МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT ISO 898-2— 2015

МЕХАНИЧЕСКИЕ СВОЙСТВА КРЕПЕЖНЫХ ИЗДЕЛИЙ ИЗ УГЛЕРОДИСТЫХ И ЛЕГИРОВАННЫХ СТАЛЕЙ

Часть 2

Гайки установленных классов прочности с крупным и мелким шагом резьбы

(ISO 898-2:2012, Mechanical properties of fasteners made of carbon steel and alloy steel — Part 2: Nuts with specified property classes — Coarse thread and fine pitch thread, IDT)

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении» (ВНИИНМАШ) на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 229 «Крепежные изделия»
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 29 сентября 2015 г. № 80-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Азербайджан	AZ	Азстандарт
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Грузия	GE	Грузстандарт
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Туркменистан	TM	Главгосслужба «Туркменстандартлары»
Узбекистан	UZ	Узстандарт
Украина	UA	Минэкономразвития Украины

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 27 июня 2016 г. № 693-ст межгосударственный стандарт ГОСТ ISO 898-2—2015 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2018 г.
- 5 Настоящий стандарт является идентичным по отношению к международному стандарту ISO 898-2:2012 «Механические свойства крепежных изделий из углеродистых и легированных сталей. Часть 2. Гайки установленных классов прочности. Крупный и мелкий шаг резьбы» («Mechanical properties of fasteners made of carbon steel and alloy steel Part 2; Nuts with specified property classes Coarse thread and fine pitch thread», IDT).

Международный стандарт разработан подкомитетом ISO/TC 2/SC 12 «Крепежные изделия с метрической внутренней резьбой» Технического комитета по стандартизации ISO/TC 2 «Крепежные изделия» Международной организации по стандартизации (ISO).

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты» (по состоянию на 1 января текущего года), а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, 2016

Содержание

1 Область применения
2 Нормативные ссылки
3 Обозначения
4 Система обозначений
4.1 Обозначение типов гайки
4.2 Обозначение классов прочности
4.3 Диапазоны номинальных диаметров в зависимости от типа гайки и класса прочности 3
5 Конструирование соединения болта и гайки
6 Материалы
7 Механические свойства
8 Контроль
8.1 Производственный контроль
8.2 Контроль со стороны поставщика
8.3 Контроль со стороны заказчика
9 Методы испытаний
9.1 Испытание пробной нагрузкой
9.2 Испытание на твердость
9.3 Контроль дефектов поверхности
10 Маркировка
10.1 Общие требования
10.2 Маркировка товарного знака изготовителя
10.3 Маркировка классов прочности
10.4 Идентификация
10.5 Маркировка левой резьбы
10.6 Маркировка упаковки
Приложение А (справочное) Принципы конструирования гаек
Приложение В (справочное) Размеры резьбы испытательной оправки
Приложение ДА (справочное) Сведения о соответствии ссылочных международных стандартов
межгосударственным стандартам19
Библиография

Поправка к ГОСТ ISO 898-2—2015 Механические свойства крепежных изделий из углеродистых и легированных сталей. Часть 2. Гайки установленных классов прочности с крупным и мелким шагом резьбы

В каком месте	Напечатано		Долж	кно быть
Предисловие. Таблица согла- сования	_	Туркмения	TM	Главгосслужба «Туркменстандартлары»

(ИУС № 1 2021 г.)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МЕХАНИЧЕСКИЕ СВОЙСТВА КРЕПЕЖНЫХ ИЗДЕЛИЙ ИЗ УГЛЕРОДИСТЫХ И ЛЕГИРОВАННЫХ СТАЛЕЙ

Часть 2

Гайки установленных классов прочности с крупным и мелким шагом резьбы

Mechanical properties of fasteners made of carbon steel and alloy steel.

Part 2. Nuts with specified property classes with coarse thread and fine pitch thread

Дата введения — 2018—01—01

1 Область применения

Настоящий стандарт устанавливает механические и физические свойства гаек с крупным и мелким шагом резьбы из углеродистых и легированных сталей при испытании в условиях с температурой окружающей среды от 10 до 35 °C.

Гайки оцениваются на соответствие требованиям настоящего стандарта только в указанном температурном диапазоне. Изделия могут не сохранять установленных механических и физических свойств при более высоких и более низких температурах.

Примечания

- 1 Гайки, соответствующие требованиям настоящего стандарта, применяют в диапазоне температур от минус 50 °C до плюс 150 °C. При определении возможных вариантов применения за пределами указанного диапазона и до максимальной температуры плюс 300 °C пользователям следует консультироваться с металловедами.
- 2 Информация по выбору и применению сталей для использования при более высоких или более низких температурах приведена, например, в EN 10269, ASTM F2281 и в ASTM A320/A320M.

Настоящий стандарт распространяется на гайки:

- а) из углеродистых или легированных сталей;
- b) с крупной резьбой M5 ≤ D ≤ M39 и с мелким шагом резьбы M8 x 1 ≤ D ≤ M39 x 3;
- с) с треугольной метрической резьбой по ISO 68-1;
- d) с сочетаниями диаметр/шаг по ISO 261 и ISO 262;
- е) установленных классов прочности, включающих пробную нагрузку:
- f) различных типов: низкие гайки, нормальные гайки и высокие гайки;
- g) с минимальной высотой m ≥ 0,45D;
- h) с минимальным наружным диаметром или размером под ключ s ≥ 1,45D (см. приложение A);
- i) сопрягаемые с болтами, винтами и шпильками классов прочности по ISO 898-1.

Горячее оцинкование гаек по ISO 10684.

Настоящий стандарт не устанавливает требований к следующим свойствам:

- стопорящая способность (см. ISO 2320);
- соотношение крутящего момента к усилию предварительной затяжки (см. методы испытаний по ISO 16047);
 - свариваемость;
 - коррозионная стойкость.

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы. Для датированных ссылок применяют только указанное издание ссылочного документа. Для недатированных ссылок применяют последнее издание ссылочного документа (включая все его изменения).

