МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT 10671.5— 2016

РЕАКТИВЫ

Методы определения примеси сульфатов

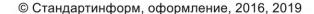
Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации материалов и технологий» (ФГУП «ВНИИ СМТ»)
 - 2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 527 «Химия»
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 28 июня 2016 г. № 49)


За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Армения	AM	Минэкономики Республики Армения
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 9 ноября 2016 г. № 1642-ст межгосударственный стандарт ГОСТ 10671.5—2016 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2018 г.
 - 5 B3AMEH FOCT 10671.5—74
 - 6 ПЕРЕИЗДАНИЕ. Март 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

РЕАКТИВЫ

Методы определения примеси сульфатов

Reagents. Methods for determination of sulfates impurity

Дата введения — 2018—01—01

1 Область применения

Настоящий стандарт распространяется на химические реактивы и устанавливает методы определения примеси сульфатов:

- визуально-нефелометрический;
- фототурбидиметрический.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 1770 (ИСО 1042—83, ИСО 4788—80) Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 3118 Реактивы. Кислота соляная. Технические условия

ГОСТ 4108 Реактивы. Барий хлорид 2-водный. Технические условия

ГОСТ 4145 Реактивы. Калий сернокислый. Технические условия

ГОСТ 4212 Реактивы. Методы приготовления растворов для колориметрического и нефелометрического анализа

ГОСТ 4517 Реактивы. Методы приготовления вспомогательных реактивов и растворов, применяемых при анализе

ГОСТ 6709* Вода дистиллированная. Технические условия

ГОСТ 10163 Реактивы. Крахмал растворимый. Технические условия

ГОСТ 10164 Реактивы. Этиленгликоль. Технические условия

ГОСТ 10671.0 Реактивы. Общие требования к методам анализа примесей анионов

ГОСТ 18300** Спирт этиловый ректификованный технический. Технические условия

ГОСТ 25336 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 29227 (ИСО 835-1—81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 29251 (ИСО 385-1—84) Посуда лабораторная стеклянная. Бюретки. Часть 1. Общие требования

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым в

^{*} В Российской Федерации действует ГОСТ Р 58144—2018.

^{**} В Российской Федерации действует ГОСТ Р 55878—2013 «Спирт этиловый технический гидролизный ректификованный. Технические условия».

FOCT 10671.5-2016

государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Сущность методов

Методы основаны на образовании опалесценции сульфата бария при взаимодействии ионов бария и сульфат-ионов.

4 Общие требования

- 4.1 Общие требования к методам анализа по ГОСТ 10671.0.
- 4.2 Применяемый метод и необходимые условия определения должны быть предусмотрены в нормативном документе или технической документации на анализируемый реактив.
- 4.3 Допускается применение других средств измерения с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов, по качеству не ниже указанных в настоящем стандарте.
 - 4.4 Масса сульфат-ионов в навеске анализируемого реактива должна быть в пределах:
 - 0,01—0,10 мг при определении визуально-нефелометрическим методом (способ 1);
 - 0,02—0,10 мг при определении фототурбидиметрическим методом;
 - 0,05—0,50 мг при определении визуально-нефелометрическим методом (способы 2 и 3).
- 4.5 Температура растворов перед прибавлением раствора хлорида бария должна быть от 20 °C до 25 °C. При температуре воздуха ниже 20 °C перед прибавлением раствора хлорида бария необходимо подогреть растворы в водяной бане с температурой от 30 °C до 35 °C в течение 15 мин.

Раствор хлорида бария следует прибавлять к каждому раствору с одинаковой скоростью из бюретки при тщательном перемешивании.

- 4.6 Для фильтрования растворов применяют обеззоленные фильтры «синяя лента», промытые горячей водой.
- 4.7 При необходимости растворы нейтрализуют растворами аммиака или соляной кислоты по универсальной индикаторной бумаге, если в нормативном документе или технической документации на анализируемый реактив отсутствуют другие указания (проба на вынос).
- 4.8 При наличии опалесценции в анализируемом растворе определение проводят фототурбидиметрическим методом, с введением поправки на значение оптической плотности анализируемого реактива.

5 Аппаратура, посуда, реактивы и растворы

Фотоэлектроколориметр или спектрофотометр любого типа.

Бария хлорид по ГОСТ 4108, раствор с массовой долей 20 %; готовят по ГОСТ 4517.

Калий сернокислый по ГОСТ 4145; раствор готовят следующим образом: 0,02 г сернокислого калия растворяют в смеси 30,0 см³ этилового спирта и 70,0 см³ воды.

Кислота соляная по ГОСТ 3118, растворы с массовой долей 10 % и 25 %; готовят по ГОСТ 4517.

Крахмал растворимый по ГОСТ 10163, раствор с массовой долей 1 %; готовят по ГОСТ 4517 или этиленгликоль по ГОСТ 10164.

Спирт этиловый ректификованный технический по ГОСТ 18300 высшего сорта.

Раствор массовой концентрации сульфат-ионов SO_4^{2-} 1 мг/см³; готовят по ГОСТ 4212. Соответствующим разбавлением готовят раствор, массовой концентрации 0,01 мг/см³ SO_4 .

Бумага индикаторная универсальная.

Вода дистиллированная по ГОСТ 6709.

Бюретка 1(2—1(2)—1—25(50) по ГОСТ 29251.

Колба 2—100—2 по ГОСТ 1770.

Колбы Кн-1—50(100)—14/23(19/26; 24/29;29/32), Кн-2—50(100)—18(22;34) ТХС по ГОСТ 25336. Пипетки 1(2)—1(2)—1—1(2, 5, 10, 20, 25) по ГОСТ 29227. Стаканы B-1(2)—50 ХС по ГОСТ 25336. Цилиндр 1—100—2 по ГОСТ 1770.

6 Визуально-нефелометрический метод

6.1 Определение по способу 1

- $6.1.1~25,0~{\rm cm}^3$ нейтрального по универсальной индикаторной бумаге анализируемого раствора помещают в стакан или коническую колбу, прибавляют $1,0~{\rm cm}^3$ раствора соляной кислоты с массовой долей $10~\%,~3,0~{\rm cm}^3$ раствора крахмала и $3,0~{\rm cm}^3$ раствора хлорида бария, тщательно перемешивая раствор после прибавления каждого реактива.
- 6.1.2 Одновременно аналогичным образом готовят раствор сравнения, содержащий в таком же объеме массу сульфат-ионов, указанную в нормативном документе или технической документации на анализируемый реактив, и те же объемы растворов реактивов.
- 6.1.3 Сравнение интенсивности опалесценции анализируемого раствора и раствора сравнения проводят через 30 мин на темном фоне.

Допускается применение 2 см³ этиленгликоля в качестве стабилизатора.

6.2 Определение по способу 2 (с затравкой)

- $6.2.1~{\rm K}$ затравочному раствору, состоящему из $0.25~{\rm cm}^3$ раствора сернокислого калия и $1.0~{\rm cm}^3$ раствора хлорида бария, прибавляют $20.0~{\rm cm}^3$ анализируемого раствора, подкисленного $0.5~{\rm cm}^3$ раствора соляной кислоты с массовой долей $25~{\rm \%}$.
- 6.2.2 Одновременно аналогичным образом готовят раствор сравнения, содержащий в таком же объеме массу сульфат-ионов, указанную в нормативном документе или технической документации на анализируемый реактив, и те же объемы растворов реактивов.
- 6.2.3 Сравнение интенсивности опалесценции анализируемого раствора и раствора сравнения проводят через 10 мин на темном фоне.

6.3 Определение по способу 3

- 6.3.1 46,0 см³ нейтрального по универсальной индикаторной бумаге анализируемого раствора помещают в коническую колбу вместимостью 100 см³, прибавляют 1,0 см³ раствора соляной кислоты с массовой долей 25 %, 3,0 см³ раствора хлорида бария, затем в течение 30 с тщательно перемешивают.
- 6.3.2 Одновременно аналогичным образом готовят раствор сравнения, содержащий в таком же объеме массу сульфат-ионов, указанную в нормативном документе или технической документации на анализируемый реактив, и те же объемы растворов реактивов.
- 6.3.3 Сравнение интенсивности опалесценции анализируемого раствора и раствора сравнения проводят через 15 мин на темном фоне.

7 Фототурбидиметрический метод

7.1 Построение градуировочного графика

7.1.1 Готовят растворы сравнения. Для этого в конические колбы помещают растворы, содержащие 0,02; 0,04; 0,06; 0,08 и 0,10 мг SO_4^{2-} , доводят объемы растворов водой до 25 см 3 и перемешивают. Одновременно готовят контрольный раствор, не содержащий SO_4^{2-} .

В каждый раствор прибавляют 1,0 см³ раствора соляной кислоты с массовой долей 10 %, 3,0 см³ раствора крахмала и тщательно перемешивают в течение 1 мин. Далее прибавляют 3,0 см³ раствора хлорида бария, снова перемешивают в течение 1 мин, а затем перемешивают периодически, через кажлые 10 мин.

7.1.2 Через 40 мин оптическую плотность растворов сравнения измеряют по отношению к контрольному раствору при длине волны 480—490 нм в кюветах с толщиной поглощающего свет слоя раствора 50 мм.

FOCT 10671.5-2016

Допускается измерять оптическую плотность растворов при длине волны (40 ± 10) нм. В данном случае оптическую плотность анализируемого раствора следует измерять также при этой же длине волны.

По полученным данным строят градуировочный график.

7.2 Проведение анализа

 $7.2.1~25,0~{\rm cm}^3$ нейтрального по универсальной индикаторной бумаге анализируемого раствора помещают в коническую колбу, прибавляют 1,0 см 3 раствора соляной кислоты с массовой долей 10 %, 3,0 см 3 раствора крахмала и тщательно перемешивают в течение 1 мин. Далее прибавляют 3,0 см 3 раствора хлорида бария, снова перемешивают в течение 1 мин, а затем перемешивают периодически, через каждые 10 мин.

Через 40 мин оптическую плотность анализируемого раствора измеряют по отношению к контрольному раствору, приготовленному одновременно так же, как при построении градуировочного графика. По полученному значению оптической плотности, пользуясь графиком, находят массу сульфатов-ионов в анализируемом растворе в миллиграммах.

Допускается применение 2 см³ этиленгликоля в качестве стабилизатора.

- 7.2.2 При анализе окрашенных солей, а также в том случае, если анализируемый раствор имеет опалесценцию или прицветку, определение проводят, как описано в 7.2.1. При этом контрольный раствор готовят следующим образом: к 25,0 см³ нейтрального по универсальной индикаторной бумаге анализируемого раствора прибавляют 1,0 см³ раствора соляной кислоты с массовой долей 10 %, 3,0 см³ раствора крахмала, тщательно перемешивают в течение 1 мин, а затем прибавляют 3,0 см³ воды.
- 7.2.3 Определение сульфат-ионов в солях одно- и двухвалентных металлов производят из навесок массой не более 0,50 г (в этом случае влияние ионной силы раствора в условиях определения не сказывается).
- 7.2.4 При определении сульфат-ионов в солях трех- и четырехвалентных металлов градуировочный график следует строить по растворам сравнения, содержащим анализируемый реактив без сульфат-ионов, при этом методика его приготовления должна быть изложена в нормативном документе или технической документации на данный реактив. При использовании градуировочного графика, построенного по 7.1, навеска анализируемого реактива должна быть подобрана экспериментально.

7.3 Обработка результатов

За результат анализа принимают среднеарифметическое значение результатов трех параллельных определений, относительное расхождение между которыми не превышает допускаемое расхождение, указанное в таблице 1.

Допускаемая относительная суммарная погрешность результата анализа при доверительной вероятности P = 0.95 представлена в таблице 1.

Таблица 1

Масса сульфатов, мг	Допускаемое расхождение (относительно определяемой массы сульфатов), %	
От 0,02 до 0,03 включ. 25		±20
Св. 0,03 » 0,10 » 25		±15

УДК 54-41:543.06:006.354 MKC 71.040.30

Ключевые слова: реактивы, методы анализа, определение сульфатов

Редактор Н.В. Таланова
Технический редактор В.Н. Прусакова
Корректор Р.А. Ментова
Компьютерная верстка И.А. Налейкиной

Сдано в набор 27.03.2019. Подписано в печать 19.04.2019. Формат $60 \times 84^{1}/_{8}$. Гарнитура Ариал. Усл. печ. л. 0,93. Уч.-изд. л. 0,70. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Создано в единичном исполнении ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru