см. рисунок Д.10) — дефекты внутренней поверхности отливки в виде кольцевых или местных выступов и шероховатостей, обусловленных способом производства. Дефекты не превышают минусовой допуск на толщину стенки и не уменьшают величину установленного проходного сечения, не влияют на прочность и герметичность изделия.

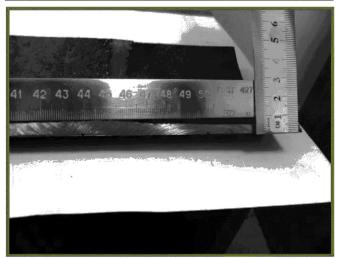


Рисунок Д.10 — Нарост, залив, грубая поверхность

Приложение Е (рекомендуемое)

Диагностирование трубопроводов

- Е.1 Для оценки состояния трубопровода и возможности его дальнейшей эксплуатации необходимо проводить периодическое диагностирование.
- Е.2 Сроки диагностирования трубопроводов из ВЧШГ устанавливаются с учетом опыта эксплуатации и аварийности, но не реже одного раза в 8 лет.

Первое диагностирование проводится через год после начала эксплуатации.

Е.З Состав работ по диагностированию трубопровода и периодичность обследований определяет служба технического надзора предприятия.

По результатам диагностирования определяются:

- дефектные участки трубопровода;
- характер дефектов, их размеры, причины появления;
- динамика развития дефектов и остаточный ресурс;
- допустимые параметры эксплуатации трубопровода;
- объем ремонтных работ по торможению развития дефектов и ликвидации опасных из них.
- Е.4 Работы по диагностическому обследованию выполняются силами предприятия (при наличии аттестованных лабораторий и персонала) или специализированными организациями.
- E.5 Для выполнения диагностического обследования трубопровода используют методики и аппаратуру, регламентированные для этих целей и нормативно-техническую документацию, действующую на предприятиях потребителя.
- Е.6 Для диагностирования состояния основного металла труб и их соединений могут быть использованы общие и локальные методы неразрушающего контроля.
- E.7 Локальная дефектоскопия осуществляется на дефектных участках, выявленных в результате наружного осмотра, и на контрольных отрезках, где наиболее вероятны коррозионные процессы.
- Е.8 Толщинометрию стенки труб с помощью ультразвукового толщиномера следует проводить по окружности трубы и вдоль нижней образующей трубы, где интенсивность коррозионных процессов максимальна.
- Е.9 Накопленные данные о выявленных повреждениях труб являются важной информацией для анализа работы систем, для определения численных показателей надежности трубопроводов, для прогнозирования остаточного ресурса трубопровода.

Библиография

- [1] ИСО 8179-1—2004 «Трубы из чугуна с шаровидным графитом. Наружное цинковое покрытие. Часть 1. Покрытие металлическим цинком с отделочным слоем» (Ductile iron pipes External zinc-based coating Part 1: Metallic zinc with finishing layer)
- [2] ИСО 8179-2—1995 «Трубы из чугуна с шаровидным графитом. Наружное цинковое покрытие. Часть 2. Покрытие краской с большим содержанием цинковой пыли и отделочный слой» (Ductile iron pipes External zinc coating Part 2: Zinc rich paint with finishing layer)
- [3] ТИ 01-СН—2011 «Сварка труб из высокопрочного чугуна с шаровидным графитом для обустройства нефтяных и газовых месторождений»
- [4] ТУ РБ 14556184.002—96 «Грунтовки «УНИКОР РБ»
- EH 14901:2014 «Трубы из ковкого чугуна, фитинги и компоненты. Эпоксидное покрытие (тяжелые условия работы) для фитингов и компонентов из ковкого чугуна. Требования и методы испытаний» (Ductile iron pipes, fittings and accessories. Epoxy coating (heavy duty) of ductile iron fittings and accessories. Requirements and test methods)
- [6] ЕН 15189:2006 «Трубы из ковкого чугуна, фитинги и вспомогательные части. Наружное полиуретановое покрытие для труб. Требования и методы испытаний» (Ductile iron pipes, fittings and accessories. External polyurethane coating for pipes. Requirements and test methods)
- [7] ЕН 598:2007 «Трубы и фитинги из чугуна с включениями шаровидного графита для безнапорных трубопроводов канализационной сети. Требования и методы испытаний» (Ductile iron pipes, fittings, accessories and their joints for sewerage applications. Requirements and test methods)
- [8] ИСО 4179:2005 «Трубы и фитинги из чугуна с шаровидным графитом для напорных и ненапорных трубопроводов. Футеровка цементным раствором» (Ductile iron pipes and fittings for pressure and non-pressure pipelines Cement mortar lining)
- [9] СП 34-116—97 «Инструкция по проектированию, строительству и реконструкции промысловых нефтегазопроводов»
- [10] ЕН 545:2010 «Трубы, фитинги, арматура и их соединения из чугуна с шаровидным графитом для водопроводов. Требования и методы испытаний» (Ductile iron pipes, fittings, accessories and their joints for water pipelines. Requirements and test methods)
- [11] ТУ 2531-077-50254094—2011 «Уплотнительные резиновые кольца для строительства промысловых трубопроводов на нефтяных месторождениях из труб с раструбно-замковым соединением «RJ»
- [12] ТУ 1461-075-50254094—2012 «Трубы с раструбно-замковым соединением «RJ» из высокопрочного чугуна с шаровидным графитом для строительства промысловых трубопроводов на нефтяных месторождениях»

УДК 621.774.1.08:669.13:006.354

OKC 77.140.75

B62

ОКП 14 6000

Ключевые слова: трубы, соединительные части, соединения, чугун с шаровидным графитом, промысловые нефтепроводы, технические условия, размеры, механические свойства, герметичность, испытания, испытания на растяжение, испытания на герметичность, измерения размеров, маркировка

Редактор *Е.В. Агеева*Технический редактор *В.Н. Прусакова*Корректор *Р.А. Ментова*Компьютерная верстка *А.А. Ворониной*

Сдано в набор 29.03.2017. Подписано в печать 21.04.2017. Формат $60 \times 84^{1}/_{8}$. Гарнитура Ариал. Усл. печ. л. 6,51. Уч.-изд. л. 5,89. Тираж 35 экз. Зак. 594. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Изменение № 1 ГОСТ Р 57430—2017 Трубы, соединительные части из высокопрочного чугуна с шаровидным графитом и их соединения для промысловых нефтепроводов. Технические условия

Утверждено и введено в действие Приказом Федерального агентства по техническому регулированию и метрологии от 29.03.2024 № 380-ст

Дата введения — 2024—05—01

Содержание. Подраздел 5.13. Наименование изложить в новой редакции:

«5.13 Защита трубопроводов от коррозии»;

дополнить наименованием приложения Ж:

«Приложение Ж (справочное) Область применения труб в зависимости от характеристик грунтов».

Раздел 1 после слова «соединениям» дополнить словами: «при номинальном давлении до $6,4~\mathrm{M\Pi a}$ ($64~\mathrm{krc/cm^2}$) включительно и температуре транспортируемой среды от 5 °C до 95 °C».

Раздел 2. Заменить ссылки:

«ГОСТ 12821 Фланцы стальные приварные встык на $P_{\rm y}$ от 0,1 до 20,0 МПа (от 1 до 200 кгс/см²). Конструкция и размеры» на «ГОСТ 33259 Фланцы арматуры, соединительных частей и трубопроводов на номинальное давление до PN 250. Конструкция, размеры и общие технические требования»;

«ГОСТ ISO 2531 Трубы, фитинги, арматура и их соединения из чугуна с шаровидным графитом для водо- и газоснабжения. Технические условия» на «ГОСТ ISO 2531—2022 Трубы, фитинги, арматура и их соединения из чугуна с шаровидным графитом для водоснабжения. Технические условия»;

ГОСТ 7293. Наименование дополнить словом: «Марки»;

ГОСТ 9454. Заменить слово: «Методы» на «Метод»;

ГОСТ 10692. Заменить слово: «части» на «детали»;

дополнить ссылками:

«ГОСТ 15150 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ Р 51164—98 Трубопроводы стальные магистральные. Общие требования к защите от коррозии».

Раздел 3 дополнить пунктом 3.1.17:

«3.1.17

электрохимическая защита: Защита металла от коррозии, осуществляемая поляризацией от внешнего источника тока или путем соединения с металлом (протектором), имеющим более отрицательный или более положительный потенциал, чем у защищаемого металла.

Примечание — В зависимости от направления поляризации различают катодную и анодную защиты.

[ГОСТ 9.106—2021, статья 98]

Подраздел 4.6. 14-й абзац. Заменить ссылку: «ГОСТ 12821» на «ГОСТ 33259» (2 раза).

Подраздел 5.13. Наименование изложить в новой редакции:

«5.13 Защита трубопроводов от коррозии»;

дополнить абзацами (перед 5.13.1):

«Если трубопровод целиком смонтирован с применением труб из ВЧШГ, то для его защиты от коррозии достаточно использовать изоляционное покрытие нормального типа независимо от условий прокладки и эксплуатации.

Если трубопровод из ВЧШГ имеет стальные элементы или участки, то в зависимости от конкретных условий прокладки и эксплуатации средства защиты от подземной и атмосферной коррозии должны соответствовать требованиям ГОСТ Р 51164 и ГОСТ 9.602.

Противокоррозионная защита независимо от условий прокладки и эксплуатации трубопровода, а также материалов, из которых трубопровод смонтирован, должна обеспечивать его безотказную работу в течение всего срока эксплуатации.

Стальные узлы и элементы трубопроводов из ВЧШГ (крановые узлы, тройниковые узлы, муфты и другие элементы) должны иметь противокоррозионное защитное покрытие по всей наружной поверхности в соответствии с требованиями ГОСТ Р 51164.

1

Подготовка траншеи и засыпка трубопровода грунтом должны выполняться способом, исключающим повреждение изоляции.

Изоляционные покрытия законченных строительством подземных участков трубопроводов из ВЧШГ должны иметь сопротивление не ниже $5 \cdot 10^4$ Ом·м². Контроль значения сопротивления должен проводиться катодной поляризацией по методике, приведенной в ГОСТ Р 51164—98 (приложение Д).

Тип и материал изоляционного покрытия трубопровода, полностью смонтированного из труб и соединительных деталей и узлов из ВЧШГ, для защиты от почвенной коррозии должны определяться в каждом конкретном случае на стадии проектирования.

На трубопроводе, смонтированном из труб и соединительных деталей из ВЧШГ с применением стальных элементов трубопроводов, в зависимости от конкретных условий прокладки стальные элементы должны иметь усиленный или нормальный тип изоляционного покрытия в соответствии с требованиями ГОСТ Р 51164.

Трубопроводы из ВЧШГ при надземной прокладке нуждаются в дополнительных мерах по защите от атмосферной коррозии, кроме указанных в [4].

Для защиты от коррозии трубопроводов при надземной прокладке должны использоваться атмосферостойкие лакокрасочные покрытия на основе эпоксидных, полиуретановых и других лакокрасочных материалов, устойчивые к нагрузкам, возникающим в результате перепадов температур в процессе эксплуатации, и обеспечивающие защиту с учетом степени коррозионной агрессивности атмосферы по ГОСТ 15150.

Если трубопровод целиком состоит из труб ВЧШГ и имеется наружное изоляционное защитное покрытие, то применение электрохимической защиты (ЭХЗ) не требуется.

При применении стальных элементов или узлов, стальных труб на трубопроводах из ВЧШГ в зависимости от конкретных условий прокладки и эксплуатации трубопровода стальные части должны быть защищены с использованием средства защиты от коррозии в соответствии с требованиями ГОСТ Р 51164 и ГОСТ 9.602.

При устройстве ЭХЗ на трубопроводе необходимо руководствоваться ГОСТ 9.602, ГОСТ Р 51164, [5], а также [4].

Применение ЭХЗ не должно оказывать вредного влияния на соседние трубопроводы и другие подземные металлические сооружения.

Выбор средств защиты от коррозии должен осуществляться с учетом коррозионной активности грунтов, фактической скорости коррозии внутренней и наружной поверхностей труб, эффективности мероприятий при обеспечении проектных сроков эксплуатации трубопроводов.

ЭХЗ допускается применять в следующих случаях:

- если грунты обладают удельным электрическим сопротивлением менее 0,5 Ом·м;
- если существует опасное влияние блуждающих постоянных и переменных токов (высоковольтные линии электропередач и т.д.);
- при наличии достаточной электрической проводимости трубопровода в продольном направлении (фланцевые и сварные соединения).

Защита трубопроводов от внутренней коррозии может осуществляться с помощью технологических методов борьбы с коррозией, антикоррозионных внутренних покрытий и ингибиторов коррозии.

Защита трубопроводов от коррозии технологическими методами должна предусматривать поддержание рабочего режима трубопроводов и периодическую очистку внутренней поверхности участков трубопроводов.

Для защиты внутренней поверхности трубопроводов может быть применена ингибиторная защита. Необходимость применения ингибиторов коррозии должна определяться в соответствии с требованиями [5].

Для внутренней изоляции труб следует применять материалы в соответствии с требованиями [4]. Нанесение внутренних антикоррозионных покрытий труб должно проводиться в стационарных заводских или базовых условиях.

Способ внутренней противокоррозионной защиты трубопроводов должен быть определен в проекте».

Подпункт 5.13.1.1. Перечисление б). Первое перечисление. Исключить ссылку: «по [4]»; второе, третье перечисления. Заменить ссылки: «[5], [6]» на «[6], [7]»; дополнить перечислением: «- полиэтиленовый рукав».

Подпункт 5.13.1.3. Перечисление а). Заменить ссылку: «[7]» на «[8]»;

перечисление б). Заменить ссылки: «[5], [6]» на «[6], [7]».

Подпункт 5.13.2.1. Перечисление б). Первое перечисление. Исключить ссылку: «по [4]»;

второе, третье перечисления. Заменить ссылки: «[5], [6]» на «[6], [7]».

Подпункт 5.13.2.3. Перечисление а). Заменить ссылку: «[7]» на «[8]»;

перечисление б). Заменить ссылки: «[5], [6]» на «[6], [7]».

Пункт 5.13.4. Заменить ссылку: «[8]» на «[9]».

Пункт 8.3. Исключить ссылку: «по [9]».

Пункт 8.13.1. Заменить ссылку: «[7]» на «[8]».

Пункт 10.4 дополнить абзацем (после второго абзаца):

«Допустимая температура окружающей среды при хранении труб и соединительных деталей трубопроводов без и с нанесенными противокоррозионными покрытиями: от минус 50 °C до плюс 50 °C — для труб и соединительных деталей, предназначенных для южной и средней климатической зон, и от минус 60 °C (включительно) до плюс 50 °C — для труб и фитингов, предназначенных для условий Крайнего Севера».

Пункт 11.1 дополнить абзацем (перед первым абзацем):

«11.1 Допустимая температура окружающей среды при проведении погрузочных, разгрузочных работ и транспортировании труб и соединительных деталей трубопроводов без и с нанесенными противокоррозионными покрытиями: от минус 40 °C до плюс 40 °C — для труб и соединительных деталей, предназначенных для южной и средней климатической зон, и от минус 60 °C (включительно) до плюс 40 °C — для труб и фитингов, предназначенных для условий Крайнего Севера».

Стандарт дополнить приложением Ж:

«Приложение Ж (справочное)

Область применения труб в зависимости от характеристик грунтов

Ж.1 Стандартное покрытие

Трубы с наружным покрытием металлическим цинком с отделочным слоем в соответствии с [1] и фитинги и арматура с лакокрасочным покрытием на основе синтетической смолы могут применяться при прокладке в различных типах грунтов, анализ которых проводят на месте, кроме:

- грунтов с низким электрическим сопротивлением: менее 1500 Ом·см при укладке выше уровня грунтовых вод или менее 2500 Ом·см при укладке ниже уровня грунтовых вод;
 - смешанных грунтов, т. е. состоящих из двух или более видов грунтов;
 - грунтов с рН ниже 6 и высоким запасом кислотности;
 - грунтов, содержащих мусор, золу, шлак или загрязненных отходами или промышленными сточными водами.

В таких грунтах и в случае блуждающих токов рекомендуется дополнительная защита (такая, как полиэтиленовый рукав) или другие типы внешних покрытий, в зависимости от ситуации (см. ГОСТ ISO 2531—2022, подраздел A.2).

Более толстый отделочный слой (например, полиуретановый или эпоксидный, минимум 100 мкм по месту) может расширить область применения до сопротивления 1000 Ом·см — при укладке выше уровня грунтовых вод и 1500 Ом·см — при укладке ниже уровня грунтовых вод.

При выборе отделочного покрытия рекомендуется отдавать предпочтение специально разработанным для центробежно отлитых труб краскам, совместимым с цинковым покрытием.

Ж.2 Сплав цинка с алюминием с использованием или без других металлов

Трубы из чугуна с шаровидным графитом, покрытые сплавом цинка и алюминия с использованием или без других металлов, с минимальной массой 400 г/м², с отделочным слоем, вместе с фитингами из чугуна с шаровидным графитом, с электроосажденными покрытиями минимальной толщиной 50 мкм, нанесенными на очищенную пескоструйной или дробеструйной обработкой поверхность, или покрытые эпоксидным покрытием, могут применяться при прокладке в различных типах грунтов, за исключением:

- грунтов, содержащих мусор, золу, шлак или загрязненных отходами или промышленными сточными водами;
- грунтов, расположенных ниже уровня морских грунтовых вод, с сопротивлением ниже 500 Ом см.
- В таких грунтах и в случае блуждающих токов рекомендуется использовать другие типы внешних покрытий, адаптированных к большинству коррозийных грунтов.

Ж.3 Армированные покрытия

Трубы и фитинги из чугуна с шаровидным графитом со следующими внешними покрытиями могут применяться в грунтах с любым уровнем коррозионной стойкости:

- экструдированное полиэтиленовое покрытие (трубы) (см. [13]);

- полиуретановое покрытие (трубы) (см. [7]);
- эпоксидное покрытие с минимальной средней толщиной 250 мкм (фитинги) (см. [6]);
- покрытие раствором фибробетона (трубы) (см. [7]);
- клейкие ленты (трубы и фитинги)».

Элемент стандарта «Библиография» изложить в новой редакции:

«[1]	ИСО 8179-1—2017	Трубы из чугуна с шаровидным графитом. Наружное цинковое покрытие. Часть 1. Покрытие металлическим цинком с отделочным слоем
[2]	ИСО 8179-2—2017	Трубы из чугуна с шаровидным графитом. Наружное цинковое покрытие. Часть 2. Покрытие краской с большим содержанием цинковой пыли и отделочный слой
[3]	ТИ 01-СН-2011	Сварка труб из высокопрочного чугуна с шаровидным графитом для обустройства нефтяных и газовых месторождений
[4]	СП 483.1325800.2020	Трубопроводы промысловые из высокопрочного чугуна с шаровидным графитом для нефтегазовых месторождений. Правила проектирования, строительства, эксплуатации и ремонта
[5]	СП 284.1325800.2016	Трубопроводы промысловые для нефти и газа. Правила проектирования и производства работ
[6]	EH 14901:2014	Трубы из ковкого чугуна, фитинги и компоненты. Эпоксидное покрытие (тяжелые условия работы) для фитингов и компонентов из ковкого чугуна. Требования и методы испытаний
[7]	EH 15189:2006	Трубы из ковкого чугуна, фитинги и вспомогательные части. Наружное полиуретановое покрытие для труб. Требования и методы испытаний
[8]	EH 598:2007	Трубы и фитинги из чугуна с включениями шаровидного графита для безнапорных трубопроводов канализационной сети. Требования и методы испытаний
[9]	ИСО 4179:2005	Трубы и фитинги из чугуна с шаровидным графитом для напорных и нена- порных трубопроводов. Футеровка цементным раствором
[10]	EH 545:2010	Трубы, фитинги, арматура и их соединения из чугуна с шаровидным графитом для водопроводов. Требования и методы испытаний
[11]	ТУ 2531-077-50254094-2011	Уплотнительные резиновые кольца для строительства промысловых трубопроводов на нефтяных месторождениях из труб с раструбно-замковым соединением «RJ»
[12]	TY 24.51.20-075-90910065-2017	Трубы с раструбно-замковым соединением «RJ» из высокопрочного чугуна с шаровидным графитом для строительства промысловых трубопроводов на нефтяных месторождениях
[13]	EH 14628-1:2020	Трубы из ковкого чугуна, фитинги и арматура. Требования и методы испытаний. Часть 1. Полиэтиленовые покрытия
[14]	EH 15542:2008	Трубы, фитинги и вспомогательные части из ковкого чугуна. Наружное покрытие труб из цементного раствора. Требования и методы испытаний».

(ИУС № 7 2024 г.)

Изменение № 1 ГОСТ Р 57430—2017 Трубы, соединительные части из высокопрочного чугуна с шаровидным графитом и их соединения для промысловых нефтепроводов. Технические условия

Утверждено и введено в действие Приказом Федерального агентства по техническому регулированию и метрологии от 29.03.2024 № 380-ст

Дата введения — 2024—05—01

Содержание. Подраздел 5.13. Наименование изложить в новой редакции:

«5.13 Защита трубопроводов от коррозии»;

дополнить наименованием приложения Ж:

«Приложение Ж (справочное) Область применения труб в зависимости от характеристик грунтов».

Раздел 1 после слова «соединениям» дополнить словами: «при номинальном давлении до $6,4~\mathrm{M\Pi a}$ ($64~\mathrm{krc/cm^2}$) включительно и температуре транспортируемой среды от 5 °C до 95 °C».

Раздел 2. Заменить ссылки:

«ГОСТ 12821 Фланцы стальные приварные встык на $P_{\rm y}$ от 0,1 до 20,0 МПа (от 1 до 200 кгс/см²). Конструкция и размеры» на «ГОСТ 33259 Фланцы арматуры, соединительных частей и трубопроводов на номинальное давление до PN 250. Конструкция, размеры и общие технические требования»;

«ГОСТ ISO 2531 Трубы, фитинги, арматура и их соединения из чугуна с шаровидным графитом для водо- и газоснабжения. Технические условия» на «ГОСТ ISO 2531—2022 Трубы, фитинги, арматура и их соединения из чугуна с шаровидным графитом для водоснабжения. Технические условия»;

ГОСТ 7293. Наименование дополнить словом: «Марки»;

ГОСТ 9454. Заменить слово: «Методы» на «Метод»;

ГОСТ 10692. Заменить слово: «части» на «детали»;

дополнить ссылками:

«ГОСТ 15150 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ Р 51164—98 Трубопроводы стальные магистральные. Общие требования к защите от коррозии».

Раздел 3 дополнить пунктом 3.1.17:

«3.1.17

электрохимическая защита: Защита металла от коррозии, осуществляемая поляризацией от внешнего источника тока или путем соединения с металлом (протектором), имеющим более отрицательный или более положительный потенциал, чем у защищаемого металла.

Примечание — В зависимости от направления поляризации различают катодную и анодную защиты.

[ГОСТ 9.106—2021, статья 98]

Подраздел 4.6. 14-й абзац. Заменить ссылку: «ГОСТ 12821» на «ГОСТ 33259» (2 раза).

Подраздел 5.13. Наименование изложить в новой редакции:

«5.13 Защита трубопроводов от коррозии»;

дополнить абзацами (перед 5.13.1):

«Если трубопровод целиком смонтирован с применением труб из ВЧШГ, то для его защиты от коррозии достаточно использовать изоляционное покрытие нормального типа независимо от условий прокладки и эксплуатации.

Если трубопровод из ВЧШГ имеет стальные элементы или участки, то в зависимости от конкретных условий прокладки и эксплуатации средства защиты от подземной и атмосферной коррозии должны соответствовать требованиям ГОСТ Р 51164 и ГОСТ 9.602.

Противокоррозионная защита независимо от условий прокладки и эксплуатации трубопровода, а также материалов, из которых трубопровод смонтирован, должна обеспечивать его безотказную работу в течение всего срока эксплуатации.

Стальные узлы и элементы трубопроводов из ВЧШГ (крановые узлы, тройниковые узлы, муфты и другие элементы) должны иметь противокоррозионное защитное покрытие по всей наружной поверхности в соответствии с требованиями ГОСТ Р 51164.

1

Подготовка траншеи и засыпка трубопровода грунтом должны выполняться способом, исключающим повреждение изоляции.

Изоляционные покрытия законченных строительством подземных участков трубопроводов из ВЧШГ должны иметь сопротивление не ниже $5 \cdot 10^4$ Ом·м². Контроль значения сопротивления должен проводиться катодной поляризацией по методике, приведенной в ГОСТ Р 51164—98 (приложение Д).

Тип и материал изоляционного покрытия трубопровода, полностью смонтированного из труб и соединительных деталей и узлов из ВЧШГ, для защиты от почвенной коррозии должны определяться в каждом конкретном случае на стадии проектирования.

На трубопроводе, смонтированном из труб и соединительных деталей из ВЧШГ с применением стальных элементов трубопроводов, в зависимости от конкретных условий прокладки стальные элементы должны иметь усиленный или нормальный тип изоляционного покрытия в соответствии с требованиями ГОСТ Р 51164.

Трубопроводы из ВЧШГ при надземной прокладке нуждаются в дополнительных мерах по защите от атмосферной коррозии, кроме указанных в [4].

Для защиты от коррозии трубопроводов при надземной прокладке должны использоваться атмосферостойкие лакокрасочные покрытия на основе эпоксидных, полиуретановых и других лакокрасочных материалов, устойчивые к нагрузкам, возникающим в результате перепадов температур в процессе эксплуатации, и обеспечивающие защиту с учетом степени коррозионной агрессивности атмосферы по ГОСТ 15150.

Если трубопровод целиком состоит из труб ВЧШГ и имеется наружное изоляционное защитное покрытие, то применение электрохимической защиты (ЭХЗ) не требуется.

При применении стальных элементов или узлов, стальных труб на трубопроводах из ВЧШГ в зависимости от конкретных условий прокладки и эксплуатации трубопровода стальные части должны быть защищены с использованием средства защиты от коррозии в соответствии с требованиями ГОСТ Р 51164 и ГОСТ 9.602.

При устройстве ЭХЗ на трубопроводе необходимо руководствоваться ГОСТ 9.602, ГОСТ Р 51164, [5], а также [4].

Применение ЭХЗ не должно оказывать вредного влияния на соседние трубопроводы и другие подземные металлические сооружения.

Выбор средств защиты от коррозии должен осуществляться с учетом коррозионной активности грунтов, фактической скорости коррозии внутренней и наружной поверхностей труб, эффективности мероприятий при обеспечении проектных сроков эксплуатации трубопроводов.

ЭХЗ допускается применять в следующих случаях:

- если грунты обладают удельным электрическим сопротивлением менее 0,5 Ом·м;
- если существует опасное влияние блуждающих постоянных и переменных токов (высоковольтные линии электропередач и т.д.);
- при наличии достаточной электрической проводимости трубопровода в продольном направлении (фланцевые и сварные соединения).

Защита трубопроводов от внутренней коррозии может осуществляться с помощью технологических методов борьбы с коррозией, антикоррозионных внутренних покрытий и ингибиторов коррозии.

Защита трубопроводов от коррозии технологическими методами должна предусматривать поддержание рабочего режима трубопроводов и периодическую очистку внутренней поверхности участков трубопроводов.

Для защиты внутренней поверхности трубопроводов может быть применена ингибиторная защита. Необходимость применения ингибиторов коррозии должна определяться в соответствии с требованиями [5].

Для внутренней изоляции труб следует применять материалы в соответствии с требованиями [4]. Нанесение внутренних антикоррозионных покрытий труб должно проводиться в стационарных заводских или базовых условиях.

Способ внутренней противокоррозионной защиты трубопроводов должен быть определен в проекте».

Подпункт 5.13.1.1. Перечисление б). Первое перечисление. Исключить ссылку: «по [4]»; второе, третье перечисления. Заменить ссылки: «[5], [6]» на «[6], [7]»; дополнить перечислением: «- полиэтиленовый рукав».

Подпункт 5.13.1.3. Перечисление а). Заменить ссылку: «[7]» на «[8]»;

перечисление б). Заменить ссылки: «[5], [6]» на «[6], [7]».

Подпункт 5.13.2.1. Перечисление б). Первое перечисление. Исключить ссылку: «по [4]»;

второе, третье перечисления. Заменить ссылки: «[5], [6]» на «[6], [7]».

Подпункт 5.13.2.3. Перечисление а). Заменить ссылку: «[7]» на «[8]»;

перечисление б). Заменить ссылки: «[5], [6]» на «[6], [7]».

Пункт 5.13.4. Заменить ссылку: «[8]» на «[9]».

Пункт 8.3. Исключить ссылку: «по [9]».

Пункт 8.13.1. Заменить ссылку: «[7]» на «[8]».

Пункт 10.4 дополнить абзацем (после второго абзаца):

«Допустимая температура окружающей среды при хранении труб и соединительных деталей трубопроводов без и с нанесенными противокоррозионными покрытиями: от минус 50 °C до плюс 50 °C — для труб и соединительных деталей, предназначенных для южной и средней климатической зон, и от минус 60 °C (включительно) до плюс 50 °C — для труб и фитингов, предназначенных для условий Крайнего Севера».

Пункт 11.1 дополнить абзацем (перед первым абзацем):

«11.1 Допустимая температура окружающей среды при проведении погрузочных, разгрузочных работ и транспортировании труб и соединительных деталей трубопроводов без и с нанесенными противокоррозионными покрытиями: от минус 40 °C до плюс 40 °C — для труб и соединительных деталей, предназначенных для южной и средней климатической зон, и от минус 60 °C (включительно) до плюс 40 °C — для труб и фитингов, предназначенных для условий Крайнего Севера».

Стандарт дополнить приложением Ж:

«Приложение Ж (справочное)

Область применения труб в зависимости от характеристик грунтов

Ж.1 Стандартное покрытие

Трубы с наружным покрытием металлическим цинком с отделочным слоем в соответствии с [1] и фитинги и арматура с лакокрасочным покрытием на основе синтетической смолы могут применяться при прокладке в различных типах грунтов, анализ которых проводят на месте, кроме:

- грунтов с низким электрическим сопротивлением: менее 1500 Ом·см при укладке выше уровня грунтовых вод или менее 2500 Ом·см при укладке ниже уровня грунтовых вод;
 - смешанных грунтов, т. е. состоящих из двух или более видов грунтов;
 - грунтов с рН ниже 6 и высоким запасом кислотности;
 - грунтов, содержащих мусор, золу, шлак или загрязненных отходами или промышленными сточными водами.

В таких грунтах и в случае блуждающих токов рекомендуется дополнительная защита (такая, как полиэтиленовый рукав) или другие типы внешних покрытий, в зависимости от ситуации (см. ГОСТ ISO 2531—2022, подраздел A.2).

Более толстый отделочный слой (например, полиуретановый или эпоксидный, минимум 100 мкм по месту) может расширить область применения до сопротивления 1000 Ом·см — при укладке выше уровня грунтовых вод и 1500 Ом·см — при укладке ниже уровня грунтовых вод.

При выборе отделочного покрытия рекомендуется отдавать предпочтение специально разработанным для центробежно отлитых труб краскам, совместимым с цинковым покрытием.

Ж.2 Сплав цинка с алюминием с использованием или без других металлов

Трубы из чугуна с шаровидным графитом, покрытые сплавом цинка и алюминия с использованием или без других металлов, с минимальной массой 400 г/м², с отделочным слоем, вместе с фитингами из чугуна с шаровидным графитом, с электроосажденными покрытиями минимальной толщиной 50 мкм, нанесенными на очищенную пескоструйной или дробеструйной обработкой поверхность, или покрытые эпоксидным покрытием, могут применяться при прокладке в различных типах грунтов, за исключением:

- грунтов, содержащих мусор, золу, шлак или загрязненных отходами или промышленными сточными водами;
- грунтов, расположенных ниже уровня морских грунтовых вод, с сопротивлением ниже 500 Ом см.
- В таких грунтах и в случае блуждающих токов рекомендуется использовать другие типы внешних покрытий, адаптированных к большинству коррозийных грунтов.

Ж.3 Армированные покрытия

Трубы и фитинги из чугуна с шаровидным графитом со следующими внешними покрытиями могут применяться в грунтах с любым уровнем коррозионной стойкости:

- экструдированное полиэтиленовое покрытие (трубы) (см. [13]);

- полиуретановое покрытие (трубы) (см. [7]);
- эпоксидное покрытие с минимальной средней толщиной 250 мкм (фитинги) (см. [6]);
- покрытие раствором фибробетона (трубы) (см. [7]);
- клейкие ленты (трубы и фитинги)».

Элемент стандарта «Библиография» изложить в новой редакции:

«[1]	ИСО 8179-1—2017	Трубы из чугуна с шаровидным графитом. Наружное цинковое покрытие. Часть 1. Покрытие металлическим цинком с отделочным слоем
[2]	ИСО 8179-2—2017	Трубы из чугуна с шаровидным графитом. Наружное цинковое покрытие. Часть 2. Покрытие краской с большим содержанием цинковой пыли и отделочный слой
[3]	ТИ 01-СН-2011	Сварка труб из высокопрочного чугуна с шаровидным графитом для обустройства нефтяных и газовых месторождений
[4]	СП 483.1325800.2020	Трубопроводы промысловые из высокопрочного чугуна с шаровидным графитом для нефтегазовых месторождений. Правила проектирования, строительства, эксплуатации и ремонта
[5]	СП 284.1325800.2016	Трубопроводы промысловые для нефти и газа. Правила проектирования и производства работ
[6]	EH 14901:2014	Трубы из ковкого чугуна, фитинги и компоненты. Эпоксидное покрытие (тяжелые условия работы) для фитингов и компонентов из ковкого чугуна. Требования и методы испытаний
[7]	EH 15189:2006	Трубы из ковкого чугуна, фитинги и вспомогательные части. Наружное полиуретановое покрытие для труб. Требования и методы испытаний
[8]	EH 598:2007	Трубы и фитинги из чугуна с включениями шаровидного графита для безнапорных трубопроводов канализационной сети. Требования и методы испытаний
[9]	ИСО 4179:2005	Трубы и фитинги из чугуна с шаровидным графитом для напорных и нена- порных трубопроводов. Футеровка цементным раствором
[10]	EH 545:2010	Трубы, фитинги, арматура и их соединения из чугуна с шаровидным графитом для водопроводов. Требования и методы испытаний
[11]	ТУ 2531-077-50254094-2011	Уплотнительные резиновые кольца для строительства промысловых трубопроводов на нефтяных месторождениях из труб с раструбно-замковым соединением «RJ»
[12]	ТУ 24.51.20-075-90910065-2017	Трубы с раструбно-замковым соединением «RJ» из высокопрочного чугуна с шаровидным графитом для строительства промысловых трубопроводов на нефтяных месторождениях
[13]	EH 14628-1:2020	Трубы из ковкого чугуна, фитинги и арматура. Требования и методы испытаний. Часть 1. Полиэтиленовые покрытия
[14]	EH 15542:2008	Трубы, фитинги и вспомогательные части из ковкого чугуна. Наружное по- крытие труб из цементного раствора. Требования и методы испытаний».

(ИУС № 7 2024 г.)