МЕЖГОСУДАР СТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT EN 16198— 2016

УДОБРЕНИЯ

Определение магния комплексонометрическим методом

(EN 16198:2013, IDT)

Издание официальное

Москва Стандартинформ 2016

Предисловие

Цели, основные принципы и основной порядок проведения работ по FOCT 1.0-2015 межгосударственной стандартизации установлены «Межгосударственная система стандартизации. Основные положения» Стандарты ГОСТ 1.2—2015 «Межгосударственная система стандартизации. межго сударственные, правила И рекомендации ПО межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации материалов и технологий» (ФГУП «ВНИИ СМТ») на основе собственного перевода на русский язык англоязычной версии указанного в пункте 5 стандарта
- 2 BHECEH Межгосударственным техническим комитетом по стандартизации MTK 527 «Химия»
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 28 июня 2016 г. № 49—2016)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращ енное наименование национального органа по стандартизации
Армения	АМ	Минзкономики Республики Армения
Казахстан	кz	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт
Узбекистан	UZ	Узстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 14 сентября 2016 г. № 1126-ст межгосударственный стандарт ГОСТ EN 16198—2016 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2017 г.

5 Настоящий стандарт идентичен европейскому региональному стандарту
EN 16198:2013 «Удобрения. Определение магния комплексонометрическим методом»
(«Fertilizers – Determination of magnesium by complexometry», IDT).

Европейский стандарт разработан Европейским комитетом по стандартизации CEN/TC260 «Удобрения и известковые материалы».

При применении настоящего стандарта рекомендуется использовать вместо ссылочных европейских региональных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинф орм, 2016

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Область применения
2	Нормативные ссылки
3	Термины и определения
4	Сущность метода
5	Отбор проб
6	Реактивы
7	Аппаратура
8 П	риготовление экстрактных растворов
9	Проведение анализа
10	Обработка результатов измерений
11	Приме чания
12	Трецизионность ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
13	Протокол испытания
Прі	ложение А (справочное) Статистические результаты межлабораторных испытаний
Прі	ложение ДА (справочное) Сведения о соответствии ссылочных европейских
	региональных стандартов ссылочным межгосударственным
	стандартам
Бив	лиография

УДОБРЕНИЯ

Определение магния комплексонометрическим методом

Fertilizers – Determination of magnesium by complexonometry

Дата введения — 2017 — 07 — 01

1 Область применения

Настоящий стандарт устанавливает метод определения магния в экстрактах удобрений комплексонометрическим методом.

Данный метод применим ко всем экстрактам удобрений, для которых определение общего магния и/или растворимого в воде магния устанавливают в соответствии c [3]:

- удобрения, перечисленные в [3]: обычные азотные удобрения, тип 1b + 1c
 (кальций-магний нитрат), тип 7 (сульфонитрат магния), тип 8 (азотные удобрения с магнием) и обычные калийные удобрения, тип 2 (обогащенные каинитом), тип 4 (хлорид калия, содержащий магний), тип 6 (сульфат калия, содержащий соль магния);
- удобрения, перечисленные в [3], относящиеся к второстепенным микроэлементам.

2 Нормативные ссылки

Для датированных ссылок применяют только указанное издание ссылочного документа. Для недатированных ссылок применяют последнее издание ссылочного документа (включая все его изменения).

EN 1482-2:2007 Fertilizers and liming materials — Sampling and sample preparation — Part 2: Sample preparation (Удобрения и известковые материалы. Отбор и подготовка проб. Часть 2. Подготовка проб)

EN 12944-1:1999 Fertilizers and liming materials and soil improvers — Vocabulary — Part 1: General terms (Удобрения, известковые материалы и улучшители почвы. Словарь. Часть 1. Общие термины)

EN 12944-2:1999 Fertilizers and liming materials and soil improvers – Vocabulary – Part 2: Terms relating to fertilizers (Удобрения, известковые материалы и улучшители почвы. Словарь. Часть 2. Термины, относящиеся к удобрениям)

EN 15960 Fertilizers — Extraction of total calcium, total magnesium, total sodium and total sulfur in the forms of sulfates (Удобрения. Экстракция общего кальция, общего магния, общего натрия и общей серы в форме сульфатов)

EN 15961 Fertilizers – Extraction of water soluble calcium, magnesium, sodium and sulfur in the form of sulfates (Удобрения. Экстракция растворимых в воде кальция, магния, натрия и серы в форме сульфатов)

3 Термины и определения

В настоящем стандарте применены термины по EN 12944-1:1999 и EN 12944-2:1999.

4 Сущность метода

Навеску магний содержащего удобрения растворяют в соответствии с EN 15960 или EN 15961. Содержание магния определяют, как разницу двух титрований. Первое титрование: титрование EDTA кальция и магния в присутствии эриохрома черного Т. Второе титрование: титрование EDTA кальция в присутствии кальцеина или кальконкарбоновой кислоты.

5 Отбор проб

Отбор проб не является частью метода настоящего стандарта. Рекомендуемый отбор проб представлен в EN 1482-1 [1].

Подготовка проб должна быть проведена в соответствии с EN 1482-2.

Измельчение анализируемого образца рекомендуется для обеспечения его однородности.

6 Реактивы

- 6.1 Стандартный раствор ионов магния, с = 0,05 моль/дм³
- 6.1.1 Растворяют 1,232 г сульфата магния (MgSO₄·7H₂O) в растворе соляной кислоты (6.11) и доводят соляной кислотой до объема 100 см³
- 6.1.2 Взвешивают 2.016 г оксида магния (предварительно прокаленного для удаления диоксида углерода). Помещают в стакан с 100 см³ дистиллированной или деионизированной воды.

Прибавляют раствор соляной кислоты объемом 120 см3 (6.12).

После растворения переносят количественно в мерную колбу вместимостью 1000 см³. Доводят до метки и перемешивают.

1 см³ данного раствора содержит 1,216 мг магния (что соответствует 2,016 мг оксида магния MgO).

Лаборатория несет ответственность за приготовление стандартного раствора.

6.2 Раствор EDTA, c = 0,05 моль/дм³

Взвешивают 18,61 г 2-водной динатриевой соли этилендиаминтетрауксусной кислоты (EDTA) (СтоНт4N2Na2Os, 2H2O), помещают ее в стакан (7.4) и растворяют в 600—800 см³ дистиллированной или деионизированной воды. Переносят раствор количественно в мерную колбу (7.3). Доводят до метки и перемешивают. Проверяют этот раствор стандартным раствором (6.1), берут 20 см³ пробы последнего и титруют в соответствии с аналитическим методом, описанным в 9.2.

1 см³ раствора EDTA должен соответствовать 1,216 мг магния (что соответствует 2,016 мг оксида магния MgO) и 2,004 мг кальция (что соответствует 2,804 мг оксида кальция CaO) (см. примечание 11.1 и 11.6).

6.3 Стандартный раствор ионов кальция, с = 0,05 моль/дм³

Взвешивают 5,004 г сухого карбоната кальция. Помещают в стакан с 100 см³ дистиллированной или деионизированной воды. Постепенно прибавляют раствор соляной кислоты объемом 120 см³ (6.12).

Доводят до кипения для того, чтобы удалить диоксид углерода, охлаждают, переносят количественно в мерную колбу вместимостью 1000 см³, доводят объем до метки водой и перемешивают. Сравнивают этот раствор снова с раствором EDTA (6.2) следующим аналитическим методом (9.3). 1 см³ этого раствора должен содержать 2,004 мг кальция (что соответствует 2,804 мг оксида кальция СаО) и должен соответствовать 1 см³ раствора EDTA (6.2).

6.4 Индикатор кальцеин

Осторожно смешивают в ступке 1 г кальцеина с 100 г хлорида натрия. Используют 10 мг этой смеси. Индикатор меняет свой цвет с зеленого на оранжевый. Титрование проводят до тех пор, пока будет наблюдаться оранжевый цвет без зеленого оттенка.

6.5 Индикатор кальконкарбоновая кислота

Растворяют 400 мг кальконкарбоновой кислоты в 100 см³ метанола. Данный раствор можно хранить не более четырех недель. Используют три капли данного раствора. Индикатор меняет свой цвет с красного на синий. Титрование проводят до тех пор, пока будет наблюдаться синий цвет без красного оттенка.

6.6 Индикатор эриохром черный Т

Растворяют 300 мг эриохрома черного Т в смеси 25 см³ пропанола-1 и 15 см³ триэтаноламина. Данный раствор можно хранить не более четырех недель. Используют три капли этого раствора. Индикатор меняет свой цвет с красного на синий и титрование проводят до тех пор, пока будет наблюдаться красный цвет без синего оттенка. Изменение цвета происходит только когда присутствует магний. Если необходимо, добавляют 1 см³ стандартного раствора магния (6.1).

Когда присутствуют и кальций и магний, EDTA сначала образует комплекс с кальцием, затем с магнием. В таком случае два элемента определяют одновременно.

Б.7 Цианид калия, водный раствор массовой концентрацией w (КСП) = 2 %.

МЕРЫ ПРЕДОСТОРОЖНОСТИ — Пипетирование посредством всасывания полостью рта запрещено и см. 11.7.

6.8 Раствор гидроксида калия и цианида калия

Растворяют в дистиллированной или деионизированной воде 280 г гидроксида калия КОН и 66 г цианида калия КСN, доводят до объема 1 дм³ и перемешивают.

6.9 Буферный раствор, рН = 10,5

В мерной колбе (7.5) растворяют 33 г хлорида аммония в 200 см³ дистиллированной или деионизированной воды, добавляют 250 см³ раствора аммиака (р₂₀ = 0,91 г/см³), доводят до метки водой и перемешивают. Регулярно проверяют рН раствора.

- 6.10 Разбавленная соляная кислота, смешивают один объем соляной кислоты (р₂₀ = 1,18 г/см³) с одним объемом дистиллированной или деионизированной воды.
 - 6.11 Раствор соляной кислоты, молярной концентрацией с = 0,5 моль/дм³.
 - 6.12 Раствор соляной кислоты, молярной концентрацией c=1 моль/дм³.
 - 6.13 Раствор гидроксида натрия, молярной концентрацией c = 5 моль/дм3

7 Аппаратура

- 7.1 Магнитная или механическая мешалка.
- 7.2 рН-метр.
- 7.3 Мерная колба вместимостью 1000 см³.
- 7.4 Стакан вместимостью 1000 см³.
- 7.5 Мерная колба вместимостью 500 см³.
- 7.6 Стакан вместимостью 400 см³.

8 Приготовление экстрактных растворов

Экстрактные растворы готовят в соответствии с EN 15960 или EN 15961.

9 Проведение анализа

9.1 Контрольный анализ

Проводят определение на аликвотной части растворов (6.1 и 6.3) таким образом, чтобы соотношение Са/Мд было в анализируемом растворе приблизительно одинаково. С этой целью берут v_1 см³ стандартного раствора Са (6.3) и ($v_2 - v_1$) см³ стандартного раствора (6.1), где v_1 и v_2 — объемы, в миллилитрах, раствора EDTA, использованного в двух титрованиях, выполненных на анализируемом растворе. Эта процедура применима, только когда растворы EDTA, кальция и магния полностью эквивалентны. В противном случае, необходимо

вносить поправки.

9.2 Отобранные аликвотные пробы

Содержание магния в аликвотной части должно быть в диапазоне от 9 до 18 мг (от 15 до 30 мг в пересчете на MgO).

9.3 Титрование в присутствии эриохрома черного Т

Пипеткой отбирают аликвотную часть (9.2) анализируемого раствора в стакан (7.6). Нейтрализуют избыток кислоты раствором гидроксида натрия (6.13), используя рН-метр. Разбавляют дистиллированной или деионизированной водой до 100 см³. Добавляют 5 см³ буферного раствора (6.9). Измеренное рН должно быть 10,5 \pm 0,1. Добавляют 2 см³ раствора цианида калия (6.7) и три капли индикатора эриохрома черного Т (6.6). Титруют раствором EDTA (6.2). Осторожно перемешивают при помощи мешалки (7.1) (см. 11.2, 11.3 и 11.4). Берут v_2 как объем раствора EDTA (6.2), см³.

9.4 Титрование в присутствии кальцеина или кальконкарбоновой кислоты

Пипеткой отбирают аликвотную часть анализируемого раствора, эквивалентную взятой для предыдущего титрования (9.3) и помещают в стакан (7.6). Нейтрализуют избыток кислоты раствором гидроксида натрия (6.13), используя рН-метр. Разбавляют дистиллированной или деионизированной до 100 см³. Добавляют 10 см³ раствора гидроксида калия и цианида калия (6.8) и индикатор (6.4 или 6.5). Осторожно перемешивают при помощи мешалки (7.1) и титруют раствором EDTA (6.2) (см. 11.2, 11.3 и 11.4). Берут № как объем раствора EDTA (6.2), см³.

10 Обработка результатов измерений

Для удобрений, к которым применим этот метод (5 г удобрения в 500 см 3 экстракта), массовую долю оксида магния MgO $w_{\rm MeO}$, %, вычисляют по формуле

$$w_{\rm MgO} = \frac{(v_2 - v_1)T}{M} \ . \tag{1}$$

Для удобрений, к которым применим этот метод (5 г удобрения в 500 см 3 экстракта), массовую долю магния Mg w_{Me} , %, вычисляют по формуле

$$w_{\rm Mg} = \frac{(v_2 - v_1)T'}{M},$$
 (2)

- где v_2 объем раствора EDTA (6.2), израсходованного на титрование в присутствии эриохрома черного T, см³;
 - v_1 объем раствора EDTA (6.2), израсходованного на титрование в присутствии кальцеина или кальконкар боновой кислоты, см³;
 - Т 0,2016 коэффициент пересчета для оксида MgO, соответствующий 1 см³ раствора EDTA с молярной концентрацией с (EDTA) = 0,05 моль/дм³;
 - T' 0.1216 коэффициент пересчета для магния Mg, соответствующий 1 см³ раствора EDTA с молярной концентрацией c (EDTA) = 0.05 моль/дм³;
 - М масса образца, присутствующего в отобранной аликвотной части, г.

11 Примечания

- 11.1 Стехиометрическое соотношение EDTA-металл в комплексонометрическом анализе всегда 1:1, при любой валентности металла несмотря на то, что EDTA имеет четыре валентности. Поэтому для растворов EDTA для титрования и для стандартных растворов используют молярные концентрации, а не эквивалентные молярные концентрации.
- 11.2 Комплексонометрические индикаторы часто чувствительны к воздуху. В процессе титрования раствор может обесцветится. В таком случае, необходимо добавить одну или две капли индикатора. Добавляют индикатор в случаях с эриохромом черным Т и кальконкарбоновой кислотой.
 - 11.3 Комплекс металл-индикатор часто относительно устойчив и может

вызывать изменение цвета. Поэтому для того, чтобы не произошло изменение цвета, добавляют каплю раствора магния (6.1) или раствора кальция (6.3), а последние капли EDTA добавляют медленно. Такое поведение характерно для комплекса эриохром-магний.

- 11.4 Изменение цвета индикатора необходимо наблюдать не вертикально, а горизонтально в растворе и стакан должен быть расположен на белом фоне в хорошо освещенном положении. Изменение индикатора можно также наблюдать при расположении стакана на матовом стекле, умеренно освещенном снизу (лампой на 25 W).
- 11.5 Данный анализ требует от оператора определенного опыта. Задача будет включать, в частности, наблюдение изменения цвета стандартных растворов 6.1 и 6.3. Рекомендуется чтобы в лаборатории анализ проводил один и тот же химик.
- 11.6 Использование гарантированного насыщенного раствора EDTA (например, Titrisol, Normex), позволяет упростить контроль за эквивалентными стандартными растворами 6.1,6.2 и 6.3.
- 11.7 Растворы, содержащие цианид калия, нельзя выливать в раковину до тех пор, пока цианид не превратится в безвредные соединения, например, окислением гидрохлоридом натрия с последующим подщелачиванием.

12 Прецизионность

12.1 Межлабораторные испытания

Межлабораторные испытания были проведены в 2007 и 2009 гг. при участии различных количеств лабораторий и с анализом нескольких различных образцов (см. таблицы А.1—А.4). Повторяемость и воспроизводимость были рассчитаны в соответствии с ISO 5725-2.

Значения, полученные с помощью этих межлабораторных испытаний, не могут

быть применены к концентрационным пределам и формам, которые отличаются от приведенных в приложении А.

12.2 Повторяемость

Абсолютное расхождение между двумя результатами независимых единичных анализов, полученными одним и тем же методом на идентичных объектах испытаний в одной и той же лаборатории одним и тем же исполнителем с использованием одного и того же оборудования в течение короткого промежутка времени, будет не более чем в 5 % случаев превышать значения предела повторяемости г, приведенного в таблицах 1 и 2.

12.3 Воспроизводимость

Абсолютное расхождение между двумя результатами независимых единичных анализов, полученными одним и тем же методом на идентичных объектах испытаний, в разных лабораториях разными исполнителями с использованием разного оборудования, будет не более чем в 5 % случаев превышать значения предела воспроизводимости R, приведенного в таблицах 1 и 2.

Таблица 1 — Результаты межлабораторного испытания 2007 г.

Впроцентах

Образец	Мет од экстракции	x	r	R	
CAN	EN 15960	4 ,80	0,13	0,51	
CAN	EN 15961	2,29	0,21	1,43	
LALIBOU	EN 15960	6 ,28	0,25	0,58	
KALI ROH	EN 15961	6,22	0,09	0,52	
NDV242 44 40 (2)0	EN 15960	3 ,46	0,26	0,51	
NPK2:12-11-18+2+8	EN 15961	2,10	0,37	3,22	

Таблица 2 — Результаты межлабораторного испытания 2009 г.

Впроцентах

Образец	Образец Метод экстракции		r	R
CAN-dol	EN 15960	4,61	0,18	0,55

Окончание таблицы 2

Образец	Метод экстракции	x	r	R	
CAN-dol	EN 15961	1,83	0,14	1,19	
NPK:12-12-17S+2	EN 15961	1,90	0,15	0,57	
NI N. 12-12-17 0 12	EN 15961	1,55	80,0	0,75	

13 Протокол испытания

Протокол испытания должен содержать:

- а) всю информацию, необходимую для полной идентификации образца;
- b) мет од анализа, используемый со ссылкой на настоящий стандарт;
- с) метод подготовки экстрактного раствора (EN 15960 или EN 15961);
- d) полученные результаты анализа;
- е) дату проведения отбора и подготовки проб (если известна);
- f) дату окончания анализа;
- д) было ли выполнено требование предела повторяемости;
- h) все детали операций, не указанные в настоящем документе или рассматриваемые как дополнительные, а так же сведения о любых случаях, которые имели место во время выполнения метода и которые могли повлиять на результат(ы) анализа.

Приложение А

(справочное)

Статистические результаты межлабораторных испытаний

Прецизионность метода была определена в 2007 и 2009 гг. Рабочей Группой № 7 «Химический анализ» Техническим Комитетом CEN 260 «Удобрения и известковые материалы» в нескольких межлабораторных испытаниях, рассчитанных в соответствии с ISO 5725-2. Статистические результаты приведены в таблицах А1—А.4.

Таблица А.1 — Статистические результаты межлабораторных испытаний в 2007 — Метод экстракции по EN 15960

		Образе	ец
Наименование параметра	CAN	KALI ROH	NPK2:12-11- 18+2+8
Число задействованных лабораторий	12	12	7
Число лабораторий после исключения выбросов (принятые результаты анализа)	10	11	6
Среднеариф метическое значение \bar{x} , %	4,80	6,28	3,46
Стандартное отклонение повторяемости s_r , %	0,05	0,09	0,09
RSD, %	1,0	1,4	3,0
Предел повторяемости r , %	0,13	0,25	0,26
Стандартное отклонение воспроизводимости $\mathcal{S}_{\scriptscriptstyle R}$, %	0,18	0, 21	0,18
RSD_R , %	3,8	3,3	5,0
Предел воспроизводимости R, %	0,51	0,58	0,51

в 2007 - Метод экстракции по EN 15961

		Образе	ец
Наименование параметра	CAN	KALI ROH	NPK2:12-11- 18+2+8
Число задействованных лабораторий	9	12	7
Число лабораторий после исключения выбросов (принятые результаты анал <i>и</i> за)	9	10	7
Среднеариф метическое значение \bar{x} , %	2,29	6,22	2,10
Стандартное отклонение повторяемости s_r , %	0,08	0,03	0,13
RSD, %	3,0	0,5	6,0
Предел повторяемости r , %	0,21	0,09	0,37
Стандартное отклонение воспроизводимости $\mathcal{S}_{\scriptscriptstyle R}$, %	0,51	0,19	1,15
RSD_R , %	22,0	3,0	55,0
Предел воспроизводимости R, %	1,43	0,52	3,22

Таблица А.3— Статистические результаты межлабораторных испытаний в 2009— Метод экстракции по EN 15960

Наименевание пераметра	Образец		
Наименование параметра	CAN-dol	NPK:12-12-17S+2	
Количество задействованных лабораторий	10	9	
Количество лабораторий после исключения выбросов (принятые результаты анализа)	9	9	
Среднеариф метическое значение \bar{x} , %	4,61	1,90	
Стандартное отклонение повторяемости s, , %	0,06	0,05	
RSD, %	1,4	3,0	
Предел повторяемости ғ, %	0,18	0,15	
Стандартное отклонение воспроизводимости $\mathcal{S}_{_{\!R}}$, %	0,20	0,20	
RSD_R , %	4,3	11,0	
Предел воспроизводимости R, %	0,55	0,57	

Таблица А.4— Статистические результаты межлабораторных испытаний в 2009— Метод экстракции по EN 15961

Наименование параметра	Образец		
	CAN-dol	NPK:12-12-17S+2	
Число задействованных лабораторий	10	9	
Число лабораторий после исключения выбросов (принятые результаты анализа)	9	8	
Среднеариф метическое значение \bar{x} , %	1,83	1,55	
Стандартное отклонение повторяемости s_r , %	0,05	0,03	
RSD, %	3,0	1,8	
Предел повторяемости т, %	0,14	0,08	
Стандартное отклонение воспроизводимости $\mathcal{S}_{\scriptscriptstyle R}$, %	0,42	0,27	
RSD _R , %	23,0	17,3	
Предел воспроизводимости R, %	1,19	0,75	

Приложение ДА (справочное)

Сведения о соответствии ссылочных европейских региональных стандартов ссылочным межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного европейского регионального стандарта	Степень соответствия	Обозначение и наименование соответствующего межго судар ственного стандарта
EN 1482-2:2007	IDT	ГОСТ EN 1482-2—2013 «Удобрения и известковые материалы. Отбор и подготовка проб. Часть 2. Подготовка проб»
EN 12944-1:1999	_	*
EN 12944-2:1999	_	*
EN 15960:2011	IDT	ГОСТ EN 15960—2014 «Удобрения. Экстракция общего кальция, общего магния, общего натрия и общей серы в форме сульфатов»
EN 15961:2011	IDT	ГОСТ EN 15961—2014 «Удобрения. Экстракция растворимых в воде кальция, магния, натрия и серы в форме сульфатов»

Окончание таблицы ДА.1

Обозначение ссылочного	0	Обозначение и наименование
европейского регионального	Степень	соответствующего
стандарта	соответствия	межгосударственного стандарт:

* Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык европейского регионального стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

Примечание — В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

IDT – идентичные стандарты

Библиография

- [1] EN 1482-1 Fertilizers and liming materials Sampling and sample preparation Part 1: Sampling

 (Удобрения и известковые материалы. Отбор и подготовка проб. Часть 1. Отбор проб)
- [2] ISO 5725-2 Accuracy (trueness and precision) of measurement methods and results Part 2: Sampling

 [Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Отбор проб]
- [3] Regulation (EC) No 2003/2003 of the European Parliament and of the Council of 13 October 2003 relating to fertilizers, Official Journal L 304, 21/11/2003. P. 0001—0194, Annex I and Annex IV, method 8.8 (Правила (EC) № 2003/2003 Европейского Парламента и совета от 13 октября 2003 г., относящийся к удобрениям, официальный журнал L 304, 21/11/2003 стр. 1—194), приложение I и приложение IV, метод 8.8)

Ответственный исполнитель

Инженер отдела 11 ФГУП «ВНИИ СМТ»

УДК 631.82:006.354	MKC 65,080	IDT
Ключевые слова: удобрения, опр	еделение магния, комплексоном	петрический метод
Руководитель разработки		
Зам. начальника отдела 11		
ФГУП «ВНИИ СМТ»		И.А. Ко соруков

А.С. Кузьмина

18