СИСТЕМА ИНСТРУМЕНТАЛЬНОГО ЗАХОДА ЛЕТАТЕЛЬНЫХ АППАРАТОВ НА ПОСАДКУ САНТИМЕТРОВОГО ДИАПАЗОНА ВОЛН РАДИОМАЯЧНАЯ

Основные параметры и методы измерений

Издание официальное

Предисловие

1 РАЗРАБОТАН Всероссийским научно-исследовательским институтом радиоаппаратуры

ВНЕСЕН Акционерным обществом открытого типа «Центральный научно-исследовательский институт радиоэлектронных систем»

- 2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 15 мая 2001 г.
 № 206-ст
- 3 Стандарт разработан с учетом требований «Конвенции ИКАО о гражданской авиации» (приложение 10, 1996 г.)
 - 4 ВВЕДЕН ВПЕРВЫЕ

Содержание

1	Область применения	1
2	Нормативные ссылки	1
3	Сокращения	1
4	Общие положения	2
	4.1 Назначение системы	2
	4.2 Состав оборудования системы	2
5	Основные параметры	3
	5.1 Основные параметры системы МЛС	3
	5.2 Основные параметры наземных устройств наведения ЛА по азимуту (азимутальные	
	радиомаяки)	10
	5.3 Основные параметры наземных устройств наведения ЛА по углу места УРМ	14
	5.4 Основные параметры наземного ретранслятора дальномера	16
	5.5 Основные параметры бортового угломерного приемника	17
	5.6 Основные параметры бортового запросчика радиодальномера	18
	5.7 Основные параметры контрольно-проверочной аппаратуры	18
6	Методы измерений	20
П	риложение А Соответствие сокращений на русском языке английским аналогам по ИКАО	
	(ICAO)	21
П	риложение Б Размещение во времени элементов угломерных сигналов, содержание слов	
	основных и вспомогательных данных, спаривание каналов угломерных и даль-	
	номерных устройств	21
П	риложение В Рекомендуемые последовательности сигналов, излучаемых угломерными	
	устройствами.	41
П	риложение Г Условия сканирования лучей антенн устройств наведения	43
П	риложение Д Формулы для расчета частотных характеристик фильтров	45
П	риложение Е Обработка результатов измерений для определения погрешностей наведения	46
П	риложение Ж Зоны наведения угломерных устройств	48
П	риложение И Библиография	53

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СИСТЕМА ИНСТРУМЕНТАЛЬНОГО ЗАХОДА ЛЕТАТЕЛЬНЫХ АППАРАТОВ НА ПОСАДКУ САНТИМЕТРОВОГО ДИАПАЗОНА ВОЛН РАДИОМАЯЧНАЯ

Основные параметры и методы измерений

Microwave radio beacon instrument approach landing system for air vehicles.

Main parameters and methods of measuring

Дата введения 2002-01-01

1 Область применения

Настоящий стандарт распространяется на радиомаячную систему инструментального захода летательных аппаратов (далее — ЛА) на посадку сантиметрового диапазона волн, состоящую из угломерных комплексов сантиметрового диапазона волн, определяющих азимуты и углы места по интервалу времени между облучениями бортовой антенны сканирующими лучами радиомаяков для передачи основных и вспомогательных данных, и комплекса дециметрового диапазона, использующего метод «запрос борта — ответ земли» для определения расстояния.

Стандарт устанавливает основные параметры системы и методы их измерений.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 26.003—80 Система интерфейса для измерительных устройств с байт-последовательным, бит-парадлельным обменом информацией. Требования к совместимости

ГОСТ 26566—85 Система инструментального захода летательных аппаратов на посадку сантиметрового диапазона воли радиомаячная. Термины и определения

3 Сокращения

В настоящем стандарте применяют следующие сокращения:

АРМ — азимутальный радиомаяк;

АРУ — автоматическое регулирование усиления;

ВОР — всенаправленный радиомаяк, работающий в диапазоне сверхвысоких частот;

ВПП — взлетно-посадочная полоса;

ДМЕ — радиодальномерная система, состоящая из наземного и бортового оборудования;

ДФМС — дифференциальная фазовая манипуляция сигналов;

ИКАО — международная организация гражданской авиации;

ИЛС — система инструментальной посадки метрового диапазона волн;

КЭП — конечный этап захода ЛА на посадку;

МЛС — радиомаячная система инструментального захода ЛА на посадку сантиметрового диапазона волн;

НРД — наземный ретранслятор дальномера;

НРД/П — наземный ретранслятор дальномера прецизионный (или посадочный);

НРД/Н — наземный ретранслятор дальномера навигационный;

НЭП — начальный этап захода ЛА на посадку;

FOCT P 51747-2001

ПАЛ — передвижная лаборатория для проверки выходных характеристик наземных угломерных радиомаяков на малых высотах;

ПСТ — погрешность следования по траектории;

РСБН — радиотехническая система ближней навигации;

РУВК — радиомаяк ухода на второй круг;

СИПВЗН — сигналы индикации о пребывании вне зоны наведения;

УРМ — угломестный радиомаяк;

ХИП — хаотичная импульсная помеха;

ШСТ — шумы следования по траектории;

ШСУ — шумы системы управления.

Соответствие сокращений на русском языке английским аналогам по ИКАО приведено в приложении А.

4 Общие положения

4.1 Назначение системы

Система предназначена для обеспечения точной информации о координатах ЛА при заходе на посадку при любых погодных условиях.

4.2 Состав оборудования системы

- 4.2.1 Система включает наземные и бортовые устройства, обеспечивающие определение местоположения ЛА по отношению к взлетно-посадочной полосе и передачу на ЛА основных и вспомогательных данных.
 - 4.2.2 В состав наземного оборудования МЛС должны входить:
- азимутальный радиомаяк с устройством передачи основных данных и связанной с ним аппаратурой контроля, дистанционного управления и индикации;
 - угломестный радиомаяк с аппаратурой контроля, дистанционного управления и индикации;
- наземный ретранслятор дальномера с аппаратурой контроля, дистанционного управления и индикации;
- устройство дистанционного управления с аппаратурой передачи данных, контроля и индикации, установленное на командно-диспетчерском пункте.

П р и м е ч а н и е — Для обеспечения точной информации о дальности во всей зоне наведения по азимуту следует использовать НРД/П, Если точная дальномерная информация не требуется, вместо НРД/П допускается использовать менее точный НРД/Н.

Для усовершенствования характеристик указанного выше основного оборудования МЛС допускается включать в ее состав одно или несколько из нижеперечисленных устройств:

- радиомаяк ухода на второй круг с устройством передачи слов основных данных и связанной с ним аппаратурой контроля, дистанционного управления и индикации;
- угломестный радиомаяк выравнивания с аппаратурой контроля, дистанционного управления и индикации;
- устройство для передачи слов вспомогательных данных с аппаратурой контроля, дистанционного управления и индикации;
- устройство для обеспечения более широкого сектора пропорционального наведения, который превышает минимальный сектор пропорционального наведения, равный ±10".

П р и м с ч а н и е — Формат сигнала МЛС позволяет осуществлять дальнейшее развитие системы и включение в ее состав дополнительных устройств, например устройства наведения по азимуту в пределах 360°.

- 4.2.3 Бортовое устройство системы МЛС должно состоять из:
- антенно-фидерных модулей, обеспечивающих прием сигналов угломерного устройства, а также прием и передачу сигналов радиодальномера;
- угломерного приемника, обеспечивающего прием и преобразование сигналов наземных устройств в сигналы информации об угловых координатах, основных и вспомогательных данных;
- запросчика радиодальномера, обеспечивающего передачу запросных сигналов, прием ответных сигналов и выделение информации о наклонной дальности до НРД.

 Π р и м е ч а н и е — На конкретном ЛА допускается размещение дополнительного бортового оборудования.

- 4.2.4 Контрольно-проверочная аппаратура системы МЛС должна состоять из:
- имитатора сигналов угломерных радиомаяков;

- имитатора сигналов радиодальномера;
- передвижной лаборатории для проверки выходных характеристик наземных угломерных радиомаяков на малых высотах;
 - самолета-лаборатории.

П р и м е ч а н и е — Допускается использовать одну ПАЛ и один самолет-лабораторию для обслуживания нескольких систем МЛС. Методика испытаний должна быть приведена в технических условиях на конкретную систему МЛС.

5 Основные параметры

5.1 Основные параметры системы МЛС

- 5.1.1 Наземные угломерные устройства и НРД системы МЛС должны излучать сигналы для определения угловых координат ЛА и передачи данных на одной из частот, указанных в таблице Б.1 приложения Б.
- 5.1.2 Спаривание частот сигналов каналов, излучаемых для определения угловых координат, и частот сигналов ДМЕ должно осуществляться в соответствии с таблицей Б.1.
- 5.1.3 Частоты сигналов, излучаемых для определения угловых координат ЛА и передачи данных, должны отличаться не более чем на ±10 кГц от частот, установленных в таблице Б.1.
- 5.1.4 Стабильность частоты должна быть такой, чтобы отклонения рабочей частоты, измеренные в интервале времени, равном 1 с, не превышали ±50 Гц.
- 5.1.5 Спектр излучаемых наземными угломерными устройствами радиосигналов должен быть таким, чтобы в течение времени передачи средняя плотность мощности на высоте более 600 м, измеренная в полосе 150 кГц, центр которой смещен на 840 кГц или более от номинальной частоты, не превышала минус 94,5 дБ-Вт/м² для сигналов наведения по углу и данных.
- 5.1.6 Излучение наземных устройств должно быть поляризовано вертикально. Уровень горизонтальной составляющей излучения при отклонении приемной антенны на 30° от вертикали не должен вызывать изменения ПСТ более чем на 40 % от ее значения, измеренного в этой же точке при вертикальном положении антенны.
- 5.1.7 Передача сигналов для определения угловых координат, основных и вспомогательных данных должна осуществляться по одному частотному каналу с разнесением по времени для устранения интерференции.
- 5.1.8 Интервал времени между повторяющимися сигналами одного вида обслуживания должен изменяться так, чтобы подавлялась синхронная помеха.

П р и м е ч а н и е — Рекомендуемые последовательности сигналов, излучаемых угломерными устройствами, приведены в таблицах В.1, В.2 и на рисунке В.1 приложения В.

5.1.9 Частота обновления сигналов каждого из указанных видов обслуживания должна соответствовать указанной в таблице 1.

Таблица 1

Вид обслуживания	Частота обновления сигналов, Га, средняя за 10 с
Определение азимута захода на посадку	13,0±0,5
Определение азимута захода на посадку с высокой частотой об- ювления сигналов	39,0±1,5
Определение азимута ухода на второй круг	$6,50 \pm 0,25$
Определение угла места захода на посадку и при выравнивании	39,0±1,5
Основные данные	По таблице Б.10
Вспомогательные данные	По таблицам Б.12 и Б.13

В случаях, когда сектор пропорционального наведения не превышает ±40° и не предусматривается применение устройства определения угла места при выравнивании устройства наведения по азимуту при уходе на второй круг или других дополнительных устройств, следует применять устройство наведения по азимуту захода на посадку с высокой частотой обновления сигналов.

FOCT P 51747-2001

5.1.10 Размещение во времени элементов сигнала, используемого для определения вида обслуживания, приведено в таблицах Б.2 — Б.8.

Погрешность размещения во времени элементов сигнала не должна превышать ±2 мкс, а среднее квадратическое значение отклонения фронтов элементов не должно превышать 1 мкс.

- 5.1.11 Предварительные сигналы (преамбула) должны передаваться по всей зоне наведения системы посадки для определения вида обслуживания и состоять из сигналов немодулированной несущей частоты для синхронизации гетеродина приемника, кода опорного времени и кода опознавания вида обслуживания. Размещение элементов преамбулы во времени приведено в таблице Б.2.
- 5.1.12 Коды преамбулы, а также сигналы основных и вспомогательных данных должны передаваться классом излучения Д1Д с помощью ДФМС несущей частоты. Логическому 0 соответствует переброс фазы на 0°±10°, а логической 1 переброс фазы на 180°±10° между соседними посылками (тактами). Частота перебросов 15625 Гц, а точность моментов перебросов должна соответствовать погрешности размещения во времени элементов сигнала, указанной в 5.1.10.

Примечание — Класс излучения определен по регламенту [2].

- 5.1.13 Фазовые перебросы ДФМС, убывание мощности излучения должны соответствовать требованиям 5.1.5.
- 5.1.14 В составе сигналов преамбулы должен содержаться код опорного времени 11101 (I_1 — I_5), в котором опорным временем является момент последнего переброса фазы.
- 5.1.15 Код опознавания вида обслуживания должен состоять из пяти информационных тактов (I_6-I_{10}) , которые позволяют обозначить 31 вид обслуживания, а также двух тактов четности $(I_{11}-I_{12})$. Принятые в системе МЛС коды опознавания приведены в таблице Б.11.
- 5.1.16 Информация об угле должна кодироваться величиной временного интервала между центрами принятых главных лепестков сканирующего луча в направлениях «Туда» и «Обратно». В бортовом устройстве этот код расшифровывается по формуле

$$\Theta = (T_0 - t) \cdot \frac{v}{2},$$

где Θ — азимут или угол места, ... °;

- Т₀ интервал времени между центрами главных лепестков сканирующего луча в направлениях «Туда» и «Обратно» при размещении приемной антенны на направление 0°, мкс;
 - интервал времени между центрами главных лепестков сканирующего луча в направлении «Туда» и «Обратно», мкс;
 - постоянная скорость сканирования луча, ... */мкс.
- 5.1.17 Параметры режима сканирования лучей наземных устройств должны соответствовать значениям, приведенным в таблице 2.

Таблица 2

Вид обслуживания	$T_{\hat{0}}$, whe	Скорость	Углы сканирования и интервалы времени, максимально возможные но формату сигиала		
		ν, "/мкс	Θ	J, MKC	
Наведение по азимуту захода на посадку	6800	0,020	От —62° до +62°	13000	
Наведение по азимуту захода на посадку с высокой частотой обновления сигналов	4800	0,020	Or —42° до +42°	9000	
Наведение по азимуту при уходе на вто- рой круг	4800	0,020	От —42° до +42°	9000	
Наведение по углу места при заходе на посадку	3350	0,020	Or —1,5° до +29,5°	3500	
Наведение по углу места при выравнива- нии	2800	0,010	От —2° до +10°	3200	

Примечание — В промежутке между окончанием сканирования в направлении «Туда» и началом сканирования в направлении «Обратно» наступает пауза, в течение которой наземная установка сигналов не излучает. Во время паузы ослабление сигнала должно быть достаточным, чтобы не создавать помех в работе бортового оборудования (5.2.1). Середина паузы должна совпадать со средней точкой сканирования, указанной в таблицах Б.3 — Б.6, с погрешностью не более ±10 мкс.

- 5.1.18 Каждый цикл сканирования лучом антенны для определения угла должен состоять из сканирования лучом антенны в направлении «Туда» и последующим сканированием в направлении «Обратно». Луч антенны радиомаяка для определения азимута захода на посадку должен сканировать в направлении «Туда» в сторону увеличения углов, а луч антенны радиомаяка для определения азимута ухода на второй круг должен сканировать в направлении «Туда» в сторону уменьшения углов. Сканирование в направлении «Обратно» должно проводиться в противоположную сторону. Направление нулевых углов обоих устройств должно совпадать с направлением оси ВПП, если их антенны установлены на оси ВПП (5.2.8.2). Условия сканирования указаны на рисунке Г.1 приложения Г.
- 5.1.19 Формат сигнала любого радиомаяка для наведения по азимуту должен содержать секторные сигналы, которые состоят из:
 - сигналов, образующих код Морзе для опознавания наземного устройства;
 - сигналов выбора бортовой антенны:
 - контрольного сигнала «Туда», излучаемого с наземного оборудования системы МЛС;
 - сигналов СИПВЗН, согласно таблицам Б.3 Б.5.
- 5.1.19.1 Наземное устройство системы МЛС, обеспечивающее обслуживание определенной ВПП, должно иметь четырехбуквенный код опознавания, начинающийся с буквы М. Буквы этого кода кодируются по международному коду Морзе. Код опознавания должен передаваться не менее 6 раз в минуту через приблизительно равные интервалы. Для передачи этого кода должен использоваться такт кода Морзе, следующий за преамбулой. Символ кода Морзе должен начинаться с логической 1 и заканчиваться логическим 0. Длительность точки должна быть от 0,13 до 0,16 с, а тире от 0,39 до 0,48 с. Пауза между символами кода Морзе должна быть равна длительности передачи одной точки ±10 %. Длительность паузы между буквами должна быть не менее длительности передачи трех точек.
- 5.1.19.2 Сигнал выбора бортовой антенны должен передаваться вслед за тактом кода Морзе шестью тактами ДФМС с «нулевым» перебросом фазы. Этот сигнал должен излучаться по всему сектору наведения.
- 5.1.19.3 При передаче импульсных сигналов СИПВЗН должно быть обеспечено следующее соотношение сигналов:
- за пределами зоны наведения сигналы СИПВЗН должны быть больше любого угломерного сигнала;
- в левом и правом секторах клиренсного наведения (рисунок Г.1) сигналы СИПВЗН должны быть меньше соответствующих клиренсных сигналов не менее чем на 5 дБ;
- в секторе пропорционального наведения сигнал сканирующего луча должен превышать сигналы СИПВЗН более чем на 5 дБ.

Длительность каждого из сигналов СИПВЗН должна быть не менее 100 мкс, а длительности его фронтов и срезов должны быть не более 10 мкс каждый.

- 5.1.19.14 Допускается вместо ситнала СИПВЗН, указанного в 5.1.19.3, формировать ситнал внезонной индикации в том же интервале времени, состоящий из двух импульсов длительностью не менее 50 мкс каждый с длительностью фронтов и срезов не более 10 мкс.
- 5.1.19.5 В формате сигналов устройства определения азимута должны быть предусмотрены промежутки времени для контрольных сигналов, которые предназначены для использования в будущем.
- 5.1.20 Система МЛС должна обеспечивать наведение по клиренсному сигналу в том случае, если сектор пропорционального наведения меньше полного сектора наведения, равного ±40° от оси ВПП для наведения по азимуту захода на посадку, а также меньше полного сектора наведения, равного ±20° от оси ВПП для наведения по азимуту ухода на второй круг или наведения по азимуту захода на посадку с высокой частотой обновления сигналов.

Клиренсные сигналы должны излучаться в секторах между границами сектора пропорционального наведения и границами полного сектора наведения данного радиомаяка.

5.1.20.1 Наведение по клиренсному сигналу в случае применения импульсов, разнесенных во времени, должно осуществляться путем передачи пар импульсов за пределами используемого времени углового сканирования. Первая пара импульсов должна состоять из одного импульса, граничащего с началом сканирования в направлении «Туда», и импульса, граничащего с концом сканирования в направлении «Обратно». Вторая пара импульсов должна состоять из одного импульса, граничащего с концом сканирования в направлении «Туда», и импульса, граничащего с началом сканирования в направлении «Обратно».

В сигналах наведения по азимуту захода на посадку первая пара импульсов (правый клиренсный

сигнал) должна обозначать «Лети влево», а вторая пара импульсов (левый клиренсный сигнал) должна обозначать «Лети вправо». Такой же смысл имеют пары импульсов в сигналах радиомаяка наведения по азимуту захода на посадку с высокой частотой обновления сигналов. В сигналах радиомаяка наведения по азимуту ухода на второй круг пары сигналов имеют обратный смысл.

На рисунке Г.2 приведены диаграммы размещения во времени клиренсных сигналов в излучении радиомаяка наведения по азимуту захода на посадку и ухода на второй круг.

- 5.1.20.2 Длительность импульсов клиренсного сигнала должна быть (50 ± 5) мкс, а время переключения передатчика с антенны сканирующего луча на антенну клиренсного сигнала должно быть не более 10 мкс. Фронт или срез импульсов клиренсного сигнала, не граничащий со сканирующим лучом, должен быть не более 10 мкс.
- 5.1.20.3 В секторе положительных углов, где действует клиренсный сигнал «Лети вправо», этот сигнал должен превышать клиренсный сигнал «Лети влево» не менее чем на 15 дБ. В том же секторе клиренсный сигнал «Лети вправо» должен превышать не менее чем на 5 дБ боковые и главный лепестки сканирующего луча и любые другие сигналы. В секторе отрицательных углов должны быть те же соотношения для клиренсного сигнала «Лети влево». На границе сектора пропорционального наведения клиренсный сигнал должен быть меньше сигнала сканирующего луча не менее чем на 5 дБ.
- 5.1.20.4 Если клиренсная антенна используется с антенной сканирующего луча с узкой диаграммой направленности, например 1° или меньше, то антенна сканирующего луча должна излучать еще 15 мкс в начале движения и после остановки.
- 5.1.21 Каждый цикл сигналов наведения по углу места должен состоять из сканирования лучом антенны в направлении «Туда» с последующим сканированием в направлении «Обратно». Положение нулевого угла места должно совпадать с положением горизонтальной плоскости, проходящей через фазовый центр соответствующей антенны. Углы места должны возрастать при сканировании вверх. Сканирование в направлении «Туда» должно происходить в сторону увеличения углов места.

Условия сканирования лучей антенны устройств наведения по углу места захода на посадку показаны на рисунке Г.3.

- 5.1.22 В формате сигнала наведения по углу места захода на посадку должен быть предусмотрен сигнал внезонной индикации в виде одного импульса. Этот импульс должен быть:
- больше любого сигнала сканирующего луча за пределами сектора пропорционального наведения;
- не менее чем на 5 дБ меньше сигнала сканирующего луча в секторе пропорционального наведения.

Длительность импульсов индикации о пребывании вне зоны наведения должна быть не более 100 мкс, а длительность его фронта и среза — не более 10 мкс.

- 5.1.22.1 В случае необходимости импульс индикации о пребывании вне зоны наведения должен излучаться в том же интервале времени последовательно двумя импульсами длительностью не более чем по 50 мкс каждый с фронтами и срезами длительностью не более 10 мкс. Размещение во времени элементов сигнала наведения по углу места захода на посадку приведено в таблице Б.5.
- 5.1.23 Если не оговорено особо, приводимые ниже погрешности должны соблюдаться с 95 %-ной вероятностью. Погрешности системы МЛС, указанные ниже, включают погрешности от всех источников (бортового устройства, наземного устройства) и условий распространения сигналов.
- 5.1.24 Высота опорной точки захода на посадку должна быть 15°3 м от уровня порога ВПП и должна выбираться с учетом безопасного пролета препятствий.
- 5.1.25 Высота опорной точки азимута ухода на второй круг должна быть 15^{*3}_0 м от уровня середины ВПП.
- 5.1.26 Погрешности определения азимута ЛА при заходе на посадку с нормальной и высокой частотой обновления сигналов не должны превышать в опорной точке значений, приведенных в таблице 3.

Таблица 3

Вид обслуживания	Допускаемая погрешность наведения, м				
	пст	шст	шсу		
Наведение по азимуту захода на посадку с высокой частотой обновления сигналов	±6	±3,5	±3,2 или 0,1°*		
Наведение по азимуту ухода на второй круг	±6	±3,5	±3,2 или 0,1°*		

Вид обслуживания	Допускаемая погрешность наведеняя, м				
200, 500, 500, 500, 500, 500, 500, 500,	пст	шст	шсу		
Наведение по углу места при заходе на посадку	±0,6	±0,4	±0,3		
Наведение по углу места при выравнивании	±0,6	±0,4	±0,3 или 0,07°*		

- 5.1.26.1 Линейная погрешность, указанная в таблице 3 для опорной точки, должна выдерживаться в зоне ВПП, которая определена в 5.2.4.1, а в остальном секторе наведения допускается увеличение допускаемых погрешностей, указанных в 5.1.26.2.
- 5.1.26.2 К границам зоны наведения ЛА по азимуту захода на посадку с нормальной и повышенной частотой обновления данных разрешается монотонное увеличение допусков на погрешности наведения в угловой мере в следующих размерах:
- допуск на погрешности наведения ПСТ, ШСТ и ШСУ при изменении углов места в интервале от нижней границы зоны наведения и до 9° при неизменных азимуте и дальности не изменяется;
- при движении над продолжением оси ВПП по прямой линии, проходящей через фазовый центр антенны радиомаяка наведения по азимуту и опорную точку захода на посадку, допуски на погрешности ПСТ и ШСТ увеличиваются пропорционально дальности от порога ВПП так, что на удалении 37 км они превышают в 2 раза их значения в опорной точке, а допуск на погрешность ШСУ увеличивается в 1,3 раза на удалении 18,5 км от опорной точки; на других азимутах изменение допусков на погрешности ПСТ, ШСТ и ШСУ при изменении дальности от порога ВПП происходит так же;
- при изменений азимута и неизменных расстоянии и угле места допуски на погрешности изменяются так, что на азимутах ±40° допуски на погрешности ПСТ и ШСТ возрастают в 1,5 раза по сравнению с их значениями на азимуте 0° на том же удалении, а допуск на погрешность ШСУ возрастает в 1,3 раза (вершина азимутальных углов лежит в точке начала отсчета системы МЛС);
- при увеличении углов места от 9° до 15° (вершина угла места лежит в фазовом центре антенны радиомаяка наведения по азимуту) и при неизменных азимуте и дальности допуски на погрешности ПСТ и ШСТ возрастают пропорционально углу места так, что при угле места 15° они увеличиваются в 2 раза по сравнению с их значением при угле места 9° и том же расстоянии и азимуте, а допуск на погрешность ШСУ с изменением угла места не изменяется.
- 5.1.27 Погрешности наведения ЛА по азимуту при уходе на второй круг не должны превышать в опорной точке ухода на второй круг значений, приведенных в таблице 3.
- 5.1.27.1 К границам зоны наведения ЛА по азимуту при уходе на второй круг разрешается монотонное увеличение допусков на погрешности наведения в угловой мере в следующих размерах:
- допуск на погрешности наведения ПСТ, ШСТ и ШСУ в интервале углов места от нижней границы зоны наведения до 9° при неизменных азимуте и дальности не изменяются;
- при движении над продолжением оси ВПП по прямой линии, проходящей через фазовый центр антенны радиомаяка и опорную точку ухода на второй круг, допуски на погрешности ПСТ и ШСТ увеличиваются пропорционально увеличению дальности от конца ВПП так, что на удалении 9,3 км они превышают в 2 раза их значения в опорной точке, а допуск на погрешность ШСУ увеличивается в 1,3 раза; изменение допусков на погрешности ПСТ, ШСТ и ШСУ на других азимутах при неизменных угле места и азимуте, но при изменении дальности, происходит таким же образом:
- при изменении азимута и при неизменных расстоянии и угле места допуски на погрешности изменяются так, что на азимутах ±20° допуски на погрешности ПСТ и ШСТ возрастают в 1,5 раза по сравнению с их значением на азимуте 0°, а допуск на погрешность ШСУ возрастает в 1,3 раза;
- при увеличении угла места от 9° до 15° (вершина угла места лежит в фазовом центре радиомаяка) и при неизменных азимуте и дальности допуски на погрешности ПСТ и ШСТ возрастают так, что при угле места 15° они увеличиваются в 1,3 раза по сравнению с их значением при угле места 9°, а допуск на погрешность ШСУ при изменении угла места не изменяется.

 Π р и м е ч а н и е — Вершины углов места и азимутов находится в фазовом центре антенн радиомаяка наведения по азимуту при уходе на второй круг.

- 5.1.28 Погрешность наведения ЛА по углу места захода на посадку не должна превышать в опорной точке захода на посадку значений, указанных в таблице 3.
- 5.1.28.1 К границам зоны наведения разрешается в угловой мере монотонное увеличение допусков на погрешности наведения ЛА по углу места при заходе на посадку:
- при движении по прямой линии, проходящей через точку начала отсчета системы и опорную точку (минимальная глиссада) или при движении по прямой линии, исходящей из точки начала отсчета системы, наклоненной под углом места 3° (в зависимости от того, что меньше), допуски на погрешности ПСТ и ШСТ увеличиваются пропорционально дальности от порога ВПП так, что на удалении 37 км они достигают 0,2°, а допуск на погрешность ШСУ при удалении на 18,5 км в 1,3 раза превышает ее значение в опорной точке;
- при изменении азимута и при неизменных дальности и угле места допуски на погрешности ПСТ, ШСТ и ШСУ изменяются пропорционально азимуту так, что на азимуте ±40° они в 1,3 раза превышают погрешности на азимуте 0°;
- при изменении угла места от угла минимальной глиссады или от угла места 3° (в зависимости от того, что меньше) и до максимального угла места зоны пропорционального наведения при неизменных азимуте и дальности допуски на погрешности ПСТ, ШСТ и ШСУ увеличиваются пропорционально углу места так, что при угле места 15° они в два раза превышают их значения в соответствующих точках минимальной глиссады или линии, проходящей под углом места 3° (в зависимости от того, что меньше); непосредственно над опорной точкой погрешность ШСУ не должна превышать 0,07°, а при других азимутах и дальностях погрешности ПСТ и ШСТ не должны превышать 0,8°, а ШСУ 0,4° при изменении этих погрешностей так, как это описано в первом и втором абзацах настоящего пункта;
- при изменении угла места от угла минимальной глиссады или от угла места 3° (в зависимости от того, что меньше) и до 60 % упомянутых углов места допуски на ПСТ, ШСТ и ШСУ не изменяются:
- при изменении угла места от 60 % угла минимальной глиссады или 60 % от угла места 3° (в зависимости от того, что меньше) и до нижней границы зоны действия непосредственно под опорной точкой допуски на погрешности ПСТ, ШСТ и ШСУ растут обратно пропорционально углу места до увеличения в 6 раз по сравнению с их значениями в опорной точке; в других участках зоны действия при углах места от 60 % угла места минимальной глиссады или 3° (в зависимости от того, что меньше) и до нижней границы зоны действия допуски на погрешности ПСТ, ШСТ и ШСУ растут пропорционально удалению от порога ВПП или пропорционально азимуту так, как это описано в первом и втором абзацах настоящего пункта, но при этом ПСТ и ШСТ не должны превышать 0,8°, а ШСУ 0,4°.
- 5.1.28.2 Устройство наведения по углу места, предназначенное для работы с минимальной глиссадой более 3°, не должно обеспечивать погрешность наведения, меньшую, чем ее значение для устройства с минимальной глиссадой в 3° в пределах зоны действия.
- 5.1.29 Погрешность наведения ЛА при выравнивании по углу места в опорной точке не должна превышать значений, указанных в таблице 3.

П р и м с ч а н и е — Допускаемое увеличение погрешности наведения ЛА по углу места при выравнивании будет определено после установления ИКАО соответствующих требований.

5.1.30 Минимальные необходимые уровни сигналов наземных устройств для обеспечения наведения ЛА с заданной погрешностью приведены в таблице 4. Требуемое соотношение мощностей между клиренсными сигналами и сигналами сканирующего луча приведено в 5.1.20.3.

Таблица 4 Минус дБ-Вт/м²

Вид обслуживания	Ситнал преамбулы		ый сигнал пр нирующего л		Сигнал клиренса
	преамоуды	1.	2'	3.	клиренса
Наведение по азимуту захода на посадку	89,5	85,7	79,7	76,2	88,0
Наведение по азимуту захода на посадку с высокой частотой обновления	89,5	88,0	84,5	81,0	88,0
Наведение по азимуту при уходе на второй круг	89,5	88,0	82,7	79,2	88,0
Наведение по углу места при заходе на посадку и выравнивании	89,5	88,0	84,5	_	_

- 5.1.30.1 Уровни угломерных сигналов наведения по азимуту при заходе на посадку должны превышать значения, приведенные в таблице 4, не менее чем на:
 - 15 дБ в опорной точке захода на посадку;
- 5 дБ для сканирующего луча шириной 1° или на 9 дБ для сканирующего луча 2° и шире; указанное превышение должно появляться на высоте 2,5 м над точкой начала отсчета системы МЛС или на высоте 2,5 м над наиболее удаленной (от радиомаяка наведения по азимуту захода на посадку) точкой оси ВП.
- 5.1.30.2 Для обеспечения ЛА достоверной информацией наведения в случае отказа одного из видов обслуживания должна обеспечиваться взаимозависимость между излучениями видов обслуживания, которая приведена в таблице Б.9.
- 5.1.31 Зона действия радиодальномерной подсистемы должна быть не менее зоны наведения угломерных устройств системы.
- 5.1.32 Погрешность определения дальности ЛА до НРД не должна превышать с доверительной вероятностью P = 0.95 % значений, приведенных в таблице 5.

Таблица5

Дистанция	Класс точности	Режим	Погрешность следования по граектории, и	Шум управления, м
От 37 до 9,3 км от опорной точки захода на посадку	1; 2	нэп	±250, линейно уменьшаясь до ±85	68, линейно уменьшаясь до 34
От 9,3 км до опорной точки захода на посадку	1	кэп	±85, линейно уменьшаясь до ±30	18
	2	кэп	±85, линейно уменьшаясь до ±12	12
Примечание 1		нэп	±100	68
В опорной точке захода на посад- ку и над всей ВПП	1 2	кэп кэп	±30 ±12	18 12
В пределах зоны наведения по азимуту ухода на второй круг	1; 2	кэп	±100	±68
Примечание 1	2-724	нэп	±100	±68

Примечания

1 Если режим КЭП не используется, то режим НЭП можно применять для системы МЛС с расстояния 9,3 км до опорной точки захода ЛА на посадку и во всей зоне наведения по азимуту ухода на второй круг.

2 Радиодальномерная подсистема определяет дальность от ЛА до фазового центра антенны НРД; расстояние до точки начала отсчета с учетом слова 3 основных данных определяет бортовой вычислитель.

Разрешается линейное увеличение допуска на погрешности следования ЛА по траектории до 1,5 раза на краю сектора ±40° относительно средней линии ВПП, расположенного в направлении захода на посадку.

П р и м е ч а н и е — Обработка результатов измерений дальности ЛА для определения погрешности наведения выполняется согласно указаниям, приведенным в приложениях Д и Е.

- 5.1.33 Радиодальномерная подсистема должна обеспечивать одновременное обслуживание до 100 ЛА в районе аэродрома.
- 5.1.34 Наземные угломерные устройства, НРД и бортовой запросчик радиодальномера должны обеспечивать электромагнитную совместимость с аппаратурой РСБН и другими системами, использующими общие полосы частот.
- 5.1.35 Наземное угломерное и дальномерное оборудование системы МЛС обеспечивает посадку ЛА в условиях метеоминимумов различных категорий, если это оборудование обладает параметрами, определяемыми уровнями обслуживания в следующем соответствии:

FOCT P 51747-2001

- в условиях метеоминимума категории I при параметрах 1-го уровня обслуживания;
- в условиях метеоминимума категории II при параметрах 2-го уровня обслуживания;
- в условиях метеоминимума категории III при параметрах 3-го уровня обслуживания;
- в условиях метеоминимумов категорий ПІв и ПІс при параметрах 4-го уровня обслуживания.
 Параметры уровней обслуживания приведены в таблице 6.

Таблица 6

	Радиоманки	наведения по азим места***	уту или услу	Наземный ретранслятор дальномера***			
Уровень обслу- живания	Целостность обслуживания для одиночной посадки*4	Непрерывность обслуживания*4	Наработка на отказ, ч	Целостность обслуживания для одиночной посадки ⁸⁴	Непрерывность обслуживания*4	Наработка на отказ, ч	
-1	Оборуде	ование должно с	оответствовать	требованиям 2-	го уровня обслуж	кивания	
2	1-1-10-7	1-4-10-6 (15 c)	1000	1-1-10-7	1-4-10-6 (15 c)	1000	
3	1-0,5-10-9	1-2·10-6 (15 c)	2000	1-1-10-7	1-4·10-6 (15 c)	1000	
4	1-0,5·10-9	1-2·10-6 (30 c, APM) (15 c, YPM)	4000 (APM) 2000 (YPM)	1-1-10-7	1-4-10-6 (15 c)	1000	

^{*}Значения целостности и непрерывности обслуживания передачи слов данных для APM и УРМ включены в указанные значения для каждого уровня обслуживания соответственно.

П р и м е ч а н и е — Все оборудование, установленное после 01.01.2001, должно иметь параметры не хуже определенных для 2-го уровня обслуживания.

5.2 Основные параметры наземных устройств наведения ЛА по азимуту (азимутальные радиомаяки)

- 5.2.1 Излучение наземного устройства в периоды времени, когда данное устройство не должно излучать (остаточное излучение), должно быть не менее чем на 70 дБ ниже уровня при передаче и настолько мало, чтобы не мешало приему и правильной обработке сигналов других устройств.
- 5.2.2 Ширина сканирующего луча наземных устройств наведения по азимуту, измеренная по уровню сигнала минус 3 дБ, не должна превышать 4*; точки огибающей сканирующего луча по уровню минус 10 дБ должны быть смещены от центра луча от 0,76 до 0,96 ширины луча, определенной по уровню минус 3 дБ.
- 5.2.3 Наведение по азимуту должно осуществляться в планарной или конической системе координат.
- 5.2.3.1 Зона наведения наземных устройств по азимуту должна представлять собой пространство, в пределах и на границах которого сигналы должны быть не меньше уровней, указанных в таблице 4.
- 5.2.3.2 Зона наведения разделяется на зону ВПП, сектор пропорционального наведения и сектор наведения по клиренсному сигналу.

Зона наведения по азимуту захода на посадку приведена на рисунках Ж.1 и Ж.2 приложения Ж. Зона наведения по азимуту ухода на второй круг приведена на рисунке Ж.3.

- 5.2.4 Зона наведения по азимуту захода на посадку (рисунки Ж.1 и Ж.2) должна охватывать пространство, ограниченное следующими поверхностями:
- а) в горизонтальной плоскости в секторе 80° (как правило, ±40° относительно линии визирования антенны), который начинается от фазового центра антенны азимута захода на посадку;
- б) в продольном направлении от антенны азимута захода на посадку до точки, удаленной на 41,7 км;
 - в) в вертикальной плоскости между:

^{**}В основных схемах захода на посадку РУВК не применяется.

^{***}Если для работы в составе системы МЛС используется HPД/H, то значения целостности и непрерывности обслуживания могут быть уменьшены до $1-110^{-5}$

^{*4}Определения терминов «целостность» и «непрерывность обслуживания» приведены в [1].

- нижней конической поверхностью, начинающейся от фазового центра антенны азимута захода на посадку и простирающейся вверх до границы зоны действия в продольном направлении (600 м над горизонтальной плоскостью, проходящей через фазовый центр антенны) и
- верхней конической поверхностью, начинающейся от фазового центра антенны азимута захода на посадку, имеющей угол наклона 15° относительно горизонтали и простирающейся вверх до высоты 6000 м.

Примечания

- Если по условиям размещения наземной аппаратуры препятствия выступают за коническую поверхность, то наведение не должно обеспечиваться ниже линии прямой видимости вершин препятствий из фазового центра антенны устройства наведения по азимуту.
- 2 Если предполагается, что за пределами рекомендуемого сектора зоны действия имеется неверная инструктивная информация, а в соответствующих правилах эксплуатации не предусмотрено приемлемое решение, используются методы сведения этих эффектов к минимуму. Эти методы включают коррекцию сектора пропорционального наведения или использование сигналов внезонной индикации.
- 3 Если сектор пропорционального наведения меньше минимальной зоны действия в горизонтальной плоскости, указанной в 5.2.4, перечисление а, то требуются сигналы наведения по клиренсу.
- 5.2.4.1 Зона ВПП (рисунки Ж.1 и Ж.2) должна охватывать пространство, ограниченное следующими поверхностями:
- а) в горизонтальной плоскости на расстоянии 45 м с каждой стороны от осевой линии ВПП, начинающемся от дальнего конца ВПП и простирающемся параллельно осевой линии ВПП в направлении захода на посадку до соединения с районом минимальной эксплуатационной зоны действия;
 - б) в вертикальной плоскости между:
- горизонтальной поверхностью, расположенной на высоте 2,5 м над наиболее удаленной точкой оси ВПП, которая находится на линии прямой видимости азимутальной антенны и
- конической поверхностью, начинающейся от антенны наземного азимутального оборудования, имеющей угол наклона 20° относительно горизонтали и простирающейся вверх до высоты 600 м.
- 5.2.4.2 Для обеспечения автоматической посадки нижняя граница зоны ВПП должна проходить не выше 2,5 м над осыо ВПП.

 Π р и м е ч а н и е — Для выпуклых ВПП нижней границей зоны наведения является горизонтальная плоскость, проходящая на высоте 2,5 м над наиболее удаленной точкой касания к оси ВПП прямой линии, проведенной из фазового центра антенны APM в сторону порога ВПП.

Для вогнутых ВПП нижней границей зоны наведения является горизонтальная плоскость, проходящая на высоте 2,5 м над наиболее удаленной точкой оси ВПП, которая находится на линии прямой видимости из фазового центра антенны APM.

- 5.2.4.3 Наземное оборудование азимута захода на посадку должно обеспечивать информацию наведения в вертикальной плоскости в секторе 30° относительно горизонтали.
- 5.2.4.4 Сектор пропорционального наведения должен быть не меньше $\pm 10^{\circ}$ относительно оси ВПП.
- 5.2.5 Зона наведения по азимуту ухода на второй круг должна охватывать сигналами наведения пространство (см. рисунок Ж.3), не менее ограниченного следующими поверхностями:
- а) в горизонтальной плоскости в секторе ±20° относительно осевой линии ВПП, начинающемся от антенны наземного оборудования наведения по азимуту ухода на второй круг и простирающемся в направлении ухода на второй круг, по крайней мере, на 18,5 км от дальнего конца ВПП;
 - б) в вертикальной плоскости в зоне ВПП между:
- горизонтальной поверхностью, расположенной на высоте 2,5 м над наиболее удаленной точкой по оси ВПП, которая находится на линии прямой видимости антенны наведения по азимуту ухода на второй круг и
- конической поверхностью, начинающейся от антенны наземного оборудования наведения по азимуту ухода на второй круг, имеющей угол наклона 20° относительно горизонтали и простирающейся вверх до высоты 600 м;
 - в) в вертикальной плоскости в зоне наведения по азимуту ухода на второй круг между:
- конической поверхностью, начинающейся на высоте 2,5 м над дальним концом ВПП и имеющей угол наклона 0,9° относительно горизонтали и
- конической поверхностью, начинающейся от антенны наземного оборудования наведения по азимугу ухода на второй круг, имеющей угол наклона 15° относительно горизонтали и простирающейся вверх до высоты 3000 м.

 Π р и м е ч а н и е — Если физические характеристики ВПП или препятствий не соответствуют требованиям 5.2.5, перечисления δ , s, обеспечивать наведение ниже линии прямой видимости необходимости нет.

- 5.2.5.1 Оборудование наведения по азимуту ухода на второй круг должно обеспечивать информацию наведения в секторе до 30° относительно горизонтали.
- 5.2.5.2 Сектор пропорционального наведения должен быть не менее ±10° относительно оси ВПП. Если сектор пропорционального наведения по азимуту ухода на второй круг менее ±20°, то между сектором пропорционального наведения и углами ±20° должны излучаться клиренсные сигналы.
- 5.2.6 Система контроля наземного радиомаяка наведения по азимуту захода на посадку и радиомаяка наведения по азимуту ухода на второй круг должна прекращать излучение этих радиомаяков в случае, если в течение более 1 с:
 - погрешность ПСТ в опорной точке превышает нормы, указанные в 5.1.26, 5.1.26.1, 5.1.27;
 - мощность излучения становится меньше, чем указано в 5.1.30;
 - в сигналах ДФМС преамбулы возникает более одной ошибки за любую 1 с;
- нарушается взаимное расположение во времени сигналов наземного оборудования, оговоренное в 5.1.7 и 5.1.8.
- 5.2.6.1 Конструкция и схема устройства контроля должны быть такими, чтобы при отказе устройства контроля излучение сигналов наведения прекращалось и в соответствующие пункты управления подавался сигнал аварии.
- 5.2.6.2 Время, в течение которого излучаются ошибочные сигналы, и время отсутствия сигналов наведения в совокупности не должно превышать 1 с. В течение этого времени должны предприниматься все возможные меры по восстановлению работы оборудования. Если это не удается до истечения секунды, то оборудование должно отключаться и восстановление излучения разрешается не ранее чем через 20 с.
- 5.2.7 Погрешность наземного оборудования наведения по азимуту, вносимая в погрешность положения средней линии пути системы, которая является частью погрешности ПСТ, не должна в отсутствие переотражений превышать ±3 м в опорной точке захода на посадку или в опорной точке ухода на второй круг.
- 5.2.7.1 Погрешность наземного оборудования, вносимая в погрешность ШСУ системы, не должна в условиях отсутствия переотражений и при доверительной вероятности P = 0.95 % превышать в опорной точке захода на посадку или в опорной точке ухода на второй круг ± 1 м или $\pm 0.03^{\circ}$ в зависимости от того, что меньше.
- 5.2.8 Антенну наземного устройства наведения по азимуту захода на посадку устанавливают так, чтобы вертикальная плоскость, совпадающая с направлением 0°, проходила через опорную точку захода на посадку, а сама антенна находилась за концом ВПП на продолжении ее оси.
- 5.2.8.1 Антенну наземного устройства наведения по азимуту ухода на второй круг устанавливают так, чтобы вертикальная плоскость, совпадающая с направлением 0°, проходила через опорную точку ухода на второй круг, а сама антенна находилась за порогом ВПП на продолжении ее оси.
- 5.2.8.2 Допускается устанавливать антенну наземного устройства наведения по азимуту смещенной относительно оси ВПП, если установка на продолжении оси ВПП невозможна. При этом смещенная антенна наведения по азимуту должна быть установлена так, чтобы азимут 0° проходил либо параллельно оси ВПП, либо через соответствующую опорную точку.
- 5.2.9 В составе наземных устройств наведения ЛА по азимуту должно быть предусмотрено оборудование передачи основных и вспомогательных данных. Размещение во времени и перечень элементов сигнала этого оборудования приведены в таблицах Б.7 и Б.8.
- 5.2.9.1 Основные и вспомогательные данные должны передаваться сигналами с ДФМС, параметры которой приведены в 5.1.12 и 5.1.13.
- 5.2.9.2 Содержание и максимальный интервал между словами основных данных приведены в таблице Б.10. Данные, содержащие цифровую информацию, должны передаваться, начиная с самого младшего бита, а наименьшее двоичное число должно означать нижний предел диапазона с приращениями по двоичным ступеням до верхнего предела диапазона.
- 5.2.9.3 Содержание сообщений основных данных, указанное в таблице Б.1, расшифровывается следующим образом:
- расстояние от фазового центра антенны APM представляет собой минимальное расстояние от фазового центра APM до плоскости, перпендикулярной к оси ВПП, проходящей через ее порог;
 - граница сектора пропорционального наведения по азимуту захода на посадку представляет

собой границу сектора, в котором информация о положении ЛА пропорциональна его азимуту относительно оси ВПП:

- сигнал вида клиренса указывает метод осуществления сигнала клиренсного наведения по азимуту;
- минимальная глиссада линия, угол наклона которой в плоскости азимута 0° соответствует правилам захода на посадку и критериям нормирования пролета препятствий, приведенным в [1];
 - сообщение о состоянии РУВК;
 - сообщение об эксплуатационном состоянии НРД;
 - сообщение об эксплуатационном состоянии APM;
 - сообщение об эксплуатационном состоянии УРМ;
- ширина луча APM и УРМ представляет собой ширину луча антенны, определенную по ГОСТ 26566 до ближайшего самого младшего бита, предусмотренного в слове данных;
- расстояние от НРД до точки начала отсчета МЛС представляет собой минимальное расстояние, измеренное между фазовым центром антенны НРД и плоскостью, перпендикулярной к оси ВПП, которая проходит через точку начала отсчета МЛС;
- ориентация APM относительно магнитного меридиана представляет собой угол, измеренный в горизонтальной плоскости по часовой стрелке от северного направления магнитного меридиана до нулевого направления APM, исходящего из фазового центра антенны радиомаяка. Вершина измеренного угла лежит в фазовом центре антенны APM;
- ориентация РУВК относительно магнитного меридиана представляет собой угол, измеренный в горизонтальной плоскости по часовой стрелке от северного направления магнитного меридиана до нулевого направления РУВК, исходящего из фазового центра антенны РУВК. Вершина измеренного угла лежит в фазовом центре антенны радиомаяка;
- граница сектора наведения ЛА радиомаяком РУВК представляет собой границу зоны, где осуществляется наведение ЛА по его сигналам;
- опознавание наземной установки представляет собой последние три буквы кода опознавания согласно 5.1.19.1, присвоенного данной установке. Буквы передаются в соответствии с международным телеграфным кодом Морзе. Кроме того, знаки опознавания передаются в слове 6 основных данных в соответствии с международным телеграфным алфавитом № 5 (1А-5, таблицы 4-4 Приложения 10 ИКАО [1]) с использованием битов b₁ до b₆.

 Π р и м е ч а н и е — Бит b_y этого алфавита может быть восстановлен бортовым приемником путем добавления бита b_k .

- 5.2.10 Основные данные должны передаваться в шести словах. При этом слова 1-е 4-е и 6-е должны передаваться в секторе наведения по азимуту захода на посадку; если используется РУВК, слова 4-е, 5-е и 6-е должны передаваться в секторе наведения по азимуту захода на посадку и секторе ухода на второй круг.
- 5.2.11 Формирование сигналов вспомогательных данных должно осуществляться 89-тактовыми словами, состоящими из преамбулы (25 тактов), адреса (8 тактов), информационных тактов (52 такта) и тактов четности (4 такта). Размещение во времени элементов сигналов вспомогательных данных приведено в таблице Б.8. Предусматриваются три кода опознавания вида обслуживания для опознавания вспомогательных данных видов А, В и С (таблица Б.11). Должна быть предусмотрена возможность передачи цифровых и буквенно-цифровых данных. Данные, содержащие цифровую информацию, должны передаваться, начиная с самого младшего бита. Буквенно-цифровые данные должны передаваться в соответствии с международным телеграфным алфавитом № 5 (1А-5 часть 1 [1]) с использованием семи информационных битов; к каждому знаку должей добавляться один бит положительной четности. Буквенно-цифровые данные должны передаваться в той последовательности, в которой они должны считываться. Последовательная передача знака должна начинаться с передачи бита младшего разряда и заканчиваться передачей бита четности. В тех случаях, когда предусмотрена передача вспомогательных данных, они должны передаваться между последовательностями излучений устройств в любом свободном месте.

П р и м е ч а н и е — Содержание вспомогательных данных А приведено в 5.2.13. Содержание вспомогательных данных В резервируется для будущего использования, а содержание вспомогательных данных С резервируется для национального использования.

5.2.12 Система контроля обеспечивает подачу предупреждающего сигнала в установленный пункт управления, если излучаемая мощность сигнала меньше, чем необходимо для соблюдения требований в отношении ДФМС, указанных в таблице 4.

Если обнаруженная ошибка в основных данных, излучаемых в зону действия азимута захода

на посадку, встречается, по меньшей мере, в двух последовательных выборках, излучение этих данных, функции азимута захода на посадку и угловой функции прекращаются.

Если обнаруженная ошибка в основных данных, излучаемых в зону действия наведения по азимуту ухода на второй круг, встречается, по меньшей мере, в двух последовательных выборках, излучение этих данных и функции наведения по азимуту ухода на второй круг прекращаются.

- 5.2.13 Содержание вспомогательных данных А, приведенных в таблице Б.12, определяется следующим образом:
- смещение антенны APM представляет собой минимальное расстояние между фазовым центром антенны APM и вертикальной плоскостью, проходящей через осевую линию ВПП;
- расстояние от антенны APM до точки начала отсчета системы МЛС представляет собой минимальное расстояние между фазовым центром антенны APM и содержащей точку начала отсчета системы МЛС вертикальной плоскостью, перпендикулярной к оси ВПП;
- согласование APM с осью ВПП представляет собой минимальный угол между азимутом APM, равным 0°, и осью ВПП;
- система координат APM представляет собой планарную или коническую систему координат, используемую APM для передачи азимутальных углов;
- высота антенны азимута захода на посадку представляет собой высоту фазового центра антенны относительно точки начала отсчета системы МЛС;
- смещение антенны УРМ представляет собой минимальное расстояние между фазовым центром антенны УРМ и вертикальной плоскостью, проходящей через ось ВПП;
- расстояние от точки начала отсчета системы МЛС до порога ВПП представляет собой расстояние, измеренное вдоль оси ВПП, от точки начала отсчета системы МЛС до порога ВПП;
- высота антенны УРМ представляет собой высоту фазового центра антенны УРМ относительно точки начала отсчета системы МЛС:
- превышение точки начала отсчета системы МЛС представляет собой превышение точки начала отсчета относительно среднего уровня моря;
- высота порога ВПП представляет собой высоту точки пересечения порога и осевой линии ВПП относительно точки начала отсчета системы МЛС;
- смещение НРД представляет собой минимальное расстояние между фазовым центром антенны НРД и вертикальной плоскостью, проходящей через ось ВПП;
- расстояние от НРД до точки начала отсчета системы МЛС представляет собой минимальное расстояние между фазовым центром антенны НРД и вертикальной плоскостью, содержащей точку начала отсчета системы МЛС, которая перпендикулярна к оси ВПП;
- высота антенны НРД представляет собой высоту фазового центра антенны относительно точки начала отсчета системы МЛС;
- расстояние до дальнего конца ВПП представляет собой расстояние вдоль осевой линии между дальним концом ВПП и точкой начала отсчета системы МЛС;
- смещение антенны РУВК представляет собой минимальное расстояние между фазовым центром антенны РУВК и вертикальной плоскостью, проходящей через ось ВПП;
- расстояние от РУВК до точки начала отсчета системы МЛС представляет собой минимальное расстояние между фазовым центром РУВК и вертикальной плоскостью, содержащей точку начала отсчета системы МЛС, которая перпендикулярна к оси ВПП;
- согласование РУВК с осью ВПП представляет собой минимальный угол между направлением РУВК, равным 0°, и осью ВПП;
- система координат антенны наведения по азимуту ухода на второй круг представляет собой систему координат (планарную или коническую) угловых данных, передаваемых антенной наведения по азимуту ухода на второй круг;
- высота антенны наведения по азимуту ухода на второй круг представляет собой высоту фазового центра антенны относительно точки начала отсчета системы МЛС.

5.3 Основные параметры наземных устройств наведения ЛА по углу места УРМ

- 5.3.1 Наведение по углу места при заходе на посадку и при выравнивании должно осуществляться в конической системе координат.
- 5.3.1.1 Зона наведения наземного устройства для наведения по углу места при заходе на посадку представляет собой пространство (рисунки Ж.4 и Ж.5), в пределах и на границах которого сигналы оборудования не должны быть меньше указанных в таблице 4.
- 5.3.2 Зона УРМ должна охватывать пространство не менее ограниченного следующими поверхностями (рисунки Ж.4 и Ж.5):

- а) в горизонтальной плоскости в секторе, начинающемся от фазового центра угломестной антенны, угол которого не менее угла сектора пропорционального наведения, обеспечиваемого наземным оборудованием азимута захода на посадку на границе зоны действия в продольном направлении;
- б) в продольном направлении от угломестной антенны в направлении захода на посадку на 37 км от порога ВПП;
 - в) в вертикальной плоскости между;
- нижней конической поверхностью, начинающейся от фазового центра угломестной антеним и простирающейся вверх до границы зоны действия в продольном направлении (600 м над горизонтальной плоскостью, проходящей через фазовый центр антенны) и
- верхней конической поверхностью, начинающейся от фазового центра антенны УРМ и имеющей угол наклона 7,5° относительно горизонтали и простирающейся вверх до высоты 600 м.

 Π р и м е ч а н и е — Если физические характеристики зоны захода на посадку не соответствуют требованиям 5.3.2, перечисления a, δ , a1), то обеспечивать наведение ниже линии прямой видимости необходимости нет.

В тех случаях, когда это обусловлено эксплуатационными требованиями, наземное оборудование захода на посадку по углу места должно обеспечивать пропорциональное наведение до углов, превышающих 7,5° относительно горизонтали.

- 5.3.2.1 Зона действия УРМ при выравнивании (зона пропорционального наведения) должна охватывать сигналами, уровень которых в пределах и на границах зоны указан в таблице 4, пространство, ограниченное следующими поверхностями (рисунок Ж.6):
- а) в горизонтальной плоскости в пределах сектора ±10° относительно продолжения осевой линии ВПП, начинающегося в точке начала отсчета системы МЛС;
- б) в продольном направлении на расстоянии 75 м от точки начала отсчета системы МЛС в направлении порога ВПП до дальней границы зоны действия, указанной в 5.3.2, перечисление 6;
- в) в вертикальной плоскости между верхней поверхностью, указанной в 5.3.2, перечисление в 2), и наивысшей из следующих поверхностей:
 - 1) поверхностью на высоте 2,5 м над ВПП, являющейся теометрическим местом точек;
- поверхностью, начинающейся в точке начала отечета системы МЛС и простирающейся вверх до границы зоны действия в продольном направлении, не превышающей высоту поверхности, указанной в 5.3.2, перечисление в1).
- 5.3.3 Конструкция и схема контроля устройства наведения по углу места при заходе на посадку и углу места при выравнивании должны прекращать излучение сигналов устройства в случае, если в течение более 1 с:
- погрешность следования по траектории превышает указанную в 5.1.28 и 5.1.29 за счет увеличения погрешности положения усредненной глиссады, вызванной наземным оборудованием;
 - уровни сигналов меньше указанных в 5.1.30;
 - имеется более одной ошибки в сигналах основных данных и преамбулы;
- нарушаются требования 5.1.10 в отношении точности размещения во времени элементов сигнала наведения по углу места при выравнивании и заходе на посадку;
- нарушаются требования 5.1.7 и 5.1.8 в отношении передачи на одной частоте без взаимных помех сигналов различного оборудования системы посадки.
- 5.3.3.1 Конструкция и схема устройства контроля должны предусматривать прекращение излучения сигналов наведения и подачу сигнала аварии в соответствующие пункты управления в случае отказа системы контроля.
- 5.3.3.2 Суммарное время, в течение которого излучается ошибочная информация в каналах наведения по углу места, и время отсутствия сигналов наведения не должно превышать 1 с. В течение этого времени должны быть приняты все возможные меры по восстановлению исправной работы оборудования. Если это не удается до истечения 1 с, то оборудование наведения должно отключаться и излучение должно возобновляться не ранее чем через 20 с.
- 5.3.4 Погрешность наземного устройства наведения по углу места при заходе на посадку или выравнивании, вносимая в погрешность положения усредненной глиссады системы (составляющая ПСТ), не должна превышать ±0,3 м в опорной точке захода на посадку.

Погрешность наземного устройства наведения по углу места при заходе на посадку или выравнивании, вносимая в погрешность ШСУ в отсутствие переотражений, не должна превышать ± 0.15 м в опорной точке захода на посадку при доверительной вероятности P=95 %.

- 5.3.5 Антенна наведения по углу места при заходе на посадку должна устанавливаться так, чтобы минимальная глиссада проходила через опорную точку захода на посадку.
- 5.3.5.1 Угол наклона минимальной глиссады не должен быть более 3°, за исключением тех случаев, когда это не обеспечивает безопасного пролета препятствий.
- 5.3.5.2 Если одну и ту же ВПП обслуживают системы МЛС и ИЛС, то глиссада ИЛС и минимальная глиссада МЛС не должны в опорной точке различаться более чем на 1 м.
- 5.3.5.3 Антенна наведения по углу места для выравнивания должна быть установлена на расстоянии около 1000 м от порога ВПП в сторону ее конца.
- 5.3.5.4 Ширина сканирующего луча наземных устройств наведения по углу места, измеренная по уровню сигнала минус 3 дБ, не должна превышать 2,5°; точки огибающей сканирующего луча по уровню сигнала минус 10 дБ должны быть смещены от центра луча в пределах от 0,7 до 0,9 ширины луча, определенной по уровню сигнала минус 3 дБ.

5.4 Основные параметры наземного ретранслятора дальномера

- 5.4.1 Нестабильность частоты передатчика должна быть не более ±0,002 %.
- 5.4.2 Параметры ответного импульса НРД должны соответствовать следующим значениям:
- а) время нарастания импульса, измеренное в пределах от 0,1 до 0,9 амплитуды, не должно превышать 3 мкс;
- б) частичное время нарастания импульса, т. е. нарастание, измеренное в пределах от 0.05 до 0.30 амплитуды, должно быть (0.25 ± 0.05) мкс.

Для режима КЭП и класса точности 1 крутизна импульса в пределах частичного времени нарастания должна изменяться не более чем на ±20 %. Для класса точности 2 крутизна импульса в пределах частичного времени нарастания должна изменяться не более чем на ±10 %;

- в) длительность импульса, измеренная на уровне 0.5 амплитуды, должна лежать в пределах (3.5 ± 0.5) мкс;
- г) время среза импульса, измеренное в пределах от 0,90 до 0,10 амплитуды, должно быть не более 3,5 мкс;
- д) в пределах длительности импульса, измеренной на уровне 0,95 амплитуды, его мгновенное значение должно быть не менее 0,95 амплитуды;
- ж) спектр импульсно-модулированного сигнала НРД должен быть таким, чтобы в полосе частот 0,5 МГц с центральной частотой, смещенной на 0,8 МГц выше и ниже номинальной частоты излучения (в обоих случаях), эффективная излучаемая мощность в пределах длительности импульса не превышала 200 мВт, а мощность сигнала НРД в полосе частот 0,5 МГц с центральной частотой, смещенной на 2 МГц выше и ниже номинальной частоты излучения, в обоих случаях не превышала 2 мВт. Любой лепесток спектра, находящийся ближе, чем соседний к номинальной частоте излучения, должен иметь большую амплитуду излучения.

Примечания

- Пределы длительности импульса по 5.4.2, перечисление д, представляют собой время от начала импульса до его окончания. Начало и окончание импульса измеряют на уровне 5 % его амплитуды.
- 2 Мощность в полосе частот, указанной в 5.4.2, перечисление ж, является средней мощностью за время передачи импульса. Средняя мощность в данной полосе частот представляет собой энергию в данной полосе частот, разделенную на время длительности импульса, указанное в примечании 1.
- 5.4.3 НРД должен обеспечивать плотность потока мощности у антенны бортового запросчика, не менее:
- минус 89 дБ-Вт/м² от точки установки антенны НРД и до конца зоны наведения системы МЛС (расстояние более 13 км);
- минус 75 дБ-Вт/м² в зоне наведения системы МЛС на расстоянии менее 13 км от точки установки антенны НРД;
 - минус 70 дБ-Вт/м² в опорной точке системы МЛС захода на посадку;
- минус 79 дБ-Вт/м² на высоте 2,5 м над точкой начала отсчета системы МЛС или над наиболее удаленной точкой оси ВПП, находящейся в пределах прямой видимости от антенны НРД.
- 5.4.4 НРД должен обеспечивать эффективность получения ответного сигнала не менее 70 % при плотности потока мощности запросного сигнала минус 86 дБ-Вт/м² в режиме НЭП и эффективность ответного сигнала не менее 80 % при плотности потока мощности запросного сигнала минус 75 дБ-Вт/м² в режиме КЭП.
- 5.4.5 НРД должен сохранять работоспособность при увеличении плотностей потоков мощности, указанных в 5.6.3, до минус 22 дБ-Вт/м².

- 5.4.6 НРД при ретрансляции сигналов бортовых запросчиков не должен вносить дополнительную погрешность в измерение дальности, превышающую; ±15 м для погрешности ПСТ и ±10 м для погрешности ШСУ в режиме НЭП, а также ±5 м для погрешности ПСТ и ±5 м для погрешности ШСУ в режиме КЭП для класса точности 2, и, соответственно, ±10 и ±8 м для класса точности 1.
- 5.4.7 Место установки определяется длиной и профилем ВПП, а также характером местности, при этом антенна НРД должна располагаться как можно ближе к антенне АРМ.
 - 5.4.8 Задержки по времени сигналов НРД приведены в таблице Б.14.
- 5.4.9 Контрольная система НРД должна отключать излучение НРД в случае, если в течение более 1 с:
- значение ПСТ, создаваемое НРД, превышает значения, указанные в 5.4.6. Если предел ПСТ в режиме КЭП нарушается, но сохраняется предел в режиме НЭП, то режим НЭП сохраняется;
- эффективная излучаемая мощность НРД оказывается менее необходимой для обеспечения норм, указанных в 5.4.3;
- на 3 дБ или более уменьшается чувствительность приемника, необходимая для удовлетворения норм, оговоренных в 5.4.4 (если это не вызвано работой схемы АРУ приемника);
 - интервал между 1-м и 2-м импульсами пары ответа НРД отличается на 1 мкс или более.
- 5.4.9.1 Ошибочная информация НРД не должна передаваться в течение более 1 с. Если за 1 с не удается восстановить исправную работу НРД, то возобновление исправного излучения разрешается не ранее чем через 20 с.
 - 5.4.9.2 НРД не должен запускаться для целей контроля более 120 раз в секунду.
- 5.4.9.3 Отказ системы контроля должен автоматически приводить к прекращению излучения НРД и препятствовать возобновлению излучения в течение 20 с.
 - 5.4.10 НРД при необходимости выдает сигнал опознавания одним из следующих способов:
 - а) независимое опознавание в случае отдельной работы НРД/П или НРД/Н;
- б) взаимодействующее опознавание в случае совместной работы НРД/Н или НРД/П с навигационным или посадочным оборудованием.
- 5.4.10.1 Оба способа опознавания используют сигналы, которые состоят из передаваемой в течение определенного периода времени серии спаренных импульсов частотой повторения 1350 импульсных пар в секунду, временно заменяющих все ответные импульсы, которые передавались бы в этот временной интервал. Эти импульсы имеют характеристики, аналогичные характеристикам других ответных сигналов.
 - 5.4.10.2 Сигнал независимого опознавания имеет следующие характеристики:
- а) опознавательный сигнал состоит из передаваемых радиомаячным кодом в виде точек и тире (международный код Морзе) опознавательных импульсов с периодичностью не менее одного раза каждые 40 с со скоростью не менее 6 слов в минуту;
- б) характеристики опознавательного кода и скорость передачи букв НРД должны быть такими, чтобы максимальная полная длительность включения не превышала 5 с на группу опознавательного кода. Длительность точек составляет от 0,1 до 0,16 с. Длительность тире в три раза больше длительности точек. Пауза между точками и (или) тире равна длительности одной точки ±10 %. Пауза между буквами или цифрами составляет не менее длительности трех точек. Весь период передачи группы опознавательного кода не превышает 10 с.
 - 5.4.10.3 Сигнал взаимодействующего опознавания имеет следующие характеристики;
- а) при работе НРД совместно с навигационным или угломерным оборудованием системы МЛС сигнал опознавания передается в виде тире и точек, как указано в 5.4.10.1, и синхронизируется с опознавательным кодом навигационного или угломерного оборудования системы МЛС;
- б) каждый 40-секундный интервал разделяется на 4 и более равных периода, причем сигнал опознавания НРД передается в течение только одного периода, а опознавательный сигнал навигационного и угломерного оборудования системы МЛС — в течение остальных периодов;
- в) для НРД, взаимодействующего с угломерным оборудованием системы МЛС, опознавательный сигнал представляет собой последние три буквы опознавательного кода угломерного оборудования системы МЛС;
- г) когда НРД работает совместно с ИЛС и (или) угломерным оборудованием МЛС, он является единым источником синхронизации для всех средств.
 - 5.5 Основные параметры бортового угломерного приемника
- 5.5.1 Бортовой угломерный приемник должен обеспечивать декодирование сигналов наведения по азимуту, углу места, основных и вспомогательных данных.
 - 5.5.2 Если плотности потоков мощности сигналов преамбулы и сканирующего луча равны

значению, указанному в таблице 4, бортовое угломерное устройство должно декодировать угловые сигналы и данные, а погрешность ШСУ в любом декодированном угловом сигнале не должна превышать ±0,2°.

- 5.5.2.1 Если уровень принимаемого сигнала велик настолько, что влияние собственных шумов незначительно, то погрешность наведения, вызванная бортовым угломерным устройством для любого декодируемого угла, не должна превышать $\pm 0.017^{\circ}$ для погрешности ПСТ, $\pm 0.015^{\circ}$ для погрешности ШСУ по азимуту и $\pm 0.01^{\circ}$ для погрешности ШСУ по углу места.
- 5.5.3 Для обеспечения допустимой погрешности наведения на высоте 2,5 м над ВПП погрешность ШСУ бортового устройства должна быть меньше 0,04 ° при плотности потока мощности согласно 5.1.30.1 для высоты 2.5 м.
- 5.5.4 При значении плотности потока мощности любого излучаемого сигнала в диапазоне от номинального значения, указанного в таблице 4, до максимального значения (минус 14,5 дБ-Вт/м²) бортовой угломерный приемник должен декодировать сигналы, а погрешность определения углов, вызванная бортовым оборудованием, должна соответствовать требованиям 5.5.2.1.
- 5.5.4.1 Погрешность определения угла, вызванная бортовым угломерным приемником, не должна превышать пределов, указанных в 5.5.2.1, если значения плотности потока мощности отдельных функций различаются в пределах динамического диапазона, указанного в 5.5.4.
- 5.5.5 Выходные фильтры нижних частот бортового угломерного приемника при входных синусоидальных сигналах не должны вызывать по выходу угловых данных изменения амплитуды и фазы выходного сигнала более чем на 20 % по сравнению с теми же изменениями, которые дает однополюсный фильтр нижних частот с частотой среза 10 рад/с.
- 5.5.6 Бортовой угломерный приемник должен соответствовать требованиям, издоженным в 5.5.1—5.5.4, при воздействии сигнала на частоте смежного канала, который превышает принимаемый сигнал на 25 дБ.

5.6 Основные параметры бортового запросчика радиодальномера

- 5.6.1 Отклонение частоты передатчика запросчика от номинальной должно быть не более ±100 кГц.
 - 5.6.2 Параметры запросного импульса передатчика:
 - длительность фронта должна быть не более 1,6 мкс;
- время нарастания импульса в пределах от 0,05 до 0,30 его амплитуды должно составлять (0,25± ± 0,05) мкс;
- отклонение закона нарастания импульса от линейного на участке времени нарастания импульса в пределах от 0.05 до 0.30 его амплитуды не должно превышать ± 20 % для класса точности 1 и ± 10 % для класса точности 2;
 - длительность импульса на уровне 0,5 амплитуды должна быть (3,5±0,5) мкс;
 - длительность среза импульса не должна превышать 3,5 мкс.
- 5.6.3 Мощность передатчика запросчика, диаграммы направленности бортовой антенны, потери в соединительных кабелях вместе должны обеспечивать у антенны НРД плотность потока мощности более минус 86 дБ-Вт/м² в режиме НЭП и более минус 75 дБ-Вт/м² в режиме КЭП при всех погодных условиях, допустимых для работы МЛС.
- 5.6.4 Чувствительность приемника запросчика, бортовая антенна и соединительные кабели вместе при любых погодных условиях, допускаемых для работы системы МЛС, и при плотности потока мощности, создаваемой НРД согласно 5.4.3, должны обеспечивать определение дальности с погрешностью, оговоренной в 5.6.6.
- 5.6.5 Запросчик должен сохранять работоспособность при возрастании плотности потока мощности от указанной в 5.4.3 до минус 18 дБ-Вт/м².
- 5.6.6 Запросчик не должен вносить дополнительную погрешность в измерение дальности, превышающую ±30 м для погрешности ПСТ и ±15 м для погрешности ШСУ в режиме посадки НЭП; ±15 м для погрешности ПСТ и ±10 м для погрешности ШСУ в режиме КЭП в случае класса точности 1; ±7 м для погрешности ПСТ и ±7 м для погрешности ШСУ в режиме посадки КЭП в случае класса точности 2. Доверительная вероятность указанных погрешностей Р = 95 %.

5.7 Основные параметры контрольно-проверочной аппаратуры

- 5.7.1 Имитатор угломерных сигналов должен обеспечивать имитацию сигналов:
- наведения по азимуту захода на посадку;
- наведения по азимуту ухода на второй круг;
- наведения по углу места захода на посадку;

- наведения по углу места при выравнивании;
- слов основных и вспомогательных данных.
- 5.7.1.1 Рабочий диапазон частот имитатора должен соответствовать частотам, указанным в таблице Б.1.

Число рабочих каналов — 200.

Относительная частотная погрешность сигнала имитатора должна быть не более $\pm 0,4\cdot 10^{-6}$. Должна быть предусмотрена возможность изменения частоты на ± 12 к Γ ц относительно номинального значения.

Кратковременная стабильность частоты излучения должна соответствовать указанной в 5.1.4.

- 5.7.1.2 Уровень выходного сигнала по несущей частоте должен устанавливаться с погрешностью менее ± 1 дБ в точке минус 40 дБ/Вт. Погрешность изменения уровня от минус 40 до минус 140 дБ/Вт не должна превышать ±2 дБ.
 - 5.7.1.3 Диапазон имитируемых углов сканирования устройств наведения должен быть:
 - по азимуту захода на посадку $-\pm62^{\circ}$ (при частоте обновления сигналов (13.0 \pm 0.5) Γ ц);
- по азимуту ухода на второй круг $\pm 42^\circ$ при частоте обновления сигналов (6,50 \pm 0,25) Γ ц и по азимуту захода на посадку при частоте обновления сигналов (39,0 \pm 1,5) Γ ц;
- по углу места захода на посадку от минус $1,5^*$ до плюс $29,5^*$ при частоте обновления сигналов (39.0 ± 1.5) Ги:
- по углу места при выравнивании от минус 2°до плюс 10° при частоте обновления сигналов (39.0 ± 1.5) Γ ц.

Основная погрешность имитации углов должна быть не более $\pm 0,004$ °, дополнительная погрешность — ± 0.002 °.

- 5.7.1.4 Способ кодирования слов данных по высокой частоте дифференциальная фазовая манипуляция несущей частоты от 0° к 180° и наоборот. Основная погрешность манипуляции должна быть не более ±6°, дополнительная погрешность не более ±4°.
- 5.7.1.5 Перечисленные в 5.7.1 сигналы должны соответствовать параметрам, приведенным в 5.1.9, 5.1.0 5.1.19.3, 5.1.20 5.1.22, 5.2.2, 5.2.4.4, 5.2.5, 5.2.9, 5.2.9.1, 5.2.10 и таблицах Б.2 Б.8, Б.10, Б.11.
- 5.7.2 ПАЛ должна обеспечивать проверку параметров устройств системы на любом из 200 частотных каналов в диапазоне частот от 5031,0 до 5090,7 МГц.
- 5.7.2.1 Чувствительность приемника с штатной узконаправленной антенной устройства проверки параметров системы при соотношении сигнал/шум, равном десяти по напряжению, должна быть не более минус 90 дБ-Вт/м².
- 5.7.2.2 Основная погрешность измерения углов ПСТ аппаратурой проверки угловых параметров радиомаяков на малых высотах не должна быть более 0,01° при плотности потока мощности от минус 90 до минус 5 дБ-Вт/м², вероятности 90 % и разнице уровней сигналов азимутальных и угломестных радиомаяков 75 дБ, а также при уровне одного из сигналов согласно 5.1.30.1.
- 5.7.2.3 В остальном аппаратура проверки параметров системы на малых высотах должна соответствовать нормативной документации на конкретную аппаратуру.
- 5.7.3 Имитатор сигналов НРД должен создавать на частотах, соответствующих несущим частотам НРД, следующие сигналы:
 - ответный сигнал дальности;
 - сигнал ХИП:
 - сигнал опознавания;
 - эхосигнал.

Должна быть предусмотрена возможность отключения каждого из имитируемых сигналов.

- 5.7.3.1 Имитатор должен создавать сигналы НРД с регулируемой мощностью от минус 125 до минус 40 дБ/Вт. Уровень выходного сигнала должен устанавливаться с погрешностью менее ±1 дБ в точке минус 40 дБ/Вт. Погрешность установки уровня выходного сигнала при его изменении от минус 40 до минус 125 дБ/Вт не должна превышать ±3 дБ.
- 5.7.3.2 Имитатор должен измерять выходную импульсную мощность запросчика в диапазоне от 100 до 3000 Вт или обеспечивать возможность измерения этой мощности при подключении к имитатору внешнего прибора, при этом тракт подключения имитатора не должен вносить погрешность измерения мощности, превышающую ±1 дБ.
- 5.7.3.3 Имитатор должен обеспечивать имитацию эхосигналов с фиксированной фазой по отношению к ответному сигналу дальности.

5.7.3.4 Должна обеспечиваться имитация задания дальности от 0 до 500 км. Дискретность задания дальности в интервале от 0 до 5 км должна составлять не более 10 м, а в интервале от 5 до 500 км — не более 19 м.

Примечание — Скорость света считают равной 299700 км/с.

- 5.7.3.5 Погрешность задания дальности на удалении 5 км не должна превышать ±5,0 м.
- 5.7.3.6 Управление угломерными и дальномерными имитаторами должно осуществляться как автономно, так и от внешних управляющих устройств по ГОСТ 26.003.

6 Методы измерений

6.1 Общие положения

- 6.1.1 Тип и класс точности средств измерений общего применения, используемых при испытаниях системы МЛС, определяют по перечням на конкретные типы оборудования системы МЛС, согласованным с заказчиком.
- 6.1.2 Проверку основных параметров системы МЛС и устройств, указанных в разделе 5, осуществляют путем наземных и летных измерений.
- 6.1.3 Измерения проводят с использованием средств измерений общего применения, специальных средств измерений (имитатора угломерных сигналов, имитатора сигналов НРД и аппаратуры для проверки ПАЛ, аппаратуры встроенного контроля, входящей в состав наземного и бортового оборудования, самолета лаборатории для облета системы и средств траекторных измерений).
- 6.1.4 Отдельные устройства и система МЛС в целом должны соответствовать нормам, указанным в НД на них, и настоящему стандарту.

6.2 Порядок проведения измерений

- 6.2.1 Основные параметры, указанные в 5.1.1-5.1.4, 5.1.7-5.1.12, 5.1.14-5.1.15, 5.1.17, 5.1.18-5.1.20.2, 5.1.20.4, 5.1.21, 5.1.22, 5.1.22.1, 5.1.24, 5.1.26, 5.1.26, 5.1.26.1, 5.1.30, 5.1.30.1, 5.1.30.2, 5.1.33-5.2.3, 5.2.4.2, 5.2.6-5.2.13, 5.3.3-5.3.5.4, 5.4.1-5.4.10.3, 5.5.2-5.5.4, 5.6.1, 5.6.2, 5.6.5-5.7.3.6, проверяют наземными измерениями по методикам технических условий и инструкции по эксплуатации на конкретную систему МЛС.
- 6.2.2 Основные параметры, указанные в 5.1.5, 5.1.6, 5.1.13, 5.1.19.3, 5.1.20, 5.1.20.3, 5.1.22, 5.1.22, 1, 5.1.26 5.1.30, 5.1.31, 5.1.32, 5.2.3.1 5.2.4.1, 5.2.4.3 5.2.5.2, 5.3.1 5.3.2.1, 5.4.3, 5.6.3, 5.6.4, проверяют летными испытаниями, которые проводят с использованием средств траекторных измерений и самолета-лаборатории с бортовой аппаратурой системы МЛС, к которой подключены дополнительные фильтры для выделения из сигнала составляющих погрешностей ПСТ, ШСТ и ШСУ, указанных в таблице 3. Параметры фильтров приведены в приложении Д.

6.3 Специализированные измерительные устройства

- 6.3.1 Самолет-лаборатория должен иметь аппаратуру регистрации (записи) выходных сигналов системы, индикаторы для визуального контроля этих сигналов, средства связи с наземными радиомаяками и средства траекторных измерений. Состав и характеристики оборудования самолета-лаборатории должны соответствовать НД на конкретный самолет-лабораторию.
- 6.3.2 Проверку по 6.2.2 проводят с использованием средств траекторных измерений, которые определяют положение самолета-лаборатории при выполнении полетов в пределах зоны наведения системы с потрешностью, меньшей, чем погрешность системы МЛС, примерно в 3 раза.
- 6.3.3 Летные измерения проводят по методикам, приведенным в инструкциях по эксплуатации конкретных устройств и летным испытаниям системы МЛС. Рекомендации по обработке данных летных измерений с целью оценки точностных характеристик системы приведены в приложении Е.

приложение а (справочное)

Соответствие сокращений на русском языке английским аналогам по ИКАО (ІСАО)

YOR — ВОР — всенаправленный радиомаяк, работающий в диапазоне сверхвысоких частот;

DPSK — ДФМС — дифференциальная фазовая манипуляция сигналов;

ILS — ИЛС — система инструментальной посадки метрового диапазона волн;

FA— КЭП — конечный этап захода на посадку;

MLS — МЛС — радиомаячная система инструментального захода ЛА на посадку сантиметрового диапазона волн;

IA— НЭП — начальный этап захода на посадку;
PFE — ПСТ — погрешность следования по трасктории;

ОСІ — СИПВЗН — сигналы индикации о пребывании вне зоны наведения;

PFN- ШСТ - шумы следования по траектории;

СМN — ШСУ — шумы системы управления.

приложение Б (обязательное)

Размещение во времени элементов угломерных сигналов, содержание слов основных и вспомогательных данных, спаривание каналов угломерных и дальномерных устройств

Таблица Б.1 — Спаривание каналов ДМЕ с угломерными каналами МЛС

	Спараван	ие каналов				Парамет	ры ДМЕ						
	Cinpinna	AC SIGNESION			3an	Orser							
Номер	Частота	Частота	Номер		Импульсные коды, мкс		г, мкс		Импульс				
канала ДМЕ	вор. МГц	угломер- ного МЛС,	канала МЛС	Частота, МГц	нрд/н	Режим	нрд/п	Частота, МГц	ный код. мкс				
			МГц	МГц	МГц		МΓц			нэп	кэп		12/27
1X*	_	_	_	1025	12		-	962	12				
1Y**	-	_	_	1025	36	-	-	1088	30				
2X*	_	_	_	1026	12	-	-	963	12				
2Y**	-	_	-	1026	36	-	_	1089	30				
3X*	_	_	_	1027	12	_	_	964	12				
3Y**	_	_		1027	36	_	_	1090	30				
4X*	_		-	1028	12	_	_	965	12				
4Y**	_	-	-	1028	36	_	_	1091	30				
5X*	_	_	_	1029	12	-	_	966	12				
5Y**	-	_		1029	36	_	_	1092	30				
5X*	-	_	_	1030	12	_	_	967	12				
5Y**	-	-	_	1030	36	-	_	1093	30				
7X*	_	-	-	1031	12	_	_	968	12				
7Y**	-	_	_	1031	36	_	_	1094	30				

Продолжение таблицы Б.1

	Спаряван	не каналов				Парамет	ры ДМЕ		
					3an	рос		Or	вет
Номер	Частота	Частота угломер-	Номер		Импу	льсные кодп	г, мже		Импульс
канада ДМЕ	ВОР, МГц	ного МЛС,	канала МЛС	Частота, МГц	нрд/н	Режим	нрд/п	Частота, МГц	ныя код мкс
		МΓц				нэп	кэп	13-4	
8X*	-	-	-	1032	12	-	-	969	12
8Y**	_	-	_	1032	36	_	-	1095	30
9X*	-	-	-	1033	12	_	_	970	12
Y**	_	-	-	1033	36	_	_	1096	30
0X*	-	-	_	1034	12	_	-	971	12
0Y**	-	-	-	1034	36	_	-	1097	30
1X*	-	-	_	1035	12	_	-	972	12
1Y**	-	-	_	1035	36	_	_	1098	30
2X*		-	-	1036	12	_	-	973	12
2Y**	_	=	_	1036	36	_	_	1099	30
3X*	-	_	_	1037	12	_	_	974	12
3Y**	-	_	-	1037	36	_	_	1100	30
4X*	_	_	-	1038	12	_	_	975	12
4Y**	_	-	-	1038	36	_	-	1101	30
5X*	_	_	_	1039	12	_	_	976	12
5Y**	-	_	_	1039	36	-	-	1102	30
6X*	_	_		1040	12	_	_	977	12
6Y**	100.00	-	-	1040	36	_	_	1103	30
7X***	108,00	e0.12.0	540	1041	12	26	42	978	12
7Y 7Z	108,05	5043,0	540	1041	36	36	27	1104	30
8X	108,10	5043,3	541 500	1041 1042	12	21 12		1104	15
	108,10	5031,0					18	979	12
8W	100 16	5031,3	501	1042	36	24	30 42	979	24
8Y 8Z	108,15	5043,6	542	1042	30	36 21	27	1105	30 15
	100.30	5043,9	543	1042 1043	12			1105	12
9X 9Y	108,20	5044.2	544	1043	36	36	42	980 1106	30
9Z	108,25	5044,5	545	1043	30	21	27	1106	15
9Z 0X	108,30	5031,6	502	1043	12	12	18	981	12
0W	100,50	5031,0	503	1044	- 12	24	30	981	24
0Y	108,35	5044,8	546	1044	36	36	42	1107	30
0Z	100,33	5045,1	547	1044	- 50	21	27	1107	15
1X	108,40	3043,1	34)	1045	12	21	21	981	12
iŶ	108,45	5045.4	548	1045	36	36	42	1108	30
iz	100,43	5045,7	549	1045	50	21	27	1108	15
2X	108,50	5032,2	504	1046	12	12	18	983	12
2W	140,50	5032.5	505	1046		24	30	983	24
2Y	108,55	5046,0	550	1046	36	36	42	1109	30
2Z		5046,3	551	1046	-	21	27	1109	15
3X	108,60		_	1047	12	_	_	984	12
3Y	108,65	5046.6	552	1047	36	36	42	1110	30
3Z		5046,9	553	1047		21	27	1110	15
4X	108,70	5032,8	506	1048	12	12	18	985	12
4W		5033,1	507	1048		24	30	985	24
4Y	108,75	5047,2	554	1048	36	36	42	1111	30
4Z	-	5047,5	555	1048	-	21	27	1111	15
5X	108,80		-	1049	12		_	986	12
5Y	108,85	5047,8	556	1049	36	36	42	1112	30
5Z		5048,1	557	1049	_	21	27	1112	15
6X	108,90	5033,4	508	1050	12	12	18	987	12
26W	_	5033,7	509	1050		24	30	987	24
26Y	108,95	5048,4	558	1050	36	36	42	1113	30
26Z	- 100,75	5048,7	559	1050	-	21	27	1113	15

Продолжение таблицы Б.1

	Спарива	ние каналов				Парамет	ры ДМЕ		
					3an	рос		01	вет
Номер	Частота	Частота угломер-	Номер	Частота.	Импу	дьеные кода	a, MEC	Частота.	Импульс
канала ДМЕ	ВОР, МГц	ного МЛС, МГц	канала МЛС	МΓц	нрд/н		нрд/п	МΓц	ный код мкс
27X	109.00			1051	12	нэп	КЭП	988	12
27X 27Y	109,00	5049.0	560	1051	36	36	42	1114	30
27Z	_	5049.3	561	1051		21	27	1114	15
28X	109,10	5034,0	510	1052	12	12	18	989	12
28W	-	5034,3	511	1052	_	24	30	989	24
28Y	109,15	5049,6	562	1052	36	36	42	1115	30
28Z	_	5049,9	563	1052	_	21	27	1115	15
29X	109,20	-	_	1053	12	_	_	990	12
29Y	109,25	5050,2	564	1053	36	36	42	1116	36
29Z	-	5050,5	565	1053	_	21	27	1116	15
30X	109,30	5034,6	512	1054	12	12	18	991	12
30W		5034,9	513	1054	=	24	30	991	24
30Y	109,35	5050,8	566	1054	36	36	42	1117	30
30Z	100.10	5051,1	567	1054		21	27	1117	15
31X	109,40	5051.4		1055	12	-	42	992	12
31Y	109,45	5051,4	568	1055	36	36		1118	30
31Z	100.00	5051,7	569	1055		21	27	1118	15
32X 32W	109,50	5035,2	514	1056	12	12	18	993	12
32W 32Y	109,55	5035,5 5052,0	515 570	1056 1056	36	24 36	30 42	993	24 30
32Z	109,55	5052,0	571	1056	30	21	27	1119 1119	15
33X	109,60	3032,3	3/1	1050	12	- 21	21	994	12
33Y	109,65	5052.6	572	1057	36	36	42	1120	30
33Z	109,03	5052,9	573	1057	-	21	27	1120	15
34X	109.70	5035,8	516	1058	12	12	18	995	12
34W	-	5036,1	517	1058	-	24	30	995	24
34Y	109,75	5053,2	574	1058	36	36	42	1121	30
34Z		5053,5	575	1058	_	21	27	1121	15
35X	109,80	_	_	1059	12			996	12
35Y	109.85	5053.8	576	1059	36	36	42	1122	30
35Z	-	5054,1	577	1059	_	21	27	1122	15
36X	109,90	5036,4	518	1060	12	12	18	997	12
36W	_	5036,7	519	1060	_	24	30	997	24
36Y	109,95	5054,4	578	1060	36	36	42	1123	30
36Z	-	5054,7	579	1060	_	21	27	1123	15
37X	110,00	-	_	1061	12	_	-	998	12
37Y	110,05	5055,0	580	1061	36	36	42	1124	30
37Z		5055,3	581	1061	-	21	27	1124	15
38X	110,10	5037,0	520	1062	12	12	18	999	12
38W	110.15	5037,3	521	1062	36	24	30	999	24
38Y 38Z	110,15	5055,6	582 583	1062	.50	36 21	42 27	1125	30 15
39X	110.20	5055,9	363	1062 1063	12	21	21	1000	12
39Y	110,25	5056,2	584	1063	36	36	42	1126	30
39Z	110,25	5056,5	585	1063	50	21	27	1126	15
40X	110,30	5037,6	522	1064	12	12	18	1001	12
40W	110,50	5037,9	523	1064	12	24	30	1001	24
40Y	110,35	5056,8	586	1064	36	36	42	1127	30
40Z		5057,1	587	1064	_	21	27	1127	15
41X	110,40			1065	12		-	1002	12
41Y	110,45	5057,4	588	1065	36	36	42	1128	30
41Z		5057,7	589	1065	-	21	27	1128	15
42X	110,50	5038,2	524	1066	12	12	18	1003	12
42W	-	5038,5	525	1066	_	24	30	1003	24
42Y	110,55	5058,0	590	1066	36	36	42	1129	30
42Z		5058,3	591	1066	_	21	27	1129	15

Продолжение таблицы Б.1

	Спариез	ние каналов				Парамет	ры ДМЕ		
	Спарава	пис капалов			3an	pac		O	гвет
	Частота	Частота	Harris		Импу	дьсные коди	в, мкс		
Номер канала	BOP,	угломер- ного	Номер канала	Частота, МГп		Режим	нрд/п	Частота, МГп	Импульс ный код
ДМЕ	МГц	МЛС, МГц	млс		нрд/н	нэп	кэп		мкс
43X	110,60		_	1067	12	_	_	1004	12
43Y	110,65	5058,6	592	1067	36	36	42	1130	30
43Z		5058,9	593	1067	_	21	27	1130	15
44X	110,70	5038,8	526	1068	12	12	18	1005	12
44W		5039,1	527	1068	_	24	30	1005	24
44Y	110,75	5059.2	594	1068	36	36	42	1131	30
44Z		5059,5	595	1068		21	27	1131	15
45X	110.80	2027,2	-	1069	12			1006	12
45Y	110,85	5059.8	596	1069	36	36	42	1132	30
45Z	110,02	5060,1	597	1069	50	21	27	1132	15
46X	110,90	5039,4	528	1070	12	12	18	1007	12
46W	110,50	5039,7	529	1070	12	24	30	1007	24
46Y	110,95	5060,4	598	1070	36	36	42	1133	30
46Z	110,95	5060,7	599	1070	30	21	27	1133	15
47X	111.00	5000,7	377	1071	12	4.1	2,1	1008	12
	A CONTRACTOR	5061,0	600			36	42		30
47Y	111,05			1071	36		27	1134	
47Z	111.10	5061,3	601	1071		21		1134	15
48X	111,10	5040,0	530	1072	12	12	18	1009	12
48W	111.16	5040,3	531	1072	36	24	30	1009	24
48Y	111,15	5061,6	602	1072	30	36	42	1135	30
48Z		5061,9	603	1072		21	27	1136	15
49X	111,20	70/0 0	40.4	1073	12	-		1010	12
49Y	111,25	5062,2	604	1073	36	36	42	1136	30
49Z		5062,5	605	1073		21	27	1136	15
50X	111,30	5040,6	532	1074	12	12	18	1011	12
50W		5040,9	533	1074	_	24	30	1011	24
50Y	111,35	5062,8	606	1074	36	36	42	1137	30
50Z		5063,1	607	1074		21	27	1137	15
51X	111,40		T.	1075	12	_	42	1012	12
51Y	111,45	5063,4	608	1075	36	36	42	1138	30
51Z	_	5063,7	609	1075	77.	21	27	1138	15
52X	111,50	5041,2	534	1076	12	12	18	1013	12
52W	-	5041,5	535	1076	-	24	30	1013	24
52Y	111,55	5064,0	610	1076	36	36	42	1139	30
52Z	_	5064,3	611	1076	-	21	27	1139	15
53X	111,60	_	_	1077	12	_	_	1014	12
53Y	111,65	5064,6	612	1077	36	36	42	1140	30
53Z		5064,9	612	1077	_	21	27	1140	15
54X	111,70	5041,8	536	1078	12	12	18	1015	12
54W		5042,1	537	1078	_	24	30	1015	24
54Y	111,75	5065,2	614	1078	36	36	42	1141	30
54Z		5065,5	615	1078	-	21	27	1141	15
55X	111,80		_	1079	12		_	1016	12
55Y	111,85	5065,8	616	1079	36	36	42	1142	30
55Z		5066,1	617	1079	_	21	27	1142	15
56X	111,90	5042,4	538	1080	12	12	18	1017	12
56W		5042,7	539	1080		24	30	1017	24
56Y	111.95	5066,4	618	1080	36	36	42	1143	30
56Z		5066,7	619	1080	_	21	27	1143	15
57X	112,0		-	1081	12		-	1018	12
57Y	112,05	923	-	1081	36	_	1	1144	30
58X	112,10	= =		1082	12	_	_	1019	12
58Y	112,15	W		1082	36	_	_	1145	30
59X	112,13		_	1082	12			1020	12
59Y	112,25		_	1083	36		_	1146	30
271	114,23	- 1	_	1903	20	_	_	1140	20

Продолжение таблицы Б.1

Спаривание каналов					Парамет	ры ДМЕ			
and with a contraction			3an	pac		Ответ			
Номер Частота канала ВОР, ДМЕ МГц	Частога	Частота но	Номер	owen	Импу	льсные кодь	а, мкс	<u>.</u>	Импульс
	угломер- ного МЛС, МГц	канала МЯС	Частота, МГи	нрд/н	Режим НРД/П		Частота, МГц	ный код, мкс	
		MAC, MIL				нэп	кэп		
60X**			-	1084	12	-	-	1021	12
60Y**	-	_	-	1084	36	_	_	1147	30
61X**	_	_	-	1085	12	_	_	1022	12
61Y**	-	_	-	1085	36	_	_	1148	30
62X**	-	_	_	1086	12	_	-	1023	12
62Y**	-		_	1086	36	_		1149	30
63X**	-	-	-	1087	12	_	-	1024	12
63Y**	-	_	_	1087	36	_	_	1150	30
64X**	-		_	1088	12	_	_	1151	12
64Y** 65X**	-	_	_	1088	36 12	_	_	1025	30 12
65Y**	7	==	-	1089 1089	36	-	_	1152 1026	30
66X**	_	_	_	1090	12	_		1153	12
66Y**	_		_	1090	36	_	_	1027	30
67X**		\equiv	_	1090	12	7		1154	12
57Y**	_	_	_	1091	36	_	_	1028	30
58X**	_			1092	12			1155	12
68Y**		_	_	1092	36	_	_	1029	30
59X**	_	_	_	1093	12		_	1156	12
69Y**	_	_	_	1093	36	_	_	1030	30
70X	112.30	_	_	1094	12	_	_	1157	12
70Y**	112,35	_	_	1094	36	_	_	1031	30
71X	112,40	_	_	1095	12	_	_	1158	12
71Y**	112,45	_	-	1095	36	_		1032	30
72X	112,50	_	_	1096	12	_	-	1159	12
72Y**	112,55	-	_	1096	36	-	-	1033	30
73X	112,60	-	_	1097	12	_	_	1160	12
73Y**	112,65	_	_	1097	36	_		1034	30
74X	112,70		_	1098	12	-	_	1161	12
74Y**	112,75	_	-	1098	36	-	-	1035	30
75X	112,80	_	-	1099	12	_	-	1162	12
75Y**	112,85	-	_	1099	36	_	-	1036	30
76X	112,90	-	_	1100	12	_	- 1	1163	12
76Y**	112,95	-	_	1100	36	-	-	1037	30
77X	113,00	_	_	1101	12	_	_	1164	12
77Y** 78X	113,05	_	_	1101 1102	36 12	-	-	1038 1165	30 12
78Y**	113,10 113,15	_	_	1102	36	_	_	1039	30
79X	113,13	\equiv	\equiv	1102	12	_	_	1166	12
79Y**	113.25	_	_	1103	36	= =	_	1040	30
80X	113,30	_	_	1104	12		_	1167	12
80Y	113,35	5067.0	620	1104	36	36	42	1041	30
80Z	115,55	5067,3	621	1104	50	21	27	1041	15
SIX	113,40		_	1105	12		_	1168	12
81Y	113,45	5067,6	622	1105	36	36	42	1042	30
81Z	_	5067,9	623	1105	_	21	27	1042	15
82X	113,50		-	1106	12		_	1169	12
82y	113,55	5068,2	624	1106	36	36	42	1043	30
82Z	_	5068,5	625	1106	_	21	27	1043	15
83X	113,60	_	-	1107	12		_	1170	12
83Y	113,65	5068,8	626	1107	36	36	42	1044	30
83Z		5069,1	627	1107	_	21	27	1044	15
84X	113,70			1108	12	_	_	1171	12
84Y	113,75	5069,4	628	1108	36	36	42	1045	30

Продолжение таблицы Б.1

Спаривание каналов			Параметры ДМЕ								
				Запрос			Orser				
Номер	Частота	Частота			Номер		Импу	льсные кодь	, мкс		Импульс
канала ВОР, ДМЕ МГц	угломер- ного МЛС, МГи	канала МЛС	Частота. МГи	нрд/н	Режим НРД/П		Частота, МГц	ный код, мкс			
						нэп	кэп				
84Z	-	5069,7	629	1108	_	21	27	1045	15		
85X	113,80			1109	12	_	-	1172	12		
85Y	113,85	5070,0	630	1109	36	36	42	1046	30		
85Z	113.00	5070,3	631	1109	- 10	21	27	1046	15		
86X 86Y	113,90 113,95	5070.6	632	1110 1110	12 36	36	42	1173 1047	12 30		
86Z	113,95	5070,0	633	1110	30	21	27	1047	15		
87X	114.0	3070,9	033	1111	12		27	1171	12		
87Y	114.05	5071,2	634	1111	36	36	42	1048	30		
87Z		5071,5	635	1111	_	21	27	1048	15		
88X	114,10	_	_	1112	12		_	1175	12		
88Y	114,15	5071,8	636	1112	36	36	42	1049	30		
88Z		5072,1	637	1112	_	21	27	1049	15		
89X	114,20		_	1113	12	_	-	1176	12		
89Y	114,25	5072,4	638	1113	36	36	42	1050	30		
89Z		5072,7	639	1113		21	27	1050	15		
90X	114,30	·		1114	12	-		1177	12		
90Y 90Z	114,35	5073,0 5073,3	640	1114	36	36 21	42 27	1051	30 15		
90Z 91X	114,40	3073,3	641	1114	12	21	21	1051 1178	12		
91Y	114,45	5073.6	642	1115	36	36	42	1052	30		
91Z	119,15	5073,9	643	1115		21	27	1052	15		
92X	114.50		_	1116	12			1179	12		
92Y	114,55	5074.2	644	1116	36	36	42	1053	30		
92Z	_	5074,5	645	1116	_	21	27	1053	15		
93X	114,60	-	_	1117	12	_	_	1180	12		
93Y	114,65	5074,8	646	1117	36	36	42	1054	30		
93Z		5075,1	647	1117	-	21	27	1054	15		
94X	114,70	7077.4		1118	12	-	42	1181	12		
94Y	114,75	5075,4	648 649	1118	36	36 21	27	1055	30 15		
94Z 95X	114,80	5075,7	049	1118 1119	12	- 21	- 27	1055 1182	12		
95Y	114,85	5076.0	650	1119	36	36	42	1056	30		
95Z	114,05	5076,3	651	1119	-	21	27	1056	15		
96X	114.90	-	_	1120	12	~		1183	12		
96Y	114,95	5076,6	652	1120	36	36	42	1057	30		
96Z		5076,9	653	1120	_	21	27	1057	15		
97X	115,0	_	-	1121	12	-	-	1184	12		
97Y	115,15	5077,2	654	1121	36	36	42	1058	30		
97Z	117.10	5077,5	655	1121		21	27	1058	15		
98X	115,10	7077.0		1122	12	26	42	1185	12		
98Y 98Z	115,15	5077,8	656 657	1122 1122	36	36 21		1059 1059	30 15		
99X	115,20	5078,1		1123	12		27	1186	12		
99Y	115,25	5078,4	658	1123	36	36	42	1060	30		
99Z	-	5078,7	659	1123		21	27	1060	15		
100X	115,30		-	1124	12		_	1187	12		
100Y	115,35	5079,0	660	1124	36	36	42	1061	30		
100Z	-	5079,3	661	1124	_	21	27	1061	15		
101X	115,40		-	1125	12	_	-	1188	12		
101Y	115,45	5079,6	662	1125	36	36	42	1062	30		
101Z	-	5079,9	663	1125	-	21	27	1062	15		
102X	115,50			1126	12	_		1189	12		
102Y	115,55	5080,2	664	1126	36	36	42	1063	30		

Продолжение таблицы Б.1

Спаривание каналов			Параметры ДМЕ						
			3anpoc				Ответ		
Номер	Частота	частота ј					ъсные коды, мкс		Импульс
канала ВОР, ДМЕ МГц	угломер- ного МЛС, МГц	канала МЛС	Частота. МГи	нрд/н	Режим НРД/П		Частота, МГц	ный код, мкс	
						нэп	кэп		
102Z	- -	5080,5	665	1126	-	21	27	1063	15
103X	115,60		_	1127	12	_	-	1190	12
103Y	115,65	5080,8	666	1127	36	36	42	1064	30
103Z		5081,1	667	1127		21	27	1064	15
104X	115,70	·		1128	12	-		1191	12
104Y	115,75	5081,4	668	1128	36	36	42	1065	30
104Z	115.00	5081,7	669	1128	12	21	27	1065	15
105X 105Y	115,80 115,85	5082,0	670	1129 1129	36	36	42	1192 1066	12 30
105Z	113,63	5082,3	671	1129	- 30	21	27	1066	15
106X	115.90	3002,3	0/1	1130	12		27	1193	12
106Y	115.95	5082,6	672	1130	36	36	42	1067	30
106Z	112,75	5082,9	673	1130	_	21	27	1067	15
107X	116.00	5002,7		1131	12			1194	12
107Y	116,05	5083.2	674	1131	36	36	42	1068	30
07Z		5083,5	675	1131	_	21	27	1068	15
108X	116.10	_	_	1132	12			1195	12
108Y	116,15	5083,8	676	1132	36	36	42	1069	30
108Z		5084,1	677	1132	_	21	27	1069	15
109X	116.20		_	1133	12	_	_	1196	12
109Y	116,25	5084,4	678	1133	36	36	42	1070	30
109Z		5084,7	679	1133		21	27	1070	15
110X	116,30	_	_	1134	12	_	_	1197	12
110Y	116,35	5085,0	680	1134	36	36	42	1071	30
10Z	_	5085,3	681	1134	_	21	27	1071	15
11X	116,40	~	_	1135	12	_	_	1198	12
111Y	116,45	5085,6	682	1135	36	36	42	1072	30
111Z	_	5085,9	683	1135	_	21	27	1072	15
112X	116,50			1136	12	-	_	1199	12
112Y	116,55	5086,2	684	1136	36	36	42	1073	30
112Z		5086,5	685	1136		21	27	1073	15
13X	116,60	200.00		1137	12	-	7.7	1200	12
13Y	116,65	5086,8	686	1137	36	36	42	1074	30
113Z	117.70	5087,1	687	1137		21	27	1074	15
114X 114Y	116,70	5087.4	688	1138 1138	12 36	36	42	1201	12 30
1141 114Z	116,75	5087,7	689	1138	30	21	27	1075 1075	15
115X	116.80	3007,7	009	1139	12	-	21	1202	12
115Y	116,85	5088,0	690	1139	36	36	42	1076	30
15Z	110,03	5088,3	691	1139	50	21	27	1076	15
116X	116.90		-	1140	12		-	1203	12
116Y	116,95	5088,6	692	1140	36	36	42	1077	30
16Z	110,75	5088,9	693	1140	50	21	27	1077	15
17X	117.00	_		1141	12	-	-	1204	12
17Y	117,05	5089,2	694	1141	36	36	42	1078	30
17Z	_	5089,5	695	1141	_	21	27	1078	15
18X	117,10		-	1142	12			1205	12
18Y	117,15	5089,8	696	1142	36	36	42	1079	30
18Z		5090,1	697	1142	_	21	27	1079	15
119X	117,20	_	-	1143	12	_	_	1206	12
119Y	117,25	5090,4	698	1143	36	36	42	1080	30
119Z	-	5090,7	699	1143		21	27	1080	15
120X	117,30	-	-	1144	12			1207	12
120Y	117,35	_	_	1144	36	_	_	1081	30

Окончание таблицы Б.1

	Спаривание каналов				Параметры ДМЕ						
старинале видили				3an	pac		Ответ				
Номер Частота канала ВОР, ДМЕ МГц	Harrier	Частота	12.3-7	ite in	Импу	льсные коды	, мкс		14		
	угломер- ного	Номер канала МЛС	Частота, МГа		Режим НРД/П		Частота, МГц	Импульс- ный код, мкс			
		МЛС, МГα	C, MII		нрд/н	нэп	кэп	12/1/			
121X	117,40	_	_	1145	12	_		1208	12		
121Y	117,45	_	_	1145	36	_	-	1082	30		
122X	117,50	-	-	1146	12		_	1209	12		
122Y	117,55	_	-	1146	36	_	_	1083	30		
123X	117,60	_	_	1147	12		_	1210	12		
123Y	117,65		_	1147	36	7 - D		1084	30		
124X	117,70	-	_	1148	12	_	-	1211	12		
124Y**	117,75	_	_	1148	36	_	-	1085	30		
125X	117,80	_	_	1149	12	_	_	1212	12		
125Y**	117,85	-	_	1149	36	_	-	1086	30		
126X	117,90	_	-	1150	12	_	_	1213	12		
126Y**	117,95	_	-	1150	36	· · · ·	_	1087	30		

^{*}Канал, зарезервированный исключительно для национальных нужд.

Таблица Б.2 — Размещение во времени элементов преамбулы*

Наименование элемента	Номер периода (такта) тактовой частоты** 15625 Гц	Время начала передачи элемента и конца такта, м		
Несущая частота для синхронизации гетероди- на приемника	0	0		
Код опорного времени приемника***				
$I_i = I$	13	832		
$I_2 = 1$	14	896		
$I_3 = I$	15	960		
$I_4 = 0$	16	1024		
$I_5 = 1$	17	1088*4		
Код опознавания вида обслуживания*5	V - 1 - 1 - 1 - 1 - 1			
16	18	1152		
I ₇		1216		
18	19 20 21 22	1280		
I ₉	21	1344		
110	22	1408		
I ₁₁	23	1472		
112	24	1536		
Конец преамбулы	_	1600		

^{*} Для всех видов углового наведения и данных.

^{**}Канал, используемый для национальных нужд только в том случае, если он не используется для защиты системы вторичной радиолокации.

^{***}Частота 108,0 МГц предусмотрена для системы МЛС. Связанный с ней рабочий канал ДМЕ № 17Х может быть использован для аварийных целей.

^{**} Началу элемента соответствует конец указанного такта.
*** $I_1 - I_{12}$ — номера битов кодов опорного времени и опознавания вида обслуживания.

^{*4} Опорное время для обработки в приемнике сигналов наведения.

^{*5} Смысловое значение битов кода (догические 1 и 0) определяется в соответствии с обозначаемым видом обслуживания по таблице Б.11.

Таблица Б.3 — Размещение во времени элементов сигнала наведения по азимуту захода на посадку

Наименование элемента	Номер периода тактовоя частоты 15625 Гц	Время начала передачи элемента, мкс		
Преамбула	0	0		
Код Морзе	25	1600		
Выбор антенны	26	1664		
Задний сигнал СИПВЗН	32	2048		
Левый сигнал СИПВЗН	34	2176		
Правый сигнал СИПВЗН	36	2304		
Контрольный сигнал «Туда»	38	2432		
Сканирование «Туда»*	40	2560		
Пауза сканирования	-	8760		
Средняя точка сканирования	-	9060		
Сканирование «Обратно»	-	9360		
Контрольный сигнал «Обратно»	_	15560		
Конец излучения	-	15688		
Конец защитного интервала	_	15900		

^{*}Интервал сканирования обеспечивает максимальное сканирование в пределах ±62°; фактически начало и окончание сканирования (соответственно «Туда» и «Обратно») определяют выбранным размером сектора пропорционального наведения.

Т а б л и ц а Б.4 — Размещение во времени элементов сигнала наведения по азимуту захода на посадку с высокой частотой обновления сигналов и по азимуту ухода на второй круг

Наименование элемента	Номер периода тактовой частоты 15625 Гц	Время начала передачи элемента, мкс		
Преамбула	0	0		
Код Морзе	25	1600		
Выбор антенны	26	1664		
Задний сигнал СИПВЗН	32	2048		
Левый сигнал СИПВЗН	34	2176		
Правый сигнал СИПВЗН	36	2304		
Контрольный сигнал «Туда»	38	2432		
Сканирование «Туда»*	40	2560		
Пауза сканирования	_	6760		
Средняя точка сканирования	-	7060		
Сканирование «Обратно»	, -	7360		
Контрольный сигнал «Обратно»	_	11560		
Конец излучения	_	11688		
Конец защитного интервала	_	11900		

^{*}Интервал сканирования обеспечивает максимальное сканирование в пределах ±42°; фактически начало и окончание сканирования (соответственно «Туда» и «Обратно») определяют выбранным размером сектора пропорционального наведения.

ТаблицаБ.5 - Размещение во времени элементов сигнала наведения по углу места захода на посадку

Наименование элемента	Номер периода тактовой частоты 15625 Гц	Время начала передачи элемента, мкс
Преамбула	0	0
Пауза процессора	25	1600
Сигнал СИПВЗН	27	1728
Сканирование «Туда»*	29	1856
Пауза сканирования	-	3406
Средняя точка сканирования	=	3606
Сканирование «Обратно»	1-1	3806
Конец излучения		5356
Конец защитного интервала		5600

^{*} Интервал сканирования обеспечивает максимальное сканирование от минус 1,5° до плюс 29,5°; фактически начало и окончание сканирования (соответственно «Туда» и «Обратно») определяют выбранным размером сектора пропорционального наведения.

Т а б л и ц а Б.6 — Размещение во времени элементов сигнала наведения по углу места при выравнивании

Наименование эдемента	Номер перпода тактовой частоты 15625 Гц	Время начала передачи элемента, мкс		
Преамбула	0	0		
Пауза процессора	25	1600		
Сигнал СИПВЗН	27	1728		
Сканирование «Туда»*	29	1856		
Пауза сканирования	7.4	3056		
Средняя точка сканирования		3456		
Сканирование «Обратно»	-	3856		
Конец излучения		5056		
Конец защитного интервала	_	5300		

^{*} Интервал сканирования обеспечивает максимальное сканирование от минус 2,0° до плюс 10,0°; фактически начало и окончание сканирования (соответственно «Туда» и «Обратно») определяют выбранным размером сектора пропорционального наведения.

ТаблицаБ.7 — Размещение во времени элементов сигнала основных данных

Наименование элемента	Номер периода тактовой частоты 15625 Гц	Время начала передачи элемента, мкс	
Преамбула (биты $l_1 - I_{12}$)	0	0	
Передача данных (биты $I_{13} - I_{30}$)	25	1600	
Передача четности (биты $I_{31} - I_{32}$)	43	2752	
Конец измерения	45	2880	
Конец защитного интервала	_	3100	

Т а б л и ц а Б.8 — Размещение во времени элементов сигналов вспомогательных данных

Наименование элемента	Номер периода тактовой частоты 15625 Гц	Время начала передачи элемента, мкс	
Преамбула (биты $l_1 - l_{12}$)	0	0	
Передача адреса (биты $I_{13} - I_{20}$)	25	1600	
Передача данных (биты $I_{21} - I_{69}$)	33	2112	
Передача четности (биты $I_{70} - I_{76}$)	82	5248	
Конец измерения	89	5696	
Конец защитного интервада	_	5900	

Таблица Б.9 — Зависимость излучения видов обслуживания системы МЛС в случае отказа одного из них

	Виды обслуживания							
Отказавшие виды обслуживания	Наведение по азимуту захода на посадку	Наведение по углу места при заходе на посадку	Наведение при вы- равнивании	Наведение по азимуту ухода на второй круг	Передача основных данных	Наведение по даль- ности	Передача вспомога- тельных данных	
Наведение по азимуту захо- да на посадку	*	*						
Наведение по углу места при заходе на посадку				1 18				
Наведение при выравнива- нии			*					
Наведение по азимуту ухода на второй круг				*				
Передача основных данных					*			
Наведение по дальности						*		
Передача вспомогательных данных				4			*	

Таблица Б.10 — Содержание и максимальный интервал между словами основных данных

Номер слова основ ных данных	Содержание сообщения	Максимальное время между словами, с	Число используе- мых тактов	Диапазон сообщаемых значений	Цена градации	Номер бита от начала опорного времени
1	Преамбула		12	Примечание 1	10 = -1	$I_1 - I_{12}$
	Расстояние от фазового центра антенны радиомаяка наведения по азимуту захода на посадку до порога ВПП Граница сектора отрицательных углов	1,0	6	От 0 до 6300 м	100 м	$I_{13} - I_{18}$
	пропорционального на- ведения по азимуту захода на посадку	1,0	5	От 0° до минус 60°. Примечание 2	2°	I ₁₉ — I ₂₃

Продолжение таблицы Б.10

Номер слова основ- ных данных	Содержание сообщения	Максимальное время между словами, с	Число используе- мых гактов	Диапазон сообщаемых значений	Цена градации	Номер бит от начала опориого времени
	Граница сектора по- ложительных углов про- порционального наведе- ния по азимуту захода на посадку	1,0	5	От 0° до 60°.	2°	I ₂₄ — I ₂₈
				Примечание 2		
	Сигнал вида клиренса	1,0	1	Примечание 3		I ₂₉
	Резерв	1,0	1	Примечание 4		130
	Четность	1,0	2	Примечание 5		I ₃₁ — I ₃₂
2	Преамбула		12	Примечание 1		$I_1 - I_{12}$
	Минимальная глис- сада	0,16	7	От 2° до 14,7°	0,1"	$I_{13} - I_{19}$
	Состояние радиомая- ка наведения по азимуту ухода на второй круг	0,16	1	Примечание 6		I ₂₀
	Состояние НРД	0.16	2	Примечание 7		$I_{21} - I_{22}$
	Состояние радиомая- ка наведения по азимуту захода на посадку	0,16	1	Примечание 6		l ₂₃
	Состояние радиомая- ка наведения по углу места при заходе на			Примечание 6		
	посадку	0,16	1			I ₂₄ I ₂₅ — I ₃₀
	Резерв	0,16	6	Примечания 4 и 8		
3	Четность	0,16	12	Примечание 5 Примечание 1		$I_{31} - I_{32}$ $I_{1} - I_{12}$
3	Преамбула Ширина луча радио- маяка наведения по ази- муту захода на посадку	1,0	3	От 0,5° до 4° Примечание 9	0,5*	$I_1 - I_{12}$ $I_{13} - I_{15}$
	Ширина луча радио- маяка наведения по углу места захода на посадку	1,0	3	От 0,5° до 2,5°. Примечание 9	0,5*	I ₁₆ — I ₁₈
	Расстояние от НРД	1,0	9	От 0 до 6387,5 м		$I_{19} - I_{27}$
	Резерв	1,0	3	Примечание 4		$I_{28} - I_{30}$
	Четность	1,0	2	Примечание 5		$I_{31} - I_{32}$
4	Преамбула		12	Примечания 1 и 10		$I_1 - I_{12}$
	Ориентация радио- маяка наведения по ази- муту захода на посадку	1,0	9	От 0° до 359°	1°	I ₁₃ — I ₂₁
	Ориентация радио- маяка наведения по ази- муту ухода на второй круг	1,0	9	От 0° до 359°	1°	I ₂₂ — I ₃₆
	Четность	1.0	2	Примечание 5		I ₃₁ — I ₃₂

Продолжение таблицы Б.10

Номер слова основ- ных данных	Содержание сообщения	Максимальное время между словами, с	Число используе- мых гактов	Диапазон сообщаемых значений	Цена градации	Номер бита от начала опориого времени
5	Преамбула		12	Примечания 1 и 11		$I_1 - I_{12}$
	Граница сектора от- рицательных углов наве- дения ЛА по азимуту ухода на второй круг	1,0	5	От 0° до 40°. Примечание 2	2°	$I_{13} - I_{17}$
	Граница сектора по- ложительных углов наве- дения ЛА по азимуту ухода на второй круг	1,0	5	От 0° до 40°. Примечание 2	2°	$I_{18} - I_{22}$
	Ширина луча радио- маяка наведения ЛА по азимуту ухода на второй круг	1,0	3	От 0,5° до 4,0°. Примечание 9	0,5*	$I_{23} - I_{25}$
	Состояние радиомая- ка ухода на второй круг круг Резерв Четность	1,0 1,0 1,0	1 4 2	Примечание 6 Примечание 12 Примечание 5		I_{26} $I_{27} - I_{30}$ $I_{31} - I_{32}$
6	Преамбула	3	12	Примечания 1 и 10		$I_1 - I_{12}$
	Опознавание назем- ного оборудования: Знак 2 Знак 3 Знак 4 Четность	1,0	6 6 6 2	Примечание 5		$I_{13} - I_{18}$ $I_{19} - I_{24}$ $I_{23} - I_{30}$ $I_{31} - I_{32}$

Примечания

1 12 битам данных преамбулы предшествует интервал продолжительностью 0,832 мс (13 синхронизирующих импульсов) для выделения несущей частоты (таблица Б.2).

2 Пределы сканирования будут выходить за границы сектора пропорционального наведения, указанные в словах 1 и 5 основных данных в соответствии с таблицей 2.

3 Код для бита І₂₉:

- 0 импульсный сигнал клиренсного наведения;
- 1 сканирующий сигнал клиренсного наведения.
- 4 Все резервные биты устанавливаются на ноль.

- 4 все резерване онты устаналиваются с целью удовлетворения уравнениям I_{13} н I_{31} и I_{32} выбираются с целью удовлетворения уравнениям $I_{13}+I_{14},+...,+I_{29}+I_{30}+I_{31}=$ нечетная величина, $I_{14}+I_{16}+I_{18},...,+I_{28}+I_{30}+I_{32}=$ нечетная величина. 6 Кодирование битов состояния: 0- наведение не осуществляется (устройство не является надежным для навигации), 1 — наведение осуществляется в обычном режиме (для радиомаяка наведения по азимуту ухода на второй круг означает, что должна последовать передача этого радиомаяка).

7 Кодирование для битов I₂₁ и I₂₂:

- $\frac{I_{22}}{0}$ НРД не работает или не установлен; 0
- 0 Имеется только режим НЭП или НРД/Н;
- Имеется режим КЭП, класс точности 1;
 - 1 Имеется режим КЭП, класс точности 2.
- 8 Номера указанных битов зарезервированы для использования в будущем, когда потребуется более высокая скорость обновления информации.
- 9 Значение, кодируемое для этих данных, должно представлять фактическую ширину луча (в соответствии с ГОСТ 26566), округленную до ближайших 0,5°.

ГОСТ Р 51747-2001

Окончание таблицы Б.10

10 Слова основных данных 4 и 6 передаются как для зоны наведения по азимуту захода на посадку, так и для зоны наведения по азимуту ухода на второй круг, если обеспечивается наведение по азимуту ухода на второй круг при сохранении указанного максимального времени между передачами слов в каждом секторе

11 Слово основных данных 5 передается как в зону наведения по азимуту захода на посадку, так и в зону наведения по азимуту ухода на второй круг, если обеспечивается наведение по азимуту ухода на второй круг при сохранении указанного максимального времени между передачами в каждом секторе зоны действия.

12 Эти биты резервируются для использования в будущем. Одно из возможных применений — определение коэффициента шкалы отклонения по азимуту ухода на второй круг.

Таблица Б.11 — Коды опознавания видов обслуживания

Напреволяние мез обструкция			Ko,	ц опознава	ния		
сокой частотой обновления сигналов Наведение по углу места захода на посадку Наведение по углу места при выравнива- и Наведение по азимуту при уходе на второй уг Наведение по азимуту 360° Основные данные, слово 1 Основные данные, слово 2 Основные данные, слово 3	1,	17	L	I_{g}	1,0	111	1,12
Наведение по азимуту захода на посадку	0	0	1	1	0	0	1
Наведение по азимуту захода на посадку с высокой частотой обновления сигналов	0	0	1	0	1	0	0
Наведение по углу места захода на посадку	1	1	0	0	0	0	1
Наведение по углу места при выравнива- нии	0	1	1	0	0	0	1
Наведение по азимуту при уходе на второй круг	1	0	O	1	0	0	1
Наведение по азимуту 360°	0	1	0	0	1	0	1
Основные данные, слово 1	0	1	0	1	0	0	0
Основные данные, слово 2	0	1	1	1	1	0	0
Основные данные, слово 3	1	0	1	0	0	0	0
Основные данные, слово 4	1	0	0	0	1	0	0
Основные данные, слово 5	1	1	0	1	1	0	0
Основные данные, слово 6	0	0	0	1	1	0	1
Вспомогательные данные А	1	1	1	0	0	1	0
Вспомогательные данные В	1	0	1	0	1	1	1
Вспомогательные данные С	1	1	1	1	0.	0	0

 Π р и м е ч а н и е — Коды опознавания выбраны таким образом, что биты четности I_{11} и I_{12} удовлетворяют следующим уравнениям:

 $egin{align*} I_6^+ + I_7^- + I_8^- + I_9^- + I_{10}^- + I_{11}^- &= \text{четному числу;} \\ I_6^+ + I_8^- + I_{10}^- + I_{12}^- &= \text{четному числу.} \\ \end{bmatrix}$

Таблица Б.12 — Вспомогательные данные А

Номер слова	Содержание данных	Тип данных	Макси- мальное время между передача- ми, с	Число использу- емых тактов	Дианазон передаваемых значений	Града- ция сооб- ще- ний	Номера битов
A-1	Преамбула	Циф- ровой	1,0	12	Примечание 1	1 7	$I_1 - I_{12}$
	Адрес	То же	1,0	8			$I_{13} - I_{20}$

Номер слова	Содержание данных	Тип данных	Макси- мальное время между передача- ми, с	Число использу- емых тактов	Диапазон передаваемых значений	Града- ция сооб- ще- ний	Номера битов
	Смещение антенны АРМ	То же	1,0	10	От —511 до +511 м. Примечание 2	1 м	I ₂₁ — I ₃₀
	Расстояние от антенны АРМ до точки начала отсчета МЛС	*	1,0	13	От 0 до 8191 м	1 м	I ₃₁ — I ₄₃
	Согласование APM с осевой линией ВПП	*	1,0	12	От —20,47° до +20,47°. Примечание 2 и 3	0,01°	I ₄₄ — I ₅₅
	Система координат антенны АРМ	*	1,0	1	Примечание 4	ы	I ₅₆
	Высота антенны АРМ	*	1,0	7	От —63 до +63 м Примечание 2	1 м	$I_{57} - I_{63}$
	Резерв	*	1,0	6	Примечание 5		$I_{64} - I_{69}$
	Четность	*	1,0	7	Примечание 6		$I_{70} - I_{76}$
A-2	Преамбула	Циф- ровой	1,0	12	Примечание 1		$I_1 - I_{12}$
	Адрес	То же	1,0	8			$I_{13} - I_{20}$
	Смещение антенны УРМ	*	1,0	10	От —511 до +511 м. Примечание 2	1 м	$I_{21} - I_{30}$
	Расстояние от точки начала отсчета МЛС до порога ВПП	*	1,0	10	От 0 до 1023 м	1 M	$I_{31} - I_{40}$
	Высота антенны УРМ	*	1,0	7	От —6,3 до +6,3 м. Примечание 2	0,1 м	$I_{41} - I_{47}$
	Превышение точки начала отсчета МЛС	*	1,0	13	От —4095 до +4095 м. Примечание 2	1 м	$I_{48} - I_{60}$
	Высота порога ВПП	*	1,0	7	От —6,3 до +6,3 м. Примечание 2	0,1 м	$I_{61} - I_{67}$
	Резерв	*	1,0	2	Примечание 5		$I_{68} - I_{69}$
	Четность	*	1,0	7	Примечание 6		$I_{70} - I_{76}$
A-3	Преамбула (примечание 7)	Циф- ровой	1,0	12	Примечание 1	Ę Ņ	$I_1 - I_{12}$
	Адрес	То же	1,0	8			$I_{1,3} - I_2$
	Смещение НРД	*	1,0	12	От —2047 до +2047 м. Примечание 2	1 м	$I_{21} - I_{32}$
	Расстояние от НРД до точки начала отсчета МЛС	,	1,0	14	От —8191 до +8191 м	1 м	I ₃₃ — I ₄₆
	Высота антенны НРД	*	1,0	7	От —63 до +63 м. Примечание 2	1 м	$I_{47} - I_{53}$

Продолжение таблицы Б.12

Номер слова	Содержание данных	Тип данных	Макси- мальное время между передача- ми, с	Число исполь- зуемых тактов	Диапазон передаваемых значений	Града- ция сооб- ше- ний	Номера битов
	Расстояние до дальнего конца ВПП	*	1,0	14	От 0 до 16383 м	1 м	I ₅₄ — I ₆₇
	Резерв	*	1,0	2	Примечание 5		$I_{68} - I_{69}$
	Четность	*	1,0	.7	Примечание 6		$I_{70} - I_{70}$
A-4	Преамбула (примечание 8)	Циф- ровой	1,0	12	Примечание 1		$I_1 - I_{12}$
	Адрес	То же	1,0	8	160 St. 1		$I_{13} - I_{20}$
	Смещение антенны РУВК	*	1,0	10	От —511 до +511 м. Примечание 2	1 м	$I_{21} - I_{30}$
	Расстояние от РУВК до точки начала отсчета МЛС	*	1,0	11	От 0 м до 2047 м	1 м	I ₃₁ — I ₄₁
	Согласование РУВК с осевой линией ВПП	*	1,0	12	От —20,47° до +20,47°. Примечания 2 и 3	0,01°	I ₄₂ — I ₅
	Система координат антенны РУВК	*	1,0	1	Примечание 4		I ₅₄
	Высота антенны РУВК	*	1,0	7	От —63 до +63 м. Примечание 2	1 м	$I_{55} - I_{65}$
	Резерв	*	1,0	8	Примечание 5		$I_{62} - I_{69}$
	Четность	*	1,0	7	Примечание 6		I70 - I70

Примечания

1 12 битам данных преамбулы предшествует интервал продолжительностью 0,832 мс (13 синхронизирующих импульсов) передачи несущей частоты для ее выделения (таблица Б.2).

2 Условия кодирования знака чисел следующие:

самый старший бит (MSB) является знаковым битом:

0 — положительная величина,

отрицательная величина.

Другие биты представляют собой абсолютную величину.

Условное обозначение расположения антенны следующее: если смотреть от опорной точки системы МЛС для захода на посадку в направлении точки начала отсчета системы МЛС, положительное число представляет собой расположение справа от оси ВПП (боковое смещение) или над ВПП (вертикальное смещение), или в направлении остановочного конца ВПП (продольное расстояние).

Условное обозначение ориентации антенны следующее: если смотреть на летное поле сверху, положительное число представляет собой вращение по часовой стрелке от оси ВПП в сторону соответствующего нулевого азимута.

- 3 Слова Б-42 и Б-43 данных, определенные для применения в тех случаях, когда требуется вращение азимутальной антенны более чем на 20,47°, которое обеспечивается элементами данных в слове А-1 для азимута и слове А-4 для азимута ухода на второй круг (см. таблицу Б.13). Устройство, вращение антенны азимута захода на посадку которого превыщает 20,47°, передает слово Б-42 вместо слова А-1. Устройство, вращение антенны азимута ухода на второй круг которого превышает 20,47°, передает слово Б-43 вместо слова А-4.
 - 4 Код для координат антенны: 0 коническая; 1 планарная.
 - 5 Все резервные биты устанавливаются на ноль.
 - 6 Биты четности с І₇₀ по І₇₆ выбираются для удовлетворения приводимых ниже уравнений:

овиты четности с 136 во 136 выполняются для удовлетворения приводимых ниже уравнения. одля бита I_{70} четная величина = $(I_{13}, + ..., + I_{18}) + I_{20} + I_{22} + I_{24} + I_{25} + I_{28} + I_{29} + I_{31} + I_{32} + I_{33} + I_{35} + I_{36} + I_{38} + I_{41} + I_{44} + I_{45} + I_{46} + I_{59} + (I_{52}, +, + I_{54}) + I_{58} + I_{60} + I_{64} + I_{65} + I_{70};$ для бита I_{71} четная величина = $(I_{14}, + ..., + I_{19}) + I_{21} + I_{23} + I_{25} + I_{26} + I_{29} + I_{30} + I_{32} + I_{33} + I_{34} + I_{36} + I_{37} + I_{39} + I_{42} + I_{45} + I_{46} + I_{47} + I_{51} + (I_{53}, + ..., + I_{56}) + I_{59} + I_{61} + I_{65} + I_{66} + I_{71};$ для бита I_{72} четная величина = $(I_{15}, + ..., + I_{20}) + I_{22} + I_{24} + I_{26} + I_{27} + I_{30} + I_{31} + I_{33} + I_{34} + I_{35} + I_{37} + I_{40} + I_{43} + I_{46} + I_{47} + I_{48} + I_{52} + (I_{54}, + ..., + I_{57}) + I_{60} + I_{62} + I_{66} + I_{67} + I_{72};$

Окончание таблицы Б.12

для бита I_{73} четная величина = $(I_{16}, + \dots, +I_{21}) + I_{23} + I_{25} + I_{27} + I_{28} + I_{31} + I_{32} + I_{34} + I_{35} + I_{36} + I_{38} + I_{39} + I_{41} + I_{44} + I_{47} + I_{48} + I_{49} + I_{53} + (I_{55}, + \dots, +I_{58}) + I_{61} + I_{63} + I_{67} + I_{68} + I_{75};$ для бита I_{74} четная величина = $(I_{17}, + \dots, I_{22}) + I_{24} + I_{26} + I_{28} + I_{29} + I_{32} + I_{33} + I_{35} + I_{36} + I_{37} + I_{39} + I_{49} + I_{49} + I_{49} + I_{50} + I_{54} + (I_{56}, + \dots, +I_{59}) + I_{62} + I_{64} + I_{68} + I_{69} + I_{74};$ для бита I_{75} четная величина = $(I_{13}, + \dots, +I_{17}) + I_{19} + I_{21} + I_{23} + I_{24} + I_{27} + I_{28} + I_{30} + I_{51} + I_{52} + I_{34} + I_{55} + I_{57} + I_{40} + I_{43} + I_{44} + I_{45} + I_{49} + (I_{51}, + \dots, +I_{54}) + I_{57} + I_{59} + I_{63} + I_{64} + I_{69} + I_{75};$ для бита I_{76} четная величина = $I_{13}, I_{14}, + \dots, +I_{25}, I_{27}, I_{29} + I_{63} + I_{64} + I_{69} + I_{75};$

ухода на второй круг при сохранении указанного максимального времени между передачами в каждом секторе зоны действия.

8 Слово данных А-4 передается в зонах наведения АРМ и РУВК, если обеспечивается наведение по азимуту ухода на второй круг при сохранении указанного максимального времени между передачами в каждом секторе зоны действия,

Таблица Б.13 — Слова вспомогательных данных Б

Номер слова	Содержание данных	Тип данных	Макси- мальное время между передача- ми, с	Исполь- зуемые биты	Диапазон передаваемых значений	Младшия бит	Номер бита
	ова Б-1 — Б-39 — Неизмен полетов ова Б-40 — Б-54 — Прочис	с использе	ованием МЈ	IC		предназначе	нные для
Б-40	Преамбула	Цифро- вой	2,0	12	Примечание 1		$I_1 - I_{12}$
	Алрес	То же	2,0	8			$I_{13} - I_{23}$
	Широта точки нача- ла отсчета МЛС	*	2,0	23	—324000,0 с дуги +324000,0 с дуги. Примечание 2	Action.	
	Долгота точки начала отсчета МЛС		2,0	24	-648000,0 с дуги + 648000,0 с дуги. Примечание 2	0,1 с дуги	I ₄₄ — I ₆
	Резерв	*	2,0	2	Примечание 3	1	$I_{68} - I_{69}$
·	Четность		2,0	7	Примечание 4		$I_{70} - I_{70}$
Б-41	Преамбула	Цифро- вой	2,0	12	Примечание 1		$I_1 - I_{12}$
	Апрес	То же	2,0	8		1	$I_{13} - I_{2}$
	Высота точки начала отсчета МЛС		2,0	13	От —4095 до +4095 м. Примечание 2	1 м	$I_{21} - I_{3}$
	Ориентация азимута захода на посадку отно- сительно истинного се- вера	*	2,0	16	От 0 до 359.99°	0,01°	I ₃₄ — I ₄
	Резерв		2.0	20	Ac	0,0.	I ₅₀ — I ₆
	Четность		2.0	7	Примечание 4	1	Inc. — In:

ГОСТ Р 51747-2001

Продолжение таблицы Б.13

Номер слова	Содержание данных	Тип данных	Макси- мальное время между передача- ми, с	Исполь- зуемые биты	Диапазон передаваемых значений	Младшия бит	Номер бита
Б-42	Преамбула (приме- чание 5)	Цифро- вой	1,0	12	Примечание 1		$I_1 - I_{12}$
	Адрес	То же	1,0	8			$I_{13} - I_{20}$
	Смещение антенны азимута захода на посадку (АРМ)	*	1,0	10	Or —511 до +511 м. Примечание 2	1 м	$I_{21} - I_{30}$
	Расстояние от ан- тенны азимута захода на посадку до точки начала отсчета МЛС Согласование ази-	*	1,0	13	От 0 до 8191 м	1 м	I31 — I43
	мута захода на посадку с осевой линией ВПП	*	1,0	14	От —81,91 до +81,91°	0,01°	144 — 167
	Высота антенны ази- мута захода на посадку	*	1,0	7	От63 до +63 м. Примечание 2	1 м	Iss — I64
	Резерв		1,0	5	Примечание 3		$I_{65} - I_{69}$
	Четность		1,0	7	Примечание 4		$I_{70} - I_{76}$ $I_1 - I_{12}$
Б-43	Преамбула (приме- чания 5 и 6)	Цифро- вой		12	Примечание 1		$I_1 - I_{12}$
	Адрес	То же	1,0	8	10		$I_{13} - I_{20}$
	Смещение антенны наведения по азимуту ухода на второй круг	*	1,0	10	От —511 до +511 м. Примечание 2	1 м	$I_{21} - I_{30}$
	Расстояние от антенны наведения по азимуту ухода на второй круг до точки начала отсчета МЛС Согласование азимута ухода на второй		1,0	11	От 0 до 2047 м	1 м	$I_{31} - I_{41}$
	круг с осевой линией ВПП	*	1,0	14	От —81,91° до +81,91°. Примечание 2	0,01°	I42 — I55
	Высота антенны на- ведения по азимуту ухода на второй круг	*	1,0	7	От —63 до +63 м. Примечание 2	1 м	I ₅₆ — I ₆₃
	Резерв	*	1,0	7	Примечание 3		I63 — I69
	Четность	*	1,0	7	Примечание 4		I ₇₀ — I ₇₆
Б-44	Преамбула	Цифро- вой	2,0	12	Примечание 1		$I_1 - I_{12}$
	Апрес	То же	2,0	8	_ 2.AZ.		$I_{13} - I_{20}$
	Номер главной ВПП	*	2,0	6	От 0 до 36. Примечание 7		$I_{13} - I_{20}$ $I_{21} - I_{26}$

Номер слова	Содержание данных	Тип данных	Макси- мальное время между передача- ми, с	Исполь- зуемые биты	Диапазон передаваемых значений	Младшия бит	Номер бита
Б-44	Буквенный знак главной ВПП	Цифровой	2,0	2	Примечание 8		$I_{27} - I_{28}$
	Номер вспомога- тельной ВПП	То же	2,0	6	От 0 до 36. Примечание 7		I29 — I34
	Буквенный знак вспомогательной ВПП	*	2,0	2	Примечание 8		I35 — I36
	Наведение по углу места на вспомогатель- ную ВПП	*	2,0	2	Примечание 9		I ₃₇ — I ₃₈
	Минимальная глис- сада захода на посадку на вспомогательную ВПП Согласование ази-	*	2,0	7	От 2° до 14,7°	0,1°	I ₃₉ — I ₄₅
	мута захода на посадку с осевой линией вспомо- гательной ВПП	*	2,0	16	+180,00°	0,01°	I46 — I61
	Резерв	*	2,0	-8	Примечание 3		$I_{62} - I_{69}$
	Четность		2,0	7	Примечание 4		$I_{70} - I_{76}$ $I_1 - I_{12}$
Б-45	Преамбула	Цифро- вой		12	Примечание 1		$I_1 - I_{12}$
	Адрес		2.0	8	P 1		$I_{13} - I_{20}$
	X координата порога вспомогательной ВПП	То же	2,0	15	+16384 м	1 м	I ₂₁ — I ₃₅
	У координата порога вспомогательной ВПП	*	2,0	15	+16384 м	1 м	136 — 150
	Z координата порога вспомогательной ВПП	*	2,0	8	+127 м	1 м	I ₅₁ — I ₅₈
	Высота пересечения порога вспомогатель- ной ВПП	*	2,0	5	От 0 до 31 м	1 м	I59 — I63
	Расстояние от услов- ной азимутальной ан- тенны до порога вспомотательной ВПП	*	2,0	6	От 0 до 6300 м	100 м	I ₆₄ — I ₆₉
	Четность	3 -	2,0	7	Примечание 4		$I_{70} - I_{76}$
	ова Б-55 — Б-64 — Меняю о и м е ч а н и е — Ниже оп						
Б-55	Преамбула	Цифро- вой		12	Примечание 1		$I_1 - I_{12}$
	Адрес		10,0	8	125 S. Marchall		$I_{13} - I_{20}$
	Зона приземления	То же	10,0	11	От 0 до 2555 м. Примечание 10	5 m	$I_{21} - I_{31}$
	Средняя точка зоны приземления	*	10,0	11	От 0 до 2555 м. Примечание 10	5 м	$I_1 - I_{12}$ $I_{13} - I_{20}$ $I_{21} - I_{31}$ $I_{32} - I_{42}$

Продолжение таблицы Б.13

Номер слова	Содержание данных	Тип данных	Макси- мальное время между передача- ми, с	Исполь- зуемые биты	Диапазон передаваемых значений	М хадший бит	Номер бита
Б-55	Дальний конец ВПП	Цифро- вой	10,0	11	От 0 до 2555 м Примечание 10	5 м	$I_{43} - I_{53}$
	Скорость приземно- го ветра	То же	10,0	7	От 0 до 127 узлов	1 узел	I ₅₄ — I ₆₀
	Направление при- земного ветра (магнит- ное)		10,0	9	От 0° до 359°	1"	I ₆₁ — I ₆₉
	Четность		10,0	7	Примечание 4		I70 - I76

Примечания

- 1 12 битам данных преамбулы предшествует интервал продолжительностью 0,832 мс (13 синхронизирующих импульсов) передачи несущей частоты для ее выделения.
 - Условие кодирования отрицательных номеров следующее:

Самый старший бит является знаковым битом: 0 — положительная величина; 1 — отрицательная величина. Другие биты представляют собой абсолютную величину.

Условное обозначение расположения антенны:

если смотреть от опорной точки МЛС для захода на посадку в направлении точки начала отсчета МЛС. положительный номер представляет собой расположение справа от осевой линии ВПП (боковое смещение) или над ВПП (вертикальное смещение), или в направлении дальнего конца ВПП (продольное расстояние).

Условное обозначение ориентации антенны:

в проекции сверху положительное число представляет собой вращение по часовой стрелке от осевой линии ВПП в сторону соответствующего направления наведения, равного 0°.

3 Все резервные биты устанавливаются на ноль.

4 Биты четности I₇₀ до I₇₆ выбираются для удовлетворения приводимых ниже уравнений:

4 Биты четности I_{70} до I_{76} выбираются для удовлетворения приводимых ниже уравнений: Для бита I_{70} : четная величина = $(I_{15}, + \dots, +I_{18}) + I_{20} + I_{24} + I_{24} + I_{25} + I_{28} + I_{29} + I_{31} + I_{32} + I_{33} + I_{35} + I_{36} + I_{38} + I_{41} + I_{44} + I_{45} + I_{46} + I_{50} + (I_{52}, + \dots, +I_{56}) + I_{58} + I_{60} + I_{64} + I_{65} + I_{70};$ Для бита I_{71} : четная величина = $(I_{14}, + \dots, +I_{19}) + I_{21} + I_{23} + I_{25} + I_{26} + I_{29} + I_{30} + I_{32} + I_{33} + I_{34} + I_{36} + I_{137} + I_{39} + I_{42} + I_{45} + I_{46} + I_{47} + I_{51} + (I_{55}, + \dots, +I_{56}) + I_{59} + I_{61} + I_{65} + I_{66} + I_{71};$ Для бита I_{72} : четная величина = $(I_{15}, + \dots, +I_{20}) + I_{22} + I_{24} + I_{26} + I_{27} + I_{30} + I_{31} + I_{33} + I_{34} + I_{35} + I_{37} + I_{38} + I_{40} + I_{43} + I_{46} + I_{47} + I_{48} + I_{32} + (I_{54}, + \dots, +I_{57}) + I_{60} + I_{62} + I_{66} + I_{67} + I_{72};$ Для бита I_{73} : четная величина = $(I_{16}, + \dots, +I_{21}) + I_{23} + I_{25} + I_{27} + I_{28} + I_{31} + I_{34} + I_{35} + I_{36} + I_{38} + I_{34} + I_{44} + I_{47} + I_{48} + I_{49} + I_{53} + (I_{55}, + \dots, +I_{59}) + I_{61} + I_{63} + I_{67} + I_{68} + I_{73};$ Для бита I_{74} : четная величина = $(I_{17}, + \dots, +I_{22}) + I_{24} + I_{26} + I_{28} + I_{29} + I_{32} + I_{34} + I_{35} + I_{36} + I_{37} + I_{39} + I_{40} + I_{42} + I_{48} + I_{49} + I_{50} + I_{54} + (I_{56}, + \dots, +I_{59}) + I_{62} + I_{64} + I_{68} + I_{69} + I_{74};$ Для бита I_{74} : четная величина = $(I_{17}, + \dots, +I_{22}) + I_{24} + I_{26} + I_{26} + I_{28} + I_{39} + I_{31} + I_{32} + I_{34} + I_{35} + I_{36} + I_{37} + I_{39} + I_{40} + I_{42} + I_{48} + I_{49} + I_{50} + I_{54} + (I_{56}, + \dots, +I_{59}) + I_{62} + I_{64} + I_{68} + I_{69} + I_{74};$ Для бита I_{75} : четная величина = $(I_{15}, + \dots, +I_{17}) + I_{19} + I_{21} + I_{23} + I_{24} + I_{27} + I_{28} + I_{30} + I_{31} + I_{32} + I_{34} + I_{35} +$

- 5 Слова Б-42 и Б-43 данных определены для применения в тех случаях, когда требуется вращение азимутальной антенны более чем на 20,47°, которое обеспечивается элементами данных в слове А-1 для азимута и слове А-4 для азимута ухода на второй круг. Устройство, вращение антенны азимута захода на посадку которого превышает 20,47°, передает слово Б-42 вместо слова А-1. Устройство, вращение антенны наведения по азимуту ухода на второй круг которого превышает 20,47°, передает слово Б-43 вместо слова А-4.
- 6 Слово данных Б-43 (когда используется) передается в секторах зоны действия азимута захода на посадку и азимута ухода на второй круг, если обеспечивается наведение по азимуту ухода на второй круг при сохранении указанного максимального времени между передачами в каждой зоне.

7 Номер 0 ВПП используется при выполнении операций на вертодроме.

- 8 Условия кодирования следующие:
 - 0 без буквы;
 - R (вправо);
 - 2 С (центр);
 - 3 L (влево).
- 9 Условия кодирования следующие:
 - 0 не обеспечивается;
 - необработанные данные наведения по углу места;
 - 2 вычисляемая глиссада;
 - 3 код использовать не разрешается.

Окончание таблицы Б.13

		ации типа «тренд» для передачи каждого значения дальности видимости иннадцатый биты. Условие кодирования следующее:
	Десятый бит	Одиннадцатый бит
Отсутствует	0	0
OnnoEwaren	1	0

	ACCULOU OUL	одиниациа
Отсутствует	0	0
Ослабление	1	0
Устойчивый	0	1
Усиление	1	1

Таблица Б.14 — Задержки по времени сигналов НРД

		Разнесение пар	импульсов, мкс	Временная з	Временная задержка, мкс		
Индекс канала X*	Рабочий режим	Запрос	Ответ	Время задержки 1-го импульса	Время задержка 2-го импульса		
X*	НРД/Н НРД/П НЭП НРД/П КЭП	12 12 18	12 12 12	50 50 56	50 _ _		
Y**	НРД/Н НРД/П НЭП НРД/П КЭП	36 36 42	30 30 30	56 56 62	50 50 —		
W*	НРД/Н НРД/П НЭП НРД/П КЭП	24 30	24 24	50 56	=		
Z**	НРД/Н НРД/П НЭП НРД/П КЭП	21 27	15 15	56 62	=		

^{*}Каналы X и W с одинаковым номером излучают на одинаковых частотах НРД.

ПРИЛОЖЕНИЕ В (справочное)

Рекомендуемые последовательности сигналов, излучаемых угломерными устройствами

Tа б л и ц а B.1 — Π ара последовательностей сигналов, обеспечивающая возможность использования всех угломерных видов обслуживания системы посадки

0	Последовательность 1	Последовательность 2	0
5,6	Угол места захода на посадку	Угол места захода на посадку	5,6
10,9	Выравнивание	Выравнивание	10,9
26,8	Азимут захода на посадку	Азимут захода на посадку	26,8
32,1	Выравнивание	Выравнивание	32,1
37,7	Угол места захода на посадку	Угол места захода на посадку	37,7
40,8	Слово основных данных (примечания 1 и 2)	Резерв времени для развития, равный 18,2 мс минимум (примечание 2)	55,9

^{**}Каналы Y и Z с одинаковым номером излучают на одинаковых частотах НРД.

ГОСТ P 51747-2001

Окончание таблицы В.1

0	Последовательность 1	Последовательность 2	0
52,7 Азимут ухода на второй круг		Резерв времени для развития, равный	
55,8	Слово основных данных (примечание 2)	18,2 мс минимум (примечание 2)	
61,4	Угол места захода на посадку	Угол места захода на посадку	61,5
66,7	Выравнивание	Выравнивание	66,8
	Время, мс	Время, мс	

Примечания

2 Слова данных могут передаваться в любое свободное время.

Т а б л и ц а В.2 — Пара последовательностей сигналов, обеспечивающая возможность использования канала наведения по азимуту захода на посадку с высокой частотой обновления

0	Последовательность 1	Последовательность 2	0
5,6	Угол места захода на посадку	Угол места захода на посадку	5,6
17,5	Азимут захода на посадку с высокой частотой обновления	Азимут захода на посадку с высокой частотой обновления	17,5
29,9	Слова данных (примечание 2)	Слова данных (примечания 1 и 2)	20,6
41,8	Азимут захода на посадку с высокой частотой обновления	Азимут ухода на второй круг	32,5
47,4	Угол места захода на посадку	Азимут захода на посадку с высокой частотой обновления	44,4
59,3	Азимут захода на посадку с высокой частотой обновления	Угол места захода на посадку	50,0
64,9	Угол места захода на посадку	Азимут захода на посадку с высокой частотой обновления	61,9
	Время, мс	Угол места захода на посадку	67,5
		Время, мс	

Примечания

2 Слова данных могут передаваться в любое свободное время.

¹ Если используют канал наведения по азимуту ухода на второй круг, слово № 2 основных данных должно передаваться в этом месте, т. е. перед передачей сигналов канала наведения по азимуту ухода на второй круг.

³ Суммарная длительность 1-й и 2-й последовательностей сигналов не должна превышать 134 мс.

¹ Если используют канал наведения по азимуту ухода на второй круг, слово № 2 основных данных должно передаваться в этом месте, т. е. перед передачей сигналов канала наведения по азимуту ухода на второй круг.

³ Суммарная длительность 1-й и 2-й последовательностей сигналов не должна превышать 134 мс.

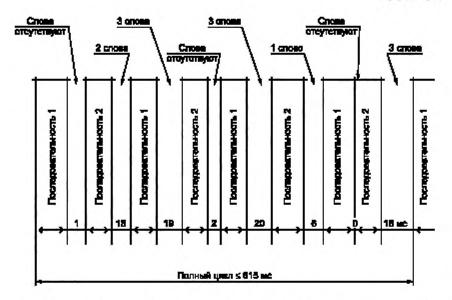


Рисунок В.1 — Полный цикл передачи сигналов системы посадки, показывающий наличие свободных периодов времени для передачи слов вспомогательных данных

П р и м е ч а н и е — Каждая передача вида обслуживания является независимой и может производиться в любом месте последовательности, за исключением того, что слово 2 основных данных должно предшествовать передаче сигналов наведения по азимуту ухода на второй круг.

ПРИЛОЖЕНИЕ Г (обязательное)

Условия сканирования лучей антенн устройств наведения

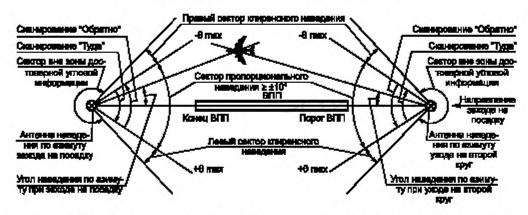


Рисунок Г.1 — Условия сканирования лучей антенн и сектора наведения угломерных устройств

Примечание — При изображенном положении ЛА угол наведения по азимуту захода на посадку отрицательный.

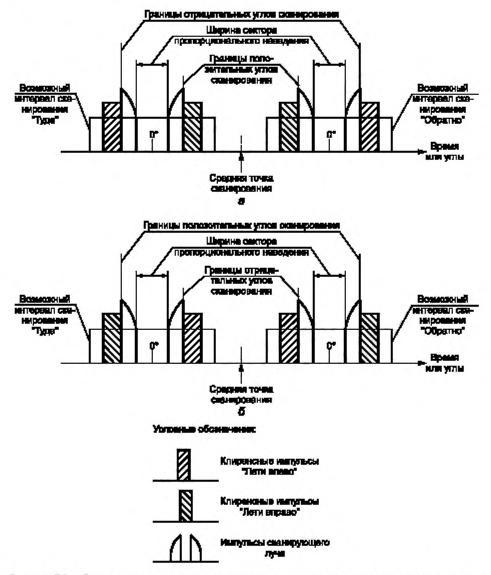


Рисунок Г.2 — Размещение во времени клиренсных сигналов радиомаяков наведения по азимуту

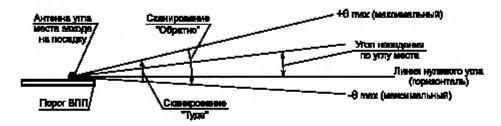


Рисунок Г.3 — Условия сканирования функции наведения по углу места захода на посадку

ПРИЛОЖЕНИЕ Д (обязательное)

Формулы для расчета частотных характеристик фильтров

Таблина Д.1

Вид	Частота среза, рад/с		
обслуживания	oog	ω ₁	00-2
Наведение по азимуту захода на посадку	0,5	0,3	10
Наведение по углу места захода на посадку и по даль- ности	1,5	0,5	10
Наведение при выравнивании	2,0	0,5	10

$$S = p + j \omega; p = 0$$
 для аналоговых фильтров без потерь

$$S = \frac{1}{T} \left(\frac{1 - Z^{-1}}{1 + Z^{-1}} \right),$$

где T- период выборки (для цифровой реализации фильтра), Z- функция единичной задержки теории Z преобразования.

Выходной фильтр приемника рассчитывается по формуле

$$f_2(\omega) = \frac{\omega_2}{S + \omega_2}.$$

Фильтр шумов управления рассчитывается по формуле

$$f_1(\omega) = \frac{S}{S + \omega_1}.$$

Фильтр погрешности следования по траектории рассчитывается по формуле

$$f_0(\omega) = \frac{\omega_n^2}{S^2 + 2\varepsilon \omega_n + \omega_n^2},$$

где $\varepsilon=1$, $\omega_0=0.64\omega_{\rm B}$; $f_0,\,f_1,\,f_2$ — функции (текущие значения) для графика построения частотных характеристик.

ф. — частота среза фильтра погрешности следования по траектории (ПСТ);

— частота среза фильтра шумов управления (ШСУ);

— частота среза выходного фильтра приемника

Рисунок Д.1 — Частотные характеристики фильтра приемника

ПРИЛОЖЕНИЕ Е (рекомендуемое)

Обработка результатов измерений для определения погрешностей наведения

Значения ПСТ, ШСТ и ШСУ определяют при полете самолета-даборатории по заданной траектории и определении истинного положения самолета средствами траекторных измерений. Из этих значений вычитают сигнал бортового угломерного оборудования с данными об угловом положении самолета и сигнал от средств траекторных измерений с данными об истинном положении. Полученный в результате вычитания сигнал пропускают через фильтры ПСТ и ШСУ, к выходам которых подключена аппаратура регистрации (записи). Структурная схема измерений приведена на рисунке Е.І.

На рисунке Е.2 представлен пример записи сигнала с выхода фильтра.

Для определения ПСТ и ШСУ азимута захода на посадку и азимута ухода на второй круг обработку записей с выходов фильтров проводят в течение любого 40-секундного интервала записи.

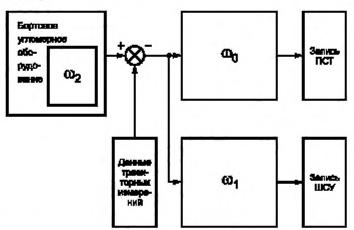
Для определения значений ПСТ и ШСУ угла места захода на посадку и выравнивания производят обработку записей сигналов с выходов фильтров в течение любого 10-секундного интервала записи.

Для указанных интервалов обработки записи определяют среднее значение сигнала, являющееся прямой линией, над и под которой площади, ограниченные записью сигнала, равны. Эта прямая определяет положение средней линии наведения в интервале T.

Кроме средней линии наведения, проводят две прямые, параллельные ей, которые расположены на равных расстояниях от нее. Эти линии проводят так, чтобы выполнялось условие

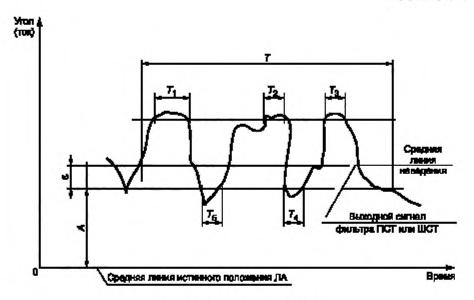
$$(T_1 + T_2 + T_3 +, \dots, + T) \le 0.05 T.$$

Требования в части ШСТ и ШСУ обеспечивают системой МЛС, если погрешность наведения (рисунок Е.2) меньше заданных предельных погрешностей.


Требования в части ШСТ и ШСУ обеспечивают с заданной доверительной вероятностью P = 95 %, если значения этих погрешностей не превышают установленных пределов в течение более чем 5 % оценочного интервала T, то есть

$$(T_1 + T_2 + T_3 + \dots, + T) \le 0.05 T.$$

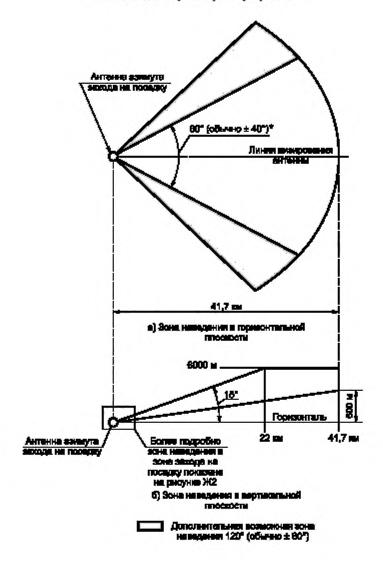
Если график (рисунок Е.2) является записью сигнала с выхода фильтра ПСТ, то разность A между угловым положением средней линии наведения и угловым положением средней линии истинного положения, которое определяется по данным траекторных измерений, характеризует погрешность положения средней линии пути (усредненной глиссады).


Если график (рисунок E.2) является записью сигнала с выхода фильтра ШСУ, то разность A должна быть равна нулю.

Обработку результатов измерения погрешностей радиодальномера проводят аналогично обработке результатов измерения угломерным оборудованием с той разницей, что для режима КЭП используется T=10 с, а для режима НЭП T=40 с.

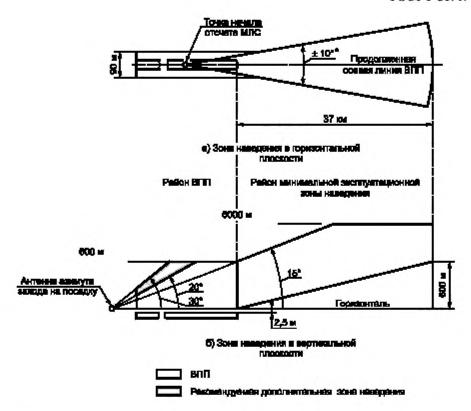
 ω_0 — фильтр погрешности следования по траектории; ω_1 — фильтр шумовой погрешности управления; ω_2 — выходной фильтр

Рисунок E,1 — Структурная схема измерений погрешностей наведения


$$T_1 + T_2 + T_3$$
, +..., + $T \le 0.05$ T ;

 ε — предел погрешности наведения ШСТ или ШСУ; A — погрешность положения средней линии наведения; T — участок оценки

Рисунок Е.2 — Метод обработки результатов измерений


ПРИЛОЖЕНИЕ Ж (обязательное)

Зоны наведения угломерных устройств

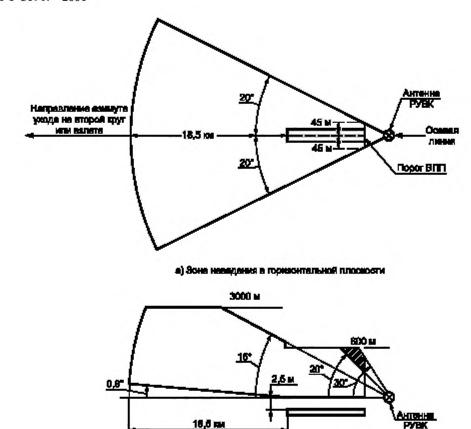
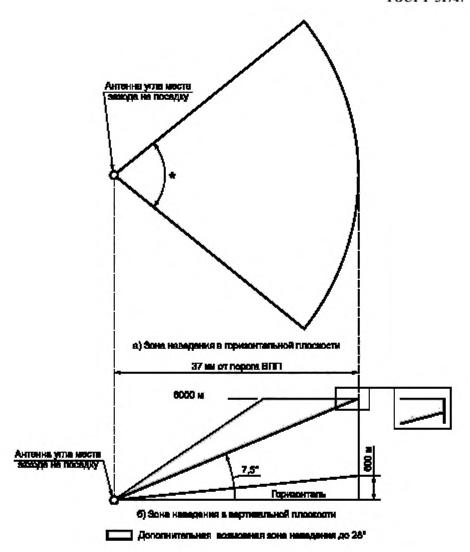

Фактический сектор зоны наведения, начинающийся от фазового центра установленной антенны.

Рисунок Ж.1 — Зона наведения по азимуту захода на посадку

^{*} Минимальный требуемый сектор пропорционального наведения независимо от расположения или ориентации оборудования


Рисунок Ж.2 — Зона наведения по азимуту в районе ВПП и район минимальной эксплуатационной зоны наведения

Рекомандуемей дополнительный эсне навидения

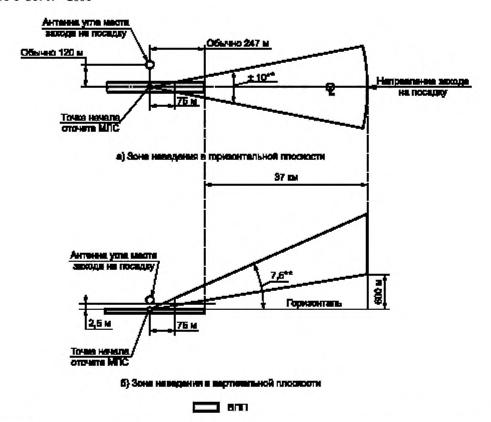

б) Эсне неверения в вертикальной плоскости

Рисунок Ж.3 — Зона наведения по азимуту ухода на второй круг

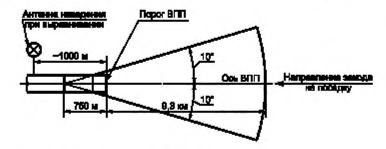

 ^{*} Сектор зоны наведения, начинающийся от фазового центра установленной антенны. Ширина равна сектору пропорционального наведения по азимуту захода на посадку.

Рисунок Ж.4 — Зона наведения по углу места в районе захода на посадку

Минимальный требуемый сектор пропорционального наведения независимо от расположения или ориентации оборудования

Рисунок Ж.5 — Минимальная эксплуатационная зона наведения по углу места

а) Сестор навержен в горизсительной плосиссты

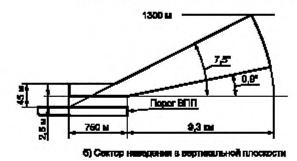


Рисунок Ж.6 — Зона наведения по углу места при выравнивании

приложение и (справочное)

Библиография

- [1] Стандарт ИКАО Приложение 10 к Конвенции ИКАО о гражданской авиации (1996 г.) [2] Регламент радиосвязи ГКРЧ

УДК 629.7.05:621.396:006.354

OKC 49.090

Д18

OKCTY 6813

Ключевые слова: система МЛС, радиомаячная система инструментального захода летательных аппаратов на посадку сантиметрового диапазона волн, азимутальный радиомаяк МЛС, угломестный радиомаяк МЛС, радиомаяк ухода на второй круг, зона наведения, зона захода на посадку, зона ухода на второй круг, зона ВПП, сектор пропорционального наведения, сектор наведения по клиренсным сигналам, клиренсный сигнал

Редактор Т.А. Леонова Технический редактор В.Н. Прусакова Корректор Т.Н. Коновенко Компьютерная верстка А.Н. Золотаревой

Изд. лиц. № 02354 от 14.07,2000, Сдано в набор 02,08,2001. Подписано в печать 23.10.2001. Усл.печ.л. 6,52. Уч.-изд.л. 6,10. Тираж экз. С 2389. Зак. 997