ISO 6157-2, Fasteners — Surface discontinuities — Part 2: Nuts (Изделия крепежные. Дефекты поверхности. Часть 2. Гайки)

ISO 6506-1, Metallic materials — Brinell hardness test — Part 1: Test method (Материалы металлические. Определение твердости по Бринеллю. Часть 1. Метод испытания)

ISO 6507-1, Metallic materials — Vickers hardness test — Part 1: Test method (Материалы металлические. Испытание на твердость по Виккерсу. Часть 1. Метод испытаний)

ISO 6508-1, Metallic materials — Rockwell hardness test — Part 1: Test method (scales A, B, C, D, E, F, G, H, K, N, T) [Материалы металлические. Испытание на твердость по Роквеллу. Часть 1. Метод испытаний (шкалы A, B, C, D, E, F, G, H, K, N, T)]

ISO 6892-1, Metallic materials — Tensile testing — Part 1: Method of test at room temperature (Материалы металлические. Испытания на растяжение. Часть 1. Испытание при комнатной температуре)

ISO 7500-1, Metallic materials — Verification of static uniaxial testing machines — Part 1: Tension/ compression testing machines — Verification and calibration of the force-measuring system (Материалы металлические. Верификация машин для статических испытаний в условиях одноосного нагружения. Часть 1. Машины для испытания на растяжение/сжатие. Верификация и калибровка силоизмерительных систем)

ISO 16426, Fasteners — Quality assurance system (Изделия крепежные. Система обеспечения качества)

3 Обозначения

При пользовании настоящим стандартом необходимо применять следующие обозначения:

D — номинальный диаметр резьбы гайки в миллиметрах;

d_h — диаметр отверстия зажима в миллиметрах;

F — нагрузка в ньютонах;

h — толщина зажима в миллиметрах;

т — высота гайки в миллиметрах;

Р — шаг резьбы в миллиметрах:

размер под ключ в миллиметрах.

4 Система обозначений

4.1 Обозначение типов гайки

Настоящий стандарт устанавливает требования для трех типов гаек в соответствии с их высотой:

- тип 2: высокая гайка с минимальной высотой т_{мин} ≈ 0,9D или т_{мин} > 0,9D, см. таблицу А.1;
- тип 1: нормальная гайка с минимальной высотой m_{мин} ≥ 0,8D, см. таблицу А.1;
- тип 0: низкая гайка с минимальной высотой 0,45D ≤ m_{мин} < 0,8D.

4.2 Обозначение классов прочности

4.2.1 Общие положения

Маркировка гаек различных классов прочности и обозначения на ярлыках (этикетках), установленные в разделе 10, должны применяться только для гаек, соответствующих всем требованиям настоящего стандарта.

4.2.2 Нормальные гайки (тип 1) и высокие гайки (тип 2)

Обозначение классов прочности нормальных гаек (тип 1) и высоких гаек (тип 2) состоит из одного числа. Оно соответствует числу слева от обозначения максимального класса прочности соответствующего максимального класса прочности болтов, винтов и шпилек, с которыми они могут быть сопряжены.

4.2.3 Низкие гайки (тип 0)

Обозначение классов прочности низких гаек (тип 0) состоит из двух цифр, установленных в следующей последовательности:

- а) первая цифра нуль, означает, что нагрузочная способность гайки ниже нагрузочной способности нормальной гайки или высокой гайки в соответствии с 4.2.2 и, следовательно, при нагрузке выше допускаемой может произойти срез резьбы;
- b) вторая цифра соответствует 1/100 номинального напряжения от пробной нагрузки в закаленной испытательной оправке, в мегапаскалях (МПа).

4.3 Диапазоны номинальных диаметров в зависимости от типа гайки и класса прочности

Диапазоны номинальных диаметров в зависимости от типа гайки и класса прочности представлены в таблице 1.

Та блица 1 — Диапазоны номинальных диаметров в зависимости от типа гайки и класса прочности

	Диа	пазоны номинальных диаметрог	a, D
Класс прочности	Нормальная гайка (тип. 1)	Высокая гайка (тип 2)	Низкая гайка (тип 0)
04	_	-	M5 ≤ D ≤ M39 M8 x 1 ≤ D ≤ M39 x 3
05		-	M5 ≤ D ≤ M39 M8 x 1 ≤ D ≤ M39 x 3
5	$M5 \le D \le M39$ $M8 \times 1 \le D \le M39 \times 3$	-	_
6	$M5 \le D \le M39$ $M8 \times 1 \le D \le M39 \times 3$	-	-
8	$M5 \le D \le M39$ $M8 \times 1 \le D \le M39 \times 3$	$M5 < D \le M39$ $M8 \times 1 \le D \le M39 \times 3$	-
9	-	M5 ≤ D ≤ M39	· · · · · · · · · · · · · · · · · · ·
10	$M5 \le D \le M39$ $M8 \times 1 \le D \le M16 \times 1,5$	$M5 \le D \le M39$ $M8 \times 1 \le D \le M39 \times 3$	_
12	M5 ≤ D ≤ M16	M5 ≤ D ≤ M39 M8 x 1 ≤ D ≤ M16 x 1,5	1 2 7 .

5 Конструирование соединения болта и гайки

Пояснения основных принципов конструирования соединений гаек и нагружаемых болтов приведены в приложении А.

Нормальные гайки (тип 1) и высокие гайки (тип 2) должны быть сопряжены с крепежными изделиями с наружной резьбой в соответствии с таблицей 2. Тем не менее гайки более высоких классов прочности могут заменять гайки более низких классов прочности.

Таблица 2 — Сочетание классов прочности нормальных гаек (тип 1) и высоких гаек (тип 2) с болтами

Класс прочности гайки	Максимальный класс прочности сопрягаемого болта, винта и шпильки
5	5.8
6	6.8
8	8.8
9	9.8
10	10.9
12	12.9/ <u>12.9</u>

Снижение напряжения среза резьбы происходит на гайках с основным отклонением выше нуля для поля допуска 6H (таким, как у гаек, подвергнутых горячему оцинкованию: 6AZ, 6AX). Низкие гайки (тип 0) имеют пониженную нагрузочную способность по сравнению с нормальными или высокими гайками и не предназначены для обеспечения сопротивления срезу резьбы.

Низкие гайки, применяемые в качестве контргаек, должны быть в сборке с нормальными или высокими гайками. В сборке с контргайкой в первую очередь затягивают низкую гайку с деталями соединения, а затем нормальную или высокую гайку затягивают на низкую гайку.

6 Материалы

В таблице 3 приведены материалы и термическая обработка для различных классов прочности гаек. Гайки с крупной резьбой и класса прочности 05, 8 [нормальные гайки (тип 1) с D > M16], 10 и 12 должны быть закалены и отпущены.

Гайки с мелким шагом резьбы и класса прочности 05, 6 (с D > M16), 8 [нормальные гайки (тип 1)], 10 и 12 должны быть закалены и отпущены.

Химический состав должен удовлетворять условиям соответствующих стандартов.

Таблица 3 — Стали

Резьба	Mara		Материал		Ограничения і состав (анали		
Резьба	Класс	прочности	и термическая обработка гаек	С, не более	Мл, Не менее	Р, не более	S, не более
	04¢		Углеродистая сталь ^d	0,58	0,25	0,060	0,150
	05°		Углеродистая сталь, 3/О ^е	0,58	0,30	0,048	0,058
	5 ^b		Углеродистая сталь ^d	0,58	-	0,060	0,150
	6 ^b		Углеродистая сталь ^ф	0,58	_	0,060	0,150
gg .	8	Высокая гайка (тип 2)	Углеродистая сталь ^d	0,58	0,25	0,060	0,150
Крупная резьба	8	Нормаль- ная гайка (тип 1) D ≤ M16	Углеродистая сталь ^d	0,58	0,25	0,060	0,150
2	8c	Нормаль- ная гайка (тип 1) D > M16	Углеродистая сталь, 3/O ^e	0.58	0,30	0,048	0,058
	9		Углеродистая сталь ^ф	0,58	0,25	0,060	0,150
T	10 ^c		Углеродистая сталь, 3/Qe	0,58	0,30	0,048	0,058
	12°		Углеродистая сталь, 3/О ^е	0,58	0,45	0,048	0,058
_	04 ^b		Углеродистая сталь ^d	0.58	0,25	0,060	0,150
aron	05°		Углеродистая сталь, 3/0 ^e	0,58	0,30	0,048	0,058
M E	5 ^b		Углеродистая сталь ^d	0,58	_	0,060	0,150
territy.	6 ^b	D ≤ M16	Углеродистая сталь ^d	0,58		0,060	0,150
ack	6 ^b	D > M16	Углеродистая сталь, 3/О ^е	0,58	0,30	0,048	0,058
Резъба с мелиим шагом	8	Высокая гайка (тип 2)	Углеродистая сталь ^d	0,58	0,25	0,060	0,150

Окончание таблицы 3

Резьба	Vassa		Материал		Ограничения і состав (анали		
Резьоа	Класс прочности		и термическая обработка гаек	С, не более	Мп, Не менее	Р. не более	S, не более
зъба с мел- им шагом	8c	Нормаль- ная гайка (тип 1)	Углеродистая сталь, 3/Ое	0,58	0,30	0,048	0,058
Резъба ким ш	10 ^c		Углеродистая сталь, QTe	0,58	0,30	0.048	0,058
g. ×	12°		Углеродистая сталь, 3/O ^e	0,58	0,45	0,048	0,058

3/О — закаленные и отпущенные гайки.

«--» -- ограничения не установлены.

^а В спорных случаях применяется анализ продукции.

Может быть закаленной и отпущенной на усмотрение изготовителя.

Примечание — Необходимо учитывать национальные правила по ограничению или запрещению определенных химических элементов в странах или регионах.

7 Механические свойства

При испытании методами, описанными в разделе 9, гайки установленных классов прочности при температуре окружающей среды должны соответствовать требованиям по пробной нагрузке (см. таблицы 4 и 5) и по твердости (см. таблицы 6 и 7) независимо от вида испытаний — проводимых в процессе производства или при окончательном контроле.

Для гаек без закалки и отпуска дополнительно учитывают 9.2.4.2.

Таблица 4 — Значения пробной нагрузки для гаек с крупной резьбой

Резьба, D	Шаг, Р					агрузка ^а , <i>Н</i> хочности			
	,	04	05	5	6	8	9	10	12
M5	8,0	5400	7100	8250	9500	12 140	13 000	14 800	16 300
M6	1	7640	10 000	11 700	13 500	17 200	18 400	20 900	23 100
M7	1	11 000	14 500	16 800	19 400	24 700	26 400	30 100	33 200
M8	1,25	13 900	18 300	21 600	24 900	31 800	34 400	38 100	42 500
M10	1,5	22 000	29 000	34 200	39 400	50 500	54 500	60 300	67 300
M12	1,75	32 000	42 200	51 400	59 000	74 200	80 100	88 500	100 300
M14	2	43 700	57 500	70 200	80 500	101 200	109 300	120 800	136 900
M16	2	59 700	78 500	95 800	109 900	138 200	149 200	164 900	186 800
M18	2,5	73 000	96 000	121 000	138 200	176 600	176 600	203 500	230 400
M20	2,5	93 100	122 500	154 400	176 400	225 400	225 400	259 700	294 000

^b Гайки этих классов прочности могут быть изготовлены из автоматной стали по согласованию между заказчиком и изготовителем. В этом случае допускается содержание серы, фосфора и свинца не более: S — 0,34%; P — 0,11%; Pb — 0,35%.

С Легирующие элементы могут быть добавлены при условии выполнения требований к механическим свойствам, изложенных в разделе 7.

^е Материал этих классов прочности должен иметь достаточную прокаливаемость, чтобы непосредственно после закалки перед отпуском получалась структура, состоящая приблизительно на 90 % из мартенсита в области резьбы гайки, как показано на рисунке 3.

Окончание таблицы 4

Резьба, Д	Шаг,					агрузка ^а , <i>Н</i> рочности			
	P	04	05	5	6	8	9	10	12
M22	2,5	115 100	151 500	190 900	218 200	2788 00	278 800	321 200	363 600
M24	3	134 100	176 500	222 400	254 200	324 800	324 800	374 200	423 600
M27	3	174 400	229 500	289 200	330 500	422 300	422 300	486 500	550 800
M30	3,5	213 200	280 500	353 400	403 900	516 100	516 100	594 700	673 200
M33	3,5	263 700	347 000	437 200	499 700	638 500	638 500	735 600	832 800
M36	4	310 500	408 500	514 700	588 200	751 600	751 600	866 000	980 400
M39	4	370 900	488 000	614 900	702 700	897 900	897 900	1 035 000	1 171 00

^а При применении низких гаек необходимо учитывать, что разрушающая нагрузка ниже пробной нагрузки гаек с полной нагрузочной способностью (см. приложение A).

Таблица 5 — Значения пробной нагрузки для гаек с мелким шагом резьбы

Резьба,				обная нагрузка Класс прочност			
DxP	04	05	5	6	8	10	12
M8 x 1	14 900	19 600	27 000	30 200	37 400	43 100	47 000
M10 x 1,25	23 300	30 600	44 200	47 100	58 400	67 300	73 400
M10 x 1	24 500	32 200	44 500	49 700	61 600	71 000	77 400
M12 x 1,5	33 500	44 000	60 800	68 700	84 100	97 800	105 700
M12 x 1,25	35 000	46 000	63 500	71 800	88 000	102 200	110 500
M14 x 1,5	47 500	62 500	86 300	97 500	119 400	138 800	150 000
M16 x 1,5	63 500	83 500	115 200	130 300	159 500	185 400	200 400
M18 x 2	77 500	102 000	146 900	177 500	210 100	220 300	1
M18 x 1,5	81 700	107 500	154 800	187 000	221 500	232 200	I
M20 x 2	98 000	129 000	185 800	224 500	265 700	278 600	-
M20 x 1,5	103 400	136 000	195 800	236 600	280 200	293 800	_
M22 x 2	120 800	159 000	229 000	276 700	327 500	343 400	_
M22 x 1,5	126 500	166 500	239 800	289 700	343 000	359 600	1
M24 x 2	145 900	192 000	276 500	334 100	395 500	414 700	- × -
M27 x 2	188 500	248 000	351 100	431 500	510 900	535 700	-
M30 x 2	236 000	310 500	447 100	540 300	639 600	670 700	- 0 - 0
M33 x 2	289 200	380 500	547 900	662 100	783 800	821 900	
M36 x 3	328 700	432 500	622 800	804 400	942 800	934 200	- x - y
M39 x 3	391 400	515 000	741 600	957 900	1 123 000	1 112 000	-

^а При применении низких гаек необходимо учитывать, что разрушающая нагрузка ниже пробной нагрузки гаек с полной нагрузочной способностью (см. приложение A).

Таблица 6 — Характеристики твердости для гаек с крупной резьбой

								Класс прочности	ИСОМНОСТИ							
	3	04	0	05	-	5	,	9	8		3	6	1	10	1	12
Peab 6a, D							Teep	Твердость по Виккерсу, НV	Виккерсу	H.						
	Не менее	He fonee	Не менее	He foree	Не менее	эн ЭН	Не менее	He	Не	Не	Не менее	не более	не менее	He fonee	Не менее	He fornee
M5 × D × M16	90	000	020	536	130	500	150	000	200	302	00 %	8	040	020	292€	000
M 16 < D s M39	8	305	717	202	146	305	170	200	2334	353b	8	205	717	ccc	272	200
							Тверд	Твердость по Бринеллю, НВ	Бринелля), HB						
	Не менее	Не	Не	He Sonee	Не менев	не балее	Не менее	Не более	Не	Не	Не	не более	Не менее	He	Не менее	Не более
M5 & D ≤ M16		100	0.00	900	124	100	143	200	190	287	Ę	100	S. C.	000	280€	000
W16 < D × M39	2	187	607	8	139	187	162	/97	2213	336 ^b	82	/87	607	89	259	330
							Тверд	Твердость по Роквеллу, НRC	чоквеллу,	HRC						
	Не менее	He	Не менве	He	Не менее	ен өн	Не менее	ен ен	Не	Не	Не	не более	Не	He Fornee	Не	He fonee
91W > Q > 9W		8	00	9		ç		8	1	30		8	90	9.0	29℃	00
$M16 < D \le M39$	I	8	07	န	I	90	1	8	1	38°	ı	3	07	90	92	os S
Дефекть Испытан	Дефекты поверхности по Испытание твердости по		ISO 6157-2. Виккерсу является решающим методом для приемия (см. 9.2.4).	2. челяется	решающ	им метод	л ялд мо	риемии (с	M. 9.2.4).							
а Минии В Максия с Минии	а Минимальное значение В Максимальное значение С Минимальное значение	начение значение начение р	а Минимальное значение для высоких гаек (тип 2): 180 HV (171 HB). В Максимальное значение для высоких таек (тип 2): 302 HV (287 HB; 30 HRC). С Минимальное значение для высоких гаек (тип 2): 272 HV (259 HB; 26 HRC).	MAX FABR MAX FABR MX FABR	(TMI 2): 18 (TMI 2): 3 (TMI 2): 27	30 HV (17 302 HV (25 72 HV (25	1 HB). 87 HB; 30 9 HB; 26	HRC).								

Резьба, Д							Класс прочности	итэочности						
	0	94	0	90	5		9		8		1	10	1	12
						TBe	Гвердость по Виккерсу, НV	Виккерсу,	HV					
	не Не	Не более	Не менее	не более	Не менее	не более	Не менее	Не более	Не менее	Не более	Не менее	Не более	Не менее	Не более
M8 x 1 ≤ D ≤ M16 x 1,5	188	302	272	353	175	302	188	302	2508	353°	295°	353	295	353
M16×1,5 < D s M39×3					190		233		295	353	280		1	1
						TBeg	Твердость по Бринеплю, НВ	Бринеллю,	НВ					
	не ЭН	не более	Не	ее Не	Не менее	Не более	Не менее	Не	Не менее	He	Не	Не более	Не менее	He
M8 x 1 ≤ D ≤ M16 x 1,5	179	287	259	336	166	287	179	287	238ª	336	280°	336	280	336
M16×1,5 < D ≤ M39×3					181		221		280	336	247		1	1
						Твер	Твердость по Роквеллу, НRC	Эоквеплу, 1	1RC					
	не Не	не более	не менее	не более	Не менее	Не более	Не	Не более	Не менее	He 6onee	Не менее	Не более	Не менее	Не более
M8 x 1 s D s M16 x 1,5	I	30	26	98	_	30	1	30	22,28	36b	29°	36	29	36
M16×1,5 < D ≤ M39×3					I		1		29,2	38	24		1	ĺ
Дефекть Испытан	и поверхно ие твердос	сти по ISC эти по Вию	Дефекты поверхности по ISO 6157-2. Испытание твердости по Виккерсу является этапонным методом для приемки (см. 9.2.4),	ется эталс	иным мет	л впр моро	триемки (с	м. 92.4).						
а Миним Б Максия с Миним	^а Минимальное значен ^b Максимальное значен ^c Минимальное значен	ачение для качение для вчение для	8 Минимальное значение для высоких гаек (тип 2): 195 HV (185 HB). 6 Максимальное значение для высоких гаек (тип 2): 302 HV (287 HB; 30 HRC). $^{\circ}$ Минимальное значение для высоких гаек (тип 2): 250 HV (238 HB; 22,2 HRC)	гаек (тип 2 гаек (тип 2 таек (тип 2	2): 195 HV (2): 302 HV 3: 250 HV (185 HB). (287 HB; 3 238 HB; 22	10 HRC).							

8 Контроль

8.1 Производственный контроль

Настоящий стандарт не устанавливает, какие испытания должен проводить изготовитель на каждой производственной партии. Ответственностью изготовителя является выбор подходящих методов, таких как производственный контроль или приемочный контроль, чтобы гарантировать соответствие производственной партии всем предъявляемым требованиям. Дополнительную информацию см. ISO 16426.

В спорных случаях применяют методы испытаний согласно разделу 9.

8.2 Контроль со стороны поставщика

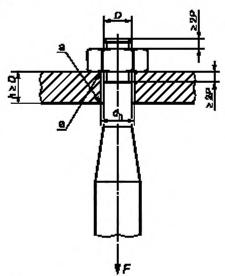
Поставщик испытывает гайки, используя по своему выбору подходящие методы испытаний (периодическая оценка производителя, проверка результатов испытаний от производителей, испытание гаек и т. д.), которые соответствуют механическим и физическим свойствам, установленным в таблицах 3, 4, 5, 6 и 7.

В спорных случаях применяют методы испытаний согласно разделу 9.

8.3 Контроль со стороны заказчика

Заказчик может испытывать поставленные гайки методами испытаний, установленными в разделе 9. В спорных случаях применяют методы испытаний согласно разделу 9, если не указано иное.

9 Методы испытаний


9.1 Испытание пробной нагрузкой

9.1.1 Общие положения

Испытание пробной нагрузкой предусматривает две основные операции:

- а) приложение установленной пробной нагрузки с помощью испытательной оправки (см. рисунки 1 и 2) и
 - b) проверка повреждений резьбы гайки, вызванных пробной нагрузкой, если таковые имеются.

Примечание — При испытании пробной нагрузкой самостопорящихся гаек см. дополнительные испытательные процедуры по ISO 2320.

[®] Кражия притуплены.

Рисунок 1 — Испытание на осевое растяжение

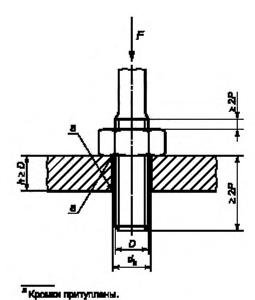


Рисунок 2 — Испытание на осевое сжатие

9.1.2 Применимость

Это испытание применяют для гаек с номинальным диаметром M5 \leq D \leq M39 и для всех классов прочности.

9.1.3 Оборудование

Оборудование для испытания на растяжение должно соответствовать ISO 7500-1, класса 1 или выше. Необходимо избегать воздействия боковых сил на гайку, например, путем использования самоцентрирующихся зажимов.

9.1.4 Испытательное устройство

Зажимы и испытательная оправка должны удовлетворять следующим требованиям:

- а) твердость зажима: 45 HRC минимум;
- b) толщина, h, зажима: 1D минимум;
- с) диаметр отверстия, d_h, зажима согласно таблице 8;
- d) оправка закаленная и отпущенная: твердость от 45 до 50 HRC;
- е) поле допуска наружной резьбы испытательной оправки: в испытательной оправке должна быть резьба с полем допуска 5h6g, за исключением допуска наружного диаметра резьбы, который должен составлять четверть поля допуска 6g со стороны минимума материала. Размеры резьбы испытательной оправки представлены в таблицах В.1 и В.2.

Таблица 8 — Диаметр отверстия для зажима

В миллиметрах

Номиналь- ный диа- отверст		метр тия, d _h a	Номиналь- ный диа-	Диаметр отверстия, d _h ^a		Номиналь- ный диа-	Диаметр отверстия, d _h a	
метр. Д	Не менее	Meto D Meto D	метр, D	Не менее	Не более			
M5	5,030	5,115	M14	14,050	14,160	M27	27,065	27,195
M6	6,030	6,115	M16	16,050	16,160	M30	30,065	30,195
M7	7,040	7,130	M18	18,050	18,160	M33	33,080	33,240
M8	8,040	8,130	M20	20,065	20,195	M36	36,080	36,240

Окончание таблицы 8

В миллиметрах

Номиналь- ный диа- метр, D	Диаметр отверстия, $d_h^{\ a}$				метр тия, d _h a	Номиналь- ный диа-	Диаметр отверстия, $d_{\rm h}^{ \rm a}$	
	Не менее	Не более	метр, Д	Не менее	Не более	метр, D	Не менее	Не более
M10	10,040	10,130	M22	22,065	22,195	M39	39,080	39,240
M12	12,050	12,160	M24	24,065	24,195	_	_	_

9.1.5 Процедура испытания

Гайки испытывают следующим образом.

Собирают гайку с испытательной оправкой, как показано на рисунках 1 и 2.

Испытание на осевое растяжение или испытание на осевое сжатие выполняют в соответствии с ISO 6892-1. Скорость испытаний, определяемая при свободном ходе траверсы, не должна превышать 3 мм/мин.

Пробную нагрузку, установленную в таблице 4 для гаек с крупной резьбой и в таблице 5 для мелкого шага резьбы, прикладывают и выдерживают в течение 15 сек., затем снимают нагрузку.

Превышение значения пробной нагрузки следует минимизировать.

Гайка должна отвинчиваться вручную с испытательной оправки. Допускается при отвинчивании гайки применять гаечный ключ для проворачивания гайки на половину оборота.

Резьбу испытательной оправки необходимо проверять после каждого испытания гайки. Если резьба испытательной оправки была повреждена в ходе испытания, результат испытания считают недействительным и проводят новое испытание с соответствующей оправкой.

9.1.6 Результаты испытаний

Необходимо отметить факт — гайка разрушена или срезана резьба.

Необходимо отметить факт — гайка отвинчивается только вручную или с помощью гаечного ключа проворачиванием гайки максимум на половину оборота.

9.1.7 Требования

Гайка должна выдерживать пробную нагрузку, установленную в таблицах 4 или 5 без повреждений в виде среза резьбы или разрушения гайки.

Гайка должна отвинчиваться вручную после снятия пробной нагрузки (и, если необходимо, после проворачивания гайки максимум на половину оборота с помощью гаечного ключа).

В спорных случаях испытание на осевое растяжение в соответствии с рисунком 1 является решающим методом при приемке.

9.2 Испытание на твердость

9.2.1 Применимость

Это испытание применяют для гаек всех размеров и всех классов прочности.

9.2.2 Методы испытаний

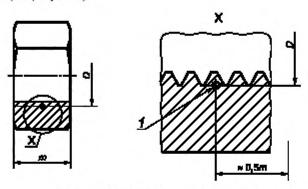
Твердость может быть определена испытаниями на твердость по Виккерсу, Бринеллю или Роквеллу.

Испытание на твердость по Виккерсу следует проводить по ISO 6507-1. Испытание на твердость по Бринеллю следует проводить по ISO 6506-1. Испытание на твердость по Роквеллу следует проводить по ISO 6508-1.

9.2.3 Процедура испытания

9.2.3.1 Нагрузка для определения твердости

Испытание на твердость по Виккерсу следует проводить с минимальной нагрузкой 98 Н.


Испытание на твердость по Бринеллю следует проводить с нагрузкой $30D^2$, выраженной в ньютонах.

9.2.3.2 Определение твердости на поверхности

Для контроля, как правило, испытание на твердость проводят на одной опорной поверхности гайки после удаления любого гальванопокрытия или других покрытий и после соответствующей подготовки гайки. Значения твердости определяют как среднее арифметическое значение измерений в трех точках, смещенных относительно друг друга на 120°.

9.2.3.3 Определение твердости на продольном срезе

Испытание на твердость следует проводить на продольном срезе, проходящем через ось гайки. Точки должны быть расположены на высоте около 0,5m и как можно ближе к номинальному наружному диаметру резьбы гайки (см. рисунок 3).

Расположение точек измерения твердости

Рисунок 3 — Расположение точек измерения твердости на середине высоты гайки

9.2.4 Требования

9.2.4.1 Закаленные и отпущенные гайки

Твердость на поверхности согласно 9.2.3.2 должна соответствовать требованиям, установленным в таблице 6 для гаек с крупной резьбой и в таблице 7 для гаек с мелким шагом резьбы.

В спорных случаях:

- а) для твердости на поверхности согласно 9.2.3.2 определение твердости по Виккерсу с нагрузкой
 98 Н (НV 10) является решающим методом испытания, и твердость должна соответствовать требованиям, установленным в таблицах 6 или 7:
- b) для твердости сердцевины определение твердости по Виккерсу согласно 9.2.3.3 является решающим методом испытания, и твердость должна соответствовать требованиям, установленным в таблицах 6 или 7.

9.2.4.2 Гайки без закалки и отпуска

Максимальная твердость гаек без закалки и отпуска не должна превышать требований, установленных в таблицах 6 или 7. В спорных случаях определение твердости по Виккерсу согласно 9.2.3.3 является решающим методом испытаний.

Если минимальная твердость не соответствует требованиям при испытании согласно 9.2.3.2 или 9.2.3.3, то это не может быть основанием для отбраковки при условии соблюдения требований согласно 9.1.7.

9.3 Контроль дефектов поверхности

Контроль дефектов поверхности по ISO 6157-2.

10 Маркировка

10.1 Общие требования

Только гайки, которые отвечают соответствующим требованиям настоящего стандарта, должны обозначаться в соответствии с системой обозначений, установленной в 4.2 и маркироваться в соответствии с 10.2—10.6.

Альтернативная маркировка, установленная в таблице 9, применяется по усмотрению изготовителя.

10.2 Маркировка товарного знака изготовителя

Товарный знак изготовителя должен быть нанесен в процессе изготовления на всех гайках, маркированных символом класса прочности. Товарный знак изготовителя также рекомендуется наносить на гайки, которые не маркируют символом класса прочности.

Настоящий стандарт распространяется также на продавца, который продает гайки, маркированные собственным товарным знаком, и рассматривается как изготовитель.

10.3 Маркировка классов прочности

10.3.1 Общие требования

Символ маркировки в соответствии с 10.3.2—10.5 должен быть выпуклым или углубленным, нанесенным в процессе производства на всех гайках, изготовленных в соответствии с требованиями настоящего стандарта.

10.3.2 Нормальные гайки (тип 1) и высокие гайки (тип 2)

Символы маркировки для классов прочности нормальных гаек (тип 1) и высоких гаек (тип 2) установлены во второй строке таблицы 9. Для гаек небольших размеров или в случае, когда из-за формы гайки невозможно нанести символ маркировки, допускается применять символы маркировки по системе циферблата, приведенные в третьей строке таблицы 9.

Таблица 9 — Символы маркировки для классов прочности нормальных гаек (тип 1) и высоких гаек (тип 2).

Символ обозначения класса прочности	5	6	8	9	10	12
Символ маркировки	5	6	8	9	10	12
Альтернативный символ мархировки по системе цифер- блата ^а						

^а В позиции, соответствующей двенадцати часам (начало отсчета), должен быть нанесен либо товарный знака изготовителя, либо точка.

10.3.3 Низкие гайки (тип 0)

Символы маркировки для классов прочности низких гаек (тип 0) установлены в таблице 10.

Таблица 10 — Символы маркировки классов прочности для низких гаек (тип 0)

Класс прочности	04	05
Символ маркировки	04	05

Альтернативная маркировка по системе циферблата согласно таблице 9 для низких гаек не применяется.

10.4 Идентификация

10.4.1 Шестигранные гайки

Шестигранные гайки (включая гайки с фланцем, самостопорящиеся гайки и т. д.) должны быть маркированы товарным знаком изготовителя и символом маркировки класса прочности, установленным в таблице 9. Пример изображен на рисунках 4 и 5.

Маркировка является обязательной для гаек всех классов прочности.

Маркировка должна быть углубленная на боковой или опорной поверхности или выпуклая на фаске. Выпуклые знаки не должны выступать над опорной поверхностью гайки.

Для гаек с фланцем маркировка должна быть на фланце, так как процесс изготовления не позволяет наносить маркировку на верхней части гайки.

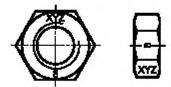


Рисунок 4 — Примеры символа маркировки

⁴ Товерный янак изготовителя.

Рисунок 5 — Примеры маркировки по системе циферблата (альтернативная маркировка)

10.4.2 Другой тип гаек

По требованию заказчика для других типов гаек могут быть использованы системы маркировки, описанные в 10.4.1.

10.5 Маркировка левой резьбы

Гайки с левой резьбой следует маркировать, как показано на рисунке 6, углублением на одной опорной поверхности гайки.

Альтернативную маркировку для левой резьбы, представленную на рисунке 7, также можно использовать для шестигранных гаек.

Рисунок 6 — Маркировка левой резьбы

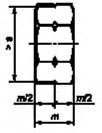


Рисунок 7 — Альтернативная маркировка левой резьбы

10.6 Маркировка упаковки

Все упаковки для всех типов гаек всех размеров должны иметь маркировку (например, используя ярлык). Маркировка должна включать товарный знак изготовителя и (или) товарный знак продавца и символ маркировки класса прочности согласно таблицам 9 или 10, а также номер производственной партии, как предусмотрено в ISO 16426.

^bКласс прочности.

⁶ То-на может быть заменями товерным знаком катотолителя.

Приложение А (справочное)

Принципы конструирования гаек

А.1 Основные принципы конструирования гаек

Болтовое соединение в основном состоит из двух изделий, соединенных между собой наружной резъбовой частью (болта или винта) с одной стороны и внутренней резъбовой частью или гайкой с другой стороны.

Оптимальное болтовое соединение состоит из болта, винта или шпильки классов прочности, представленных в ISO 898-1, в сборке с гайкой нормальной или высокой сопряженных классов прочности согласно настоящему стандарту, способное обеспечить максимальную предварительную затяжку с использованием полной прочности болта. В случае чрезмерной затяжки происходит разрыв в нагруженной резьбовой части болта, который является признаком неправильного способа затяжки.

При растягивающей нагрузке характер разрушения сборки болта и гайки соответствует наименьшему значению из следующих трех нагрузок:

- а) нагрузка среза резьбы гайки:
- b) нагрузка среза резьбы болта, винта или шпильки;
- с) разрушающая нагрузка болта, винта или шпильки (разрушение болта желательный характер разрушения в сборке болта и гайки в случае перегрузки).

Эти три нагрузки во многом зависят от:

- твердости, высоты, действительной длины полной резьбы, диаметра, шага и поля допуска резьбы гайки;
- твердости, диаметра, шага и поля допуска резьбы болта.

Кроме того, эти три нагрузки взаимосвязаны между собой. Например, увеличение твердости болта может вызвать увеличение нагрузки среза резьбы гайки. Твердость также определяет функциональную прочность гайки, и поэтому верхний предел твердости установлен для каждого класса прочности.

Аналитическая основа для расчета различных разрушающих нагрузок была разработана в публикациях Александера [14]. Теория Александера подтверждена практическими результатами многочисленных экспериментальных испытаний. Современные исследования, включая расчеты методом конечных элементов, подтверждают теорию Александера [15].

Три типа гаек (см. 4.1) отличаются своей высотой. Это дает возможность выбора изготовителю для определенных классов прочности применять процесс закалки и отпуска с использованием меньшего объема материала для достижения требуемых свойств или использовать больший объем материала без дополнительной термической обработки.

Таблица А.1 — Минимальная высота шестигранных гаек

		Минимальная высота щестигранных гаек					
Резьба, <i>D</i>	Размер под ключ, s	Нормальная	гайка (тип 1)	Высокая гайка (тип 2)			
	MM	m _{MMH} MM	m _{MHH} /D	79 _{ANNH} MM	m _{sout} /0		
M5	8	4,40	0,88	4,80	0,96		
M6	10	4,90	0,82	5,40	0,90		
M7	11	6,14	0.88	6,84	0,98		
M8	13.	6,44	0,81	7,14	0,90		
M10	16	8,04	0,80	8,94	0,89		
M12	18	10,37	0,86	11,57	0,96		
M14	21	12,10	0,86	13,40	0,96		
M16	24	14,10	0,88	15,70	0,98		
M18	27	15,10	0,84	16,90	0,94		

Окончание таблицы А.1

		Минимальная высота шестигранных гаек					
Резьба, D	Размер под ключ, в	Нормальная гайка (тип 1)		Высокая гайка (тип 2)			
	мм	m _{MMH} MM	m _{systel} /D	m _{mun} mm	m _{mad} /D		
M20	30	16,90	0,85	19,00	0,95		
M22	34	18,10	0,82	20,50	0,93		
M24	36	20,20	0,84	22,60	0,94		
M27	41	22,50	0,83	25,40	0,94		
M30	46	24,30	0,81	27,30	0,91		
M33	50	27,40	0,83	30,90	0,94		
M36	55	29,40	0,82	33,10	0,92		
M39	60	31,80	0,82	35,90	0,92		

Подробную техническую информацию о принципе конструирования гаек см. в ISO/TR 16224.

А.2 Гайки с диаметром D < M5 и D > M39

Механические свойства сборки болта и гайки были оптимизированы для крепежных изделий с резьбой от M5 до M39 включительно на основе размеров шестигранных гаек, установленных в ISO 4032 (нормальные гайки, тип 1) и ISO 4033 (высокие гайки, тип 2). В общем для сборки болта и гайки малого диаметра необходимы пониженная твердость гайки и (или) уменьшенная относительная высота гайки (пVD) вследствие большего отношения P/D.

Гайки с D < M5, установленные в ISO 4032, имеют минимальную высоту, $m_{\text{мин}}$, меньше чем 0.8D, которая является слишком низкой в соответствии с этим принципом конструирования. Это означает, что для таких гаек необходимо более высокое значение твердости, чтобы избежать характера разрушения — среза резьбы (см. таблицу A.2).

Таблица А.2 — Примерная минимальная твердость по Виккерсу для нормальных гаек (тип 1) с D < M5

Резьба, Д		Минимальна	вя твердость гаек по б	Виккерсу, HV				
	Классы прочности							
	5	6	8	10	12			
МЗ	151	178	233	284	347			
M3,5	157	184	240	294	357			
M4	147	174	228	277	337			

Гайки с D > M39, приведенные в ISO 4032, имеют минимальную высоту гайки, $m_{\text{мин}}$, меньше чем 0.8D, которая является слишком низкой в соответствии с этим принципом конструирования. Таким образом, механические свойства этих гаек не определены в настоящем стандарте и классы прочности не установлены в ISO 4032 (механические свойства по соглашению между заказчиком и поставщиком).

Приложение В (справочное)

Размеры резьбы испытательной оправки

Таблица В.1 — Размеры резьбы оправки для испытания пробной нагрузкой — крупная резьба

Гайка	Оправка (крупная резьба)						
Резьба, D		гр резьбы оправки поля допуска 6g)	Средний диаметр резьбы оправки (поле допуска 5h)				
D	Не более	Не менее	Не более	Не менее			
мз	2,901	2,874	2,675	2,615			
M3,5	3,385	3,354	3,110	3,043			
M4	3,873	3,838	3,545	3,474			
M5	4,864	4,826	4,480	4,405			
M6	5,839	5,794	5,350	5,260			
M7	6,839	6,794	6,350	6,260			
М8	7,813	7,760	7,188	7,093			
M10	9,791	9,732	9,026	8,920			
M12	11,767	11,701	10,863	10,745			
M14	13,752	13,682	12,701	12,576			
M16	15,752	15,682	14,701	14,576			
M18	17,707	17,623	16,376	16,244			
M20	19,707	19,623	18,376	18,244			
M22	21,707	21,623	20,376	20,244			
M24	23,671	23,577	22,051	21,891			
M27	26,671	26,577	25,051	24,891			
M30	29,628	29,522	27,727	27,557			
M33	32,628	32,522	30,727	30,557			
M36	35,584	35,465	33,402	33,222			
M39	38,584	38,465	36,402	36,222			

Таблица В.2 — Размеры резьбы оправки для испытания пробной нагрузкой — резьба с мелким шагом

Гайка	Оправка (мелкий шаг резьбы)						
Резьба, D x P		тр резьбы оправки ь поля допуска 6g)	Средний диаметр резьбы оправ (поле допуска 5h)				
	Не более	Не менее	Не более	Не менее			
M8 x 1	7,839	7,794	7,350	7,260			
M10 x 1,25	9,813	9,760	9,188	9,093			
M10 x 1	9,839	9,794	9,350	9,260			

Окончание таблицы В.2

Гайка	Оправка (мелкий шаг резьбы)						
Резьба, D x P		гр резьбы оправки поля допуска 6g)	Средний диаметр резьбы оправки (поле допуска 5h)				
DXP	Не более	Не мекее	Не более	Не менее			
M12 x 1,5	11,791	11,732	11,026	10,914			
M12 x 1,25	11,813	11,760	11,188	11,082			
M14 x 1,5	13,791	13,732	13,026	12,911			
M16 x 1,5	15,791	15,732	15,026	14,914			
M18 x 2	17,752	17,682	16,701	16,569			
M18 x 1,5	17,791	17,732	17,026	16,914			
M20 x 2	19,752	19,682	18,701	18,569			
M20 x 1,5	19,791	19,732	19,026	18,914			
M22 x 2	21,752	21,682	20,701	20,569			
M22 x 1,5	21,791	21,732	21,026	20,914			
M24 x 2	23,752	23,682	22,701	22,569			
M27 x 2	26,752	26,682	25,701	25,569			
M30 x 2	29,752	29,682	28,701	28,569			
M33 x 2	32,752	32,682	31,701	31,569			
M36 x 3	35,671	35,577	34,051	33,891			
M39 x 3	38,671	38,577	37,051	36,891			

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам

Таблица ДА.1 — Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам.

Обозначение международного стандарта	Стелень соответствия	Обозначение и наименование межгосударственного стандарта		
ISO 6157-2	IDT	ГОСТ ISO 6157-2—2015 «Изделия крепежные. Дефекты поверхности. Часть 2. Гайки»		
ISO 6506-1	NEQ	ГОСТ 9012—59 «Металлы. Метод измерения твердости по Бринеллю»		
ISO 6507-1	NEQ	ГОСТ 2999—75 «Металлы и сплавы. Метод измерения твердости по Виккерсу»		
ISO 6508-1	NEQ	ГОСТ 9013—59 «Металлы. Метод измерения твердости по Роквеллу»		
ISO 6892-1	NEQ	ГОСТ 1497—84 «Металлы. Методы испытания на растяжение»		
ISO 7500-1	NEQ	ГОСТ 14017—68 «Государственная система обеспечения единства измерений. Машины силоизмерительные об- разцовые 2-го разряда. Методы и средства поверки»		
ISO 16426	IDT	ГОСТ ISO 16426—2015 «Изделия крепежные. Систе обеспечения качества»		

Примечание — В настоящей таблице использованы следующие условные обозначения степени соответствия стандартов:

- IDT идентичные стандарты;
- NEQ неэквивалентные стандарты.

Библиография

- ISO 68-1, ISO general purpose screw threads Basic profile Part 1: Metric screw threads
- [2] ISO 261, ISO general purpose metric screw threads General plan
- [3] ISO 262, ISO general purpose metric screw threads Selected sizes for screws, bolts and nuts
- [4] ISO 286-2, Geometrical product specifications (GPS) ISO code system for tolerances in linear sizes Part 2: Table of standard tolerance classes and limit deviations for holes and shafts
- [5] ISO 2320, Prevailing torque type steel nuts Mechanical and performance properties
- [6] ISO 4032, Hexagon nuts, style 1 Product grades A and B
- [7] ISO 4033, Hexagon nuts, style 2 Product grades A and B
- [8] ISO 10684, Fasteners Hot dip galvanized coatings
- [9] ISO 16047, Fasteners Torque/clamp force testing
- [10] ISO/TR 16224, Technical aspects of nut design
- [11] EN 10269, Steels and nickel alloys for fasteners with specified elevated and/or low temperature properties
- [12] ASTM A320/A320M, Standard Specification for Alloy-Steel and Stainless Steel Bolting for Low-Temperature Service
- [13] ASTM F2281, Standard Specification for Stainless Steel and Nickel Alloy Bolts, Hex Cap Screws, and Studs, for Heat Resistance and High Temperature Applications
- [14] Alexander E.M. Analysis and design of threaded assemblies. 1977 SAE Transactions, Paper No. 770420
- [15] Hagiwara M., Hiroaki S. Verification of the Design Concept in Bolt/Nut Assemblies for the revision of ISO 898-2 and ISO 898-6, Journal of Advanced Mechanical Design, Systems, and Manufacturing, vol. 1, no. 5, 2007, pp. 755—762.

УДК 621.882.6:006.354

MKC 21.060.20

Г33

IDT

Ключевые слова: гайки, механические свойства, система обозначений, маркировка

Редактор М.А. Гетманова Корректор Е.Р. Ароян Компьютерная верстка Ю.В. Половой

Сдано в набор 30.06.2016.

Подписано в печать 30.08.2016. Усл. печ. л. 2,79. Формат 60 × 84¹/₈.

Гарнитура Ариал.

Поправка к ГОСТ ISO 898-2—2015 Механические свойства крепежных изделий из углеродистых и легированных сталей. Часть 2. Гайки установленных классов прочности с крупным и мелким шагом резьбы

В каком месте	Напечатано	Должно быть			
Предисловие. Таблица согла- сования	-	Туркмения	TM	Главгосслужба «Туркменстандартлары»	

(ИУС № 1 2021 г.)