ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 57069— 2016

ТРУБЫ И ДЕТАЛИ ТРУБОПРОВОДОВ ИЗ РЕАКТОПЛАСТОВ, АРМИРОВАННЫХ СТЕКЛОВОЛОКНОМ

Методы получения гидростатического проектного базиса и расчетного значения давления

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью «Центр исследований и разработок «Инновации будущего» совместно с Открытым акционерным обществом «НПО Стеклопластик» при участии Объединения юридических лиц «Союз производителей композитов» и Автономной некоммерческой организации «Центр нормирования, стандартизации и классификации композитов» на основе собственного перевода англоязычной версии стандарта, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 497 «Композиты, конструкции и изделия из них»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 14 сентября 2016 г. № 1124-ст
- 4 Настоящий стандарт является модифицированным по отношению к стандарту АСТМ Д2992—12 «Стандартный метод получения расчетного значения гидростатики или давления для труб и фитингов из реактопластов, армированных стекловолокном» (ASTM D2992—12 «Standard practice for obtaining hydrostatic or pressure design basis for «fiberglass» (glass-fiber-reinforced thermosetting-resin) pipe and fittings», MOD) путем изменения его структуры для приведения в соответствие с правилами, установленными в ГОСТ Р 1.5 (подраздел 3.1), путем изменения содержания отдельных структурных элементов, которые выделены вертикальной линией, расположенной на полях напротив соответствующего текста, а также невключения отдельных структурных элементов и ссылок.

Положения, разделы и пункты примененного стандарта ACTM, не включенные в основную часть настоящего стандарта, приведены в дополнительном приложении ДА.

Сопоставление структуры настоящего стандарта со структурой указанного стандарта АСТМ приведено в дополнительном приложении ДБ.

Оригинальный текст модифицированных структурных элементов приведен в дополнительном приложении ДВ

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте федерального органа исполнительной впасти в сфере стандартизации в сети Интернет (www.gost.ru)

© Стандартинформ, 2016

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения
2 Нормативные ссылки
3 Термины и определения
4 Сокращения
5 Сущность метода
6 Оборудование
7 Подготовка к проведению испытаний
8 Проведение испытаний
9 Обработка результатов
10 Протокол ислытаний
Приложение A (справочное) Вычисление долгосрочного гидростатического усилия или долгосрочного гидростатического давления по методу наименьших квадратов 6
Приложение В (справочное) Пример расчета кольцевого напряжения
Приложение ДА (справочное) Оригинальный текст невключенных структурных элементов 13
Приложение ДБ (справочное) Сопоставление структуры настоящего стандарта со структурой примененного в нем стандарта АСТМ
Приложение ДВ (справочное) Оригинальный текст модифицированных структурных элементов 15

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ТРУБЫ И ДЕТАЛИ ТРУБОПРОВОДОВ ИЗ РЕАКТОПЛАСТОВ, АРМИРОВАННЫХ СТЕКЛОВОЛОКНОМ

Методы получения гидростатического проектного базиса и расчетного значения давления

Fiberglass-reinforced thermosetting plastic pipes and parts of pipelines.

Methods for obtaining hydrostatic or pressure design basis

Дата введения — 2017—02—01

1 Область применения

Настоящий стандарт распространяется на трубы и детали трубопроводов из реактопластов, армированных стекловолокном (далее — трубы и детали трубопроводов), и устанавливает методы получения гидростатического проектного базиса или расчетного значения давления при воздействии внутреннего циклического давления (метод А) или при воздействии внутреннего постоянного давления (метод Б).

Методы получения гидростатического проектного базиса распространяются на трубы и детали трубопроводов, для которых соотношение между внешним диаметром и толщиной стенки составляет не менее 10:1.

Настоящий стандарт также распространяется на трубы и детали трубопроводов из полимерцемента, армированного стекловолокном.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 57034—2016 Трубы и детали трубопроводов из реактопластов, армированных волокном. Методы определения сопротивления труб и фитингов кратковременному воздействию гидравлического давления (ASTM D1599—99(2011) «Стандартный метод испытания на сопротивления пластмассовых труб, трубопроводов и фитингов кратковременному воздействию гидравлического давления», МОО)

ГОСТ Р 57035—2016 Трубы из реактопластов, армированных стекловолокном. Методы определения стойкости к воздействию циклического внутреннего давления (ISO 15306:2003 «Glass-reinforced thermosetting plastics (GRP) pipes — Determination of the resistance to cyclic internal pressure». MOD)

ГОСТ Р 54559—2011 Трубы и детали трубопроводов из реактопластов, армированных волокном. Термины и определения

ГОСТ Р ИСО 3126—2007 Трубопроводы из пластмасс. Пластмассовые элементы трубопровода. Определение размеров

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам

ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ Р 54559, а также следующие термины с соответствующими определениями:

- 3.1 гидростатический проектный базис (hydrostatic design basis): Кольцевое напряжение, определяемое для труб и деталей трубопроводов по настоящему стандарту, умноженное на поправочный коэффициент.
- 3.2 расчетное значение давления (pressure design basis): Внутреннее давление, рассчитанное для труб и деталей трубопроводов по настоящему стандарту.
- 3.3 циклическое давление (cyclic pressure): Давление, изменяющееся относительно среднего давления в большую и меньшую сторону с заданной частотой и амплитудой.
- 3.4 кольцевое напряжение (hoop stress): Растягивающее напряжение в стенке трубы и деталей трубопроводов в кольцевом направлении, возникающее при воздействии внутреннего давления.
- 3.5 поправочный коэффициент (service design factor): Число от нуля до единицы включительно, учитывающее погрешность всех значений и степеней для безопасной установки труб и деталей трубопроводов.
- 3.6 долгосрочное гидростатическое усилие (long-term hydrostatic strength): Расчетное кольцевое напряжение, характеризующее количество циклов или время до разрушения трубы и деталей трубопроводов.
- 3.7 долгосрочное гидростатическое давление (long-term hydrostatic pressure): Расчетное внутреннее давление, при котором трубы и детали трубопроводов разрушаются после заданного количества циклов или определенного количества часов.

4 Сокращения

В настоящем стандарте применены следующие сокращения:

HDB — гидростатический проектный базис;

PDB — расчетное значение давления;

LTHS — долгосрочное гидростатическое усилие;

LTHP — долгосрочное гидростатическое давление.

5 Сущность метода

5.1 Сущность метода А заключается в том, что заданное количество образцов делят на группы, и каждую группу образцов испытывают воздействием внутреннего циклического давления. Значение внутреннего циклического давления выбирают в зависимости от количества циклов, через которое образцы одной группы должны разрушиться.

По результатам испытаний строят экстраполированный график зависимости кольцевого напряжения или внутреннего давления от количества циклов до разрушения, по которому определяют циклическое LTHS или циклическое LTHP.

Испытание внутренним циклическим давлением проводят по нормативному документу или технической документации на трубы и детали трубопроводов, с изменениями и дополнениями, приведенными в настоящем стандарте.

5.2 Сущность метода Б заключается в том, что заданное количество образцов делят на группы, и каждую группу образцов испытывают воздействием внутреннего постоянного давления. Значение внутреннего постоянного давления выбирают в зависимости от времени, через которое образцы одной группы должны разрушиться.

По результатам испытаний строят экстраполированный график зависимости кольцевого напряжения или внутреннего давления от времени до разрушения, по которому определяют статическое LTHS или статическое LTHP.

Испытание внутренним постоянным давлением проводят по нормативному документу или технической документации на трубы и детали трубопроводов, с изменениями и дополнениями, приведенными в настоящем стандарте.

6 Оборудование

Оборудование — по ГОСТ Р 57034 (раздел 4) для испытания внутренним постоянным давлением и оборудование по ГОСТ Р 57035 (раздел 5) для испытания внутренним циклическим давлением, если иное не установлено в нормативном документе или технической документации на трубы и детали трубопроводов.

7 Подготовка к проведению испытаний

- 7.1 Для получения значения гидростатического проектного базиса или расчетного значения давления используют не менее 18 образцов, если иное не установлено в нормативном документе или технической документации на трубы и детали трубопроводов.
- 7.2 Требования к образцам и условиям кондиционирования должны соответствовать требованиям, приведенным в методах испытаний внутренним циклическим или постоянным давлением, установленных в нормативном документе или технической документации на трубы и детали трубопроводов.

8 Проведение испытаний

- 8.1 Условия проведений испытаний (окружающая среда, температура окружающей среды, испытательная среда, температура испытательной среды) в соответствии с требованиями нормативного документа или технической документации на трубы и детали трубопроводов.
 - 8.2 Минимальную толщину стенок образцов и наружный диаметр определяют по ГОСТ Р ИСО 3126.

8.3 Метод А

- 8.3.1 Проводят испытания не менее 18 образцов в соответствии с методом испытания внутренним циклическим давлением частотой 25 циклов/мин. Значение внутреннего циклического давления в соответствии с нормативным документом или технической документацией на трубы и детали трубопроводов.
- 8.3.2 Значения внутреннего циклического давления выбирают таким образом, чтобы разрушение заданного количества образцов происходило через установленное в соответствии с таблицей 1 количество циклов.

Количество образцов, которые должны быть разрушены за определенное количество циклов, устанавливают в нормативном документе или технической документации на трубы и детали трубопроводов, и оно должно быть не менее, чем установлено в таблице 1.

Таблица 1

Число циклов до разрушения образцов	Число разрушенных образцов, не менее
От 1000 до 10 000 включ.	3
Cs. 10 000 « 100 000 «	3
« 100 000 « 1 000 000 «	3
« 1 000 000 « 10 000 000 «	3
« 15 000 000	1
Boero	18

8.4 Метод Б

- 8.4.1 Проводят испытания не менее 18 образцов в соответствии с методом испытания внутренним постоянным давлением, установленным в нормативном документе или технической документации на трубы и детали трубопроводов.
- 8.4.2 Значения внутреннего постоянного давления выбирают таким образом, чтобы разрушение заданного количества образцов происходило через установленное в соответствии с таблицей 2 время. Количество образцов, которые должны быть разрушены за определенное время, устанавливают в нормативном документе или технической документации на трубы и детали трубопроводов, и оно должно быть не менее, чем установлено в таблице 2.

Таблица 2

Время до разрушения образцов, ч	Число разрушенных образцов, не менее	
От 10 до 1000 включ.	4	
Cs. 1000 « 6000 «	3	
« 6000	3	
« 10 000	1	
Boero	18	

9 Обработка результатов

- 9.1 По учтенным результатам испытаний в соответствии с методом А или Б вычисляют циклическое или статическое LTHS и циклическое или статическое LTHP по алгоритму, приведенному в приложении А. Пример расчета кольцевого напряжения приведен в приложении В.
 - 9.2 HDB определяют в соответствии с таблицей 3, PDB определяют в соответствии с таблицей 4.

Таблица 3

нов, кпа	Интервал рассчитанных значений циклического или статического LTHS, кf	
17 200	От 16 500 до 20 700	
21 700	От 20 800 до 26 300	
27 600	От 26 400 до 33 000	
34 500	От 33 100 до 40 900	
43 400	От 41 000 до 52 900	
55 200	От 53 000 до 65 900	
68 900	От 66 000 до 82 900	
86 200	От 83 000 до 105 900	
110 000	От 106 000 до 130 900	
138 000	От 131 000 до 169 900	
172 000	От 170 000 до 209 900	
217 000	От 210 000 до 259 900	
276 000	От 260 000 до 320 000	

Таблица 4

	PDB	Интервал рассчитанных значений циклического или статического LTHP
бар	кПа	кПа
6,3	630	От 605 до 760
8	800	От 765 до 990
10	1000	От 995 до 1180
12,5	1250	От 1190 до 1510
16	1600	От 1520 до 1980
20	2000	От 1990 до 2380
25	2500	От 2390 до 3020
31,5	3150	От 3030 до 3830
40	4000	От 3840 до 4790
50	5000	От 4800 до 6040
63	6300	От 6050 до 7680
80	8000	От 7690 до 9580
100	10 000	От 9590 до 11 800
125	12 500	От 11 900 до 15 300

10 Протокол испытаний

Результаты испытаний заносят в протокол испытаний, который должен содержать:

- ссылку на настоящий стандарт;
- описание образца, включая: материал, наименование предприятия-изготовителя, форму кодового номера изготовителя, тип;
 - выбранный метод испытания;
 - размеры образца;
- тип используемых торцевых заглушек (передающие или не передающие осевые напряжения на образец);
 - количество образцов;
 - условия и среда кондиционирования и испытаний;
 - количество циклов (для метода A);
 - время до разрушения образца (для метода Б);
 - место разрушения;
 - значения LTHS или LTHP;
 - значение коэффициента корреляции;
 - значения HDB;
 - значения PDB;
 - сроки проведения испытания.

Приложение А (справочное)

Вычисление долгосрочного гидростатического усилия или долгосрочного гидростатического давления по методу наименьших квадратов

А.1 Общие положения

А.1.1 Анализ основан на следующей зависимости:

$$y = a + b \cdot x, \tag{A.1}$$

где y — зависимая переменная;

а — отсекаемый отрезок на оси у;

b — наклон прямой;

ж — независимая переменная.

А.2 Методика анализа данных

А.2.1 Используют анализ линейной функциональной зависимости для анализа п пар значений (x, y) для получения следующей информации:

- наклон линии;
- отсекаемый отрезок на оси у;
- коэффициент корреляции;
- прогнозируемое среднее значение и нижние границы доверительного и прогнозируемого интервалов для среднего значения при доверительной вероятности 95 %.

А.3 Присваиваемые значения

А.3.1 Пусть независимая переменная х равна:

$$x = \lg t, \tag{A.2}$$

где t — время, ч.

Зависимая переменная у равна:

$$y = \lg V, \tag{A.3}$$

где V — значение внутреннего гидростатического давления, кПа, или значение напряжения в кольцевом направлении, Па.

А.4 Уравнения функциональной зависимости и метода расчета

А.4.1 Сумма квадратов и ее составляющие

A.4.1.1 Значение x_i вычисляют по формуле:

$$x_i = \lg t_i$$
 (A.4)

где t_i — время до разрушения i-го образца, ч.

Значение у, вычисляют по формуле:

$$y_i = lg V_s$$
 (A.5)

где V_i — давление при разрушении i-го образца, кПа.

А.4.1.2 Среднее арифметическое значение у вычисляют по формуле:

$$\overline{y} = \frac{1}{n} \cdot \sum y_i$$
, (A.6)

где y_i — единичное значение;

п — число наблюдений.

Среднее арифметическое значение х вычисляют по формуле:

$$\overline{x} = \frac{1}{n} \cdot \sum x_j$$
, (A.7)

где x_i — единичное значение;

п — число наблюдений.

A.4.1.3 Среднее арифметическое от суммы произведения S_{xy} вычисляют по формуле:

$$S_{xy} = \frac{1}{n} \cdot \sum_{i} (x_i - \overline{x}) \cdot (y_i - \overline{y}), \quad (A.8)$$

где n — количество пар значений ($V_{\downarrow}t_{\parallel}$).

Примечание — i = 1,..., n.

А 4.1.4 Если выполняется условие $S_{xy} > 0$, данные считаются непригодными для оценки материала, в противном случае рассчитывают также суммы квадратов S_{xx} и S_{yy} .

S_{xx} вычисляют по формуле:

$$S_{xx} = \frac{1}{n} \cdot \sum (x_i - \overline{x})^2. \tag{A.9}$$

 S_{yy} вычисляют по формуле:

$$S_{yy} = \frac{1}{n} \cdot \sum (y_i - \overline{y})^2. \tag{A.10}$$

А.4.2 Корреляция результатов

А.4.2.1 Коэффициент корреляции г вычисляют по формулам:

$$r^{2} = \frac{(S_{xy})^{2}}{(S_{xx} \cdot S_{yy})};$$
 (A.11)

$$r = \sqrt{r^2}$$
. (A.12)

А.4.2.2 Если коэффициент корреляции г меньше допустимого минимального значения, приведенного в таблице А.1, то следует отбросить данные как непригодные, в противном случае следуют А.3.

Та блица А.1 — Допустимые минимальные значения коэффициента корреляции r для приемлемых данных из n пар

(n-2)	Допустимое минимальное значение г	
11	0,6835	
12	0,6614	
13	0,6411	
14	0,6226	
15	0,6055	
16	0,5897	
17	0,5751	
18	0,5614	
19	0,5487	
20	0,5386	
21	0,5252	
22	0,5145	
23	0,5043	
24	0,4952	
25	0,4869	
30	0,4487	
35	0,4182	
40	0,3932	
45	0,3721	
50	0,3541	
60	0,3248	
70	0,3017	

FOCT P 57069-2016

Окончание таблицы А.1

(n-2)	Допустимое минимальное значение г	
80	0,2830	
90	0,2673	
100	0,2540	

А.4.3 Функциональная зависимость

А.4.3.1 Для нахождения прямой функциональной зависимости а и b, предположим, что:

$$\lambda = \left(\frac{S_{yy}}{S_{xx}}\right); \tag{A.13}$$

$$b = -\sqrt{\lambda};$$
 (A.14)

$$a = \overline{y} - b \cdot \overline{x}$$
 (A.15)

Таблица А.2 — Квантили распределения Стьюдента (t_v) (двусторонний уровень значимости 0,05)

Степень свободы (n - 2)	t_{ν}	Степень свободы (n - 2)	t_{ν}	Степень свободы (л - 2)	$t_{\rm v}$
1	12,7062	46	2,0129	91	1,9864
2	4,3027	47	2,0117	92	1,9861
3	3,1824	48	2,0106	93	1,9858
4	2,7764	49	2,0096	94	1,9855
5	2,5706	50	2,0086	95	1,9853
6	2,4469	51	2,0076	96	1,9850
7	2,3646	52	2,0066	97	1,9847
8	2,3060	53	2,0057	98	1,9845
9	2,2622	54	2,0049	99	1,9842
10	2,2281	55	2,0040	100	1,9840
11	2,2010	56	2,0032	102	1,9835
12	2,1788	57	2,0025	104	1,9830
13	2,1604	58	2,0017	106	1,9826
14	2,1448	59	2,0010	108	1,9822
15	2,1315	60	2,0003	110	1,9818
16	2,1199	61	1,9996	112	1,9814
17	2,1098	62	1,9990	114	1,9810
18	2,1009	63	1,9983	116	1,9806
19	2,0930	64	1,9977	118	1,9803
20	2,0860	65	1,9971	120	1,9799
21	2,0796	66	1,9966	122	1,9796
22	2,0739	67	1,9960	124	1,9793

Окончание таблицы А.2

Степень свободы (л - 2)	$t_{\rm v}$	Степень свободы (n = 2)	t _v	Степень свободы (n = 2)	t_{ν}
23	2,0687	68	1,9955	126	1,9790
24	2,0639	69	1,9949	128	1,9787
25	2,0595	70	1,9944	130	1,9784
26	2,0555	71	1,9939	132	1,9781
27	2,0518	72	1,9935	134	1,9778
28	2,0484	73	1,9930	136	1,9776
29	2,0452	74	1,9925	138	1,9773
30	2,0423	75	1,9921	140	1,9771
31	2,0395	76	1,9917	142	1,9768
32	2,0369	77	1,9913	144	1,9766
33	2,0345	78	1,9908	146	1,9763
34	2,0322	79	1,9905	148	1,9761
35	2,0301	80	1,9901	150	1,9759
36	2,0281	81	1,9897	200	1,9719
37	2,0262	82	1,9893	300	1,9679
38	2,0244	83	1,9890	400	1,9659
39	2,0227	84	1,9886	500	1,9647
40	2,0211	85	1,9883	600	1,9639
41	2,0195	86	1,9879	700	1,9634
42	2,0181	87	1,9876	800	1,9629
43	2,0167	88	1,9873	900	1,9626
44	2,0154	89	1,9870	1000	1,9623
45	2,0141	90	1,9867		1,9600

А.4.3.2 Поскольку $y = \lg V$, а $x = \lg t$, следовательно, $V = 10^y$, $t = 10^x$ и упрощенное выражение V через t принимает вид:

$$V = 10^{(a+b\log t)}$$
. (A.16)

А.4.4 Расчет дисперсии

 $A.4.4.1 x_L$ вычисляют по формуле:

$$x_L = \lg t_L,$$
 (A.17)

где t_L — время до разрушения L образца, ч; А.4.4.2 Расчет статистической последовательности для значений от i = 1 до i = n:

- наилучшее соотношение ξ, для достоверного х вычисляют по формуле:

$$\xi_{l} = \frac{\lambda \cdot x_{j} + (y_{j} - a) \cdot b}{2 \cdot \lambda}; \tag{A.18}$$

- наилучшее соответствие Y, для достоверного у вычисляют по формуле:

$$Y_i = a + b \cdot \xi_i; \tag{A.19}$$

дисперсию ошибок σ²_δ для достоверного х вычисляют по формуле:

$$\sigma_{\delta}^{2} = \frac{\sum (y_{i} - Y_{i})^{2} + \lambda \cdot \sum (x_{i} - \xi_{i})^{2}}{\lambda \cdot (n - 2)}.$$
(A.20)

А.4.4.3 т вычисляют по формуле:

$$\tau = \frac{b \cdot \sigma_{\delta}^2}{2 \cdot S_{xy}}.$$
 (A.21)

D вычисляют по формуле:

$$D = \frac{2 \cdot \lambda \cdot b \cdot \sigma_{\delta}^{2}}{n \cdot S_{rr}}.$$
 (A.22)

В вычисляют по формуле:

$$B = -D \cdot \overline{x} \cdot (1 + \tau). \tag{A.23}$$

А.4.4.4 Дисперсию C от b вычисляют по формуле:

$$C = D \cdot (1 + \tau)$$
. (A.24)

А.4.4.5 Дисперсию А от а вычисляют по формуле:

$$A = D \cdot \left(\overline{\chi}^{2} (1 + \tau) + \frac{S_{\chi \gamma}}{b} \right). \tag{A.25}$$

А.4.4.6 Дисперсию σ_n^2 от прямой в точке x_L вычисляют по формуле:

$$\sigma_0^2 = A + 2 \cdot B \cdot x_L + C \cdot x_L^2. \tag{A.26}$$

А.4.4.7 Дисперсию ошибок от для у вычисляют по формуле:

$$\sigma_c^2 = 2 \cdot \lambda \cdot \sigma_\delta^2$$
. (A.27)

А.4.4.8 Общую дисперсию σ_y^2 для будущих значений y_L для y в точке x_L вычисляют по формуле:

$$\sigma_{\nu}^{2} = \sigma_{n}^{2} + \sigma_{\varepsilon}^{2}. \tag{A.28}$$

А.4.4.9 Оценочное стандартное отклонение о, для у, вычисляют по формуле:

$$\sigma_v = (\sigma_0^2 + \sigma_s^2)^{0.5}$$
. (A.29)

А.4.5 Расчеты и доверительные интервалы

А.4.5.1 Прогнозируемое значение у, для у в точке х вычисляют по формуле:

$$y_L = a + b \cdot x_L. \tag{A.30}$$

А.4.5.2 Нижнюю границу прогнозируемого интервала при доверительной вероятности 95 % $y_{L0,95}$ для y_L вычисляют по формуле:

$$y_{L0.95} = y_L - t_v \cdot \sigma_v$$
, (A.31)

где t_V — квантиль распределения Стьюдента для (n-2) степеней свободы (см. таблицу A.2) для двухстороннего уровня значимости 0,05 (т. е. среднее значение \pm 2,5 %).

А.4.5.3 Соответствующую нижнюю границу прогнозируемого интервала при доверительной вероятности 95 % для V вычисляют по формуле:

$$V_{L0.95} = 10^{V_{L0.95}}$$
 (A.32)

А.4.5.4 Прогнозируемое среднее значение V в момент времени t_L , т. е. V_L , вычисляют по формуле:

$$V_L = 10 \cdot y_L. \tag{A.33}$$

A.4.5.5 Допущение в уравнении (A.28), $\sigma_p^2 = \sigma_n^2$ даст схорее доверительный интервал для прямой, а не прогнозируемый интервал для будущих результатов наблюдений.

Приложение В (справочное)

Пример расчета кольцевого напряжения

В.1 Основные данные

- В.1.1 Пример расчетных данных кольцевого напряжения приведен в таблице В.1.
- В.1.2 Из-за ошибок округления возможно несовпадение результатов расчета с приведенными в данном примере цифрами.

Таблица В.1

Номер точки	Время, ч	Напряжение, кПа	Логарифм времени, ч	Логарифм напряжения, f
1	9	37 920	0,95424	4,57887
2	13	37 920	1,11394	4,57887
3	17	37 920	1,23045	4,57887
4	17	37 920	1,23045	4,57887
5	104	35 850	2,01703	4,55449
6	142	35 850	2,15229	4,55449
7	204	35 850	2,30963	4,55449
8	209	35 850	2,32015	4,55449
9	272	34 470	2,43457	4,53744
10	446	34 470	2,64933	4,53744
11	466	34 470	2,66839	4,53744
12	589	33 090	2,77012	4,51970
13	669	32 410	2,82543	4,51068
14	684	34 470	2,83506	4,53744
15	878	31 720	2,94349	4,50133
16	1299	33 090	3,11361	4,51970
17	1301	32 140	3,11428	4,50705
18	1430	33 090	3,15534	4,51970
19	1710	33 090	3,23300	4,51970
20	2103	33 090	3,32284	4,51970
21	2220	31 030	3,34635	4,49178
22	2230	30 340	3,34830	4,48202
23	3816	32 410	3,58161	4,51068
24	4110	32 410	3,61384	4,51068
25	4173	31 720	3,62043	4,50133
26	5184	30 340	3,71466	4,48202

FOCT P 57069-2016

Окончание таблицы В.1

Номер точки	Время, ч	Напряжение, кПа	Логарифм времени, ч	Логарифм напряжения, f
27	8900	31 720	3,94939	4,50133
28	8900	31 720	3,94939	4,50133
29	10 900	31 030	4,03743	4,49178
30	10 920	31 030	4,03822	4,49178
31	12 340	31 030	4,09132	4,49178
32	12 340	31 030	4,09132	4,49178

В.2 Сумма квадратов:

 $S_{xx} = 0.798109;$

S_{yy} = 8,78285·10⁻⁴; S_{xy} = -0,024836. В.3 Коэффициент корреляции:

r = 0.938083.

В.4 Функциональная зависимость:

 $\lambda = 1,100457 \cdot 10^{-3}$

 $b = -3.31731 \cdot 10^{-2}$

a = 3.782188.

В.5 Расчет дисперсий:

 $D = 4.84225 \cdot 10^{-6}$

 $B = -1.46896 \cdot 10^{-5}$;

C (дисперсия от b) = 5,01271-10⁻⁶;

A (дисперсия от a) = 4,66730-10⁻⁵;

 σ_n^2 (дисперсия ошибок для x) = 4,046696·10⁻⁵;

 σ_c^2 (дисперсия ошибок для y) = 1,1601-10⁻⁴.

В.6 Доверительный интервал

Для n = 32 и коэффициента Стьюдента t_v = 2,0423 оценочные средние значения, доверительный и прогнозируемые интервалы приведены в таблице В.2.

Таблица В.2

Время, ч	Среднее значение	Нижняя граница доверительного интервала	Нижняя граница прогнозируемого интервала
1	6056	5864	5704
10	5611	5487	5309
100	5198	5129	4933
1000	4816	4772	4575
10 000	4462	4398	4233
100 000	4133	4037	3909
438 000	3936	3820	3711

Приложение ДА (справочное)

Оригинальный текст невключенных структурных элементов

ДА.1

5 Значимость и применение

- 5.1 Данный метод используют для определения кольцевого напряжения или внутреннего давления в зависимости от времени до прорыва в выбранных внутренних и внешних условиях, которые имитируют реальные условия использования изделий, исходя из чего могут быть получены расчетные характеристики конкретных компонентов и материалов труб. Данный метод определяет значения HDB для труб прямой цилиндрической формы, где можно легко рассчитать кольцевое напряжение, и PDB для фитингов и соединений, где расчет напряжения более сложен.
- 5.1.1 Альтернативный метод расчета, основанный на зависимости начального напряжения от времени до прорыва, предлагает способ, отличный от данного, с помощью которого рассчитывается напряжение HDB. Альтернативное расчетное напряжение чаще всего используется для труб подземных конструкций с внутренним давлением в пределах от 0 до 250 фунтов/кв.дюйм (1,72 МПа).
- 5.2 Для характеристики стекловолоконных труб необходимо установить соотношение напряжения и циклов или времени до прорыва либо давления и циклов или времени до прорыва на три и более логарифмических порядка (циклов или часов) при контролируемых внешних условиях. Исходя из природы испытания и образцов, ни одна линия не может адекватно представить данные. Необходимо установить доверительный интервал.
- 5.3 Номинальные давления для труб разного размера при каждой температуре могут быть рассчитаны из HDS, определенного путем проведения испытаний одного размера труб, при условии, что материал образцов и характеристики процесса не меняются.
- 5.4 Номинальные давления при каждой температуре для образцов, не являющихся прямыми цилиндрическими трубами, могут быть рассчитаны из HDP, определенного путем проведения испытаний одного размера труб, при условии, что:
 - для всех образцов используются те же материалы и процессы производства аналогичны;
- для стыков материал стыков и процессы их производства аналогичны материалам и процессам для самих труб;
 - критические размеры изделия зависят от его диаметра и номинального давления.

Примечание 8— Пересчет для фитингов и стыков должен дополнительно проверяться краткосрочным анализом в соответствии с методом испытаний ASTM D1599.

- 5.5 Результаты, полученные при одном наборе внешних условий, не должны использоваться для других условий, за исключением того, что данные для более высокой температуры могут быть использованы для расчета данных при применении более низких температур. Расчетные данные должны быть определены для каждого изделия. Структура и обработка могут существенно повлиять на долгосрочную работу изделий и должны быть приняты во внимание при расчете.
- 5.6 Данный метод может быть применим для определенной трубы или фитинга только в том случае, если образцы надлежащим образом отражают материал и процесс производства.
- 5.6.1 Изменения в материалах или в процессах производства могут привести к необходимости перерасчета, как описано в разделе 12.

ДА.2

16 Точность и погрешность

16.1 Точность и погрешность данного метода для получения HDB или PDB определены в методах испытаний ASTM D1598, ASTM D2143 и ASTM F948. Данный метод включает в себя статистический расчет для оценки пригодности данных в разделах 6 и 9.

Приложение ДБ (справочное)

Сопоставление структуры настоящего стандарта со структурой примененного в нем стандарта АСТМ

Таблица ДБ.1

Структура настоящего стандарта	Структура стандарта АСТМ Д2992—12	
1 Область применения (1)	1 Область применения	
2 Нормативные ссылки (2)	2 Нормативные ссылки	
3 Термины и определения (3)	3 Определения терминов	
4 Сокращения ¹⁾ (–)		
5 Сущность метода (4)	4 Сущность метода	
	5 Значимость и применение ²⁾	
6 Оборудование ¹⁾ (–)	Метод А 6 Долгосрочное циклическое гидростатическое напря- жение или долгосрочное циклическое гидростатиче- ское давление	
7 Подготовка к проведению испытаний ¹⁾ (–)	7 Циклическое гидростатическое расчетное значение	
8 Проведение испытаний (6–14)	8 Циклическое расчетное значение давления	
9 Обработка результатов ¹⁾ (–)	Процесс В 9 Долгосрочное постоянное гидростатическое напряжение	
10 Протокол испытаний (15)	10 Постоянное гидростатическое расчетное значение	
Приложение А (справочное) Вычисление долгосрочного гидростатического усилия или долгосрочного гидроста- тического давления по методу наименьших квадратов	11 Постоянное расчетное значение давления	
Приложение В (справочное) Пример расчета кольце-	12 Проверка значений HDB или PDB	
вого напряжения	13 Гидростатическое расчетное напряжение или ги- дростатическое расчетное давление	
Приложение ДА (справочное) Оригинальный текст не включенных структурных элементов	14 Номинальное давление	
Приложение ДБ (справочное) Сопоставление структу- ры настоящего стандарта со структурой примененного стандарта АСТМ	15 Отчет	
	16 Точность и логрешность ³⁾	
4)	17 Ключевые слова	
Приложение ДВ (справочное) Оригинальный текст мо- дифицированных структурных элементов	Приложение А	
	Приложения Х	

¹⁾ Включение в настоящий стандарт данного раздела обусловлено необходимостью приведения его в соответствие с требованиями ГОСТ 1.5.

Данный раздел исключен, т. к. носит поясняющий характер.
 Данный раздел исключен, т. к. в нем отсутствуют требования к точности, не указаны нормы по погрешности и ее составляющих данного метода испытаний.
 Данный раздел приведен в соответствие с требованиями ГОСТ Р 1.5 (пункт 5.6.2).

Примечание — После заголовков разделов (подразделов) настоящего стандарта в скобках приведены номера аналогичных им разделов стандарта АСТМ.

Приложение ДВ (справочное)

Оригинальный текст модифицированных структурных элементов

ДВ.1

1.1 Данный метод устанавливает два процесса испытаний, процесс А (циклический) и процесс В (статический), для получения гидростатического расчетного значения (HDB) или расчетного значения давления (PDB) для стекловолоконных трубных изделий путем регрессионного анализа данных, получаемых при проведении испытаний труб или фитингов, или и тех, и других, из одних и тех же материалов и одинаковой конструкции, по отдельности или в сборе. При этом и армированные стекловолокном трубы из термоотверждающихся каучуков (RTRP), и армированные стекловолокном трубы из полимер-раствора (RPMP) являются стекловолоконными трубами.

Примечание 1 — В рамках данного стандарта полимер не должен иметь природное происхождение.

1.2 Данный метод может быть использован для определения НDB для стекловолоконных труб, где соотношение между внешним диаметром и толщиной стенки превышает 10:1.

Примечание 2 — Подобное ограничение, основанное на теории расчета тонкостенных труб, в дальнейшем будет ограничивать применение данного метода внутренними давлениями, которые, согласно соотношению для кольцевого напряжения, будут составлять примерно 20 % от получаемого гидростатического расчетного напряжения (HDS). Например, если напряжение составляет 5000 фунтов/кв.дюйм (34 500 кПа), то внутреннее давление в трубе должно ограничиваться 1000 фунтами/кв.дюйм (6900 кПа) независимо от диаметра трубы.

- 1.3 Данный метод обеспечивает получение расчетного значения давления для изделий сложной формы или систем, в которых сложные поля механического напряжения могут серьезно затруднять использование кольцевого напряжения.
- 1.4 Концевые уплотнения образца в тестовых испытаниях могут быть закрепленными либо свободными, что приводит к определенным ограничениям.
- 1.4.1 Закрепленные концы. Образцы подвергаются внутреннему механическому напряжению только в окружном направлении, а гидростатическое расчетное давление применимо лишь к напряжениям, развивающимся в окружном направлении.
- 1.4.2 Свободные концы. Образцы подвергают внутреннему механическому напряжению и в окружном, и продольном направлениях, но таким образом, чтобы окружное напряжение вдвое превышало продольное. Данный метод не может применяться для оценки напряжений, вызываемых нагрузками с продольным напряжением, превышающим 50 % от значения HDS.
- 1.5 Значения, заявленные в единицах «дюйм-фунт» следует рассматривать в качестве стандартных. Значения, данные в скобках, представлены исключительно в ознакомительных целях.

Примечание 3 — Для настоящего стандарта не существует известного эквивалента ISO.

1.6 В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его применением. Пользователь настоящего стандарта несет ответственность за установление соответствующих правил по технике безопасности и охране здоровья, а также определяет целесообразность применения законодательных ограничений перед его использованием.

Примечание — Редакция раздела изменена для приведения в соответствие с требованиями ГОСТР 1.5 (подраздел 3.1) и ГОСТ 1.5 (подраздел 3.7).

ДВ.2

2.1 Стандарты ASTM:

D618 Практические указания к подготовке температурного и влажностного режима пластмасс для проведения испытаний

D883 Пластмассы. Термины и определения

D1598 Метод испытаний для времени наработки на отказ пластмассовых труб под постоянным внутренним давлением

D1599 Метод испытаний на сопротивление пластмассовых труб и фитингов под кратковременным гидравлическим давлением

D1600 Пластмассы. Термины и сокращения

D2143 Метод испытаний на прочность армированных термоусадочных пластмассовых труб под циклическим давлением D3567 Практические указания к определению характеристик «стекловолоконных» (армированных стекловолокном) труб и фитингов из термоотверждающихся каучуков

F412 Системы труб из пластмассы. Терминология

F948 Метод испытаний для времени до прорыва систем и деталей труб из пластмассы под постоянным внутренним давлением с напором

Примечание — Редакция раздела изменена для приведения в соответствие с требованиями ГОСТР 1.5 (подраздел 3.6) и ГОСТ 1.5 (подраздел 3.8).

ДВ.3

- 3.1.1 Основная терминология. Определения даны в соответствии с терминологиями ASTM D883 и ASTM F412, а аббревиатуры приведены в соответствии с терминологией ASTM D1600, если не указано иное.
- 3.1.2 Свободное концевое уплотнение уплотнительное устройство или механизм, крепящийся к концу испытуемого образца таким образом, что внутреннее давление производит продольное растягивающее напряжение в дополнение к кольцевому и радиальному напряжению в испытуемом образце.
- 3.1.3 Закрепленное концевое уплотнение уплотнительное устройство или механизм, упирающийся в торец испытуемого образца, или внешняя структура, оказывающая сопротивление осевой нагрузке, производимой внутренним давлением, тем самым ограничивая напряжение только в прямых образцах кольцевого и радиального направления.
- 3.1.4 Прорыв протекание испытательной жидкости каким-либо образом через образец, будь то трещина в стенке, местная течь или течь на расстоянии более одного диаметра от концевого уплотнения.

Примечание 4 — Для данного метода не протекающие образцы могут быть включены в протекающие при определенных условиях, обозначенных в подразделах 6.3, 9.3 и 12.2.

- 3.1.5 Стекловолоконная труба труба, содержащая армирование стекловолокном, встроенное в структуру или окруженное затвердевшим термоактивным каучуком; композиционная структура может содержать щебеночный, гранулированный или пластинчатый наполнитель, тиксотропные агенты, пигменты или красители, термопластичные или термоактивные добавки или покрытия.
- 3.1.6 Армированная стекловолокном труба из полимер-раствора (RPMP) стекловолоконная труба с наполнителем.
- 3.1.7 Армированная стекловолокном труба из термоотверждающихся каучуков (RTRP) стекловолоконная труба без наполнителя.
- 3.1.8 Кольцевое напряжение растягивающее напряжение в стенках труб в кольцевом направлении из-за внутреннего давления. Кольцевое напряжение вычисляют по формуле:

$$S = P(D - tr)/2tr, \tag{1}$$

где S — кольцевое напряжение, фунты/кв.дюйм (кПа);

— средний внешний диаметр армированной трубы, дюймы (мм);

Р — внутреннее давление, фунт/кв.дюйм (кПа);

tr — минимальная толщина армированной стенки, дюймы (мм).

Примечание 5 — Кольцевое напряжение определяют на прямых цилиндрических образцах. Оценка образцов более сложной формы может быть основана на давлении.

- 3.1.9 Гидростатическое расчетное значение (HDB) кольцевое напряжение, определяемое для стекловолоконных труб с помощью данного метода, умножаемое на поправочный коэффициент для получения HDS.
- 3.1.10 Гидростатическое расчетное давление (HDP) оценочное максимальное внутреннее гидростатическое давление, которое может быть применено к детали трубы циклически (процесс А) или продолжительно (процесс В) с высокой степенью вероятности, что утечка не произойдет.
- 3.1.11 Гидростатическое расчетное напряжение (HDS) оценочное максимальное внутреннее растягивающее напряжение в стенке трубы в кольцевом направлении благодаря внутреннему гидростатическому давлению, которое может быть применено к образцу трубы циклически (процесс А) или постоянно (процесс В) с высокой стеленью вероятности того, что утечка не произойдет.
- 3.1.12 Долгосрочное гидростатическое усилие (LTHS) оценочное растягивающее напряжение в стенке трубы в кольцевом направлении благодаря внутреннему гидростатическому давлению, которое в случае циклического применения приведет к прорыву трубы после определенного количества циклов (процесс A) или определенного количества часов (процесс B).

Примечание 6— Время определения LTHS или LTHP устанавливается согласно стандарту изделия. Как правило, время составляет 150 × 106 либо 657 × 106 циклов для процесса А или 100 000 либо 438 000 часов для процесса В.

3.1.13 Долгосрочное гидростатическое давление (LTHP) — оценочное внутреннее давление в образце трубы, которое в случае циклического применения приведет к прорыву трубы после определенного количества циклов (процесс A) или определенного количества часов (процесс B).

- 3.1.14 Расчетное значение давления (PDB) внутреннее давление, рассчитанное для стекловолоконных труб при помощи данного метода и умноженное на поправочный коэффициент для получения значения HDP.
- 3.1.15 Номинальное давление (РR) оценочное максимальное давление в трубе или фитинге, которое может быть применено продолжительно с высокой степенью вероятности того, что не произойдет прорыв образца трубы.
- 3.1.16 Поправочный коэффициент число от 1,00 и менее, учитывающее погрешность всех значений и степеней для безопасной установки стекловолоконных труб. При этом коэффициент умножают на HDB и получают HDS и значение расчетного номинального давления или его умножают на PDB, при этом получают непосредственно значение номинального давления. В любом случае в результате гарантируется качественная и безопасная установка труб при условии того, что во время установки надлежащим образом были использованы высококачественные детали.
 - 3.2 Определения терминов, характерных для настоящего стандарта:
- 3.2.1 Средний внешний диаметр измерение, полученное в соответствии с практическими указаниями ASTM D3567, без учета армированных или неармированных внешних толщин покрытия.
- 3.2.2 Минимальная армированная толщина стенки измерение, полученное в соответствии с практическими указаниями ASTM D3567, без учета армированных или неармированных внешних толщин покрытия и накладки; толщина стен фитингов определяется в самом тонком месте фитинга.

Примечание — Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ Р 1.5 (подраздел 3.7) и ГОСТ 1.5 (подраздел 3.9).

ДВ.4

- 4.1 Процесс А заключается в воздействии минимум на 18 образцов трубы или фитинга или обоих образцов под циклическим внутренним давлением с частотой 25 циклов/мин и при нескольких различных значениях давления. Требуемая температура испытаний поддерживается путем циркуляции горячей жидкости через образцы или проведения испытаний в воздушной среде с контролируемой температурой.
- 4.1.1 Циклическое LTHS или циклическое LTHP трубы или фитинга получается путем экстраполяции графика в двойном логарифмическом масштабе линии линейной зависимости кольцевого напряжения или внутреннего давления от количества циклов до прорыва.
- 4.1.2 Экспериментальная основа процесса А должна соответствовать методу испытаний ASTM D2143, который является частью данного метода. Если какая-либо часть процесса не соответствует методу испытаний ASTM D2143, необходимо использовать положения данного метода.
- 4.1.3 Стыки между образцами трубы и фитинга должны быть такими же, которые стандартно используются для испытуемых образцов.
- 4.2 Процесс В заключается в воздействии минимум на 18 образцов трубы или фитинга или обоих образцов под постоянным внутренним гидростатическим давлением разного уровня в контролируемых условиях и измерении времени до прорыва для каждого уровня давления. Температура испытаний поддерживается путем погружения образцов в водяную баню с контролируемой температурой, или их испытания в воздушной среде с контролируемой температурой воздуха, или же за счет циркуляции жидкости необходимой температуры через образец.

Примечание 7 — Испытания в водяной бане исключают обнаружение утечки (см. 3.1.4) как визуально, так и электронными средствами.

- 4.2.1 Статическое LTHS или статическое LTHP трубы или фитинга получаются путем экстраполяции графика в двойном логарифмическом масштабе линии линейной зависимости кольцевого напряжения или внутреннего давления от времени до прорыва.
- 4.2.2 Экспериментальная основа процесса В должна соответствовать методу испытаний ASTM D1598, методу испытаний ASTM F948 или же им обоим, которые являются частью данного метода. Если какая-либо часть процесса не соответствует выбранному методу, необходимо использовать положения данного метода.
- 4.2.3 Стыки между образцами трубы и фитинга должны быть такими же, которые стандартно используются для испытуемых образцов.
 - 4.3 Значение HDB определяется из значения LTHS в соответствии с разделом 7 или 10.
 - 4.4 Значение PDB определяется из значения LTHS в соответствии с разделом 8 или 11.
 - 4.5 Значение HDS для труб определяется путем умножения значения HDB на поправочный коэффициент.
- 4.6 Проверка значений HDB или PDB для других изделий. Когда для образцов уже определены значения HDB или PDB согласно данному методу и происходит изменение процесса или материала изделия, может быть произведено подтверждение исходных значений HDB или PDB в соответствии с разделом 12. Следует провести испытания по крайней мере шести образцов, и они должны отвечать установленным критериям.

Примечание — Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5 (пункт 7.9.5).

ДВ.5 Процесс А

6 Долгосрочное циклическое гидростатическое напряжение или долгосрочное циклическое гидростатическое давление

- 6.1 Выбирают свободное либо закрепленное концевое уплотнение, основанное на растягивающих напряжениях, вызываемых внутренним давлением и типом стыков в данной системе труб (см. 1.4).
- 6.2 Получают минимум 18 значений прорывного циклического напряжения для каждой заданной температуры в соответствии с методом испытаний ASTM D2143, за исключением следующего:
- 6.2.1 Определяют средний внешний диаметр и минимальную толщину армированных стенок в соответствии с методом испытаний ASTM D3567.

Примечание 9 — Из-за необходимости нарезания образца данное определение может быть произведено на образце, не прошедшем испытание. Вследствие этого при анализе используют заново рассчитанное исправленное кольцевое напряжение.

6.2.2 Повышенной температуры испытаний достигают путем циркуляции нагретой жидкости, применяемой в ходе испытания, через образец или при ее испытаниях в горячем воздухе. В любом случае жидкость должна поддерживаться в промежутке от ± 5 °F (3 °C) от выбранной температуры.

Примечание 10 — Когда повышение температуры в ходе испытаний поддерживается путем нагревания циркулирующей жидкости, применяемой при испытании, контролировать температуру окружающего воздуха нет необходимости.

6.2.3 Значения напряжения или давления должны быть отобраны таким образом, чтобы распределение точек прорыва было следующим:

Число циклов до прорыва	Точек прорыва (минимум)
От 1000 до 10 000	3
От 10 000 до 100 000	3
От 100 000 до 1 000 000	3
От 1 000 000 до 10 000 000	3
Eonee 15 000 000	1
Boero	18

6.3 Анализируют результаты испытаний, используя для каждого образца зависимость логарифма напряжения или давления из раздела 6, от логарифма числа циклов до прорыва, как описано в приложении А1.

Примечание 11 — Как правило, при испытаниях стекловолоконных труб по вертикальной оси (у) откладываются значения напряжения или давления, а по горизонтальной оси (х) — значения времени или циклов.

- 6.3.1 Образец, который протекает на расстоянии до одного диаметра от концевого уплотнения, может быть:
 - включен в качестве точки прорыва, если находится ниже 95 % кривой пределов доверительного интервала;
- заменен и вновь испытан при условии, что новый прорыв будет находиться на расстоянии дальше одного диаметра от концевого уплотнения;
 - ликвидирован, а данные не засчитаны.
- 6.3.2 Образцы, не прорвавшиеся спустя более 15 000 000 циклов, могут быть засчитаны как прорывы при обозначении регрессионной прямой. Использование таких данных может привести к занижению или завышению значений циклических LTHS и LTHP. В любом случае должны быть удовлетворены требования доверительного интервала значений из раздела 6.

П р и м е ч а н и е 12 — Не прорвавшиеся образцы могут быть испытаны далее и линии регрессии пересчитаны после возникновения прорыва.

6.3.3 Определяют конечную линию для экстраполяции по методу наименьших квадратов с использованием точек прорыва, а также точек непрорыва, выбранных по критериям, описанным в 6.3.1 и 6.3.2. Не следует использовать точки прорыва со значениями давления или напряжения, которые приводят к прорыву, происходящему менее чем за 500 циклов в среднем; определить данные точки путем усреднения количества испытаний циклов до прорыва с одинаковым уровнем напряжения или давления, например, при напряжении в ± 200 фунтов/кв.дюйм (138 кПа) или давлении ± 20 фунтов/кв.дюйм (138 кПа). Включают в отчет все данные о точках прорыва, исключенных из расчета, и относят их к данной категории.

Примечание 13—Поскольку данный процесс применим как для труб, так и для фитингов, рекомендуется, чтобы образец трубы и фитинг были испытаны одновременно как один образец путем использования стандартного процесса их соединения с фитингом на одном из концов. Если фитинг прорывает первым, он может быть отделен, а испытание продолжено с целой трубой с механическим концевым уплотнением на месте фитинга. В случае, если трубу прорывает первой, данные можно записать, заменить трубу и продолжать испытания до тех пор, пока не прорвет фитинг. Следуя этой рекомендации, испытатель сможет получать точки прорыва и для трубы, и для фитинга, проводя испытания только одного образца.

7 Циклическое гидростатическое расчетное значение

- 7.1 Вычисляют циклическое LTHS в определенное время (150×106 или 657×106 циклов), как описано в приложении A1.
 - 7.2 Если $S_{xy} > 0$ (см. A1.4), данные следует считать непригодными.
- 7.3 Вычисляют r в соответствии с A1. Если r является меньше применяемого минимального значения, приведенного в таблице A1.1, данные следует считать непригодными.
 - 7.4 При необходимости определяют категорию циклического HDB в соответствии с таблицей 1.

8 Циклическое расчетное значение давления

- 8.1 Используют процессы по 7.1, 7.2 и 7.3, подставив значение давления вместо напряжения.
- 8.2 При необходимости определяют категорию циклического PDB в соответствии с таблицей 2.

Процесс В

9 Долгосрочное постоянное гидростатическое напряжение

9.1 Выбирают свободное либо закрепленное концевое уплотнение, основанное на растягивающих напряжениях, вызываемых внутренним давлением и типом стыков в данной системе труб (см. 1.4).
Число циклов до прорыва
Точек прорыва (минимум)

Число циклов до прорыва	Точек
От 10 до 1000	4
От 1000 до 6000	3
Sonee 6000	3
Bonee 10 000	1
Bcero	18

- 9.2 Получают минимум 18 значений точек прорыва для каждой заданной температуры в соответствии с методом испытаний ASTM D1598 либо методом испытаний ASTM F948, за исключением следующего:
- 9.2.1 Определяют средний внешний диаметр и минимальную толщину армированных стенок в соответствии с методом испытаний ASTM D3567 (примечание 9).
- 9.2.2 Внутри испытуемого образца трубы или фитинга должна быть вода. Внешней средой является воздух либо баня с контролируемой температурой воды (см. раздел 7). Можно использовать также другую среду, что должно быть описано в протоколе испытаний. Жидкость, применяемая в ходе испытания, должна поддерживаться в промежутке от ± 5 °F (3 °C) от выбранной температуры (см. примечание 10).
- 9.2.3 Значения напряжения или давления для испытаний должны быть выбраны таким образом, чтобы получить следующее распределение точек прорыва:

Таблица 1 — Категории гидростатического расчетного значения с помощью процесса А или процесса В

Категори	HDB	Интервал рассч	итанных значений
Фунт/кв.дюйм ^а	кПа	Фунт/кв.дюйм	кПа
2500	17 200	От 2400 до 3010	От 16 500 до 20 700
3150	21 700	От 3020 до 3820	От 20 800 до 26 300
4000	27 600	От 3830 до 4790	От 26 400 до 33 000
5000	34 500	От 4800 до 5990	От 33 100 до 40 900
6300	43 400	От 6000 до 7590	От 41 000 до 52 900
8000	55 200	От 7600 до 9590	От 53 000 до 65 900
10 000	68 900	От 9600 до 11 990	От 66 000 до 82 900
12 500	86 200	От 12 000 до 15 290	От 83 000 до 105 900
16 000	110 000	От 15 300 до 18 990	От 106 000 до 130 900
20 000	138 000	От 19 000 до 23 990	От 131 000 до 169 900
25 000	172 000	От 24 000 до 29 990	От 170 000 до 209 900

FOCT P 57069-2016

Окончание таблицы 1

Категория НDВ		Интервал рассч	итанных значений
Фунт/кв.дюйм ^а	кПа	Фунт/кв.дюйм	кПа
31 500	217 000	От 30 000 до 37 990	От 210 000 до 259 900
40 000	276 000	От 38 000 до 47 000	От 260 000 до 320 000

Таблица 2 — Категории гидростатического расчетного значения с помощью процесса A или процесса B

Фунт/кв.дюйм	5ap ^a	κПа	Фунт/кв.дюйм	кПа
91	6,3	530	От 87 до 110	От 605 до 760
116	8	800	От 111 до 143	От 765 до 990
150	10	1000	От 144 до 172	От 995 до 1180
180	12,5	1250	От 173 до 220	От 1190 до 1510
230	16	1600	От 221 до 287	От 1520 до 1980
300	20	2000	От 288 до 345	От 1990 до 2380
360	25	2500	От 346 до 438	От 2390 до 3020
460	31,5	3150	От 439 до 556	От 3030 до 3830
580	40	4000	От 557 до 695	От 3840 до 4790
725	50	5000	От 696 до 876	От 4800 до 6040
910	63	6300	От 877 до 1110	От 6050 до 7680
1160	80	8000	От 1115 до 1380	От 7690 до 9580
1450	100	10 000	От 1390 до 1720	От 9590 до 11 800
1800	125	12 500	От 1730 до 2220	От 11 900 до 15 300

- 9.2.4 Поддерживают внутреннее испытательное давление в каждом образце с точностью до ± 1 % от выбранного значения. Измеряют время до прорыва с точностью до ± 2 % или ± 40 ч, если 40 ч составляют менее 2 % от измеряемого значения времени.
- 9.3 Анализируют результаты испытаний, используя для каждой точки прорыва зависимость логарифма напряжения или давления в фунтах/кв.дюйм или кПа от логарифма времени прорыва в часах, как описано в приложении А1 (примечание 9).
 - 9.3.1 Образец, который протекает на расстоянии до одного диаметра от концевого уплотнения, может быть:
 - включен в качестве точки прорыва, если находится ниже 95 % кривой пределов доверительного интервала;
- заменен и вновь испытан при условии, что новый прорыв будет находиться на расстоянии дальше одного диаметра от концевого уплотнения;
 - ликвидирован, а данные не засчитаны.
- 9.3.2 Образцы, не прорвавшиеся через более чем 10 000 ч, могут быть засчитаны как прорывы при обозначении регрессионной прямой. Использование таких данных может привести к занижению или завышению значений постоянных LTHS и LTHP. В любом случае должны быть удовлетворены требования доверительного интервала значений из 9.3.1.

П р и м е ч а н и е 14 — Не прорвавшиеся образцы могут быть испытаны далее и линии регрессии пересчитаны после возникновения прорыва.

9.3.3 Определяют конечную линию для экстраполяции по методу наименьших квадратов с использованием точек прорыва, а также точек непрорыва, выбранных по критериям, описанным в 9.3.1 и 9.3.2. Не следует использовать точки прорыва со значениями давления или напряжения, которые приводят к прорыву, происходящему менее чем за 0,3 ч в среднем; определяют данные точки путем усреднения количества испытаний циклов до прорыва с одинаковым уровнем напряжения или давления, например, при напряжении в ± 200 фунтов/кв.дюйм (1380 кПа) или давлении ± 20 фунтов/кв.дюйм (138 кПа). Включают в отчет все данные о точках прорыва, исключенных из расчета, и относят их к данной категории (примечание 12).

10 Постоянное гидростатическое расчетное значение

- 10.1 Вычисляют постоянное LTHS в определенное время (100 000 или 438 000 ч), как описано в приложении А1.
- 10.2 Если $S_{xy} > 0$ (см. A1.4), данные следует считать непригодными.
- 10.3 Вычисляют г в соответствии с А1.4.3. Если г менее применяемого минимального значения, приведенного в таблице А1.1, данные следует считать непригодными.
 - При необходимости определяют категорию циклического HDB в соответствии с таблицей 1.

11 Постоянное расчетное значение давления

- 11.1 Используют процессы по 7.1, 7.2 и 7.3, подставив давление вместо напряжения.
- 11.2 При необходимости определяют категорию циклического PDB в соответствии с таблицей 2.

12 Проверка значений HDB или PDB

- 12.1 В то время как трубы имеют конкретные значения HDB или PDB, определенные в соответствии с процессом А или процессом В, любое изменение материала, процесса производства, конструкции или толщины вкладышей может потребовать сортирующую оценку, как описано в 12.2, 12.3, 12.4, 12.5 и 12.6.
- 12.2 Получают точки прорыва для как минимум двух наборов образцов, где в каждом наборе находится по три и более образца, испытуемых при одном и том же уровне напряжения и давления, напряжения в пределах ± 200 фунтов/кв.дюйм (1380 кПа) и давления от ± 20 фунт/кв.дюйм (138 кПа) следующим образом:

12.2.1 Для процесса А

Число циклов до прорыва (среднее по набору)	Число точек прорыва (минимум)
От 15 000 до 300 000	3
Eonee 1 500 000	3
Bcero	6

Засчитывают за прорывы образцы, не прорвавшихся через более чем 4 500 000 циклов, что может привести к завышению значений прямой регрессии HDB или PDB.

12.2.2 Для процесса В

Число часов до прорыва (среднее по набору)	Число точек прорыва (минимум)
От 10 до 200	3
Более 1000	3
Bcero	6

Засчитывают за прорывы образцы, не прорвавшиеся через более чем 3000 ч, что может привести к завышению значений прямой регрессии HDB или PDB.

12.3 Вычисляют и строят в 95 % доверительном интервале и в 95 % пределе прогнозирования исходной прямой регрессии в соответствии с пунктом А1.4 с использованием данных, полученных ранее.

Примечание 15— Предел прогнозирования определяет границы отдельных наблюдений, в то время как доверительный интервал определяет границы прямой регрессии.

Примечание 16 — При 95 % доверительном интервале есть 2,5 % вероятность того, что среднее значение прямой регрессии может оказаться над верхним пределом доверительного интервала, и 2,5 % вероятность того что среднее значение для прямой регрессии окажется ниже нижнего предела. Для 95 % предела прогнозирования есть 2,5 % вероятность того, что отдельные точки данных окажутся за верхним пределом прогнозирования, и 2,5 % вероятность того, что отдельные точки данных окажутся за нижним пределом прогнозирования.

- 12.4 Любые изменения в материале труб и процессе производства можно считать незначительными и допустимыми, если результаты, полученные в 12.2, отвечают следующим критериям.
- 12.4.1 Средняя точка прорыва для каждого уровня напряжения или давления находится не ниже нижнего предела 95 % доверительного интервала прямой регрессии.

- 12.4.2 Нижняя точка прорыва для каждого уровня напряжения или давления находится не ниже нижнего 95 % предела прогнозирования исходной прямой регрессии.
- 12.4.3 Точки прорыва располагаются на исходной прямой регрессии. Ниже исходной прямой регрессии может находиться не более двух третьих точек прорыва.
- 12.5 В отличие от 12.4 любые изменения в материале труб и процессе производства считать допустимыми, если результаты, полученные в 12.2, отвечают следующим критериям:
 - 12.5.1 Все точки данных находятся выше нижнего предела 95 % доверительного интервала прямой регрессии.
 - 12.5.2 По крайней мере две точки превыщают время прорыва в 4.5 × 10 6 циклов или 3000 ч.
- 12.6 Данные, отвечающие критериям, указанным в 12.4 или 12.5, могут считаться частью исходного набора данных и новой прямой регрессии и определять HDB или PDB, используя все точки прорыва.
- 12.7 В случае, если данные не отвечают критериям, указанным в 12.4 или 12.5, изменения следует считать значительными, и должна быть создана новая прямая регрессии. В то время как проводятся новые испытания, за нижний интервал HDB или PDB для материалов или изменения процесса производства можно считать следующее:
- 12.7.1 Нижний предел 95 % доверительного интервала прямой регрессии значения, полученного путем экстраполяции точек прорыва от 12.2.1 до 657 000 000 циклов (50 лет) согласно процессу, описанному в 7.2, или от 12.2.2 до 438 000 ч (50 лет) согласно процессу, описанному в приложении А1.
 - 12.7.2 Нижний предел 95 % доверительного интервала исходной прямой регрессии за 50 лет.

13 Гидростатическое расчетное напряжение или гидростатическое расчетное давление

13.1 Получают HDS или HDP путем умножения HDB или PDB, как описано в процессе А или процессе В, с помощью поправочного коэффициента, выбранного для применения к определению двух групп условий. Первая группа рассматривает изменения условий испытаний и производства, особенно стандартные изменения в материале, производстве, характеристиках, способах транспортировки, а также процессы оценки в данном методе. Вторая группа рассматривает применение, особенно установку, внешние условия, температуру, возможные опасности, желаемый срок эксплуатации и выбранную степень надежности.

Примечание 17 — Целью данного метода не является предоставление поправочных коэффициентов. Поправочный коэффициент должен быть выбран инженером-проектировщиком после полной оценки условий обслуживания и инженерными свойствами конкретных материалов пластмассовых труб. Рекомендованные поправочные коэффициенты не будут разработаны или выпущены ASTM.

14. Номинальное давление

- 14.1 Для данных, основанных на кольцевом напряжении, вычисляют номинальное давление из HDS по формуле ISO, приведенной в 3.1.8 для каждого диаметра и толщины стенки трубы, изготовленной из определенных испытанных материалов и конструкций.
- 14.2 Для данных, основанных на внутреннем давлении, вычисляют номинальное давление непосредственно из HDP для изделий, изготовленных из определенных испытанных материалов и конструкций.

Примечание — Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5 (пункт 7.9.8).

ДВ.6

- 15.1 Предоставляют отчет о следующей информации:
- 15.1.1 Полное обозначение образца, включая тип, источник, кодовый номер изготовителя, номер партии, а также важную хронику, если таковая имеется.
- 15.1.2 Характеристика образца, включая номинальный размер, среднюю и минимальную толщину армированной стенки, средний внешний диаметр, а также теплоизолирующий материал и его толщину, если изделие было теплоизолировано.
 - 15.1.3 Характеристики фитинга, включая тип фитинга, а также все пункты, перечисленные в 15.1.2.
- 15.1.4 Применяемый процесс (процесс А или процесс В), а также маркировка данного метода испытаний согласно ASTM.
 - 15.1.5 Тип концевого уплотнения, закрепленное или свободное.
 - 15.1.6 Температура поддерживания во время испытаний.
 - 15.1.7 Испытания внешних и внутренних условий трубы.
- 15.1.8 Таблица напряжений и давлений в фунтах/кв.дюйм или кПа, а также количество циклов прорыва (процесс А) и времени до прорыва (процесс В) всех испытуемых образцов; природа прорыва и изделие, где он случился, фитинг или труба. Образцы, которые были приняты за изделия с прорывом после нахождения под напряжением или давлением в течение более чем 15 000 000 циклов или же более чем 10 000 ч, должны быть выделены.
 - 15.1.9 Определенное LTHS или LTHP.
 - 15.1.10 Значение г.
 - 15.1.11 HDB или HDP.
- 15.1.12 Источник НDB или PDB (7.1 или 7.2 для процесса А или 10.1 или 10.2 для процесса В) и все рассчитанные значения в соответствии с таблицей 1 или таблицей 2.

- 15.1.13 Какое-либо необычное поведение, замеченное при проведении испытаний.
- 15.1.14 Даты проведения испытаний.
- 15.1.15 Название лабораторий и ответственного за проведение испытаний.

Примечание — Редакция раздела изменена для приведения в соответствие с требованиями ГОСТ 1.5 (пункт 7.9.10).

Приложение (Обязательное)

А1 Вычисления наименьших квадратов для долгосрочного гидростатического усилия или долгосрочного гидростатического давления

А1.1 Общие данные

А1.1.1 Анализ основан на следующем соотношении:

$$y = a + bx, (A1.1)$$

где у — первая переменная, x = вторая переменная, b = угловой коэффициент прямой, и a = отрезок на оси у.

А1.1.2 Используют анализ линейного соотношения функций (иногда называется «анализ ковариаций»), в отличие от испытаний на знак («+» или «-») углового коэффициента, а также коэффициент корреляции количества доступных данных. Используемые формулы даются вместе с примерами данных и результатами, на основании чего могут быть выполнены любые другие статистические расчеты, отличные от действия соглашения, с примерами результатов в установленных рамках.

А1.1.3 В настоящем приложении период актуальности расчетов составляет 50 лет.

А1.2 Процесс анализа данных

- А1.2.1 Использование анализа линейного соотношения функций для анализа п пар значений данных (таких как у и х) и получения следующей информации.
 - А1.2.1.1 Угловой коэффициент прямой, b.
 - А1.2.1.2 Отрезок на оси у, а.
 - А1.2.1.3 Коэффициент корреляции, г.
 - А1.2.1.4 Значения нижнего предела 95 % доверительного интервала и предела прогнозирования.

А1.3 Присваивание переменных

A1.3.1 Пусть x — $\lg t$, rде t — время в часах (или циклов), тогда y — $\lg V$, rде V — значение напряжения (давления).

А1.4 Формулы соотношения функций и метод вычисления

А1.4.1 Основная статистика и величины

А1.4.1.1 Используют следующую основную статистику и величины:

п — число пар значений результатов измерений (V_it_i),

где V_. — напряжение (давление) при прорыве в измерении i;

 x_i — $\lg t_j$ где t_i — время до прорыва в часах при измерении i; i=1,...n; \overline{y} — арифметическое значение всех y_i величин:

$$\overline{y} = \frac{1}{n} \sum y_j;$$
(A1.2)

— арифметическое значение всех х, величин:

$$\overline{x} = \frac{1}{n} \sum x_i. \tag{A1.3}$$

А1.4.2 Относительные суммы квадратов

А1.4.2.1 Вычисляют следующие суммы квадратов и перекрестные произведения:

$$S_{xy} = \frac{1}{n} \sum_{i} (x_i - \overline{x})(y_i - \overline{y}). \tag{A1.4}$$

FOCT P 57069-2016

А1.4.2.2 Если $S_{xy} > 0$, следует считать результаты непригодными для оценки материала; если нет, то вычисляют также следующее:

$$S_{xx} = \frac{1}{n} \sum_{i} (x_i - \overline{x})^2;$$
 (A1.5)

$$S_{yy} = \frac{1}{n} \sum (y_i - \overline{y})^2. \tag{A1.6}$$

А1.4.3 Корреляция результатов

А1.4.3.1 Вычисляют коэффициент корреляции г из следующего соотношения:

$$r = \frac{(S_{xy})^2}{\left(S_{xx} \cdot S_{yy}\right)};\tag{A.1.7}$$

$$r = \sqrt{r^2}$$

A1.4.3.2 Если значение r меньше применимого минимального значения, представленного в таблице A1.1 в качестве n, следует удалить результаты и перейти $\kappa A1.4.4$.

А1.4.4 Соотношения функций

А1.4.4.1 Чтобы найти a и b для линии соотношения функций y = a + bx (формула А1.1), сначала вычисляют:

$$\lambda = \left(\frac{S_{yy}}{S_{xy}}\right). \tag{A1.8}$$

Затем:

$$b = -\sqrt{\lambda}$$
. (A1.9)

Tа блица A1.1 — Минимальные значения для коэффициента корреляции r, для приемлемых данных от n пар результатов

Минимальное значение г	(n - 2)	Минимальное значение г
0,6835	24	0,4952
0,6614	25	0,4869
0,6411	30	0,4487
0,6226	35	0,4182
0,6055	40	0,3932
0,5897	45	0,3721
0,5751	50	0,3541
0,5614	60	0,3248
0,5487	70	0,3017
0,5386	80	0,2830
0,5252	90	0,2673
0,5145	100	0,2540
0,5043		

Таблица А1.2 — «t» значение испытателя (двусторонний 0,05 уровень значимости)

Степень свободы	Значение Стьюдента, t_{ν}	Степень свободы	Значение Стьюдента, t_V	Степень свободы	Значение Стьюдента, t_{φ}
(n - 2)	4	(n - 2)	t _v	(n - 2)	1 _v
1	12,7062	46	2,0129	91	1,9864
2	4,3027	47	2,0117	92	1,9861

Продолжение таблицы А1.2

тепень свободы	Значение Стьюдента, I_V	Степень свободы	Значение Стьюдента, t_{φ}	Степень свободы	Значение Стьюдента, t_{ν}
(n - 2)	t _v	(n = 2)	t _{iv}	(a - 2)	t_{ν}
3	3,1824	48	2,0106	93	1,9858
4	2,7764	49	2,0096	94	1,9855
5	2,5706	50	2,0086	95	1,9853
6	2,4469	51	2,0076	96	1,9850
7	2,3646	52	2,0066	97	1,9847
8	2,3060	53	2,0057	98	1,9845
9	2,2622	54	2,0049	99	1,9842
10	2,2281	55	2,0040	100	1,9840
11	2,2010	56	2,0032	102	1,9835
12	2,1788	57	2,0025	104	1,9830
13	2,1604	58	2,0017	106	1,9826
14	2,1448	59	2,0010	108	1,9822
15	2,1315	60	2,0003	110	1,9818
16	2,1199	61	1,9996	112	1,9814
17	2,1098	62	1,9990	114	1,9810
18	2,1009	63	1,9983	116	1,9806
19	2,0930	64	1,9977	118	1,9803
20	2,0860	65	1,9971	120	1,9799
21	2,0796	66	1,9966	122	1,9796
22	2,0739	67	1,9960	124	1,9793
23	2,0687	68	1,9955	126	1,9790
24	2,0639	69	1,9949	128	1,9787
25	2,0595	70	1,9944	130	1,9784
26	2,0555	71	1,9939	132	1,9781
27	2,0518	72	1,9935	134	1,9778
28	2,0484	73	1,9930	136	1,9776
29	2,0452	74	1,9925	138	1,9773
30	2,0423	75	1,9921	140	1,9771
31	2,0395	76	1,9917	142	1,9768
32	2,0369	77	1,9913	144	1,9766
33	2,0345	78	1,9908	146	1,9763
34	2,0322	79	1,9905	148	1,9761
35	2,0301	80	1,9901	150	1,9759
36	2,0281	81	1,9897	200	1,9719

FOCT P 57069-2016

Окончание таблицы А1.2

Степень свободы	Значение Стьюдента, $t_{_{V}}$	Степень свободы	Значение Стьюдента, I_V	Степень свободы	Значение Стьюдента, г
(n - 2)	t _v	(n - 2)	l _v	{n − 2}	f _v
37	2,0262	82	1,9893	300	1,9679
38	2,0244	83	1,9890	400	1,9659
39	2,0227	84	1,9886	500	1,9647
40	2,0211	85	1,9883	600	1,9639
41	2,0195	86	1,9879	700	1,9634
42	2,0181	87	1,9876	800	1,9629
43	2,0167	88	1,9873	900	1,9626
44	2,0154	89	1,9870	1000	1,9623
45	2,0141	90	1,9867		1,9600

$$a = \overline{y} - b\overline{x}. \tag{A1.10}$$

Примечание А1.1 — Поскольку $y = \lg V$ и $x = \lg t$, где $V = 10^y$, $t = 10^x$, то применимое соотношение V и t выглядит следующим образом:

$$V = 10^{(a+b \log_{10} t)}.$$

А1.4.5 Вычисление вариаций

А1.4.5.1 Если t_L — применимое время до прорыва, то вычисляют:

$$x_L = \log_{10} t_L. \tag{A1.11}$$

A1.4.5.2 Вычисляют следующую статистическую последовательность. От i=1 до i=n больше всего подходит ξ_i , для верного значения x больше всего подходит Y_i , для верного значения y и дисперсии ошибок — σ_δ , для нахождения x по формуле A1.12, A1.13, A1.14 соответственно:

$$\xi_i = \frac{\{\lambda x_i + (y_i - a)b\}}{2\lambda};$$
(A1.12)

$$Y_i = a + b_{5i}^{\epsilon}, \qquad (A1.13)$$

$$\sigma_{\delta}^{2} = \frac{\left\{\sum (y_{i} - Y_{i})^{2} + \lambda \sum (x_{i} - \xi_{i})^{2}\right\}}{\lambda(n-2)}.$$
(A1.14)

А1.4.5.3 Вычисляют следующее:

$$\tau = \frac{b \cdot \sigma_{\delta}^2}{2 \cdot S_{xy}}; \quad (A1.15)$$

$$D = \frac{2 \cdot \lambda \cdot b \cdot \sigma_{\delta}^2}{n \cdot S_{xy}}; \tag{A1.16}$$

$$B = -D \cdot \overline{x} \cdot (1+\tau). \tag{A1.17}$$

А1.4.5.4 Вычисляют следующие дисперсии:

- дисперсию C от b по формуле:

$$C = D(1+\tau)$$
; (A1.18)

дисперсию A от а по формуле:

$$A = D\left\{ \frac{1}{x^2} (1+\tau) + \frac{S_{xy}}{b} \right\}; \tag{A1.19}$$

дисперсию σ_n от подобранной кривой x_i по формуле:

$$\sigma_n^2 = A + 2Bx_1 + Cx_1^2;$$
(A1.20)

дисперсию ошибок о от у по формуле:

$$\sigma_c^2 = 2\lambda \sigma_c^2$$
(A1.21)

- общую дисперсию σ_v для последующих значений y_t от y до x_t по формуле:

$$\sigma_V^2 = \sigma_n^2 + \sigma_\varepsilon^2. \tag{A1.22}$$

А1.4.5.5 Вычисляют оценку стандартного отклонения σ_{ν} от y_{L} по формуле:

$$\sigma_{y} = (\sigma_{0}^{2} + \sigma_{\epsilon}^{2})^{0.5}$$
(A1.23)

и прогнозируемую величину от у до х, согласно соотношению:

$$y_L = a + bx_L, (A1.24)$$

где а и b имеют значения, найденные по формулам A1.9 и A1.10.

А1.4.6 Вычисления и доверительные интервалы

А1.4.6.1 Вычисляют нижний предел 95 % предела прогнозирования $y_{L0.95}$, прогнозируемый для y_{L} по формуле:

$$y_{L0.95} = y_L - t_v \sigma_v$$
, (A1.25)

- где y, значение, найденное по формуле A1.24, когда x, (если применимо) значение, найденное по формуле А1.11, подходит для обозначения срока, например, в 50 лет (x₁ = 5,6415 (часов)) или срока, обозначающего минимальное значение предела прогнозирования 95 % доверительного интервала для следующих измерений V;

 - σ_y значение, найденное по формуле А1.23; t_v « t_v » значение, применимое для испытателя для v = n 2 df, как представлено в таблице А1.2 для двустороннего 0,05 уровня значимости (со значением ± 2,5 %).
 - А1.4.6.2 Вычисляют перекрестный нижний предел 95 % предела прогнозирования V из соотношения:

$$V_{L0.95} = 10^{Y_{L0.95}}$$
 (A1.26)

А1.4.6.3 Значением прогнозируемой величины V при времени t_i является V_i , представленная соотношением:

$$V_{L} = 10Y^{L}$$
, (A1.27)

где Y_L — значение, найденное по формуле A1.24. A1.4.6.4 При вычислении $\sigma_y^2 = \sigma_a^2$ по формуле A1.22 скорее будет найден доверительный интервал для кривой, чем предел прогнозирования для дальнейших измерений.

Приложения (Справочные)

Х1. Анализ данных

X1.1 Зависимость кольцевого напряжения от циклов до прорыва или времени до прорыва

X1.1.1 Кольцевое напряжение является более удобным параметром для использования при попытке прогнозировать долгосрочное гидростатическое усилие материала. Его использование сокращает разброс данных путем компенсирования различных характеристик испытуемого образца. Оно нормализует давление для различных размеров образца и сокращает изменения до параметров материалов. В связи с этим оно широко используется для оценки долгосрочных гидростатических свойств пластмассовых материалов. Очевидно, что после того как значение

FOCT P 57069-2016

HDS в первый раз определяется для определенного материала или конструкции, данное значение может использоваться для прогнозирования долгосрочного давления трубных изделий путем компенсирования различных размеров изделий.

X1.1.2 Главное ограничение при использовании кольцевого давления заключается в том, что оно может применяться только для простых образцов труб. Его применение главным образом было сокращено до материалов и некоторых изделий, таких как трубы и простые фитинги (соединения).

X1.2 Зависимость внутреннего давления от циклов до прорыва или времени до прорыва

Использование внутреннего давления больше расширяет применение данного метода для прогнозирования срока эксплуатации для многих изделий сложных структур, чего не могут позволить вычисления кольцевого напряжения. Логарифм внутреннего давления используется в вычислениях вместо логарифма кольцевого напряжения.

Х2. Примеры вычислений

Х2.1 Основные данные

Пример данных, приведенный в таблице X2.1, а также анализ данных, приведенный в настоящем приложении, может быть использован для процессов статистики. Из-за ошибок при округлении мала вероятность точного соглашения, но приемлемые процессы должны проходить в пределах ± 0,1 % от результатов, приведенных в X2.5.

Х2.2 Суммы квадратов

```
S_{xx} = 0.798109,

S_{yy} = 8.78285 \cdot 10^{-4},

S_{xy} = -0.024836.
```

Х2.3 Коэффициент корреляции

r = 0.938083.

Х2.4 Соотношения функций

```
\lambda = 1,100457 \cdot 10^{-3},

b = -3,31731 \cdot 10^{-2},

a = 3,782188.
```

Х2.5 Вычисленные дисперсии:

```
D = 4,84225 \cdot 10^{-6},

B = -1,46896 \cdot 10^{-6},

C (дисперсия от b) = 5,01271 \cdot 10^{-6},

A (дисперсия от a) = 4,66730 \cdot 10^{-6},

\sigma_a^2 (дисперсия ошибок для) x = 4,046696 \cdot 10^{-5}

\sigma_a^2 (дисперсия ошибок для) y = 1,1601 \cdot 10^{-4}.
```

Х2.6 Ограничения доверительных интервалов

Для N = 32 и t испытателя = 2,0423 расчетная величина, а также доверительные интервалы и пределы прогнозирования приведены в таблице X2.2.

Таблица Х2.1 — Примеры данных для примеров вычислений

Точка дан- ных	Время.	Напряжение, фунт/кв.дюйм	Log время, ч	Log напря- жение, f	Точка данных	Время,	Напряжение, фунт/кв.дюйм	Log время, ч	Log напря- жение, f
1	9	5500	0,95424	3,74036	17	1301	4700	3,11428	3,67210
2	13	5500	1,11394	3,74036	18	1430	4800	3,15534	3,68124
3	17	5500	1,23045	3,74036	19	1710	4800	3,23300	3,68124
4	17	5500		3,74036	20	2103	4800	3,32284	3,68124
5	104	5200	2,01703	3,71600	21	2220	4500	3,34635	3,65321
6	142	5200	2,15229	3,71600	22	2230	4400	3,34830	3,64345
7	204	5200	2,30963	3,71600	23	3816	4700	3,58161	3,67210
8	209	5200	2,32015	3,71600	24	4110	4700	3,61384	3,67210

Окончание таблицы Х2.1

Точка дан- ных	Время,	Напряжение, фунт/кв.дюйм	Log время, ч	Log напря- жение, f	Точка данных	Время,	Напряжение, фунт/кв.дюйм	Log время, ч	Log напря- жение, f
9	272	5000	2,43457	3,69897	25	4173	4600	3,62043	3,66276
10	446	5000	2,64933	3,69897	26	5184	4400	3,71466	3,64345
11	466	5000	2,66839	3,69897	27	8900	4600	3,94939	3,66276
12	589	4800	2,77012	3,68124	28	8900	4600	3,94939	3,66276
13	669	4700	2,82543	3,67210	29	10900	4500	4,03743	3,65321
14	684	5000	2,83506	3,69897	30	10920	4500	4,03822	3,65321
15	878	4600	2,94349	3,66276	31	12340	4500	4,09132	3,65321
16	1299	4800	3,11361	3,68124	32	12340	4500	4,09132	3,65321

Таблица Х2.2 — Ограничения доверительных интервалов

Время, ч	Значение	Нижний предел доверительного интервала	Нижний предел предела прогнозирования	
1	6056	5864	5704	
10	5611	5487	5309	
100	5198	5129	4933	
1000	4816	4772	4575	
10 000	4462	4398	4233	
100 000	4133	4037	3909	
438 000	3936	3820	3711	

УДК 691.419.8:006.354

OKC 83.120 23.040.50

Ключевые слова: трубы и детали трубопроводов из реактопластов, метод получения гидростатического проектного базиса и расчетного значения давления

Редактор А.Э. Елин Корректор Е.Р. Ароян Компьютерная верстка Ю.В. Поповой

Набрано в ИД «Юриспруденция», 715419, Москва, ул. Орджоникидзе. 11 www.jurisizdat.ru y-book@mail.ru

Издано и отпечатано во ФГУП «СТАНДАРТИНФОРМ», 123995, Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru