МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ГОСТ 33419— 2015

МЕТОДЫ ИСПЫТАНИЙ ХИМИЧЕСКОЙ ПРОДУКЦИИ, ПРЕДСТАВЛЯЮЩЕЙ ОПАСНОСТЬ ДЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ

Определение поверхностного натяжения водных растворов

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены FOCT 1.0 «Межгосударственная система стандартизации. Основные положения» и FOCT 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Межгосударственным техническим комитетом по стандартизации МТК 339 «Безопасность сырья, материалов и веществ» на основе собственного перевода на русский язык англоязычной версии международного документа, указанного в пункте 5
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 22 июля 2015 г. № 78-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 21 октября 2015 г. № 1608-ст межгосударственный стандарт ГОСТ 33419—2015 введен в действие в качестве национального стандарта Российской Федерации с 1 сентября 2016 г.
- 5 Настоящий стандарт модифицирован по отношению международному документу ОЕСО, Тест No. 115:1995 «Поверхностное натяжение водных растворов» («Surface Tension of Aqueous Solutions», MOD) путем изменения структуры. Сопоставление структуры настоящего стандарта со структурой примененного в нем международного документа приведено в дополнительном приложении ДА.

Наименование настоящего стандарта изменено относительно наименования указанного международного документа для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6)

- 6 ВВЕДЕН ВПЕРВЫЕ
- 7 ПЕРЕИЗДАНИЕ. Май 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

Стандартинформ, оформление, 2016, 2019

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

FOCT 33419-2015

Содержание

1 Область применения	. 1
2 Термины и определения	1
3 Стандартные вещества	. 1
4 Принцип испытания	1
5 Описание испытания	2
6 Проведение испытания	4
7 Данные и отчет о проведении испытания	4
Приложение ДА (справочное) Сопоставление структуры настоящего стандарта со структурой	
примененного в нем международного документа	6
Библиография	. 7

межгосударственный стандарт

МЕТОДЫ ИСПЫТАНИЙ ХИМИЧЕСКОЙ ПРОДУКЦИИ, ПРЕДСТАВЛЯЮЩЕЙ ОПАСНОСТЬ ДЛЯ ОКРУЖАЮЩЕЙ СРЕДЫ

Определение поверхностного натяжения водных растворов

Test methods of chemicals of environmental hazard. Determination of the surface tension of aqueous solutions

Дата введения — 2016—09—01

1 Область применения

- 1.1 Настоящий стандарт устанавливает метод определения поверхностного натяжения водных растворов различных химических веществ.
- 1.2 Метод, представленный в настоящем стандарте, может использоваться для большинства химических веществ независимо от степени их чистоты.

2 Термины и определения

- В настоящем стандарте применен следующий термин с соответствующим определением:
- 2.1 поверхностное натяжение (surface tension): Свободная поверхностная энтальпия единицы площади поверхности жидкости.

Примечание — Единицей измерения поверхностного натяжения в системе СИ является ньютон на метр, Н/м. На практике используют производную единицу измерения мН/м = 10⁻³ Н/м. В устаревшей системе единиц СГС 10⁻³ Н/м = 1 дин/см.

3 Стандартные вещества

Использование стандартных веществ во всех случаях при испытании нового вещества не требуется. Использование стандартных веществ необходимо для периодической калибровки и верификации оборудования и возможности сопоставления результатов в случае применения разных методов. Перечень стандартных веществ с широким диапазоном значений поверхностного натяжения приведен в [4].

4 Принцип испытания

- 4.1 Методы определения поверхностного натяжения основаны на измерении силы, которую необходимо приложить в вертикальном направлении к скобе (или кольцу), находящейся на поверхности жидкости, для ее отделения от поверхности или к пластине, грань которой контактирует с поверхностью жидкости, для вытягивания образующейся пленки.
- 4.2 Испытание не требуется проводить для веществ с растворимостью менее 1 мг/л. Измерение поверхностного натяжения с использованием кольцевого тензиометра возможно только для водных растворов с динамической вязкостью менее 200 мПа · с.

5 Описание испытания

5.1 Информация об исследуемом веществе

Для исследуемого вещества должны быть известны его структурная формула, растворимость в воде, устойчивость к гидролизу и критическая концентрация мицеллообразования.

5.2 Метод с пластиной

Полное описание метода представлено в ИСО 304:1985 [2].

5.3 Метод со скобой

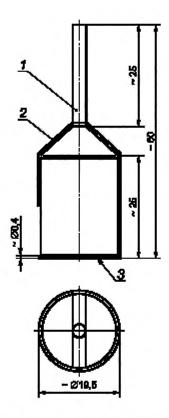
Полное описание метода представлено в ИСО 304:1985 [2].

5.4 Метод с кольцом

Полное описание метода представлено в ИСО 304:1985 [2].

5.5 Гармонизированный метод с кольцом (метод ОЭСР)

Данный метод основан на ИСО 304:1985 [2], DIN 53914 [5], ASTM D 1590 [6] и ASTM D 1331 [7].


5.6 Оборудование

- 5.6.1 Для проведения испытания используют доступные виды тензиометров. Тензиометры состоят из следующих элементов:
 - подвижный столик для пробы;
 - система для измерения силы;
 - измерительный элемент (кольцо);
 - измерительный сосуд.
- 5.6.2 Подвижный столик для пробы используется в качестве опоры для измерительного сосуда.
 Вместе с системой для измерения силы он размещается на подставке.
- 5.6.3 Система для измерения силы располагается выше столика для пробы. Погрешность измерения силы не должна превышать ± 10⁻⁶ H, что соответствует пределу погрешности ± 0,1 мг при измерении массы. В большинстве доступных тензиометров измерительная шкала откалибрована в мН/м, и поверхностное натяжение следует считывать с точностью 0,1 мН/м.
- 5.6.4 Кольцо обычно изготавливают из платиново-иридиевой проволоки толщиной примерно 0,4 мм и средним периметром примерно 60 мм. Кольцо подвешивается горизонтально с помощью металлического штифта и проволочного монтажного кронштейна для установления соединения с системой для измерения силы (см. рисунок 1). Если кольцо не находится в горизонтальном положении, то может быть получен ошибочный результат [8].
- 5.6.5 Измерительный сосуд, содержащий исследуемый раствор, представляет собой стеклянный сосуд с системой контроля температуры. Сосуд должен быть сконструирован таким образом, чтобы во время испытания температура исследуемого раствора и газовой фазы, находящейся над его поверхностью, оставалась постоянной и исследуемый раствор не испарялся. Подходящими являются цилиндрические стеклянные сосуды с внутренним диаметром не менее 45 мм.

5.7 Подготовка оборудования

5.7.1 Очистка

- 5.7.1.1 Измерительный сосуд следует тщательно очистить. При необходимости его промывают горячей сульфохромовой смесью, а затем концентрированной фосфорной кислотой (с массовой долей Н₃РО₄ 83 % 98 %), тщательно промывают проточной водой и окончательно промывают бидистиплированной водой до получения нейтральной реакции. Затем высушивают или промывают исследуемым раствором.
- 5.7.1.2 Кольцо сначала тщательно промывают водой для удаления любых растворимых в воде веществ, кратковременно погружают в сульфохромовую смесь, промывают бидистиллированной водой до получения нейтральной реакции и затем нагревают над пламенем метанола.

1 — штифт; 2 — поддерживающий кронштейн; 3 — кольцо

Рисунок 1 — Система для измерения силы (все размеры выражены в миллиметрах)

5.7.1.3 Вещества, которые не растворяются или не разрушаются под действием сульфохромовой смеси или фосфорной кислоты, например силиконы, удаляют с помощью подходящего органического растворителя.

5.7.2 Нивелирование прибора

Прибор следует уравновесить, например, с помощью спиртового уровня в основании тензиометра или настройкой регулировочных винтов. Кольцо устанавливают на прибор так, чтобы оно было параллельно поверхности жидкости. Поверхность жидкости в данном случае можно использовать как зеркало. До погружения кольца в жидкость показание тензиометра устанавливают на ноль. Калибровку проводят с использованием массы или воды.

5.7.3 Калибровка по массе

Рейтер известной массы в диапазоне от 0,1 до 1,0 г помещают на кольцо. Поправочный коэффициент Φ_a , на который умножают все показания прибора, определяют по соотношению

$$\Phi_{g} = \frac{\sigma_{r}}{\sigma_{g}}$$
, (1)

где

$$\sigma_r = \frac{mg}{2b},$$
(2)

где m - масса рейтера, г;

g — ускорение свободного падения (981 см · c^{-2} на уровне моря);

b — средний периметр кольца, см;

 σ_a — показание тензиометра после помещения рейтера на кольцо, мН/м.

5.7.4 Калибровка с использованием воды

Калибровка с использованием чистой воды выполняется быстрее, чем калибровка по известной массе, но имеется опасность изменения поверхностного натяжения воды (72,3 мН/м при 23 °C) под действием следовых количеств примесей, например поверхностно-активных веществ. Поправочный коэффициент Ф_в определяется по соотношению

$$\Phi_b = \frac{\sigma_o}{\sigma_o}$$
, (3)

где σ_o — значение поверхностного натяжения воды в соответствии со справочными данными, мН/м; σ_a — измеренное значение поверхностного натяжения воды, мН/м.

Оба показателя определяются при одной и той же температуре.

5.8 Подготовка проб

- 5.8.1 Готовят раствор исследуемого вещества в дистиллированной воде. Концентрация раствора должна составлять 90 % от концентрации насыщения, но если такая концентрация превышает 1 г/л, то в испытании используют концентрацию 1 г/л.
- 5.8.2 Измерению может помешать загрязнение пылью и парами других веществ. В связи с этим измерение следует проводить под защитным колпаком.

5.9 Условия проведения испытания

Измерение проводится при температуре примерно 20 °C. Температуру контролируют с точностью ± 0.5 °C.

6 Проведение испытания

Исследуемый раствор переносят в измерительный сосуд, не допуская образования пены. Следует зарегистрировать время с момента переноса исследуемого раствора в измерительный сосуд. Измерительный сосуд помещают на подвижный столик. Измерительный сосуд поднимают до тех пор, пока кольцо не будет погружено ниже поверхности исследуемого раствора. Затем поверхность столика постепенно и равномерно опускают со скоростью примерно 0,5 см/мин для отделения кольца от поверхности до достижения максимальной силы. Показание силы считывают на тензиометре. Слой жидкости, соединенный с кольцом, не должен отделяться от кольца. После окончания первого измерения испытания повторяют до достижения постоянного значения поверхностного натяжения.

7 Данные и отчет о проведении испытания

7.1 Данные

7.1.1 Для расчета поверхностного натяжения значение, считанное с прибора в мН/м, сначала умножают на поправочный коэффициент Ф_в или Ф_в в зависимости от использованной методики калибровки. Полученное значение следует рассматривать как приблизительное и требующее поправки. Эмпирическим путем были установлены поправочные коэффициенты, зависящие от размеров кольца, плотности жидкости и ее поверхностного натяжения (таблицы Харкинса — Джордана) [9]. Поскольку определение поправочного коэффициента для каждого отдельного испытания по таблицам Харкинса — Джордана является трудоемким, то следует использовать упрощенную методику, применимую к водным растворам. Она состоит в принятии скорректированных значений поверхностного натяжения из таблицы 1, приведенной ниже. Следует использовать интерполяцию для показаний в диапазоне табличных данных. Таблица составлена на основе корректировки Харкинса — Джордана. Таблица аналогична таблице, представленной в DIN 53914 [5] для воды и водных растворов (плотность р = 1 г/см³) и для промышленно доступного кольца, имеющего средний радиус кольца 9,55 мм и радиус проволоки кольца 0,185 мм. В таблице 1 приведены скорректированные значения измерений, установленные после калибровки по массе или воде.

Таблица 1 — Корректировка измеряемого поверхностного натяжения

Значение, установленное ври испытании с ⁻ , мН/м	Скорректированное значение о, мН/м		
	Калибровка по воде	Калибровка по массе	
20	18,1	16,9	
22	20,1	18,7	

Окончание таблицы 1

Значение, установленное	Скорректированное значение о, мН/м		
при испытании σ , мН/м	Калибровка по воде	Калибровка по массе	
24	22,1	20,6	
26	24,1	22,4	
28	26,1	24,3	
30	28,1	26.2	
32	30,1	28,1	
34	32,1	29.9	
36	34,1	31,8	
38	36,1	33,7	
40	38,2	35,6	
42	40,3	37.6	
44	42,3	39,5	
46	44,4	41,4	
48	46,5	43.4	
50	48,6	45,3	
52	50,7	47,3	
54	52,8	49.3	
56	54,9	51,2	
58	57,0	53.2	
60	59,1	55,2	
62	61,3	57.2	
64	63,4	59,2	
66	65,5	61.2	
68	67,7	63.2	
70	69,9	65,2	
72	72,0	67.2	
74		69,2	
76		71,2	
78	<u>-</u> >	73,2	

Примечание — Только для водных растворов, $\rho \approx 1$ г/см³, R = 9,55 мм (средний радиус кольца), r = 0,185 мм (радиус проволоки кольца).

7.1.2 В альтернативном случае без предварительной калибровки поверхностное натяжение следует рассчитывать по следующему соотношению

$$\sigma = \frac{f \cdot F}{4\pi R},$$
 (4)

где F — сила, измеренная на динамометре в момент отрыва кольца;

R — радиус кольца;

f — поправочный коэффициент [9], [10].

7.2 Отчет о проведении испытания

Отчет об испытании должен содержать следующую информацию:

- метод испытания;
- тип воды или раствора, используемого для проведения испытания;
- информация об исследуемом веществе (химическая идентификация, примеси);
- результаты измерения: индивидуальные показания, их среднее арифметическое значение и среднее скорректированное значение;
 - концентрация тестируемого раствора;
 - температура проведения испытания;
 - время с момента приготовления раствора до проведения измерения;
- описание зависимости измеренного поверхностного натяжения от времени после переноса раствора в измерительный сосуд;
- вся информация и примечания, имеющие значение для интерпретации результатов, в частности в отношении примесей и физического состояния вещества.

Приложение ДА (справочное)

Сопоставление структуры настоящего стандарта со структурой примененного в нем международного документа

Таблица ДА.1

Структура международного документа	Структура межгосударственного стандарта	
Раздел 1		
Раздел 2	1.1, 1.2, 4.2, 5.1	
Раздел 3	2.1	
Раздел 4	3	
Раздел 5	4.1	
Раздел 6	5.2	
Раздел 7	5.3	
Раздел 8	5.4	
Раздел 9	5.5	
Раздел 10	5.6.1	
Раздел 11	5.6.2	
Раздел 12	5.6.3	
Раздел 13	5.6.4	
Раздел 14	5.6.5	
Раздел 15	5.7.1.1	
Раздел 16	5.7.1.2	
Раздел 17	5.7.1.3	
Раздел 18	5.7.2	
Раздел 19	5.7.3	
Раздел 20	5.7.4	
Раздел 21	5.8.1	
Раздел 22	5.8.2	
Раздел 23	5.9	
Раздел 24	6	
Раздел 25	7.1.1	
Раздел 26	7.1.2	
Раздел 27	7.2	
Литература	Библиография	

Библиография

- [1] Official Journal of the European Communities L 383 A, 47-53 (1992) (Официальный журнал европейской комиссии)
- [2] ISO 304:1985 Surface-active agents Determination of surface tension by drawing up liquid films (Вещества поверхностно-активные, Определение поверхностного натяжения путем вытягивания жидких пленок)
- [3] Weissberger R., ed. (1959). Technique of Organic Chemistry, Vol. I, Part I, Physical Methods of Organic Chemistry, Chapter XIV, 3rd ed., Interscience Publ., New York (Методы органической химии. Часть 1. Физические методы органической химии)
- [4] Pure Appl. Chem. 91976, 48, 511 (Теоретическая прикладная химия)
- [5] DIN 53914:1997 Prüfung von Tensiden; Bestimmung der Oberflächenspannung (Испытание поверхностноактивных веществ, определение поверхностного натяжения)¹⁾
- [6] ASTM D 1590:1977 Test Methods for Surface Tension of Water and Waste Water (Методы испытаний поверхностного натяжения воды и сточных вод)
- [7] ASTM D 1331:2001 Standard Test Methods for Surface and Interfacial Tension of Solutions of Surface-Active Agents (Стандартные методы испытаний поверхностного и межфазного натяжения в растворах поверхностно-активных веществ)
- [8] Gaonkar and Neuman (1984). J. Colloid. Interface Sci., 98, 112
- [9] Harkins W.D. and Jordan H.F. (1930), J. Amer. Chem. Soc., 52, 1751
- [10] Fox H.W. and Chrismann C.H. (1952). J. Phys. Chem., 56, 284

¹⁾ Действует DIN EN 14370-2004.

УДК 658.382.3:006.354 MKC 13.020.01

Ключевые слова: химическая продукция, окружающая среда, поверхностное натяжение

Редактор Е.И. Мосур Технический редактор В.Н. Прусакова Корректор Е.Р. Ароян Компьютерная верстка Ю.В. Поповой

Сдано в набор 14.05.2019. Подписано в печать 15.07.2019. Формат 60 × 84 ¹/₈. Гарнитура Ариал. Усл. печ. л. 1,40. Уч.-изд. л. 1,00.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru