МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 34000— 2016

ЗАРЯДЫ КУМУЛЯТИВНЫЕ

Методы испытаний на работоспособность и безопасность

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 105 «Взрывчатые материалы и изделия на их основе»
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 25 октября 2016 г. № 92-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 14 марта 2017 г. № 136-ст межгосударственный стандарт ГОСТ 34000—2016 введен в действие в качестве национального стандарта Российской Федерации с 1 сентября 2017 г.
 - 5 ВВЕДЕН ВПЕРВЫЕ
 - 6 ПЕРЕИЗДАНИЕ. Апрель 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

© Стандартинформ, оформление, 2016, 2019

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ЗАРЯДЫ КУМУЛЯТИВНЫЕ

Методы испытаний на работоспособность и безопасность

Shaped charge. Test methods for function and safety

Дата введения — 2017—09—01

1 Область применения

Настоящий стандарт распространяется на кумулятивные заряды, применяемые в кумулятивных перфораторах, используемых в нефтяной и газовой промышленности с целью вскрытия продуктивных пластов, и определяет методы испытаний на безопасность при транспортировании, хранении, применении и работоспособность при одиночном отстреле кумулятивных зарядов в атмосферных условиях по бетонным мишеням контроля качества.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 1577 Прокат толстолистовой широкополосный из конструкционной качественной стали. Технические условия

ГОСТ 7473 Смеси бетонные. Технические условия

ГОСТ 10178 Портландцемент и шлакопортландцемент. Технические условия

ГОСТ 10180 Бетоны. Методы определения прочности по контрольным образцам

ГОСТ 10354 Пленка полиэтиленовая. Технические условия

ГОСТ 23732 Вода для бетонов и строительных растворов. Технические условия

ГОСТ 31108 Цементы общестроительные. Технические условия

ГОСТ 31814 Оценка соответствия. Общие правила отбора образцов для испытаний продукции при подтверждении соответствия

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения, обозначения и сокращения

- 3.1 В настоящем стандарте применены следующие термины с соответствующими определениями:
- 3.1.1 **кумулятивный заряд:** Заряд взрывчатых веществ с конической или сферической выемкой на одном конце, действие которого основано на кумуляции.

- 3.1.2 **кумуляция:** Существенное увеличение действия взрыва в определенном направлении, достигаемое специальной формой зарядов взрывчатых веществ, с выемкой в противоположной от детонатора части заряда.
- 3.1.3 **взрыв:** Быстропротекающий процесс физических и химических превращений веществ, сопровождающийся освобождением значительного количества энергии в ограниченном объеме, в результате которого в окружающем пространстве образуется и распространяется ударная волна, способная привести или приводящая к возникновению техногенной чрезвычайной ситуации.
- 3.1.4 **втулка-фокус:** Втулка, изготовленная под размер испытываемого кумулятивного заряда, изготовленная из любого материала, имитирующая зазор между внутренней стенкой кумулятивного перфоратора и торцом кумулятивного заряда, используемого в данном кумулятивном перфораторе в соответствии с конструкторской документацией.
- 3.1.5 **втулка-клиренс:** Втулка, изготовленная под размер испытываемого кумулятивного заряда, изготовленная из любого материала, имитирующая зазор между наружной стенкой кумулятивного перфоратора и внутренней стенкой обсадной колонны.
- 3.1.6 кумулятивный перфоратор: Устройство для перфорационных работ в скважине, действие которого основано на кумулятивном эффекте.
- 3.1.7 **детонирующий шнур:** Устройство для передачи детонации зарядам взрывчатых веществ; иногда используется в качестве самостоятельного заряда, состоящий из взрывчатой сердцевины и защитной оболочки красного или другого отличительного цвета.
- 3.1.8 **электродетонатор** (*Нрк*. взрывной патрон): Устройство, предназначенное для возбуждения детонации заряда взрывчатых веществ, промежуточного детонатора или детонирующего шнура.

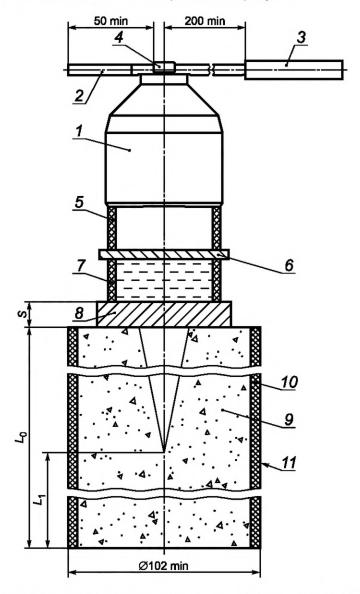
Примечание — Начальным импульсом в работе электродетонатора служит электрический ток.

3.2 В настоящем стандарте применены следующие обозначения и сокращения:

КЗ — кумулятивный заряд;

ДШ — детонирующий шнур.

4 Общие положения


- 4.1 Настоящий стандарт устанавливает единые требования при проведении комплекса сертификационных испытаний КЗ для обязательной сертификации на соответствие нормативной документации предприятия-изготовителя на территории государств членов Таможенного союза.
 - 4.2 Требования безопасности в соответствии с:
- нормами и правилами промышленной безопасности, правилами безопасности при взрывных работах, действующих на территории государств членов Таможенного союза;
 - нормативно-технической и эксплуатационной документацией на КЗ;
- нормативно-технической и эксплуатационной документацией на применяемые при испытаниях средства инициирования, приборы и оборудование.
- 4.3 Средства инициирования, ДШ, КЗ, применяемые при испытаниях должны иметь действующее Разрешение на постоянное применение, выданное одним из уполномоченных органов в области промышленной безопасности государства члена Таможенного союза, а средства инициирования ДШ к тому же должны иметь сертификат соответствия требованиям технического регламента Таможенного союза.
- 4.4 При испытаниях допускается применять ДШ и средства инициирования, разрешенные к применению с КЗ в соответствующих технических устройствах (кумулятивных перфораторах) и изделиях с содержанием взрывчатых материалов согласно действующей нормативной документации.
- 4.4.1 По согласованию с органом по сертификации допускается при испытаниях использовать электродетонаторы мгновенного действия, имеющие специальное разрешение на применение, выданное одним из уполномоченных органов в области промышленной безопасности государства члена Таможенного союза, и предназначенных для инициирования ДШ, в соответствии с нормативной документацией, действующей на территории государств членов Таможенного союза.
- 4.4.2 Вне зависимости от конструктивных особенностей применяемые электродетонаторы должны обеспечивать полноту срабатывания ДШ.

5 Метод отбора образцов для испытаний

- 5.1 Общие правила отбора образцов в соответствии с ГОСТ 31814.
- 5.2 Необходимо количество КЗ каждого исполнения отбирают из минимальной промышленной партии объемом не менее 300 шт.
- 5.3 Из представленной минимальной промышленной партии отбирают 5 (пять) КЗ из упаковочной единицы для термоиспытаний (термобароиспытаний для герметичных КЗ) и испытаний на работоспособность.

6 Схема испытаний

- 6.1 Организация изготовитель КЗ предоставляет в орган по сертификации и испытательную лабораторию схему испытаний согласно НД для каждого исполнения КЗ.
- 6.2 На основании предоставленной схемы испытаний орган по сертификации разрабатывает программу испытаний. Состав схемы испытаний КЗ приведен на рисунке 1.

1 — КЗ; 2 — отрезок ДШ; 3 — средство инициирования; 4 — фиксатор или липкая лента; 5 — втулка-фокус;
6 — стальная пластина Б, имитирующая корпус перфоратора; 7 — втулка-клиренс с водой; 8 — стальная пластина А, имитирующая обсадную колонну; 9 — бетонная мишень МККБ; 10 — гильза; 11 — полиэтиленовый рукав

- 6.3 Пластину Б (рисунок 1, позиция 6), имитирующую корпус перфоратора, изготавливают из сталей 20 40 ГОСТ 1577 соответствующей толщины, размером не менее 50×50 мм (квадрат) или диаметром не менее 60 мм (круг). Точность измерения $\pm 0,5$ мм.
- 6.4 Пластину A (рисунок 1, позиция 8), имитирующую обсадную колонну, изготавливают из сталей 20—40 ГОСТ 1577 толщиной (10 ± 0.5) мм, размером не менее 80×80 мм (квадрат) или диаметром не менее 96 мм.
- 6.5 Фиксатор (рисунок 1, позиция 4) или липкая лента должны обеспечивать прилегание ДШ к КЗ в соответствии с нормативной документацией.
- 6.6 Втулка-фокус (рисунок 1, позиция 5) должна обеспечить гарантированный зазор, заданный согласно схеме испытаний, между торцом корпуса КЗ и пластиной Б, имитирующей корпус перфоратора.
- 6.7 Втулка-клиренс (рисунок 1, позиция 7) должна обеспечить заполненный водой гарантированный зазор, заданный согласно схеме испытаний, между пластиной Б, имитирующей корпус перфоратора, и пластиной А, имитирующей обсадную колонну.
 - 6.8 Отрезок ДШ (рисунок 1, позиция 2) должен быть длиной не менее (250 ± 1) мм.

7 Требования к мишеням контроля качества

- 7.1 Каждая мишень должна иметь маркировку и сопровождаться документом о качестве на партию (паспортом) с указанием даты изготовления, прочности и остальных технических характеристик. У каждой мишени измеряют ее длину с погрешностью не более ± 1 мм. Мишени должны быть целостными, т. е. не иметь внутренних пустот и трещин, которые определяют осмотром, на ощупь и по люфту частей мишени в гильзе.
 - 7.2 Высота мишени должна отвечать следующим условиям:

$$H = L_{\text{max}} + 75,$$

где H — высота мишени, мм.

 L_{\max} — максимальная ожидаемая глубина пробития КЗ, мм.

- 75 минимально допустимый остаток от конца пробитого канала до нижнего торца мишени, мм.
- 7.3 Конструкция мишени должна соответствовать схеме, приведенной на рисунке 1.
- 7.4 Гильза 10, указанная на рисунке 1, может быть изготовлена из картона толщиной от 1,5 до 3 мм. Наружный диаметр гильзы (112 \pm 10) мм.
- 7.5 Полиэтиленовый рукав 11 должен быть изготовлен диаметром не менее 150 мм из пленки полиэтиленовой не менее 0,500 по ГОСТ 10354.
- 7.6 Бетон для изготовления мишеней и контрольных кубиков изготавливают из смеси следующих компонентов:
- одна часть портландцемента ПЦ 500-Д0 ГОСТ 10178, или цемента ЦЕМ I 42.5 Б по ГОСТ 31108, или аналогичного по физико-механическим свойствам, химическому и вещественному составу;
 - две части сухого фракционированного кварцевого песка. Требования к песку согласно 7.7;
- 0,52 части пресной воды по ГОСТ 23732. Общие и гигиенические требования согласно стандартам, действующим на территории государств членов Таможенного союза.
 - 7.7 Требования к кварцевому песку:
- 7.7.1 В качестве заполнителя должен использоваться фракционированный кварцевый окатанный песок с высокой степенью округлости и сферичности, по минеральному составу состоящий из кварца не менее чем на 98%.
- 7.7.2 Результаты ситового анализа должны соответствовать фракции 0,63—1,2 мм и следующим показателям: не менее 90 % просеянной массы должно находиться в интервале между ситами 1,18 мм и 0,6 мм; не более 1 % от этой массы может проходить через сито 0,425 мм и не более 0,1 % задерживаться ситом 1,7 мм.
- 7.8 В части приготовления бетонной смеси следует руководствоваться ГОСТ 7473. Дозирование компонентов бетонной смеси следует производить по массе или по объему с погрешностью ± 1%. Допускается приготовление бетонных смесей осуществлять в бетоносмесителе принудительного действия.
- 7.9 Из приготовленной смеси одновременно с заливкой мишеней производят заливку контрольных образцов-кубов $50 \times 50 \times 50$ мм для дальнейшего испытания на прочность по ГОСТ 10180. Ко-

личество контрольных образцов — не менее пяти. Все контрольные образцы бетона, испытываемые на прочность, до их использования хранят погруженными в воду при температуре, соответствующей бетонной мишени.

- 7.10 Мишень и контрольные образцы должны затвердевать при температуре бетона не ниже 0 °C в течение не менее 28 суток. Верхняя поверхность мишени и контрольных образцов в период затвердевания должна быть покрыта слоем пресной воды толщиной не менее 80 мм.
- 7.11 Испытания контрольных образцов на прочность допускается проводить на 28-е или 29-е сутки с даты заливки мишени. Средний предел прочности при испытании образцов на сжатие должен быть не менее 34,5 МПа. Разброс между средним и максимальным, а также между средним и минимальным значениями предела прочности не должен быть более 10 %. Полученную величину среднего предела прочности вносят в паспорт на данную партию мишеней контроля качества.
 - 7.12 Каждая мишень должна иметь маркировку, содержащую:
 - наименование или товарный знак предприятия-изготовителя;
 - обозначение мишени;
 - номер партии мишени;
 - фактическое содержание компонентов бетона;
 - дата заливки мишени;
 - дата испытаний на прочность;
 - результаты испытаний на прочность.
 - 7.13 Каждая партия мишеней должна сопровождаться документацией:
 - паспорт:
 - журнал контроля уровня воды и температуры;
 - сертификат на цемент;
 - сертификат на песок, включающий данные ситового анализа, минералогический состав.

8 Порядок проведения испытаний

- 8.1 После отбора КЗ из упаковочной единицы согласно п.5.3, проводят визуальный осмотр внешнего вида и целостности составных частей КЗ, контроль габаритных размеров и массы КЗ на соответствие НД.
- 8.2 При положительных результатах, п. 8.1, проводят испытания на термостойкость (термобаростойкость для герметичных КЗ).
- 8.2.1 Испытаниям на термостойкость подвергают негерметичные КЗ путем выдержки всех отобранных изделий в сухом термостате в течение 2 ч при максимально допустимой температуре применения согласно НД на соответствующее изделие.
- 8.2.2 Испытаниям на термобаростойкость подвергают герметичные КЗ путем выдержки всех отобранных изделий в сосуде высокого давления, заполненном водой, в течение 2 ч при максимально допустимом давлении и температуре согласно НД на соответствующее изделие.
- 8.3 При воздействиях, указанных в пп. 8.2.1 и 8.2.2, не должно быть срабатывания ни одного изделия; первоначальный внешний вид и целостность составных частей изделий должны быть сохранены.
- 8.4 Если хотя бы один КЗ не выдержал испытания на термостойкость (произошло срабатывание или нарушение целостности) или на термобаростойкость (срабатывание, нарушение целостности, деформирование или попадание воды в полость), испытания прекращают и их результаты считают отрицательными.

Герметичность устанавливают путем осмотра, взвешивания и сопоставления массы КЗ до и после их испытаний в сосуде высокого давления. Увеличение массы КЗ в результате испытания может быть не более $1 \, \Gamma$ (погрешность измерения массы не более $\pm \, 0.1 \, \Gamma$).

- 8.5 K3, прошедшие испытания на термостойкость (термобаростойкость для герметичных K3), охлажденные до температуры помещения в пределах (25 ± 10) °C, подвергают испытаниям на работоспособность и пробивную способность путем одиночных отстрелов по бетонным мишеням контроля качества. Схема испытаний K3 приведена на рисунке 1.
- 8.6 Испытания КЗ на пробивную способность проводят по одной схеме испытаний с использованием мишеней одной партии и одинаковой длины для каждой серии испытуемых КЗ.
- 8.7 После отстрела каждого КЗ фиксируют полноту срабатывания ДШ и КЗ, проводят измерения параметров пробития (длину остатка мишени и диаметр входного отверстия).

- 8.8 Длину остатка мишени определяют после разбора мишени и очистки кистью пробитого канала путем измерения расстояния от нижнего (непростреленного) торца мишени до конца пробитого канала. Разбор мишени начинают сверху (с места установки КЗ). Точность измерения ± 1 мм.
- 8.9 Диаметр входного отверстия в стальной пластине-свидетеле, имитирующей обсадную колонну, измеряют по короткой и длинной осям эллипса. Измерения выполняют со стороны расположения КЗ (со стороны входа кумулятивной струи в пластину) с помощью штангенциркуля. Точность измерения ± 0,1 мм.
- 8.10 В случае выхода кумулятивной струи на боковую поверхность мишени данный отстрел в расчетах не учитывают. Допускается не более двух отстрелов с выходом кумулятивной струи в сторону. Факты выхода кумулятивной струи в сторону, отказов (кроме отказов ДШ и средств инициирования), некачественного срабатывания отражаются в протоколе испытаний.
- 8.11 Если при испытаниях произошел отказ ДШ или средств инициирования, испытания повторяют с применением нового отрезка ДШ и нового средства инициирования.
- 8.12 При соответствии полученных не менее чем по трем отстрелам средних значений глубины пробития и диаметра входного отверстия требованиям нормативной документации на соответствующий КЗ результаты испытаний КЗ данного исполнения считаются положительными. В противном случае проводят повторные испытания удвоенной выборки.

Результаты повторных испытаний признаются окончательными.

9 Сбор и обработка результатов

- 9.1 Для каждого испытанного КЗ определяют следующие показатели пробития:
- глубина пробития L, мм;
- диаметр входного отверстия d, мм.
- 9.2 Глубину пробития рассчитывают по формуле

$$L = L_0 - L_1 + S, (1)$$

где L_0 — длина бетонной мишени; мм;

- L₁ длина остатка мишени (расстояние от нижнего (непрострелянного) торца мишени до конца пробитого канала), мм;
- S толщина стальной пластины, имитирующей обсадную колонну, мм.
- 9.3 При использовании мишени с пределом прочности на сжатие более 35 МПа полученную фактическую глубину пробития нормализуют. Нормализованная (соответствующая прочности мишени на сжатие 35 МПа) глубина пробития определяется из расчета 5 % прироста глубины канала на каждые 7 МПа прироста прочности мишени. Формула пересчета:

$$L_H = L [1 + 0.00725 (\sigma_{cw} - 35)],$$
 (2)

где L_H — нормализованная глубина пробития, мм;

 $\sigma_{\rm cw}$ — предел прочности мишени на сжатие (средний по партии), МПа.

- 9.4 Диаметр входного отверстия рассчитывают как среднее арифметическое измеренных максимального и минимального значений всех испытанных КЗ.
- 9.5 Глубину пробития рассчитывают как среднее арифметическое значение по фактической и нормализованной глубине пробития для всех испытанных КЗ.
 - 9.6 Измеренные и расчетные значения параметров пробития вносят в протокол испытаний.

10 Оформление результатов испытаний

10.1 Результаты испытаний оформляют протоколом испытаний, составляемым в необходимом количестве экземпляров: по одному экземпляру для изготовителя КЗ (заказчика испытаний), органа по сертификации и испытательной лаборатории. Форма протокола в соответствии с формой протокола испытательной лаборатории.

- 10.2 Протокол испытаний содержит конфиденциальную информацию. Без согласия изготовителя КЗ (заказчика испытаний), испытательной лаборатории, проводимой испытания, и органа по сертификации данные протокола испытаний не могут быть использованы в рекламных или иных целях, а также быть переданы сторонним организациям.
- 10.3 Всю документацию по испытаниям следует хранить в архиве органа по сертификации и испытательной лаборатории не менее пяти лет.

УДК 620.261.12:006.354

MKC 71.100.30

Ключевые слова: кумулятивный заряд, испытания на работоспособность, испытания на безопасность, мишень контроля качества кумулятивных зарядов

Редактор *Н.Е. Рагузина*Технический редактор *В.Н. Прусакова*Корректор *Р.А. Ментова*Компьютерная верстка *Е.А. Кондрашовой*

Сдано в набор 01.04.2019. Подписано в печать 09.04.2019. Формат $60\times84\%$. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 1,12.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Создано в единичном исполнении ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru