ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 57257— 2016/ ISO/TS 80004-12:2016

НАНОТЕХНОЛОГИИ

Часть 12

Квантовые явления. Термины и определения

(ISO/TS 80004-12:2016, Nanotechnologies — Vocabulary — Part 12: Quantum phenomena in nanotechnology, IDT)

Издание официальное

Предисловие

- ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении» (ВНИИНМАШ) на основе собственного перевода на русский язык англоязычной версии международного стандарта, указанного в пункте 4
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 441 «Нанотехнологии»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 10 ноября 2016 г. № 1673-ст
- 4 Настоящий стандарт идентичен международному документу ISO/TS 80004-12:2016 «Нанотехнологии. Словарь. Часть 12. Квантовые эффекты в нанотехнологиях» (ISO/TS 80004-12:2016 «Nanotechnologies Vocabulary Part 12: Quantum phenomena in nanotechnology», IDT).

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5—2012 (пункт 3.5)

- 5 ВВЕДЕН ВПЕРВЫЕ
- 6 ПЕРЕИЗДАНИЕ. Январь 2019 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Содержание

1 Область применения	1
2 Термины и определения общих понятий, относящихся к квантовым явлениям	1
3 Термины и определения основных понятий, относящихся к квантовым явлениям	3
4 Термины и определения понятий, относящихся к квантовым размерным эффектам	4
5 Термины и определения понятий, относящихся к квантово-структурным эффектам	4
6 Термины и определения понятий, относящихся к квантовым явлениям	. , .5
Приложение А (справочное) Термины, применяемые в классической и квантовой механике, необходимые для понимания текста настоящего стандарта	7
Приложение В (справочное) Сопоставление терминов, установленных в настоящем стандарте, области их применения и некоторых видов нанопродукции	8
Алфавитный указатель терминов на русском языке	11
Алфавитный указатель эквивалентов терминов на английском языке	12
Библиография	14

Введение

Одним из важных направлений развития нанотехнологий является изучение и практическое применение уникальных свойств нанообъектов, связанных с проявлением квантовых эффектов.

С уменьшением размеров объектов до нанодиалазона у них начинают проявляться эффекты квантования (квантование энергии, квантование момента импульса и т. д.), возникающие вследствие возможности удержания частиц в одном, двух или трех пространственных измерениях (квантовый захват), а также новые свойства и особенности, описанные в квантовой механике.

Термин «частица» рассмотрен в настоящем стандарте и с классической точки зрения, и с точки зрения квантовой механики. С классической точки зрения частица является дискретной частью материи, что соответствует установленному в ISO/TS 80004-2 термину «частица: «мельчайшая часть вещества с определенными физическими границами». С точки зрения квантовой механики частица является объектом, подчиняющимся законам квантовой механики. В квантовой механике к частицам относят электроны, атомы, молекулы и др. и описывают как частицы и квазичастицы (экситоны, фононы, плазмоны, магноны и т. п.), то есть элементарные возбуждения или кванты коллективных колебаний в системах сильновзаимодействующих частиц.

Квантовые явления проявляются не только в нанодиапазоне. Взаимосвязь нанотехнологий и квантовых эффектов важна для идентификации нанопродукции и дальнейшего развития нанотехнологий.

Некоторые наименования терминов, установленных в настоящем стандарте, связаны с именами ученых, которые открыли те или иные квантовые явления. Среди ученых иногда возникают разногласия о наименовании таких терминов из-за первенства открытия того или иного квантового явления. Кроме того, одно и то же квантовое явление в различных странах может иметь разное наименование.

Развитие нанотехнологий тесно связано с дальнейшим изучением квантовых явлений. Термины, установленные в настоящем стандарте, не охватывают все существующие понятия в области нанотехнологий и квантовых явлений. Некоторые термины, относящиеся к существующим и вновь открываемым квантовым явлениям, будут включены в стандарт при его последующем пересмотре.

Настоящий стандарт будет способствовать установлению единой терминологии в сфере нанотехнологий и смежных областях деятельности, развитию международного сотрудничества между организациями и отдельными специалистами, осуществляющими свою деятельность в области нанотехнологий, содействовать выводу на рынок нанопродукции и устранению технических барьеров в торговле.

В приложении А приведены термины, применяемые в классической и квантовой механике, необходимые для понимания текста настоящего стандарта.

Установленные в настоящем стандарте термины расположены в систематизированном порядке, отражающем систему понятий в области нанотехнологий, относящихся к квантовым явлениям.

Для каждого понятия установлен один стандартизованный термин.

Термины-синонимы приведены в качестве справочных данных и не являются стандартизованными.

Приведенные определения можно при необходимости изменять, вводя в них произвольные признаки, раскрывая значения используемых в них терминов, указывая объекты, относящиеся к определенному понятию. Изменения не должны нарушать объем и содержание понятий, определенных в настоящем стандарте.

В стандарте приведены иноязычные эквиваленты стандартизованных терминов на английском языке.

В стандарте приведен алфавитный указатель терминов на русском языке, а также алфавитный указатель эквивалентов терминов на английском языке.

Стандартизованные термины набраны полужирным шрифтом, их краткие формы, представленные аббревиатурой, и иноязычные эквиваленты — светлым, синонимы — курсивом.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАНОТЕХНОЛОГИИ

Часть 12

Квантовые явления. Термины и определения

Nanotechnologies. Part 12. Quantum phenomena. Terms and definitions

Дата введения — 2017—07—01

1 Область применения

Настоящий стандарт является частью серии стандартов ISO/TS 80004 и устанавливает термины и определения понятий в области нанотехнологий, относящихся к квантовым явлениям.

Установленные в настоящем стандарте термины могут применяться в смежных с нанотехнологиями областях деятельности.

Настоящий стандарт предназначен для обеспечения взаимопонимания между организациями и отдельными специалистами, осуществляющими свою деятельность в области нанотехнологий.

2 Термины и определения общих понятий, относящихся к квантовым явлениям

2.1 длина волны де Бройля: Длина волны любой частицы, отражающая ее de Broglie wavelength волновые свойства, и значение которой вычисляют по формуле, выведенной Л. де Бройлем.

Примечание — Формула де Бройля для вычисления длины волны частицы

$$\lambda = \frac{h}{p}$$
, (1)

где λ — длина волны частицы:

h — постоянная Планка;

р — импульс частицы.

- 2.2 квантование: Процесс, в результате которого получают квантованные фидиаntization зические величины.
- 2.3 квантованная величина: Дискретное значение физической величины, quantized кратное ее элементарному количеству.

Примечание — Элементарное количество физической величины называют «квантом физической величины».

2.4 квантовая когерентность: Коррелированное изменение фазы волновой quantum coherence функции системы в состоянии квантовой суперлозиции (2.9).

Примечание — Квантовая декогерентность — процесс нарушения квантовой когерентности.

ГОСТ Р 57257-2016

2.5 квантовый захват; кеантовый конфайнмент: Ограничение движения quantum confinement частицы в одном, двух или трех пространственных измерениях при условии, что размерные параметры физической системы и длина волны де Бройля (2.1) частицы находятся в пределах одного порядка [2].

Примечание — Основные характерные длины для возникновения квантового захвата: длина волны де Бройля, длина волны Ферми, средняя длина свободного пробега, боровский радиус (для экситонов) или длина их когерентности.

2.6 квантовая запутанность: Квантовое явление, при котором квантовые состояния двух или более частиц являются взаимозависимыми [3], [5]. entanglement

Примечание — Квантовую запутанность описывают квантовым состоянием частиц в целом, а не квантовым состоянием отдельных частиц.

- 2.7 квантовая интерференция: Когерентная суперпозиция волновых функций (2.14) (квантовых состояний) физической системы.
- 2.8 квантовое число: Число, определяющее одно из возможных дискретных quantum number значений физической величины, используемой для описания квантовой системы [3], [5] [7].

Примечания

- 1 Некоторые квантовые числа используют для описания пространственного распределения волновой функции частилы.
- 2 Некоторые квантовые числа используют для описания собственного («внутреннего») состояния частицы, например, величина и направление спина и т. д.
- 3 Квантовое состояние электрона в атоме описывают следующими четырымя квантовыми числами: главным квантовым числом, азимутальным квантовым числом, магнитным квантовым числом и спиновым квантовым числом.
- 2.9 квантовая суперпозиция: Линейная суперпозиция (или линейная комбинация) волновых функций (2.14).

Примечания

- 1 В квантовой механике принцип суперпозиции один из основных поступатов, определяющий любую линейную суперпозицию (или линейную комбинацию) волновых функций как волновую функцию физической системы.
- 2 Волновой функцией описывают состояние физической системы в любой момент времени.
- 2.10 квантовое туннелирование: Преодоление частицей потенциального quantum tunneling барьера в случае, когда ее полная энергия меньше высоты барьера [1], [3], [4].

Примечания

- 1 Туннелирование квантовое явление (3.8), не имеющее классического аналога. Классическая частица с энергией Е не может находиться внутри потенциального барьера высотой V, если Е меньше V, так как кинетическая энергия частицы становится при этом отрицательной.
- 2 В соответствии с принципом квантовой неопределенности существует вероятность преодоления любой элементарной частицей потенциального барьера.
- 2.11 квазичастица: Элементарное возбуждение, или иначе квант коллективquasi-particle ных колебаний, системы сильновзаимодействующих частиц [1]—[3], [5].

Примечание — К квазичастицам относят экситоны, фононы, плазмоны, магноны, поляритоны и т. д.

- 2.12 кубит; квантовый бит: Основная единица представления квантовой информации (6.8), реализуемая двумя состояниями квантовой системы, находящейся в одном из состояний или в суперпозиции обоих состояний [1]—[3], [5], [8].
- 2.13 поверхностный плазмон: Квазичастица (2.11), отвечающая квантова- surface plasmon нию (2.2) поверхностных плазменных колебаний.
- 2.14 волновая функция: Математическая функция, используемая для полного описания состояния квантовой системы и содержащая всю информацию об измеряемых физических величинах системы.

Примечания

- Волновую функцию также называют «вектором состояния», ее выражают значениями амплитуд вероятностей, которые непосредственно не измеримы.
- 2 Термин «состояние квантовой системы» является синонимом термина «квантовое состояние».

3 Термины и определения основных понятий, относящихся к квантовым явлениям

3.1 эффект Ааронова—Бома*: Квантовое явление, при котором электромагнитные потенциалы влияют на частицы даже в тех областях пространства, где напряженность электрического поля и индукция магнитного поля равны нулю.

Aharonov-Bohm effect

3.2 баллистический перенос; баллистический транспорт: Режим движения частиц без рассеяния при условии, что характерные длины физической системы, в которой рассматривают перенос частиц, меньше длины свободного пробега частиц.

ballistic transport

3.3 эффект Казимира**: Явление взаимного притяжения незаряженных проводящих объектов, помещенных в вакуум, возникающее из-за квантовых флуктуаций вакуума [3], [5].

Casimir

Примечания

- Эффект Казимира у макроскопических объектов проявляется незначительно. У нанообъектов наблюдается значительное проявление эффекта Казимира, поэтому его следует учитывать при проектировании наноэлектромеханических систем (НЭМС).
- 2 Существуют также «силы отталкивания Казимира», проявляющиеся в зависимости от свойств и геометрических параметров взаимодействующих объектов и условий эксперимента.
- 3.4 когерентный перенос: Режим движения частиц с четко определенной фазой, при условии, что характерные длины физической системы, в которой рассматривают перенос частиц, меньше длины фазовой когерентности частиц.

coherent transport

3.5 кулоновская блокада: Блокирование туннелирования электронов в квантовой точке (4.1) через туннельный переход, происходящее вследствие принципа Паули*** и кулоновского отталкивания электронов.

Coulomb blockade

Примечания

- Кулоновская блокада возникает вследствие квантования заряда. Явление кулоновской блокады используют для управления электронным переносом в одноэлектронных транзисторах (ОЭТ).
- Типичным примером проявления кулоновской блокады является двойной туннельный переход, представляющий собой маленький проводящий островок (квантовую точку), соединенный с металлическими контактами с помощью двух туннельных переходов [1].
- 3.6 **наномагнетизм**: Магнитные свойства наноструктурированных материалов nanomagnetism или устройств, имеющих компоненты размерами в нанодиапазоне.

3.7

наноразмерный эффект: Эффект, присущий нанообъекту или области с nanoscale размерами в нанодиапазоне [3], [4]. phenomenon [ISO/TS 80004-1:2010, статья 2.13]

^{*} Пояснение разработчика: данное квантовое явление получило свое наименование по именам ученых Я. Ааронова и Д. Бома, описавших его в 1959 г.

^{**} Пояснение разработчика: данное явление получило свое наименование по имени ученого X. Казимира, описавшего его в 1948 г.

^{***} Пояснение разработчика: принцип Паули — один из фундаментальных принципов квантовой механики, согласно которому две тождественные частицы с полуцелым спином не могут одновременно находиться в одном состоянии. Данный принцип получил свое наименование по имени ученого В. Паули, сформулировавшего его в 1925 г.

FOCT P 57257-2016

3.8 квантовое явление; квантовый эффект: Физический эффект, возникающий вследствие проявления квантовых свойств частиц и их взаимодействия, вторичных эффектов квазичастиц (2.11) в физической системе, который исчезает в классическом пределе.

quantum phenomenon; quantum effect

Примечания

- Не все квантовые явления проявляются в нанодиапазоне.
- Не все явления, проявляющиеся в нанодиапазоне, обусловлены квантовыми эффектами.
- 3.9 квантовый эффект Холла: Эффект Холла в квантовой механике, в котором проводимость Холла выражена дискретными значениями, кратными значениям кванта проводимости.

quantum Hall effect

П р и м е ч а н и е — Если кратные отношения выражены целыми числами, то квантовый эффект Холла называют «целочисленным квантовым эффектом Холла», а если рациональными дробями, то — «дробным квантовым эффектом Холла».

- 3.10 квантовый размерный эффект: Явление возникновения квантового quantum size-effect захвата (2.5) при определенных размерах физической системы.
- 3.11 поверхностный плазмонный резонанс: Возбуждение поверхностного surface plasmon плазмона (2.13) на его резонансной частоте под воздействием внешнего электромагнитного поля.

4 Термины и определения понятий, относящихся к квантовым размерным эффектам

- 4.1 квантовая точка: Наночастица или область, в которой происходит квантовый захват (2.5) частиц во всех трех пространственных измерениях [1]—[3], [5], [8].
- 4.2 квантовая яма: Потенциальная яма, в которой происходит квантовый заquantum well хват (2.5) частиц в одном измерении.

П р и м е ч а н и е — Термин «квантовая яма» иногда применяют для обозначения явлений, происходящих не только в одном измерении.

4.3 квантовая проволока; квантовая струна: Проводящая квазиодномерная qua физическая система, в которой свободное перемещение частиц происходит только в одном измерении, а квантовый захват (2.5) — в двух других измерениях.

quantum wire; quantum string

5 Термины и определения понятий, относящихся к квантово-структурным эффектам

5.1 фотонный кристалл: Материал, имеющий структуру с периодическим изменением показателя преломления в пространственных измерениях вследствие возникновения фотонных запрещенных зон (5.2) [1]—[3], [8].

photonic crystal

5.2 фотонная запрещенная зона: Диапазон длин волн светового излучения с любой поляризацией, в котором не происходит распространение светового излучения, имеющего длину волны в пределах этого диапазона, во всех пространственных измерениях.

photonic band gap

5.3 квантовая гетероструктура: Структура, состоящая из двух или более различных материалов, в переходных слоях которой может происходить квантовый захват (2.5).

quantum heterostructure

Примечания

- К квантовым гетероструктурам относят некоторые квантовые точки (4.1), квантовые проволоки (4.3), квантовые ямы (4.2) и сверхрешетки (5.4).
- Квантовые гетероструктуры изготавливают методами физического и химического осаждения.

5.4 сверхрешетка: Твердотельная структура, в которой ломимо периодического потенциала кристаллической решетки присутствует дополнительный потенциал, период которого существенно превышает постоянную решетки [3], [5].

superlattice

П р и м е ч а н и е — Твердотельная структура обычно состоит из чередующихся слоев различных материалов одинаковой толщины с периодичностью, превышающей постоянную решетки отдельного слоя.

5.5 гигантское магнитное сопротивление; гигантское магнетосопротивление; ГМС: Квантовое явление (3.8), заключающееся в существенном изменении электрического сопротивления материала под воздействием магнитного поля [2], [3], [5]. giant magnetoresistance; GMR

Примечания

- 1 ГМС наблюдают в многослойных пленках с чередующимися тонкими слоями ферромагнитных и немагнитных металлов, в том числе в гетероструктурах.
- 2 Существует термин «колоссальное магнетосопротивление» (КМС), который используют для обозначения огромного магнетосопротивления «негетероструктур», Значение КМС некоторых материалов существенно превышает (на несколько порядков) значение ГМС.
- 5.6 квантово-структурный эффект: Квантовый эффект (3.8), возникающий из-за особенностей внутренней или поверхностной структуры материала.

quantum structural effect

6 Термины и определения понятий, относящихся к квантовым явлениям

6.1 молекулярная электроника: Раздел электроники, изучающий методы проектирования и изготовления электронных устройств, в которых в качестве компонентов использованы молекулы.

molecular electronics

П р и м е ч а н и е — Некоторые молекулы перестраивают перед их применением в качестве активных компонентов электронных устройств.

6.2 наноэлектроника: Раздел электроники, изучающий методы проектирования и изготовления функциональных электронных устройств, компоненты которых имеют размеры в нанодиапазоне. nanoelectronics

6.3 нанофотоника: Раздел фотоники, изучающий методы проектирования и изготовления оптических или оптоэлектронных компонентов, основанные на взаимодействии фотонов с наноматериалами.

nanophotonics

6.4 плазмоника: Наука, изучающая поверхностные плазмоны (2.13) и возможность их практического применения.

plasmonics

6.5 квантовое вычисление: Представление и обработка данных с использованием квантовых явлений.

quantum computing

6.6 квантовая криптография; квантовое распределение ключей: Раздел криптографии, изучающий методы обеспечения конфиденциальности, целостности и аутентификации данных с использованием квантовых явлений.

quantum cryptography; quantum key distribution

6.7 квантовая электроника: Раздел электроники, изучающий методы проектирования и изготовления электронных устройств, основанные на усилении и генерировании электромагнитного излучения вследствие квантовых переходов в неравновесных квантовых системах.

quantum electronics

6.8 квантовая информация: Данные, закодированные и переданные с использованием квантовых явлений.

quantum information

6.9 квантовое сверхплотное кодирование: Способ преобразования двух битов классической информации в один кубит квантовой информации, благодаря явлению квантовой запутанности.

quantum superdense coding

ГОСТ P 57257-2016

6.10 квантовая телепортация: Явление передачи квантового состояния из одного положения в пространстве в другое по классическим каналам связи.

quantum teleportation

6.11 одноэлектронная электроника: Раздел электроники, изучающий методы проектирования и изготовления электронных устройств, основанные на манипулировании отдельными электронами при туннелировании и кулоновской блокаде (3.5).

single electron electronics

6.12 спинтроника; спиновая электроника: Раздел электроники, изучающий методы проектирования и изготовления электронных устройств, основанные на явлении спинового переноса заряда (спин-поляризованный перенос) и спиновой инжекции в твердотельных материалах [2], [3], [5], [8], [9].

spintronics; spin electronics

Приложение А (справочное)

Термины, применяемые в классической и квантовой механике, необходимые для понимания текста настоящего стандарта

А.1 эффект Холла*: Явление возникновения поперечной разности потенциалов (называемой также холловским напряжением) при помещении проводника с постоянным током в магнитное поле, открытое Э. Холлом [3], [4].

Hall effect

А.2 гетероструктура: Искусственная слоистая структура, изготовленная из различных материалов, на границе раздела которых сформирован переходный слой [5].

heterostructure

А.3 принцип неопределенности Гейзенберга: Фундаментальное неравенство (соотношение неопределенностей), устанавливающее предел точности одновременного измерения пары (или канонически сопряженных) переменных в одном и том же эксперименте, открытое В. Гейзенбергом.

Heisenberg's uncertainty

principle

Примечание — Самые известные пары переменных — «энергия/время» и «линейный импульс/ местоположение».

Пояснение разработчика: данное явление получило свое наименование по имени ученого Э. Холла, открывшего его в 1879 г.

Приложение В (справочное)

Сопоставление терминов, установленных в настоящем стандарте, области их применения и некоторых видов нанопродукции

Таблица В.1 — Сопоставление терминов, установленных в настоящем стандарте, области их применения и некоторых видов нанопродукции

Термин	Отнесение термина к общему понятию	Область применения	Виды нанопродукции
Эффект Ааронова-Бо- ма		Изготовление материа- лов	Электронные устройства, сенсоры и др.
Баллистический перенос		Изготовление материа- лов	Электронные устройства, сенсорь и др.
Эффект Казимира		Изготовление материа- лов	Электромеханические устройства НЭМС, сенсоры и др.
Когерентный перенос		Изготовление материа- лов	Электронные устройства, сенсорь и др.
Кулоновская блокада		Электроника	Электронные устройства (одноэлек- тронный транзистор), сенсоры и др.
Длина волны Де Бройля	х		
Гигантское магнетосо- противление		Изготовление материа- лов	Устройства магнитной записи/хране- ния информации, сенсоры и др.
Молекулярная эпектро- ника		Электроника	Электронные устройства, сенсоры и др.
Наноэлектроника		Электроника	Электронные устройства, сенсорь и др.
Наномагнетизм		Изготовление материа- лов	Устройства магнитной записи/хране- ния информации, сенсоры и др.
Нанофотоника		Оптические телекомму- никации	Фотонные интегральные схемы, сен соры и др.
Наноразмерный эффект		Изготовление материа- лов	
Фотонная запрещенная зона		Оптические телекомму- никации	Фотонные интегральные схемы, сен соры и др.
Фотонный кристалл		Оптические телекомму- никации	Фотояные интегральные схемы, сен- соры и др.
Плазмоника		Оптические телекомму- никации	Фотонные интегральные схемы, сен- соры и др.
Квантование	×		
Квантованная величина	x		
Квантовый бит	×	Квантовые информаци- онные технологии	Квантовые компьютеры
Квантовая когерентность	х	Квантовые информаци- онные технологии	Квантовые компьютеры

Продолжение таблицы В.1

Термин	Отнесение термина к общему понятию	Область применения	Виды наиопродукции
Квантовое вычисление		Квантовые информаци- онные технологии	Квантовые компьютеры
Квантовый захват	х	Изготовление материа- лов	Лазеры на квантовых ямах и др.
Квантовая криптография		Квантовые информаци- онные технологии	Квантовые компьютеры
Квантовая декогерент- ность	x	Квантовые информаци- онные технологии	Квантовые компьютеры
Квантовая точка		Изготовление материа- лов	Контрастные агенты, используемые для усиления изображения при прове- дении биомедицинских исследований, внутриклеточные детекторы/сенсоры биомолекулярных взаимодействий в режиме реального времени, устрой- ства для маркировки стволовых клеток, датчики экспрессии генов, приборы для обнаружения мутаций дезоксирибону- клеиновой кислоты (ДНК), оборудование для фотодинамической терапии (ФДТ), квантовые компьютеры и др.
Квантовый эффект		Изготовление материа- лов	
Квантовая электроника		Электроника	Электронные устройства, сенсоры и др.
Квантовая запутанность	×	Квантовые информаци- онные технологии	Квантовые компьютеры
Квантовый эффект Холла		Изготовление материа- лов	Датчики с эффектом Холла и др.
Квантовая гетерострук- тура		Изготовление материа- лов	Электронные устройства, сенсоры и др.
Квантовая информация		Квантовые информаци- онные технологии	Квантовые компьютеры
Квантовая интерферен- ция	x	Изготовление материа- лов	Электронные устройства, сенсоры и др.
Квантовое распределение ключей		Квантовые информаци- онные технологии	Квантовые компьютеры
Квантовое число	х		
Квантовое явление		Изготовление материа- лов	
Квантовый размерный эффект		Изготовление материа- лов	Электронные устройства, сенсоры и др.
Квантовая струна		Изготовление материа- лов	Электронные устройства, сенсоры и др.
Квантово-структурный эффект		Изготовление материа- лов	Электронные устройства, сенсоры и др.

ΓΟCT P 57257-2016

Окончание таблицы В.1

Термин	Отнесение термина к общему понятию	Область применения	Виды наиопродукции	
Квантовое сверхплот- ное кодирование		Квантовые информаци- онные технологии	Квантовые компьютеры	
Квантовая суперпози- ция	х	Квантовые информаци- онные технологии	Квантовые компьютеры	
Квантовая телепорта- ция		Электроника	Квантовые компьютеры	
Квантовое туннелирова- ние	x	Изготовление материа- лов	Полевые транзисторы и др.	
Квантовая яма		Изготовление материа- лов	Лазеры на квантовых ямах и др.	
Квантовая проволока		Изготовление материа- лов	Электронные устройства, сенсоры и др.	
Квазичастица	х			
Кубит	х	Квантовые информаци- онные технологии	Квантовые компьютеры	
Одноэлектронная элек- троника		Электроника	Электронные устройства (одноэлек тронный транзистор), сенсоры и др.	
Спиновая электроника		Электроника	Электронные устройства, сенсоры и др.	
Спинтроника		Электроника	Электронные устройства, сенсоры и др.	
Сверхрешетка		Изготовление материа- лов	Электронные устройства, сенсоры и др.	
Поверхностный плаз- мон	х	Оптические телекомму- никации	Фотонные интегральные схемы, сен- соры и др.	
Поверхностный плаз- монный резонанс		Оптические телекомму- никации	Фотонные интегральные схемы, сен- соры и др.	

Алфавитный указатель терминов на русском языке

бит квантовый	2.12
блокада кулоновская	3.5
величина квантованная	2.3
вычисление квантовое	6.5
гетероструктура	A.2
гетероструктура квантовая	5.3
TMC	5.5
длина волны де Бройля	2.1
запутанность квантовая	2.6
захват квантовый	2.5
зона запрещенная фотонная	5.2
интерференция квантовая	2.7
информация квантовая	6.8
квазичастица	2.11
квантование	2.2
когерентность квантовая	2.4
кодирование квантовое сверхплотное	6.9
конфайнмент квантовый	2.5
криптография квантовая	6.6
кристалл фотонный	5.1
кубит	2.12
магнетосопротивление гигантское	5.5
наномагнетизм	3.6
нанофотоника	6.3
наноэлектроника	6.2
перенос баллистический	3.2
перенос когерентный	3.4
плазмон поверхностный	2.13
плазмоника	6.4
принцип неопределенности Гейзенберга	A.3
проволока квантовая	4.3
распределение ключей квантовое	6.6
резонанс поверхностный плазмонный	3.11
сверхрешетка	5.4
сопротивление магнитное гигантское	5.5
спинтроника	6.12
струна квантовая	4.3
суперпозиция квантовая	2.9
телепортация квантовая	6.10
точка квантовая	4.1
транспорт баллистический	3.2
туннелирование квантовое	2.10
функция волновая	2.14

ΓΟCT P 57257-2016

число квантовое	2.8
электроника квантовая	6.7
электроника молекулярная	6.1
электроника одноэлектронная	6.11
электроника спиновая	6.12
эффект Ааронова—Бома	3.1
эффект Казимира	3.3
эффект квантово-структурный	5.6
эффект квантовый размерный	3.10
эффект квантовый	3.8
эффект наноразмерный	3.7
эффект Холла	A.1
эффект Холла квантовый	3.9
явление квантовое	3.8
яма квантовая	4.2
Алфавитный указатель эквивалентов терминов на английском языке	
Aharonov—Bohm effect	3.1
ballistic transport	3.2
Casimir effect	3.3
coherent transport	3.4
Coulomb blockade	3.5
De Broglie wavelength	2.1
giant magnetoresistance	5.5
GMR	5.5
Hall effect	A.1
Heisenberg's uncertainty principle	A.3
heterostructure	A.2
molecular electronics	6.1
nanoelectronics	6.2
nanomagnetism	3.6
nanophotonics	6.3
nanoscale phenomenon	3.7
photonic band gap	5.2
photonic crystal	5.1
plasmonics	6.4
quantization	2.2
quantized	2.3
quantum bit	2.12
quantum coherence	2.4
quantum computing	6.5
quantum confinement	2.5
quantum cryptography	6.6

ГОСТ Р 57257-2016

quantum dot	4.1
quantum effect	3.8
quantum electronics	6.7
quantum entanglement	2.6
quantum Hall effect	3.9
quantum heterostructure	5.3
quantum information	6.8
quantum interference	2.7
quantum key distribution	6.6
quantum number	2.8
quantum phenomenon	3.8
quantum size-effect	3.10
quantum string	4.3
quantum structural effect	5.6
quantum superdense coding	6.9
quantum superposition	2.9
quantum teleportation	6.10
quantum tunneling	2.10
quantum well	4.2
quantum wire	4.3
quasi-particle	2.11
qubit	2.12
single electron electronics	6.11
spin electronics	6.12
spintronics	6.12
superlattice	5.4
surface plasmon	2.13
surface plasmon resonance	3.11
wave function	2.14

Библиография

- Nanotechnology, metrology, standardization and certification in terms and definitions, edited by Kovalchuk M.V. and Todua P.A., red. Tekhnosfera, 2009
- [2] Glossary of nanotechnology and related terms, http://eng.thesaurus.rusnano.com
- [3] McGraw-Hill dictionary of scientific and technical terms. McGraw-Hill Companies, Inc., 2003
- [4] Prokhorov A.M., Physical Encyclopedia: M: Big Russian Encyclopedia, 1994
- [5] Encyclopedia Britannica. Encyclopedia Britannica Online. Encyclopedia Britannica Inc., 2013
- [6] The American Heritage and reg; Dictionary of the English Language. Houghton Mifflin Company, Fourth Edition, 2004
- [7] Smith A.D. Oxford Dictionary of Biochemistry and Molecular Biology, Oxford University Press. © 1997, 2000, 2006
- [8] Computer Desktop Encyclopedia Computer Language Company Inc., 2013
- [9] The Columbia Encyclopedia. Columbia University Press, Sixth Edition, 2013

УДК 53.04:006.354	OKC 01.040.07	T00
	07.030	
Ключевые слова: нанотехнологии, к	зантовые явления, термины, определения	

Редактор Н.В. Таланова Технический редактор В.Н. Прусакова Корректор С.В. Смирнова Компьютерная верстка Л.А. Круговой

> ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11 www. jurisizdat.ru y-book@mail.ru

Создано в единичном исполнении ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т. д. 31. к. 2. www.gostinfo.ru info@gostinfo.ru