Гидродинамические радиальные подшипники скольжения, работающие в стационарном режиме

КРУГЛОЦИЛИНДРИЧЕСКИЕ ПОДШИПНИКИ

Часть 2

Функции, используемые для расчета

Издание официальное

Предисловие

 РАЗРАБОТАН Межтосударственным техническим комитетом по стандартизации МТК 344 «Подшипники скольжения», Всероссийским научно-исследовательским институтом стандартизации и сертификации в машиностроении (ВНИИНМАШ) Госстандарта России

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 19 от 24 мая 2001 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Армения	Армгосстандарт
Республика Беларусь	Госстандарт Республики Беларусь
Республика Казахстан	Госстандарт Республики Казахстан
Кыргызская Республика	Кыргызстандарт
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикстандарт
Туркменистан	Главгосслужба «Туркменстандартлары»
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

Настоящий стандарт представляет собой аутентичный текст международного стандарта ИСО 7902-2—98 «Гидродинамические радиальные подшипники скольжения, работающие в стационарном режиме. Круглоцилиндрические подшипники. Часть 2. Функции, используемые для расчета»

3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 19 февраля 2002 г. № 68-ст межгосударственный стандарт ГОСТ ИСО 7902-2—2001 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 2002 г.

4 ВВЕДЕН ВПЕРВЫЕ

© ИПК Издательство стандартов, 2002

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

ГОСТ ИСО 7902-2-2001

Содержание

1	Область применения	1
2	Нормативные ссылки	1
3	Таблицы основных характеристик подшипников	1
4	Графики основных характеристик подшипников	1
5	Потери мощности на трение в смазочном слое как функция расчета элементов подачи	
	смазочного материала	1
6	Расход смазочного материала из-за давления подачи	54
7	Эффективная динамическая вязкость смазочного материала ηеff	58
П	риложение А Библиография	59

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Гидродинамические радиальные подшипники скольжения, работающие в стационарном режиме

КРУГЛОЦИЛИНДРИЧЕСКИЕ ПОДШИПНИКИ

Часть 2

Функции, используемые для расчета

Hydrodynamic plain journal bearings under steady-state conditions. Circular cylindrical bearings.

Part 2. Functions used in the calculation procedure

Дата введения 2002—07—01

1 Область применения

Настоящий стандарт устанавливает значения основных функций, используемых в методе расчета гидродинамических круглоцилиндрических подшипников скольжения с масляной смазкой, работающих в режиме полной смазки.

Функции основаны на допущениях и граничных условиях, приведенных в ГОСТ ИСО 7902-1. Значения функций, необходимых для расчета, определены с помощью таблиц характеристик подшипников, а также графиков и уравнений.

Описания используемых обозначений и примеры расчета приведены в ГОСТ ИСО 7902-1.

2 Нормативные ссылки

В настоящем стандарте использованы ссыдки на следующие стандарты:

ГОСТ ИСО 7902-1—2001 Гидродинамические радиальные подшипники скольжения, работающие в стационарном режиме. Круглоцилиндрические подшипники. Метод расчета

ИСО 3448—92 Промышленные смазочные материалы. Классификация вязкости по ИСО

3 Таблицы основных характеристик подшипников

В таблицах 1 — 30 приведены значения следующих характеристик:

- угла линии центров β;
- числа Зоммерфельда S₀;
- удельного коэффициента трения с учетом ненагруженной зоны смазочного слоя f'/Ψ;
- удельного коэффициента трения в нагруженной зоне смазочного слоя f/Ψ , а также коэффициента расхода смазочного материала параметра Q_3^* из-за гидродинамического давления, как функции дуги охвата Ω , относительного эксцентриситета ε и относительной длины подшипника B/D для различных значений ε , Ω и B/D.

4 Графики основных характеристик подшипников

На рисунках 1−50 графически представлены функции β, S_0 , f'/Ψ, f/Ψ и Q_3^* .

5 Потери мощности на трение в смазочном слое как функция расчета элементов подачи смазочного материала

5.1 При условии заполнения смазочным материалом только нагруженной зоны подшипника сила трения F_f в смазочном слое представлена следующим уравнением независимо от расчета элементов подачи смазочного материала:

$$F_f = \frac{\eta_{eff} \omega_h}{\Psi_{eff}} DB \xi \simeq \frac{\eta_{eff} \omega_h}{\Psi_{eff}} DB \frac{f}{\Psi_{eff}} So$$
. (1)

5.2 При условии заполнения смазочным материалом всего смазочного зазора, т.е. нагруженной и ненагруженной зон, с подачей смазочного материала через смазочные отверстия и продольные (осевые) канавки (без смазочных карманов и круговых канавок) силу трения в смазочном слое F_f' определяют по формуле

$$F'_f = \frac{\eta_{eff} \omega_b}{\psi_{eff}} DB \xi' = \frac{\eta_{eff} \omega_h}{\psi_{eff}} DB \frac{f'}{\psi_{eff}} So$$
. (2)

Т а б л и ц а 1 - 3начения характеристик для $\Omega = 360^{\circ}$ и B/D = 1,5

3	β	So	5'14	f/ψ	Q,*
0,2	72,5236	0.4273	7,5992	4,9684	0.0477
0.4	62,6588	1,0005	3,6035	2,6582	0,0935
0.6	51,9692	1.9724	2,2272	1.6695	0.1361
0,8	38,1601	4.6824	1.3653	1.0736	0.1759
0.9	27,961	10,1382	0,9218	0.7604	0,1939
0,925	24,6184	13,8256	0,7906	0.6678	0,198
0.95	19,8007	22,044	0.673	0.5359	0.201
0,975	13,5971	48,8429	0,404	0,3586	0,2036

Т а б л и ц а 2 — Значения характеристик для $\Omega = 360^{\circ}$ и B/D = 1,25

3	β	So	f'/\v	f/ψ	Q3*	
0,2	73,3427	0,341	9,4978	6,2016	0,0444	
0,4	62,6533	0,8155	4,3808	3,2457	0,0876	
0,6	51,3901	1,6715	2,5837	1.9257	0,1287	
0,8	37,2474	4,2107	1,4855	1,1285	0,1679	
0,9	27,2701	9,4621	0,9678	0,7949	0,1860	
0.925	23,9586	13,0839	0.8197	0,6900	0,1901	
0,95	19,3045	21,1271	0,6332	0.5484	0,1936	
0,975	13,3154	47,5332	0,4097	0,3631	0,1959	

Т а б л и ц а 3 — Значения характеристик для $\Omega = 360^{\circ}$ и B/D = 1

3	β	So	j'/ψ	f/\p	Q_3^*
0,2	74,208	0,2492	2,958	8,4489	0,0394
0,4	62,5744	0,611	5,7868	4,2721	0.0785
0,6	50,4545	1,3182	3,2102	2,3761	0,1164
0.8	36,0278	3,5955	1,6915	1,2766	0.1533
0,9	26,3685	8,5203	1.0457	0.8537	0.1708
0,925	23,0726	12,0342	0,8682	0,7275	0,1748
0,95	18,6392	19,799	0,6599	0.5696	0.1783
0,975	12,9388	45.5721		0.371	0.1808

Т а б л и ц а 4-3начения характеристик для $\Omega=360^\circ$ и B/D=0.75

3	β	So	f'/ψ	f/¥	Q3*
0,2	75,022	0,1584	20,3909	13,2372	0,3255
0,4	62,2584	0,3993	8,7606	6.183	0.065
0,6	49,3554	0.9155	4,5167	3.3161	0.0972
0,8	34,5144	2,7848	2,1067	1,5712	0.1292
0,9	25,1887	7,1614	1,1979	0.9696	0,1447
0.925	21.8823	10,4611	0.9627	0.801	0.1483
0.95	17,7393	17,7363	0,7119	0,6114	0,1516
0,975	12,4264	42,3829	0,4384	0.3869	0,153

Т а б л и ц а 5 — Значения характеристик для $\Omega = 360^{\circ}$ и B/D = 0.5

3	β	So	f'/\P	f/Ψ	Q_3^*
0,2	75,8188	0,7788	41,2641	26,8322	0,0233
0,4	61,7628	0,2026	17,0875	12,0101	0,0468
0.6	47,9703	0.4995	8,0837	5,8561	0.0703
0,8	32,9653	1.74	3,2267	2,3698	0.0938
0.9	23,5037	5,1579	1,5768	1,2604	0.1054
0,925	20,3171	7,9168	1,205	0.992	0,1082
0.95	16,5292	14,1757	0.8449	0.7198	0.1107
0,975	11,7164	36,438	0.487	0,415	0.1128

Т а б π и ц а 6 — Значения характеристик для $\Omega = 360^{\circ}$ и B/D = 0.25

ε	β	So	f"/W	f/Ψ	Q3*
0,2	75,8522	0,0209	153,2452	99,5571	0,0123
0.4	61,4843	0.056	61,5567	41,8879	0,0246
0.6	47,4076	0.146	27,1065	18,7058	0.0368
0.8	31,2896	0,6053	8,8577	6,3961	0.0492
0.9	21,5315	2,2037	3,4356	2,6972	0.0553
0.925	18,5306	3,6707	2,3994	1.9424	0.0568
0,95	15,078	7,3466	1,4931	1,2546	0,0582
0,975	10,7792	22,6665	0,7149	0,5632	0.0595

Т а б л и ц а 7 — Значения характеристик для $\Omega = 180^{\circ}$ и B/D = 1.5

3	β	So	f'/W	f/ψ	Q_3^*
0,2	66,6767	0,3781	8,5718	4,5565	0,0385
0.4	54,2395	0.8711	4.0972	2,4424	0.0628
0,6	44,2171	1,7528	2,4496	1,6803	0.0755
0.8	32,582	4,3531	1,4182	1.1391	0.075
0.9	24,256	9.6987	0.9161	0.796	0.0675
0,925	21,5177	13,4451	0.7846	0,6782	0.0632
0.95	18,6557	20,5259	0.6423	0.5495	0.0589
0,975	12,6652	47,2761	0.4059	0.3701	0.0501

T а б л и ц а 8 — Значения характеристик для $\Omega = 180^\circ$ и B/D = 1,25

3	β	So	f'/\	f/Ψ	Q3*
0,2	67,7085	0,3106	10,4155	5,5146	0,0369
0,4	55,2027	0,7326	4,8431	2,8666	0,0615
0,6	44,3642	1,5312	2,7744	1,8931	0.0748
0,8	32,4491	3,9819	1,5296	1,2248	0.0747
0.9	24,0337	9,2279	0,9643	0,822	0.0682
0.925	21,247	12,8584	0.8106	0.7075	0.0642
0.95	18,433	19,9471	0,6549	0,5589	0,0601
0,975	12,3471	46,7535	0,4066	0,3706	0,0507

Т а б л и ц а 9 — Значения характеристик для $\Omega = 180^{\circ}$ и B/D = 1

3	β	So	f'/w	f/Ψ	Q3*
0,2	69,0182	0,2328	13,8683	7,3068	0,0338
0,4	56,4093	0,5601	6,2861	3,6873	0,0575
0,6	44,589	1,2448	3,3652	2,2797	0,0729
0,8	32,3681	3,4514	1,7312	1,3799	0.0735
0,9	23,7701	8,4037	1,039	0,9061	0,0679
0,925	20,8981	11,9405	0,8574	0,7446	0.064
0,95	18,1351	18,5775	0,691	0,5894	0,0601
0,975	11,9017	45,771	0,4094	0,3754	0,0513

Т а б л и ц а 10 — Значения характеристик для $\Omega = 180^{\circ}$ и B/D = 0.75

ε	β	So	J'/4	f/ψ	0,*
0,2	70,5349	0,1513	21,2824	11,1513	0,0289
0,4	57,8558	0,381	9,1663	5,3207	0,0513
0,6	45,0124	0,8883	4,6328	3,1078	0,066
0,8	32,3128	2,6987	2,154	1,705	0,0698
0,9	23,3367	7,1375	1,188	1,0322	0,0649
0,925	20,4384	10,4252	0.9546	0,8278	0,0617
0,95	17,5793	16,7465	0,7469	0,639	0,058
0,975	11,2948	43,5128	0,4204	0,3801	0,0513

Т а б л и ц а 11 - 3начения характеристик для $\Omega = 180^{\circ}$ и B/D = 0.5

3	β	So	f'/w	f/w	Q3*
0,2	72,2939	0,0747	43,0117	22,4028	0,0213
0,4	58,1928	0,2002	17,2897	9,961	0,0394
0,6	45,6971	0,49	8,2284	5,4518	0,0522
0,8	315756	1,7222	3,2498	2,5502	0,0573
0.9	22,246	5,1676	1,5666	1,3352	0.0547
0,925	19,7514	7,8436	1,2104	1,039	0,053
0.95	16,5935	13,852	0,862	0,7419	0,0508
0,975	10,7691	38,055	0,4601	0,412	0,0451

Т а б л и ц а 12 - 3начения характеристик для $\Omega = 180^{\circ}$ и B/D = 0.25

e	β	So	f'/\\	<i>j</i> /\w	Q_3^*
0,2	73,9364	0,019	169,0777	87,6215	0.011
0.4	59,6743	0,0537	64,0354	36,5135	0,0214
0,6	45,5631	0,1465	27,0145	16,9891	0.0295
8.0	30,5214	0.6054	8.8522	6.0472	0.0339
0.9	21,4482	2.1725	3.4821	2,7036	0.0334
0.925	19,5175	3,4617	2,543	2.0119	0.0332
0.95	14.9385	7,3485	1,4916	1.2603	0.0321
0,975	9,4617	23,4266	0,6837	0.5668	0,0299

Т а б л и ц а 13 — Значения характеристик для $\Omega = 150^{\circ}$ и B/D = 1,5

3	β	So	f'/\	f/Ψ	Q3*
0,2	61,7703	0,3058	10,5742	4,7678	0,3288
0,4	47,9337	0.738	4,7933	2,489	0,0445
0,6	39,8508	1,5547	2,7181	1,6599	0,0521
0,8	30,2152	4,0616	1,4905	1,1082	0.0501
0,9	23,4459	9,2073	0,9618	0,7712	0,0437
0,925	20,432	13,0508	0,7949	0,6551	0.0403
0,95	17,262	20,5699	0,6301	0,525	0,0365
0,975	12,396	46,5565	0,4083	0,35	0,0325

Т а б л и ц а 14 - 3начения характеристик для $\Omega = 150^{\circ}$ и B/D = 1,25

ε	β	So	<i>f'</i> /ψ	f/Ψ	Q3*
0,2	62,7765	0,2588	12,4784	5,604	0,0283
0,4	48,8773	0.6374	5,5282	2,8501	0.0445
0,6	40,2801	1,3806	3,0383	1,8436	0.0526
0.8	30,2311	3,7472	1,5987	1,1844	0,0509
0.9	23,4326	8,6906	1,0083	0.8002	0.0447
0.925	20,2954	12,4741	0.8232	0.6805	0.0413
0.95	17,1592	19,8337	0,6474	0,5425	0.0375
0,975	12,2987	45,3826	0.4154	0.3705	0.0334

Т а б л и ц а 15 - 3начения характеристик для $\Omega = 150^{\circ}$ и B/D = 1

3	β	So	f'/\P	f/Ψ	Q_3^*
0,2	64,1708	0,2022	15,9459	7,1228	0,0268
0,4	50,1904	0,5099	6,8759	3,51	0.0434
0,6	41,1351	1,1434	3,6318	2,1757	0,0526
0,8	30,2445	3,2967	1,7897	1,3189	0.0511
0.9	22,9634	8,0787	1,0677	0,8862	0.045
0,925	20,115	11,5986	0,8719	0,7488	0.0419
0,95	16,9465	18,7837	0,6741	0,5636	0.0383
0,975	12,1844	43,3026	0,4294	0,376	0.0339

Т а б л и ц а 16 - 3начения характеристик для $\Omega = 150^{\circ}$ и B/D = 0.75

3	β	So	f'/\	f/Ψ	Q_3^*
0,2	65,9611	0,1367	23,5537	10,4496	0,0238
0,4	519963	0,3561	9,7827	4,9274	0,04
0,6	42,1174	0,8372	4,8918	2,8877	0.05
0.8	30,6367	2,6068	2,211	1,6154	0.0497
0.9	22,6695	6.9438	1,2114	1,0008	0,0443
0,925	19,8534	10,1662	0,9704	0,8155	0,0415
0.95	16,6812	16,9409	0,7302	0,608	0,0382
0,975	11,9044	40,5953	0.4488	0,3809	0.0337

ГОСТ ИСО 7902-2-2001

Т а б л и ц а 17 - 3начения характеристик для $\Omega = 150^{\circ}$ и B/D = 0.5

3	β	So	ſ'/ ∀	f/ψ	Q3*
0,2	67,9821	0,0706	45,4882	20,0289	0,0184
0,4	54,2896	0,1899	18,2097	9,0211	0,0323
0,6	43,0078	0,4775	8,4291	4,9152	0,0412
0,8	30,3047	1,6927	3,2951	2,3785	0.0431
0.9	22,1859	5,0335	1,6018	1,293	0,0402
0,925	19,66	7,5834	1,246	1,022	0.0385
0.95	16,3781	13,2552	0,8946	0,7383	0,0361
0,975	11,4673	34,9703	0,5012	0,4245	0,0317

Т а б л и ц а 18 — 3начения характеристик для $\Omega = 150^{\circ}$ и B/D = 0.25

ε	β	So	1"/14	f/Ψ	Q,*
0,2	70,1417	0.0185	173,6574	75,8912	0,0099
0,4	56,4804	0.0529	65,0018	31,7011	0.0185
0,6	43,9464	0.1447	27,351	15,6846	0.0248
0.8	29,8093	0,6008	8,9143	6,3433	0.0269
0.9	21,2152	2,1539	3,509	2,6112	0.0259
0.925	18,3268	3.5871	2,4504	1.9114	0.0251
0,95	15,8538	6,8272	1,6035	1,2701	0.0244
0,975	10,7917	21,4295	0,751	0,6315	0.0221

Т а б л и ц а 19— Значения характеристик для $\Omega = 120^{\circ}$ и B/D = 1,5

3	β	So	f'/w	1/W	Q3*
0,2	56,6763	0,2196	14,6822	5,3943	0.0195
0.4	42,0362		6,3258	2,7433	0,0284
0,6	34,5662	1,2672	3,2692	1,7133	0,0335
0.8	27,0973	3,6108	1,6323	1,0858	0.0308
0,9	21,2301	8,7261	0.9889	0.768	0,0254
0,925	19,1732	12,2582	0,8264	0,6673	0,0235
0,95	16,2459	19,7605	0,642	0,5148	0,0209
0,975	12,5263	42,6121	0,4375	0,3537	0,0181

Т а б л и ц а 20 — Значения характеристик для $\Omega = 120^{\circ}$ и B/D = 1,25

3	β	So	f'/\	.f/ψ	Q_3^*
0,2	58,2103	0,1848	17,4382	6.3717	0,0191
0.4	42,953	0,4869	7,1767	3,0911	0,0287
0,6	35,0689	1,1449	3,6023	1,8732	0,0338
8,0	27,2067	3,3665	1,7382	1,1514	0,0313
0,9	21,2163	8,3078	1,0304	0.7984	0,0263
0,925	19,0681	11,7869	0,8526	0,6911	0,0243
0,95	16,1962	19,0952	0,6594	0.5305	0,0223
0,975	12,4971	41,1775	0,4488	0.3751	0,0189

Т а б π и ц а 21 - 3начения характеристик для $\Omega = 120^{\circ}$ и B/D = 1

3	β	So	f'/\pi	f/Ψ	Q3*
0,2	59,3987	0,153	21,0369	7,6506	0,0188
0,4	44,1285	0,4075	8,5506	3,6497	0,0288
0,6	35,8837	0,9779	4,1915	2,1578	0,0336
0,8	27,36	3,0094	1,9237	1,2665	0.0316
0,9	21,2549	7,6581	1,1043	0,8525	0,027
0,925	18,9981	11,0222	0,9007	0,7282	0,0251
0.95	16,1452	18,0536	0,6894	0.5418	0,0225
0,975	12,4702	39,7924	0,4606	0,3896	0,0197

Т а б л и ц а 22 — Значения характеристик для $\Omega = 120^{\circ}$ и B/D = 0.75

ε	β	So	f'/\psi	f/Ψ	Q,*
0,2	61,3045	0,1102	29,1962	10,5409	0,0175
0.4	45,8179	0.301	11,5302	4.8583	0.0277
0.6	37,1249	0,7471	5,4372	2,7565	0.0328
0.8	27,9978	2,4401	2,3336	1,5185	0.0318
0.9	21,1836	6,6561	1.2454	0.9561	0.0273
0.925	18,9015		0.9969	0.7665	0.0255
0.95		16,4057	0.744	0.5905	0.0229
0.975	12,3551	37,1528	0.4849	0.401	0.0202

Т а б л и ц а 23 — Значения характеристик для $\Omega = 120^{\circ}$ и B/D = 0.5

3	β	So	f'/Ψ	f/Ψ	Q3*
0,2	63,7072	0,0611	52,602	18,8173	0,0144
0,4	48,3597	0,1713	20,1556	8,3305	0,0238
0,6	39,0125	0,4446	9,0214	4,4692	0,0295
0,8	27,961	1,6413	3,3776	2,1664	0,0297
0.9	20,9013	4,9561	1,6148	1,2272	0,0263
0,925	18,9454	7,4106	1,2659	0,9624	0.025
0.95	15,6856	13,2503	0.8878	0,6913	0.0227
0,975	11,9048	31,9505	0,5481	0,4365	0,0199

Т а б л и ц а 24 - 3начения характеристик для $\Omega = 120^{\circ}$ и B/D = 0.25

з	β	Sa	f'/Ψ	f/ψ	Q_3^*
0,2	66,2399	0,0169	190,0235	67,3268	0,0082
0,4	51,432	0,0507	67,7051	27,357	0.0148
0,6	41,1596	0,1387	28,5117	13,7269	0.019
0,8	28,6466	0.5892	9,0777	5,6831	0.0199
0,9	20,7885	2,1244	3,5523	2,5177	0.0185
0,925	17,9741	3,5485	2,4728	1,8782	0,0176
0,95	14,8377	7,0378	1,5512	1,1951	0.0165
0,975	11,0159	20,7702	0,7739	0,6091	0.0153

Т а б л и ц а 25 — Значения характеристик для $\Omega = 90^{\circ}$ и B/D = 1,5

3	β	So	f'/w	f/Ψ	Q3*
0,2	53,3402	0,1176	27,355	7,6276	0,0114
0,4	37,1665	0,3301	10,5034	3,54	0,0159
0,6	28,9167	0,8642	4,6881	1.9758	0,0174
0.8	23,2037	2,8817	1,9746	1,1041	0.0151
0,9	18,8315	7,6366	1,089	0,7487	0,0125
0,925	17,1845	11,0261	0,8865	0,6235	0.0115
0,95	14,9265	18,2683	0,6731	0,5097	0,0105
0,975	11,5294	40,8914	0,4432	0,3541	0,0097

Т а б л и ц а ~26-~ Значения характеристик для $~\Omega = 90^\circ$ и ~B/D = 1,25

3	β	So	So f'/\ f/\ Q		Q3*
0,2	54,1165	0,1069	30,0617	8,3605	0,0115
0,4	37,6101	0,3074	11,266	3,786	0,0161
0,6	29,1984	0,8008	5,05	2,1145	0,0178
0,8	23,3782	2,719	2,0844	1,1605	0,0158
0,9	18,857	7,3176	1,1304	0,7752	0,0131
0,925	17,2396	10,5982	0,9172	0,6451	0,0121
0.95	14,908	17,5885	0,6942	0.519	0.011
0,975	11,5117	39,9392	0,4513	0,3601	0,0099

Т а б л и ц а 27 - 3начения характеристик для $\Omega = 90^{\circ}$ и B/D = 1

ε	β	So	f'/W f/4		Q3*
0,2	55,8145	0.0893	35,9792	9,9463	0,0112
0,4	38,6932	0,266	13,0103	4,335	0.0163
0.6	29,8006	0,7105	5,6762	2,3567	0,0183
0,8	25,6536	2,4774	2,274	1,2576	0,0165
0,9	19,043	6,803	1,2062	0,8233	0.0138
0,925	17,2021	10,0115	0,9626	0,6735	0,0126
0,95	14,9196	16,8158	0,7206	0,5377	0,0115
0,975	11,4801	38,4785	0,4645	0,3699	0.0103

Т а б л и ц а 28 — Значения характеристик для $\Omega = 90^{\circ}$ и B/D = 0.75

3	β	So	<i>f'</i> /ψ	f/ψ	Q3*
0,2 0,4	56,9444	0,0724	44,3583	12,2068	0,0109
0,4	40,2697	0,2094	16,4973	5,4332	0,0163
0,6	30,87	0,5746	6,9886	2,8638	0,0185
0,8	24,1523	2,0933	2,6649	1,4568	0.0171
0,9	18,9534	6,0576	1,336	0,9064	0,0143
0.925	17,1651	9,0204	1,0531	0,7373	0.0132
0.95	14,8237	15,3757	0,7759	0.578	0,0117
0,975	11,44	36,0784	0,488	0,3878	0,0103

Т а б л и ц а 29-3начения характеристик для $\Omega=90^\circ$ и B/D=0.5

3	β	So	f'/\	f/Ψ	Q3*
0,2	59,758	0,0436	73,56	20,0318	0.0096
0,4	42,7063	0,132	26,0987	8,4393	0,0151
0,6	32,766	0,3731	10,6866	4,2761	0,0176
0,8	24,8677	1,4685	3,7338	2,0008	0,0168
0,9	19,1302	4,6261	1,7054	1,1418	0,0143
0,925	17,1373	7,1405	1,2942	0,8704	0.0132
0.95	14,7154	12,6882	0.9136	0,6752	0,0118
0,975	11,2711	31,5255	0,5438	0,4308	0,0103

Т а б л и ц а 30 — 3начения характеристик для $\Omega = 90^{\circ}$ и B/D = 0.25

ε	β	So	f'/ψ	f/ψ	Q_3^*
0,2	62,8374	0,0137	234,8592	63,2038	0,0061
0,4	46,1719	0,0435	79,0197	24,8942	0,0103
0.6	35,8747	0,1276	30,9565	11,9186	0,0129
0,8	26,2754	0,5626	9,484	4,9014	0,013
0,9	19,4224	2,0827	3,6103	2,286	0,0114
0,925	17,2907	3,434	2,5451	1,6958	0,0108
0.95	14,5522	6,8003	1,5989	1,1093	0,0099
0.975	10,663	20,2802	0,7873	0,5875	0,0087

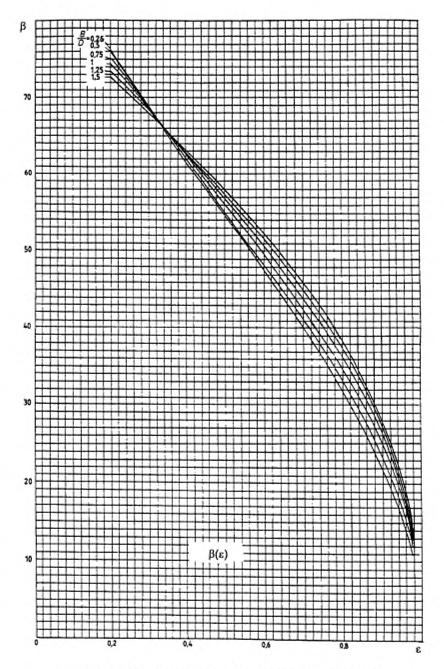


Рисунок 1 — Угол линии центров β как функция относительного экспентриситета ϵ для $\Omega=360^{\circ}$

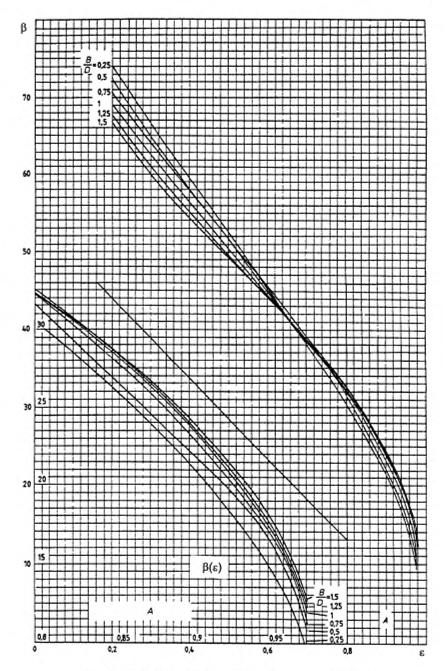


Рисунок 2 — Угол линии центров β как функция относительного экспентриситета ϵ для $\Omega=180^\circ$

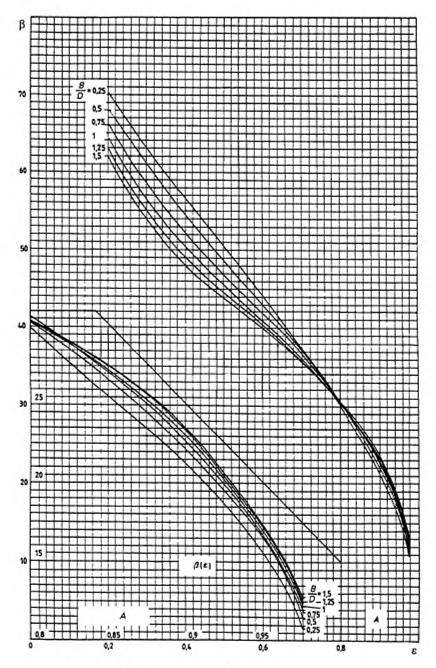


Рисунок 3 — Угол линии центров β как функция относительного экспентриситета ϵ для $\Omega=150^\circ$

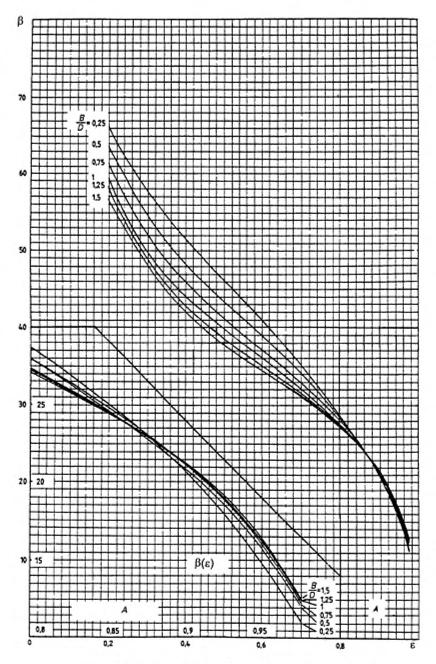


Рисунок 4 — Угол линии центров β как функция относительного экспентриситета ϵ для $\Omega=120^\circ$

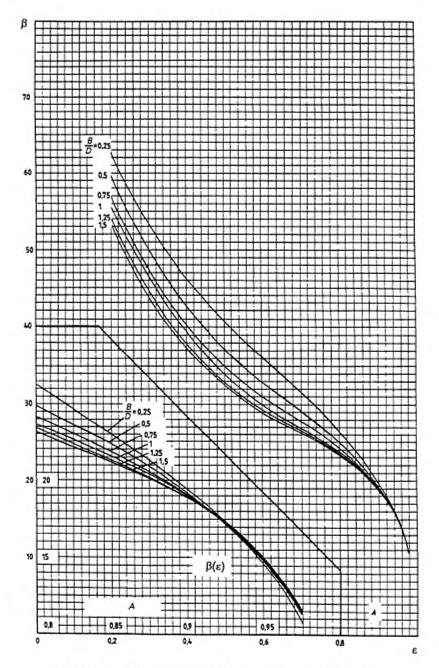


Рисунок 5 — Угол линии центров β как функция относительного эксцентриситета ϵ для $\Omega=90^\circ$

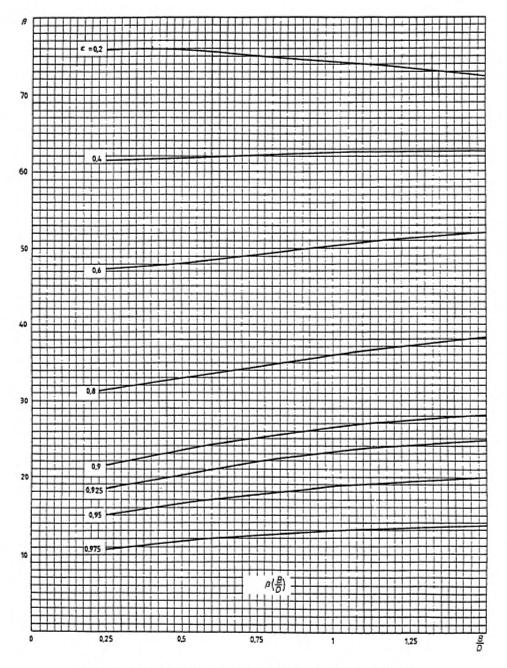


Рисунок 6 — Угол линии центров β как функция относительной длины подшипника B/D для $\Omega = 360^\circ$

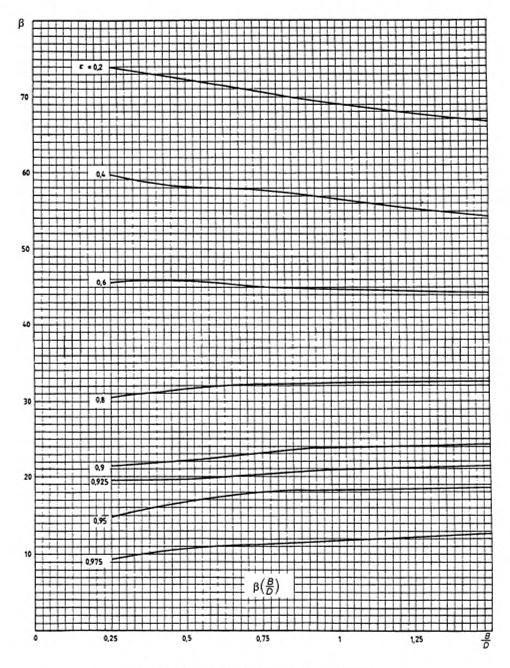


Рисунок 7 — Угол линии центров β как функция относительной длины B/D для $\Omega = 180^{\circ}$

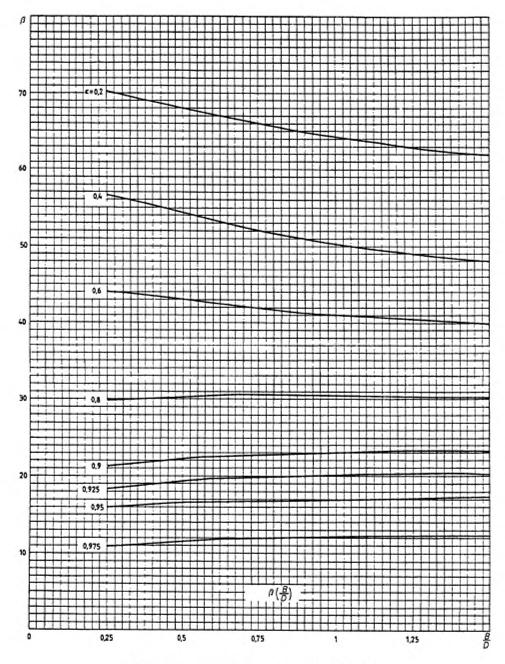


Рисунок 8 — Угол линии центров β как функция относительной длины B/D для $\Omega=150^\circ$

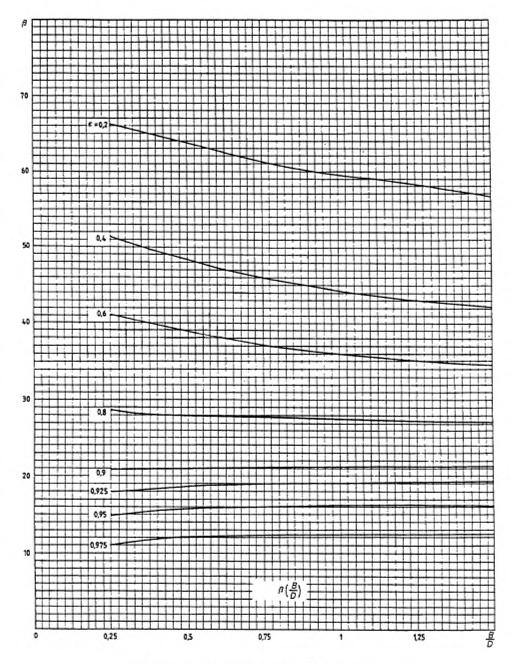


Рисунок 9 — Угол линии центров β как функция относительной длины B/D для $\Omega=120^\circ$

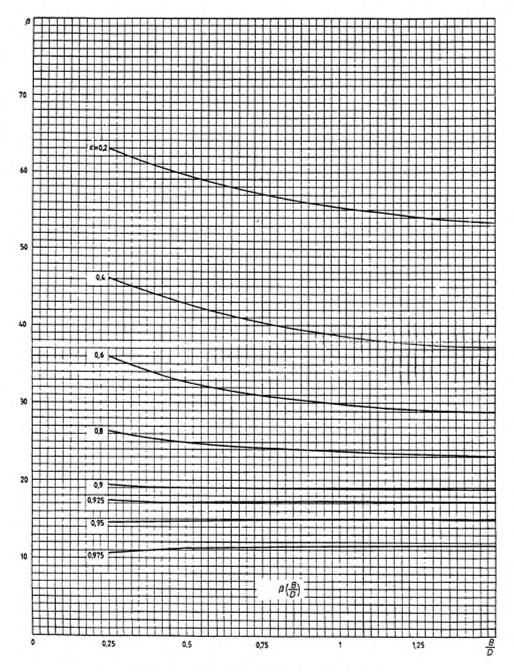


Рисунок 10 — Угол линии центров β как функция относительной длины B/D для $\Omega = 90^{\circ}$

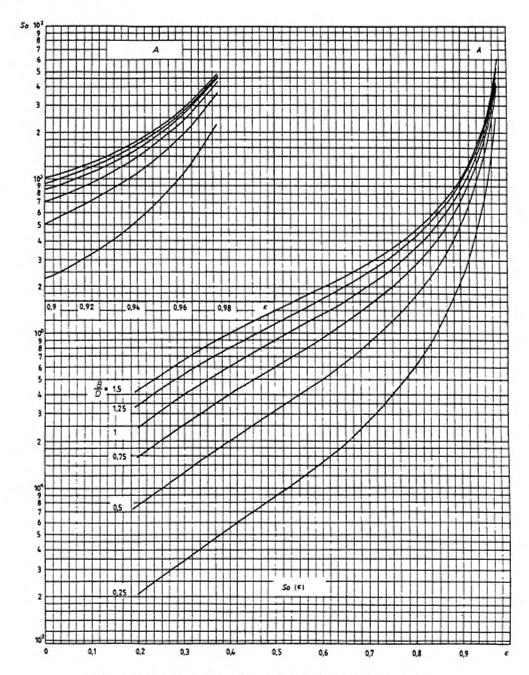


Рисунок 11 — Число Зоммерфельда $S_{\rm o}$ как функция относительного эксцентриситета ε для $\Omega=360^{\circ}$

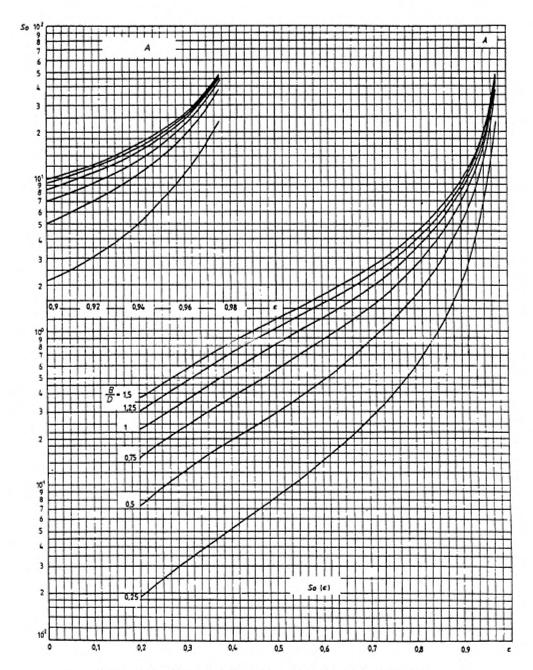


Рисунок 12 — Число Зоммерфельда S_o как функция относительного эксцентриситета ε для $\Omega=180^\circ$

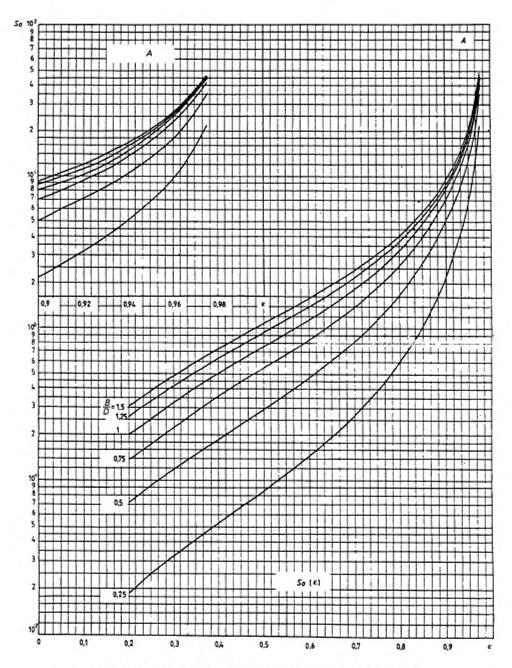


Рисунок 13 — Число Зоммерфельда S_o как функция относительного экспентриситета ε для $\Omega=150^\circ$

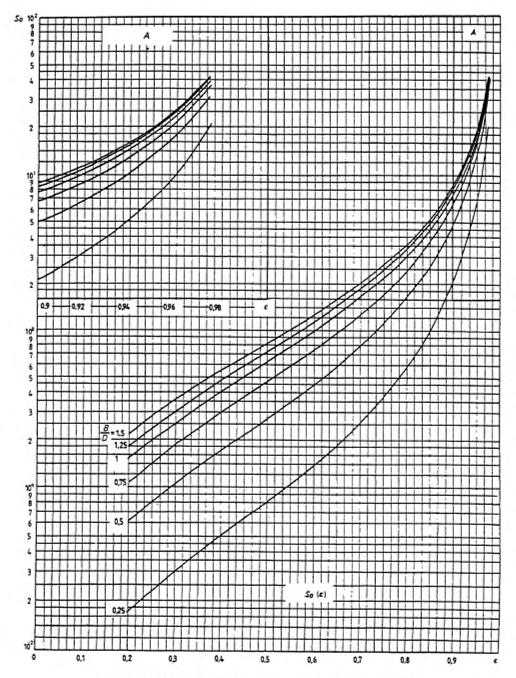


Рисунок 14 — Число Зоммерфельда S_o как функция относительного экспентриситета ε для $\Omega=120^\circ$

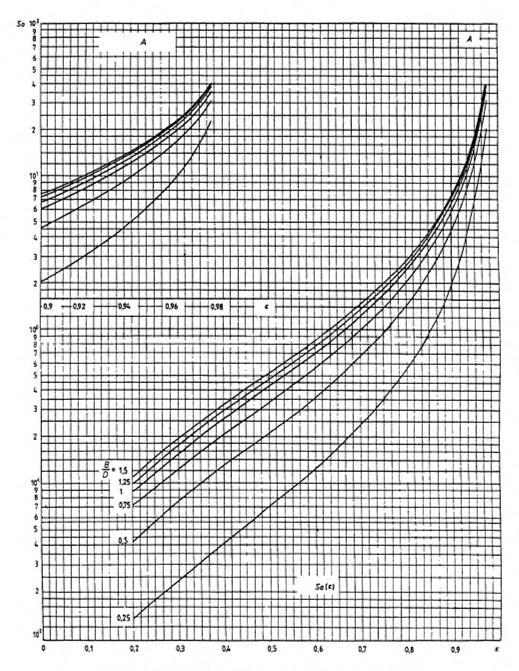


Рисунок 15 — Число Зоммерфельда S_o как функция относительного эксцентриситета ϵ для $\Omega=90^\circ$

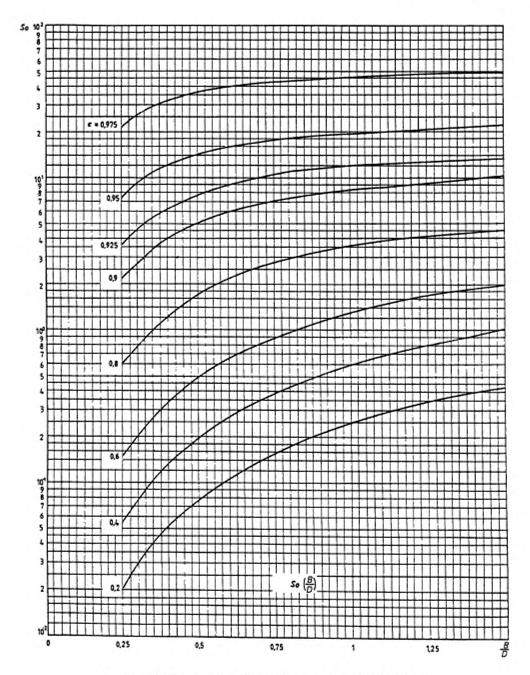


Рисунок 16 — Число Зоммерфельда S_o как функция относительной длины подшипника B/D для $\Omega=360^\circ$

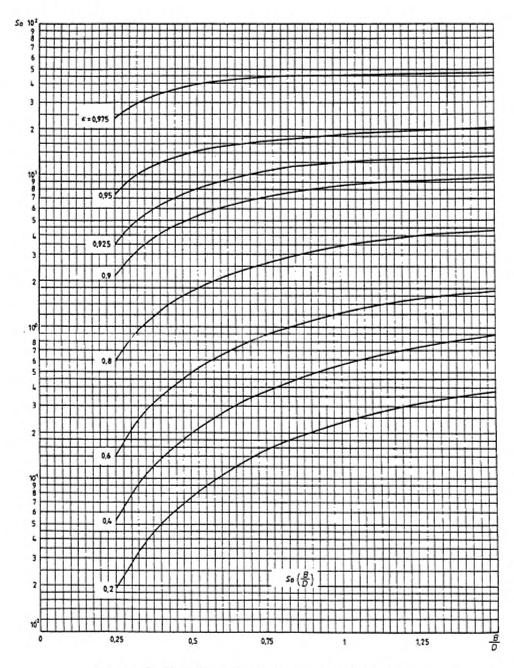


Рисунок 17 — Число Зоммерфельда S_o как функция относительной длины подшипника B/D для $\Omega=180^\circ$

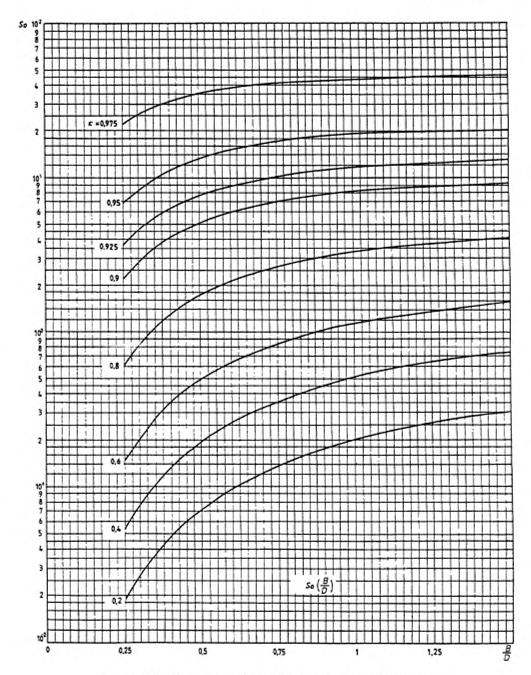


Рисунок 18 — Число Зоммерфельда S_o как функция относительной длины подшипника B/D для $\Omega=150^\circ$

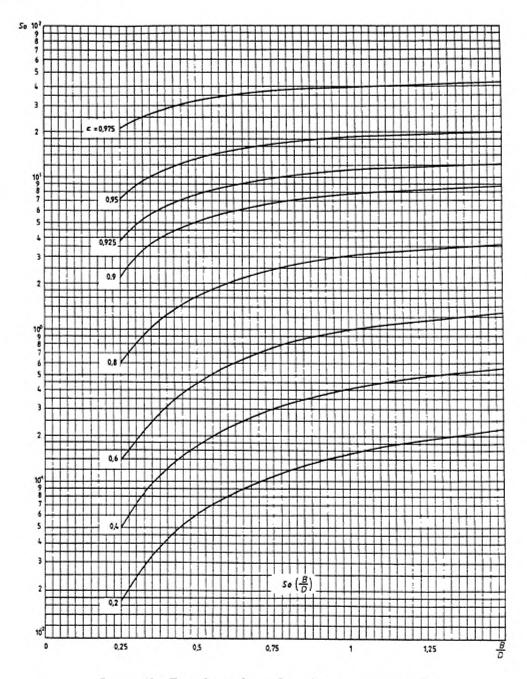


Рисунок 19 — Число Зоммерфельда S_o как функция относительной длины подшипника B/D для $\Omega=120^\circ$

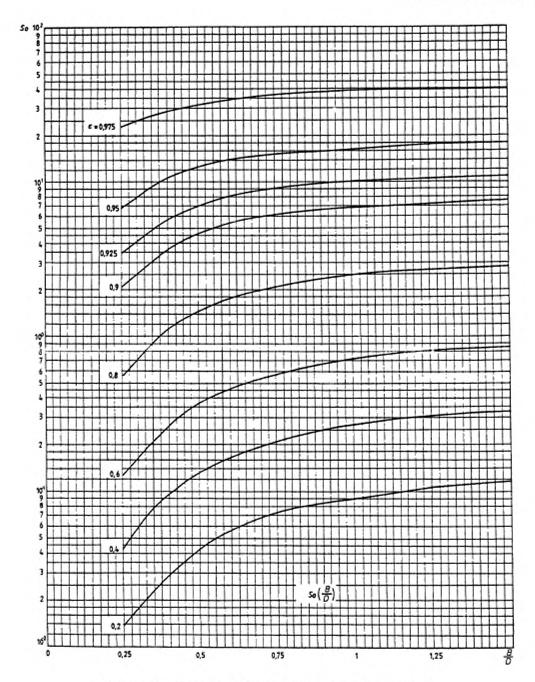


Рисунок 20 — Число Зоммерфельда S_o как функция относительной длины подшипника B/D для $\Omega=90^\circ$

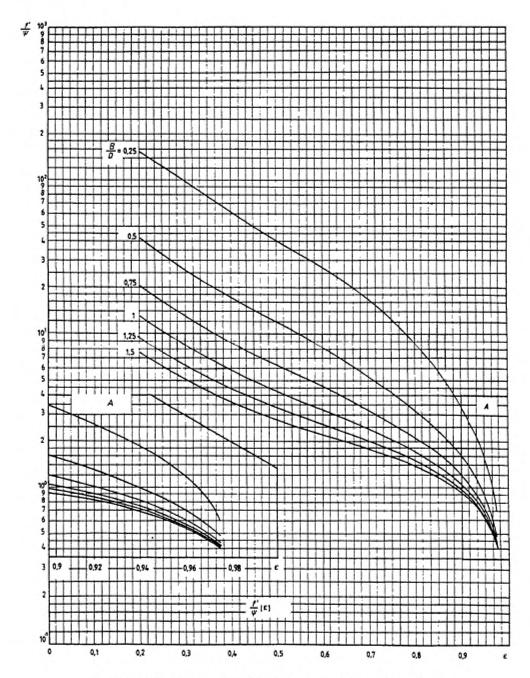


Рисунок 2I — Удельный коэффициент трения f'/ψ как функция относительного эксцентриситета є для $\Omega=360^\circ$

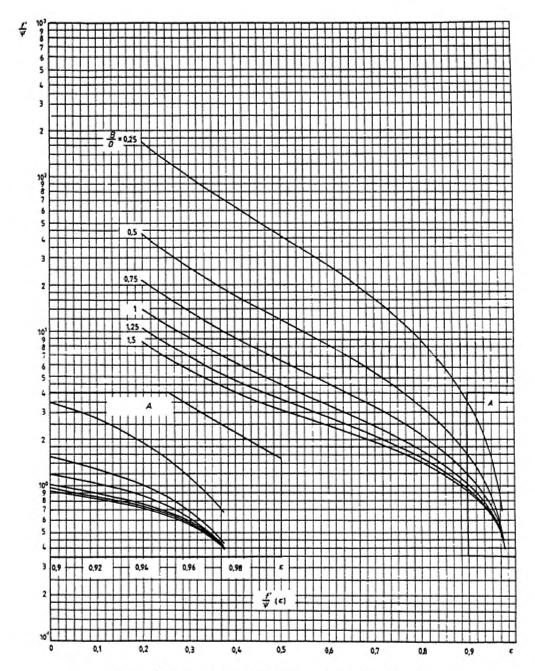


Рисунок 22 — Удельный коэффициент трения f'/ψ как функция относительного эксцентриситета в для $\Omega=180^\circ$

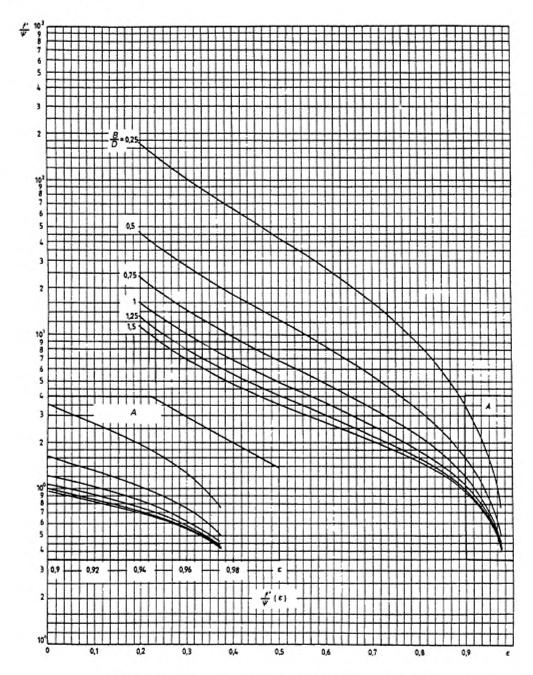


Рисунок 23 — Удельный коэффициент трения f'/ψ как функция относительного эксцентриситета в для $\Omega=150^\circ$

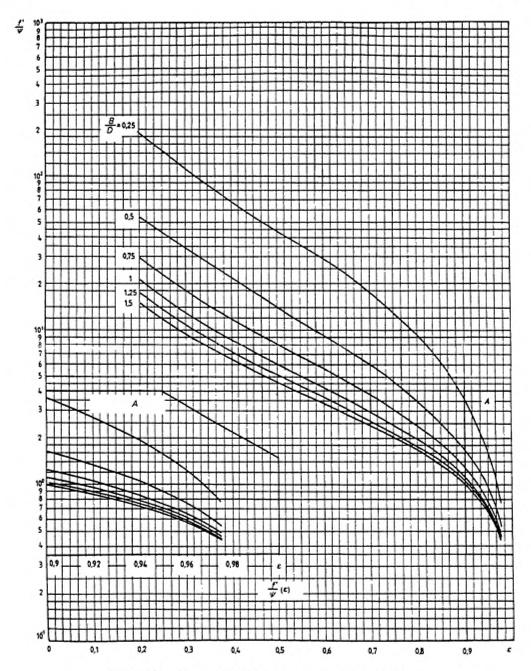


Рисунок 24 — Удельный коэффициент трения f'/ψ как функция относительного эксцентриситета є для $\Omega=120^\circ$

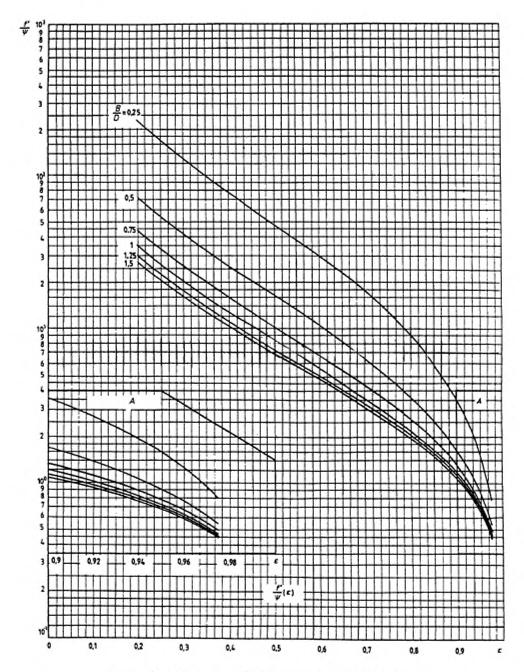


Рисунок 25 — Удельный коэффициент трения f'/ψ как функция относительного экспентриситета ϵ для $\Omega=90^\circ$

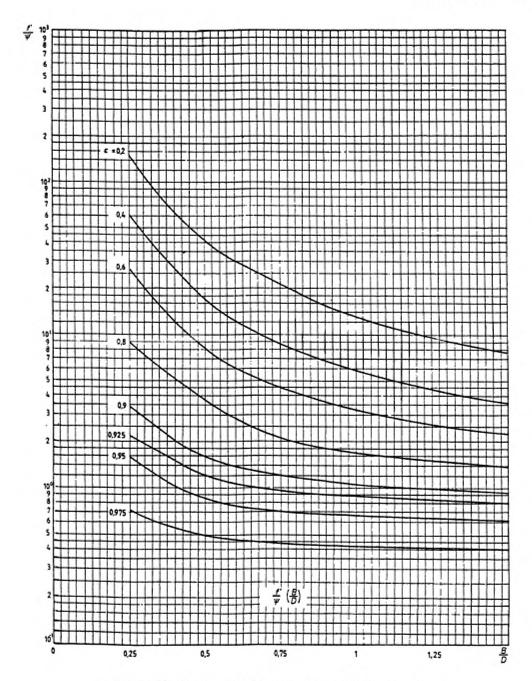


Рисунок 26 — Удельный коэффициент трения f'/ψ как функция относительной длины подшипника B/D для $\Omega=360^\circ$

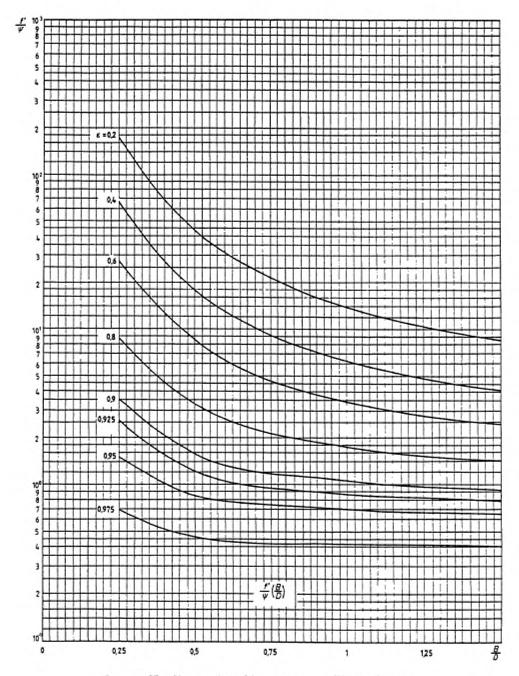


Рисунок 27 — Удельный коэффициент трения f'/ψ как функция относительной длины подшипника B/D для $\Omega=180^\circ$

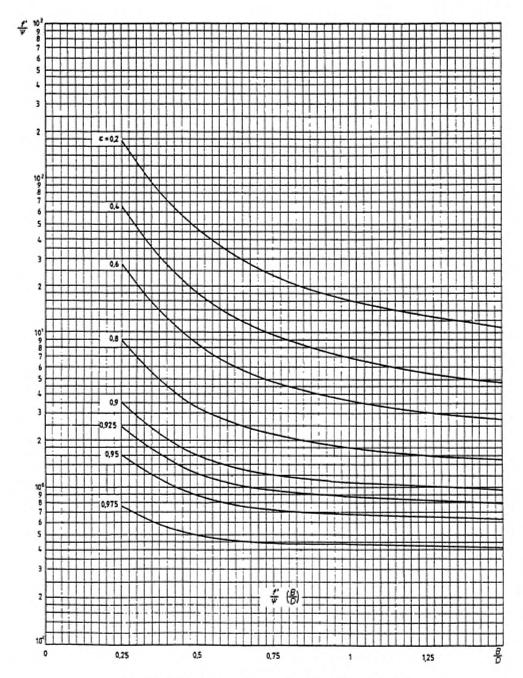


Рисунок 28 — Удельный коэффициент трения f'/ψ как функция относительной длины подшипника B/D для $\Omega=150^\circ$

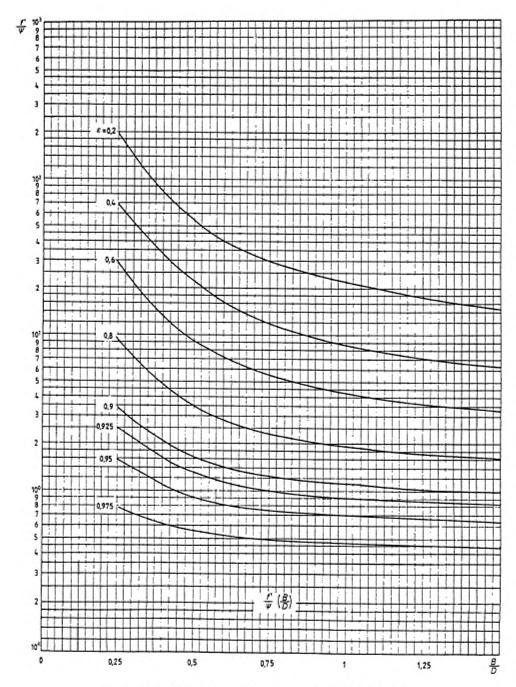


Рисунок 29 — Удельный коэффициент трения f'/ψ как функция относительной длины подшипника B/D для $\Omega=120^\circ$

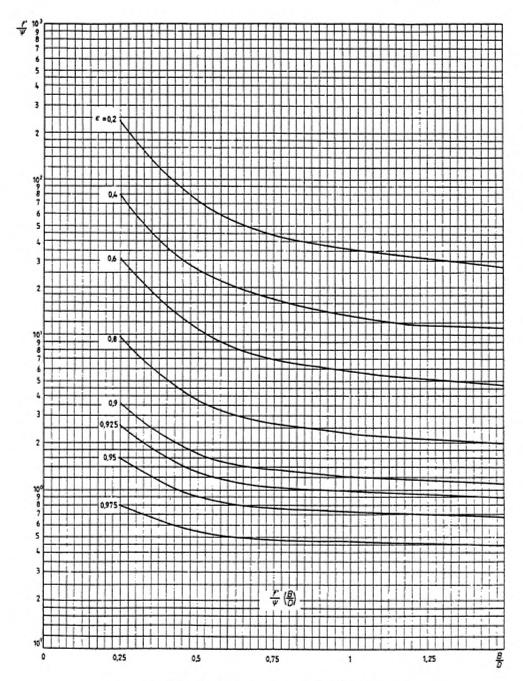


Рисунок 30 — Удельный коэффициент трения f'/ψ как функция относительной длины подшипника B/D для $\Omega=90^\circ$

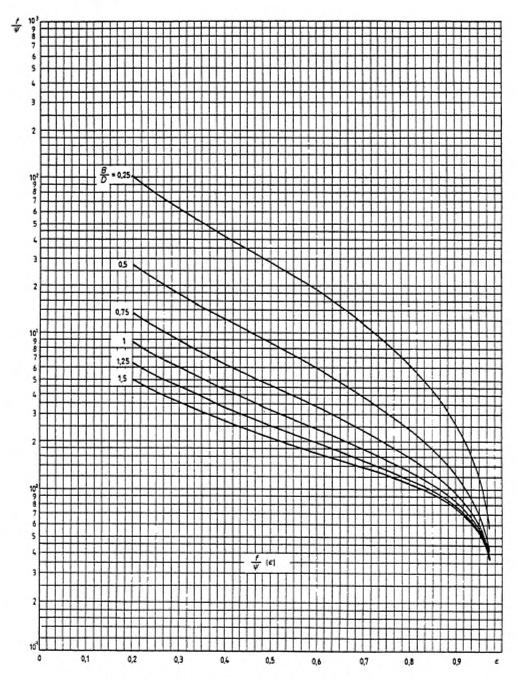


Рисунок 31 — Удельный коэффициент трения f/ψ как функция относительного эксцентриситета ϵ для $\Omega=360^\circ$

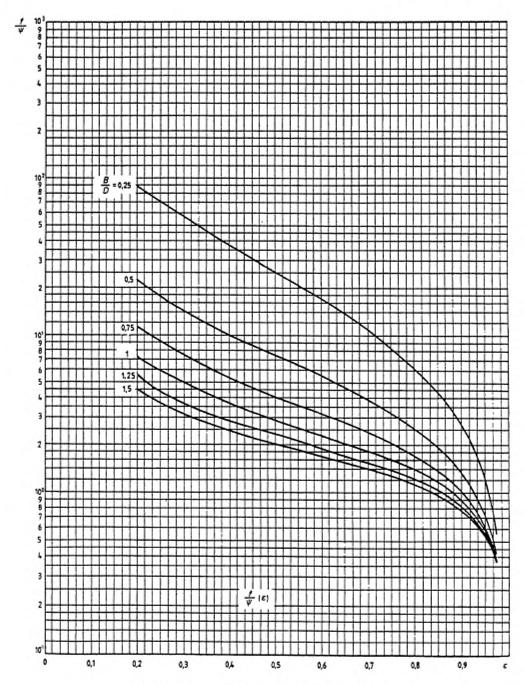


Рисунок 32 — Удельный коэффициент трения f/ψ как функция относительного эксцентриситета в для $\Omega=180^\circ$

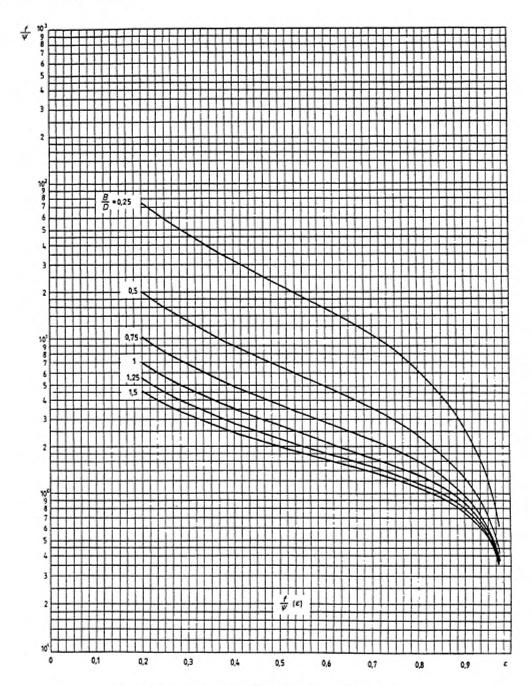


Рисунок 33 — Удельный коэффициент трения f/ψ как функция относительного эксцентриситета ϵ для $\Omega=150^{\circ}$

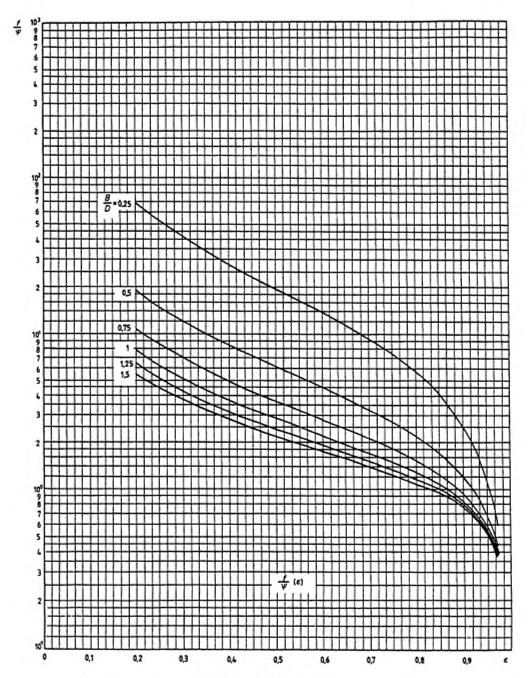


Рисунок 34 — Удельный коэффициент трения f/ψ как функция относительного эксцентриситета ε для $\Omega=120^\circ$

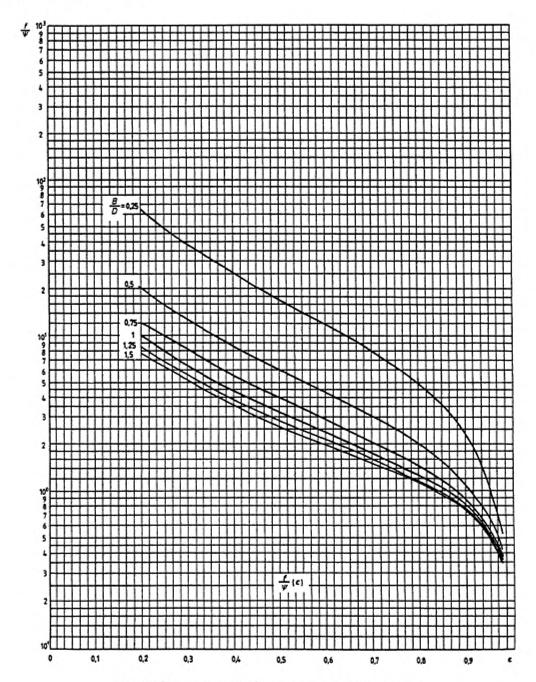


Рисунок 35 — Удельный коэффициент трения f/ψ как функция относительного эксцентриситета ϵ для $\Omega=90^\circ$

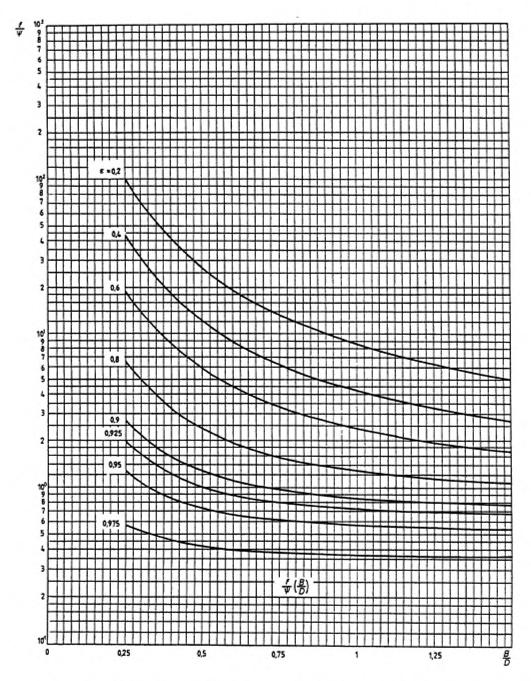


Рисунок 36 — Удельный коэффициент трения f/ψ как функция относительной длины подшипника B/D для $\Omega=360^\circ$

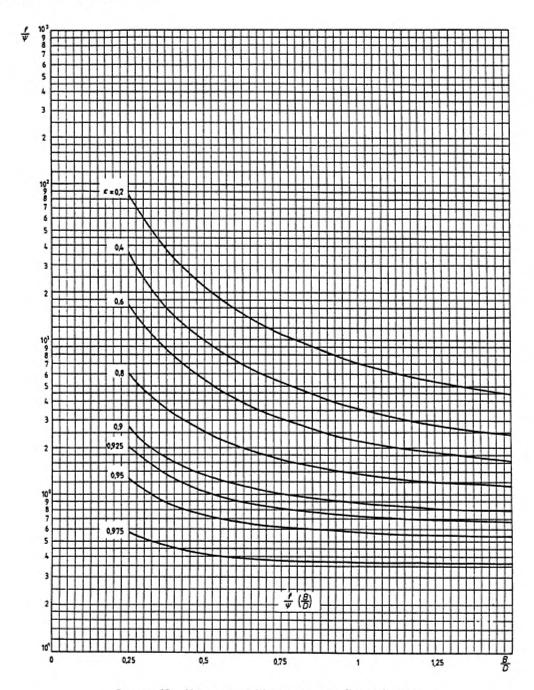


Рисунок 37 — Удельный коэффициент трения f/ψ как функция относительной длины подшипника B/D для $\Omega=180^\circ$

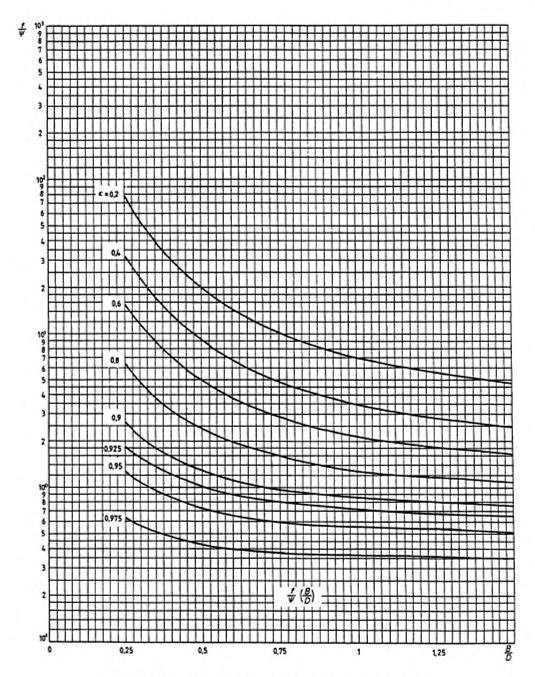


Рисунок 38 — Удельный коэффициент трения f/ψ как функция относительной длины подшипника B/D для $\Omega=150^\circ$

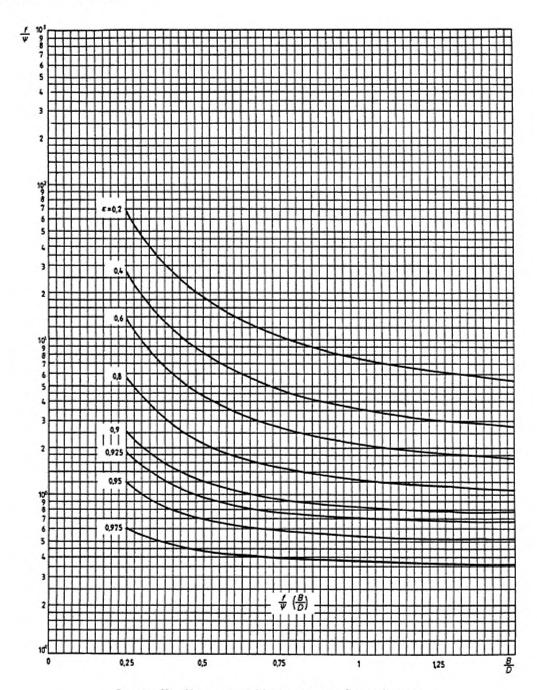


Рисунок 39 — Удельный коэффициент трения f/ψ как функция относительной длины подшипника B/D для $\Omega=120^\circ$

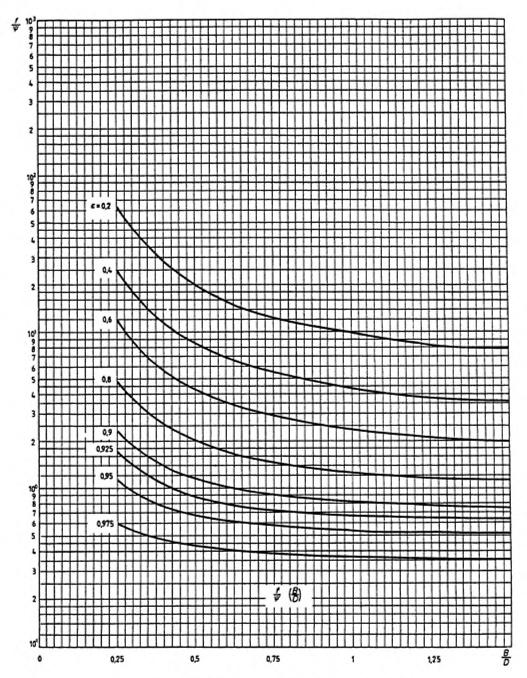


Рисунок 40 — Удельный коэффициент трения f/ψ как функция относительной длины подшипника B/D для $\Omega=90^\circ$

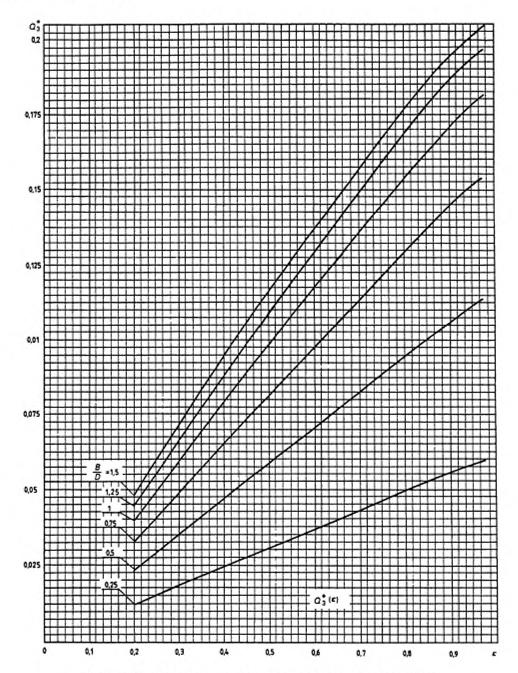


Рисунок 41 — Параметр расхода смазочного материала Q_3^* как функция относительного эксцентриситета ϵ для $\Omega=360^\circ$

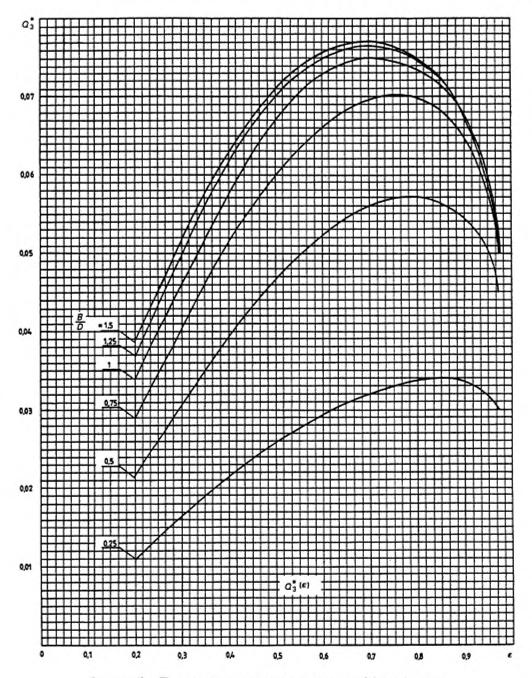


Рисунок 42 — Параметр расхода смазочного материала Q_3^* как функция относительного эксцентриситета ϵ для $\Omega=180^\circ$

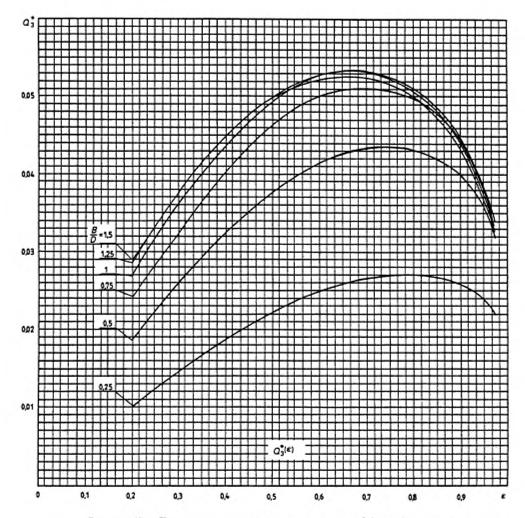


Рисунок 43 — Параметр расхода смазочного материала Q_3^* как функция относительного эксцентриситета ϵ для $\Omega=150^\circ$

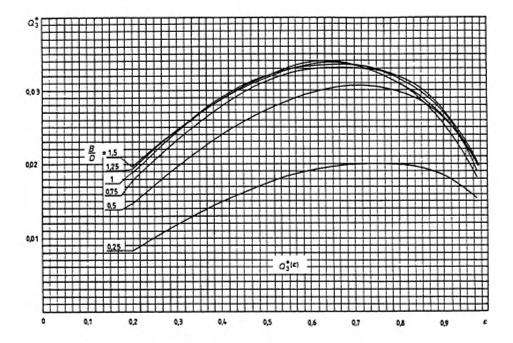


Рисунок 44 — Параметр расхода смазочного материала Q_3^* как функция относительного эксцентриситета ϵ для $\Omega=120^\circ$

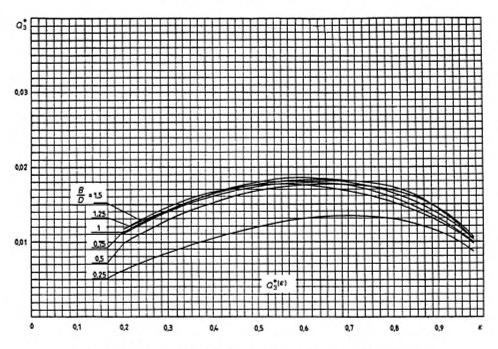


Рисунок 45 — Параметр расхода смазочного материала Q_3^* как функция относительного эксцентриситета ε для $\Omega=90^\circ$



Рисунок 46 — Параметр расхода смазочного материала Q_3^* как функция относительной длины подшипника B/D для $\Omega=360^\circ$

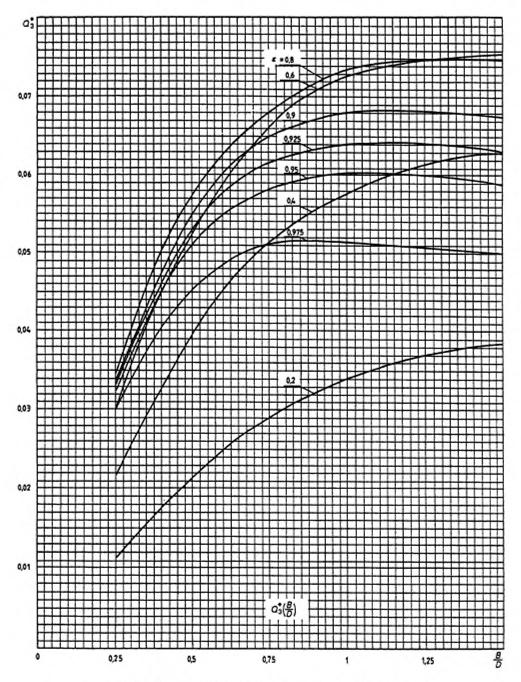


Рисунок 47 — Параметр расхода смазочного материала Q_3^* как функция относительной длины подшипника B/D для $\Omega=180^\circ$

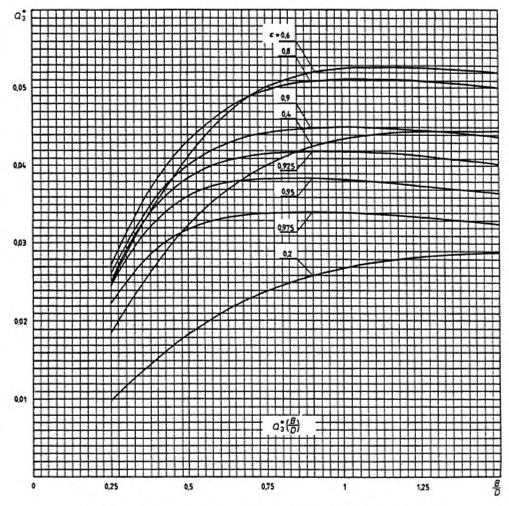


Рисунок 48 — Параметр расхода смазочного материала Q_3^* как функция относительной длины подшипника B/D для $\Omega=150^\circ$

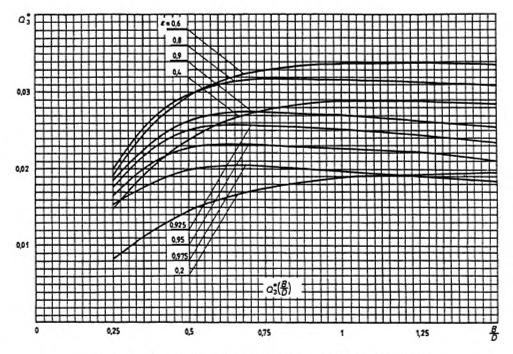


Рисунок 49 — Параметр расхода смазочного материала Q_3^* как функция относительной длины подшипника B/D для $\Omega=120^\circ$

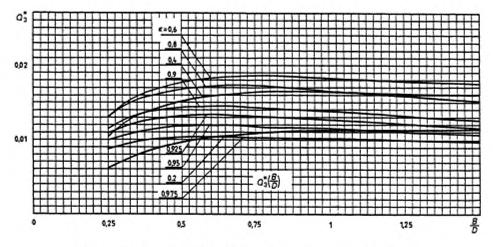


Рисунок 50 — Параметр расхода смазочного материала Q_3^* как функция относительной длины подшипника B/D для $\Omega=90^\circ$

5.3 При условии заполнения смазочным материалом всего смазочного зазора и расчета элементов подачи смазочного материала, предусматривающего смазочные отверстия и круговые канавки (см. рисунок A.3 ГОСТ ИСО 7902-1), силу трения в смазочном слое F'_{i} определяют по формуле [1]

$$F_f' = \frac{\eta_{\text{eff}} \omega_h BD}{\psi_{\text{eff}}} \left[\frac{f'}{\psi_{\text{eff}}} So - \frac{b_P}{B} \left(\frac{\Omega_P}{2 \sqrt{1 - \epsilon^2}} - \frac{\psi_{\text{eff}} D}{2 h_P} \xi_P \right) - \frac{b_G}{B} \left(\frac{\Omega_G}{2 \sqrt{1 - \epsilon^2}} - \frac{\psi_{\text{eff}} D}{2 h_G} \xi_G \right) \right]. \tag{3}$$

Потери мощности на трение в карманах и канавках учитываются, соответственно, коэффициентами ξ_P и ξ_G :

$$\xi_{\rm p} = 0.5 \ \Omega_{\rm p} (4 + 0.0012 \ Re_{\rm p}^{0.94});$$

 $\xi_{\rm G} = 0.5 \ \Omega_{\rm G} (4 + 0.0012 \ Re_{\rm G}^{0.94}),$

где $Re_{\rm p}$ и $Re_{\rm G}$ — числа Рейнольдса потока смазочного материала в карманах и канавках, соответственно:

$$Re_{\rm P} = \frac{\rho \, \omega_{\rm h} \, h_{\rm P} \, D}{2 \, \eta_{\rm eff}};$$

$$Re_G = \frac{\rho \omega_h h_G D}{2 n_{eff}}$$
.

Потери мощности на трение в подшипнике представлены уравнениями (6) и (7) ГОСТ ИСО 7902-1.

6 Расход смазочного материала из-за давления подачи

Расход смазочного материала, возникающий в результате давления подачи, определяют по уравнению (9) ГОСТ ИСО 7902-1

$$Q_{\rho} = \frac{D^3 \, \psi_{\text{eff}}^3 \, p_{\text{en}}}{\eta_{\text{eff}}} \, Q_{\beta}^{\circ} \,,$$

где Q_s^* регламентируется уравнениями (4) — (8).

Для упрощения угол линии центра В учитывают только приблизительно.

6.1 Подача смазочного материала через смазочное отверстие, расположенное на стороне, противоположной направлению нагрузки (рисунок 51)

Параметр Q_{o}^{*} определяют по формуле

$$Q_{\rho}^* = \frac{\pi}{48} \frac{(1+\varepsilon)^3}{\ln\left(\frac{B}{d_L}\right)} q_L , \qquad (4)$$

где $q_L = 1,204 + 0,368(d_L/B) - 1,046(d_L/B)^2 + 1,942(d_L/B)^3$.

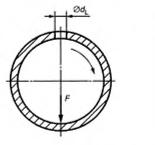


Рисунок 51

6.2 Подача смазочного материала через смазочное отверстие, расположенное под углом 90° к направлению нагрузки (рисунок 52)

Параметр Q_{ρ}^{\bullet} определяют по формуле

$$Q_{p}^{*} = \frac{\pi}{48} \frac{1}{\ln \left(\frac{B}{d_{k}}\right)} q_{k}$$
, (5)

где q_L — по формуле (4).

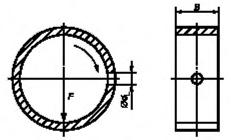


Рисунок 52

6.3 Подача смазочного материала через два смазочных отверстия, расположенных под углом 90° к направлению нагрузки (рисунок 53)

Параметр Q_{ρ}^{\bullet} определяют по формуле

$$Q_{\rho}^* = \frac{\pi}{48} \frac{2}{\ln \left(\frac{B}{d_L}\right)} q_L, \qquad (6)$$

где q_L — по формуле (4).

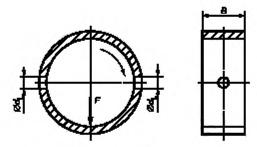
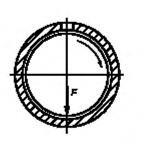
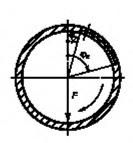



Рисунок 53

6.4 Подача смазочного материала через круговую канавку (полная канавка) (рисунок 54) Параметр Q_{ρ}^* определяют по формуле

$$Q_{\beta}^* = \frac{\pi}{24} \frac{1 + 1.5 \, \varepsilon^2}{\left(\frac{B}{D}\right)} \, \frac{B}{B - b_G}, \tag{7}$$




Рисунок 54

6.5 Подача смазочного материала через круговую канавку (частичная канавка) (рисунок 55) Параметр Q_o^* определяют по формуле

$$Q_{p}^{*} = \frac{1}{48} \frac{(\phi_{E} - \phi_{A})(1 + 1.5 \epsilon^{2}) + (3 \epsilon + \epsilon^{3})(\sin \phi_{E} - \sin \phi_{A}) + 0.75 \epsilon^{2} (\sin^{2} \phi_{E} - \sin^{2} \phi_{A}) - \frac{\epsilon^{3}}{3} (\sin^{3} \phi_{E} - \sin^{3} \phi_{A})}{\frac{B - b_{C}}{D}}.$$
 (8)

Для случаев $\phi_E = 90^\circ$ и $\phi_A = 90^\circ$ (канавка 180°) формула (8) упрощается:

$$Q_{p}^{*} = \frac{1}{48} \ \frac{\pi \, (1+1.5 \, \varepsilon^{2}) + 6 \, \varepsilon + 1.33 \, \varepsilon^{3}}{\frac{B - b_{G}}{D}} \, .$$

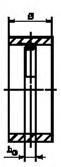


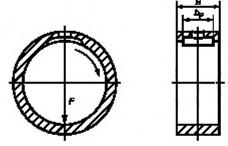
Рисунок 55

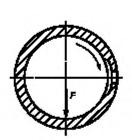
6.6 Подача смазочного материала через смазочный карман, расположенный на стороне, противоположной направлению нагрузки (рисунок 56)

Параметр Q_p^* определяют по формуле

$$Q_p^* = \frac{\pi}{48} \frac{(1+\varepsilon)^3}{\ln\left(\frac{B}{b_p}\right)} q_p , \qquad (9)$$

где величина $q_P = 1,188 + 1,582 \left(\frac{b_P}{B}\right) - 2,585 \left(\frac{b_P}{B}\right)^2 + 5,563 \left(\frac{b_P}{B}\right)^3$ справедлива при $0,05 \le \left(\frac{b_P}{B}\right) \le 0,7$.




Рисунок 56

6.7 Подача смазочного материала через смазочный карман, расположенный под углом 90° к направлению приложения нагрузки (рисунок 57)

Параметр Q_{ρ}^{*} определяют по формуле

$$Q_p^* = \frac{\pi}{48} \frac{1}{\ln \left(\frac{B}{b_p}\right) q_p}, \qquad (10)$$

где q_P — по формуле (9).

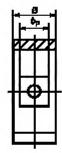


Рисунок 57

6.8 Подача смазочного материала через два смазочных кармана, расположенных под углом ± 90° к направлению нагрузки (рисунок 58) Параметр Q_{ρ}^{*} определяют по формуле

$$Q_{\bar{\rho}}^* = \frac{\pi}{48} \frac{2}{\ln \left(\frac{B}{b_p}\right) q_p}, \qquad (11)$$

где q_P — по формуле (9).

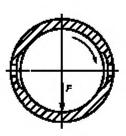


Рисунок 58

7 Эффективная динамическая вязкость смазочного материала η eff

В случае, если неизвестна зависимость между динамической вязкостью и температурой ни по данным изготовителя смазочного материала, ни по данным измерений, то она может быть определена по данному классу вязкости и по данному показателю вязкости согласно ИСО 3448.

Для показателя вязкости VI = 100 зависимость $\eta_{\rm eff}$ смазочного материала от $T_{\rm eff}$ определяют по рисунку 59.

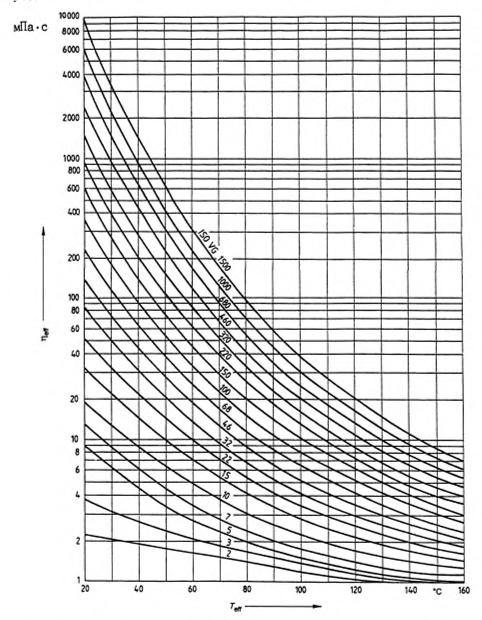


Рисунок 59 — Эффективная динамическая вязкость $\eta_{\rm eff}$ как функция эффективной температуры подшипника $T_{\rm eff}$ для смазочных материалов согласно ИСО 3448 при VI = 100 и ρ = 900 кг/м³

ПРИЛОЖЕНИЕ А (справочное)

Библиография

 Constantinescu, V. Basic Relationships in Turbulent Lubrication and their Extension to Include Thermal Effects. Transactions of the ASME, Series, F, No. 2, 95, 1973, pp. 35—43

УДК 621.822.5:531.717.1:006.354

MKC 21.100.10

Г16

OKII 41 7000

Ключевые слова: подшипники, подшипники скольжения, правила расчета

Редактор Р.Г. Говердовская Темпический редактор Л.А. Гусева Корректор В.Е. Исстерова Компьютерная перстка Е.И. Мартемалновой

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 12.03.2002. Подписано в печать 17.04.2002. Усл. печ. л. 6,98. Уч.-язд. л. 7,0. Тираж 225 экз. С 5215. Зак. 339.

ИПК Издательство стандартов, 107076 Москва, Колодезныя пер., 14. http://www.standards.ru e-mail: info@standards.ru Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. «Московский печатник», 103062 Москва, Лялин пер., 6. Плр № 080102