ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО 16373-2— 2016

МАТЕРИАЛЫ ТЕКСТИЛЬНЫЕ

Красители

Часть 2

Общий метод определения экстрагируемых красителей, включая аллергенные и канцерогенные (метод с использованием смеси пиридина с водой)

(ISO 16373-2:2014,

Textiles — Dyestuffs — Part 2:

General method for the determination of extractable dyestuffs including allergenic and carcinogenic dyestuffs (method using pyridine-water),

IDT)

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Техническим комитетом по стандартизации ТК 412 «Текстильная и легкая промышленность», открытым акционерным обществом «Всероссийский научно-исследовательский институт сертификации» (ОАО «ВНИИС») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
- 2 ВНЕСЕН Управлением технического регулирования и стандартизации Федерального агентства по техническому регулированию и метрологии
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 6 июня 2016 г. № 528-ст
- 4 Настоящий стандарт идентичен международному стандарту ИСО 16373-2:2014 «Текстиль. Красители. Часть 2. Общий метод определения экстрагируемых красителей, включая аллергенные и канцерогенные (метод с использованием смеси пиридина с водой)» (ISO 16373-2:2014 «Textiles — Dyestuffs — Part 2: General method for the determination of extractable dyestuffs including allergenic and carcinogenic dyestuffs (method using pyridine-water)», IDT).

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для увязки с наименованиями, принятыми в существующем комплексе национальных стандартов Российской Федерации.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, 2016

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область применения	1
2 Нормативные ссылки	
3 Термины и определения	
4 Сущность метода	
5 Меры предосторожности	
6 Реактивы	
7 Аппаратура	
8 Порядок проведения испытаний	
9 Расчет и обработка результатов	
10 Протокол испытаний	
Приложение А (обязательное) Перечень канцерогенных красителей	4
Приложение В (обязательное) Перечень аллергенных и других красителей	
Приложение С (обязательное) Расчет	
Приложение D (справочное) Примеры хроматографических методов	
Приложение Е (справочное) Воспроизводимость метода	
Приложение F (справочное) Множественная экстракция ряда текстильных волокон смесью	
пиридин/вода	15
Приложение ДА (справочное) Сведения о соответствии ссылочных международных	
стандартов национальным стандартам Российской Федерации	17
Библиография	

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

МАТЕРИАЛЫ ТЕКСТИЛЬНЫЕ

Красители

Часть 2

Общий метод определения экстрагируемых красителей, включая аллергенные и канцерогенные (метод с использованием смеси пиридина с водой)

Textiles. Dyestuffs. Part 2. General method for the determination of extractable dyestuffs including allergenic and carcinogenic dyestuffs (method using pyridine-water)

Дата введения — 2017—07—01

1 Область применения

Настоящий стандарт устанавливает метод определения наличия всех типов экстрагируемых красителей в текстильных материалах из всех видов волокон с использованием смеси пиридина с водой (1:1) (далее — пиридин/вода). В стандарте приведены (см. приложения А и В) аллергенные и канцерогенные красители, которые можно проанализировать данным методом. Перечни красителей могут быть дополнены.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий стандарт. Для недатированных ссылок применяют самые последние издания, включая любые изменения и поправки.

ИСО 3696 Вода для лабораторного анализа. Технические требования и методы испытаний (ISO 3696, Water for analytical laboratory use — Specification and test method)

3 Термины и определения

- В настоящем стандарте применены следующие термины с соответствующими определениями:
- 3.1 аллергенный краситель (allergenic dyestuff): Краситель, который может вызвать аллергическую реакцию на коже.
- 3.2 канцерогенный краситель (carcinogenic dyestuff): Краситель, который можно отнести к канцерогенным веществам.

П р и м е ч а н и е — В Регламент Евросоюза 1272/2008 (CLP) [3] включена классификация, приведенная в соответствии с Глобальной гармонизированной системой классификации и мархирования химических веществ (GHS) [2].

4 Сущность метода

Окрашенный образец отбирают из текстильного материала и экстрагируют смесью пиридин/вода при температуре 100 °C. Экстракт анализируют методом жидкостной хроматографии с детектором на диодной матрице [ЖХ/ДМД (LC/DAD)] и/или методом жидкостной хроматографии с масс-спектрометрией [ЖХ/МС (LC/MS)].

5 Меры предосторожности

Предупреждение — Вещества, перечисленные в таблице А.1, В.1 и В.2, относятся к веществам, известным (или предполагаемым) как аллергены или канцерогены для человека.

При обращении с такими веществами или их утилизации необходимо обеспечить строгое соблюдение всех мер, предусмотренных национальным регламентом по безопасности и охране здоровья.

Пользователь несет ответственность за обязательное применение средств защиты и соблюдение техники безопасности при обращении с подобными веществами в процессе проведения испытаний данным методом. Необходимо консультироваться с изготовителем используемых веществ относительно конкретных вопросов, например получения информации по безопасности материалов и специальных рекомендаций.

Необходимо иметь соответствующий практический опыт работы в лаборатории. Следует обязательно носить защитные очки в лаборатории и пользоваться индивидуальным респиратором при работе с порошковыми красителями.

6 Реактивы

При отсутствии особых указаний используют химические вещества аналитической чистоты.

- 6.1 Пиридин.
- 6.2 Ацетонитрил для хроматографии.
- 6.3 Ацетат аммония.
- 6.4 Дигидрофосфат тетрабутиламмония.
- 6.5 Деионизированная вода класса 3 по ИСО 3696.
- 6.6 Пиридин/вода (1:1) смесь, приготовленная смешиванием 500 см³ пиридина (6.1) и 500 см³ воды (6.5).

Раствор хранят в бутыли из темного (коричневого) стекла.

6.7 Отдельные исходные растворы, приготовленные в смеси пиридин/вода (1:1) из перечисленных в приложениях А и В всех контрольных (эталонных) веществ.

Рекомендуется использовать имеющиеся в продаже эталонные вещества (включая приведенные в приложениях A и B) наивысшей степени чистоты. Данную чистоту учитывают при расчетах (см. раздел 9).

7 Аппаратура

7.1 Аппаратура и вспомогательные устройства для подготовки проб

- 7.1.1 Стандартное лабораторное оборудование.
- 7.1.2 Аналитические весы с разрешением в 0,01 г.
- 7.1.3 Стеклянные виалы (объемом от 20 до 40 см³) с герметичной крышкой.
- 7.1.4 Нагреватель с температурой нагрева до (100 ± 2) °C (регулируемые термоблок или лабораторная песчаная баня).
 - 7.1.5 Стеклянные виалы автодозатора, с герметичной крышкой.
- 7.1.6 Теплочувствительное устройство, например термопара, для измерения при температуре 100 °C с разрешением 0,1 °C.

7.2 Хроматографическое оборудование (выбранное из следующего перечня)

7.2.1 Оборудование для ЖХ/ДМД

- высокоэффективный жидкостный хроматограф [ВЭЖХ (HPLC)];
- диодно-матричный детектор [ДМД (DAD)];
- разделительная колонка;
- предколонка.

7.2.2 Оборудование для ЖХ/МС

- вэжх:
- электрораспылитель ионов;
- масс-спектрометрический детектор [MC (MS)];
- разделительная колонка;
- предколонка.

8 Порядок проведения испытаний

8.1 Подготовка образца для испытаний

Образец для испытаний отбирают на основе следующих критериев:

- подробное описание текстильного материала;
- характеристика волокон (сырьевой состав);
- краситель.

Подготавливают образец массой не более 1,0 г, разрезая лабораторную пробу на мелкие кусочки площадью не более 1 см². Определяют массу образца с точностью до 0,01 г и записывают как m_E (8.2).

8.2 Экстракция

Добавляют 7,5 см 3 смеси пиридин/вода (1:1) (6.6) в виалу с помещенным в нее образцом для испытания, погружают термочувствительный элемент в виалу и плотно закрывают ее мембраной. Нагревают виалу, используя нагреватель, пока температура растворителя не достигнет (100 \pm 2) $^{\circ}$ C, и поддерживают эту температуру в течение (35 \pm 5) мин.

Регистрируют время, требуемое для нагревания растворителя до установленной температуры.

Дают виале остыть до температуры 40 °С или ниже, прежде чем открыть ее.

Переносят приблизительно 1 см³ испытуемой жидкости из виалы в меньшую по объему виалу для дальнейшего анализа.

П р и м е ч а н и е — Перенос испытательной жидкости можно осуществить с помощью шприца, которым прокалывают мембрану, чтобы свести к минимуму контакт с пиридином.

8.3 Выявление и количественное определение красителя

Обнаружение красителей может быть выполнено с использованием указанных выше хроматографических методов (см. раздел 4). При использовании других аналитических методов это необходимо указать в протоколе испытания.

Количественное определение красителя выполняют с помощью ВЭЖХ/ДМД/МС (HPLC/DAD/MS).

П р и м е ч а н и е — Некоторые красители можно количественно определить с помощью ВЭЖХ/ДМД (HPLC/DAD).

8.4 Калибровка

Для калибровки готовят эталонные смеси приведенных в таблицах А.1, В.1 и В.2 веществ с использованием пиридин/вода (1:1). Исходные растворы используют для приготовления эталонных смесей концентрацией 1, 5, 10 и 20 мг/дм³ в зависимости от содержания красителя.

9 Расчет и обработка результатов

Количество красителя обычно рассчитывают с помощью компьютерной программы. Расчет можно выполнить вручную в соответствии с приложением С.

Количество красителя выражают в мг красителя на кг текстильного материала (мг/кг).

Если обнаруженное количество красителя более 100 мг/кг, то именно этот краситель используют как один из перечисленных в таблицах А.1, В.1 или В.2.

10 Протокол испытаний

Протокол испытаний должен включать следующую информацию.

- а) ссылка на настоящий стандарт;
- b) вся информация, необходимая для идентификации образца для испытаний;
- с) дата получения пробы и дата проведения испытаний;
- d) метод отбора проб;
- е) метод детектирования и метод количественного определения;
- f) результаты, представленные как концентрация и предел обнаружения красителя, мг/кг;
- д) любое отклонение от данного метода.

Приложение А (обязательное)

Перечень канцерогенных красителей

Таблица А.1 — Эталонные канцерогенные вещества

Номер ^а	Канцерогенный краситель ^b	Номер С 1.°	Номер по CAS	Молекулярная формула
1	Дисперсный синий 1	64500	2475-45-8	C ₁₄ H ₁₂ N ₄ O ₂
2	Анилиновый желтый 1 4-аминоазобензол	11000	60-09-4	C ₁₂ H ₁₁ N ₃
3	Анилиновый желтый 2	11020	60-11-7	C ₁₄ H ₁₅ N ₃
4	Анилиновый желтый 3 о-аминоазотолуол	11160	97-56-3	C ₁₄ H ₁₅ N ₃
5	Основный красный 9	42500	569-61-9	C ₁₉ H ₁₇ N ₃ HCl
6	Основный фиолетовый 14	42500	632-99-5	C ₂₀ H ₁₉ N ₃ HCl
7	Дисперсный желтый 3	11855	2832-40-8	C ₁₅ H ₁₅ O ₂ N ₃
8	Кислотный красный 26	16150	3761-53-3	C ₁₈ H ₁₄ N ₂ Na ₂ O ₇ S ₂
9	Прямой черный 38	30235	1937-37-1	C ₃₄ H ₂₅ N ₉ Na ₂ O ₇ S ₂
10	Прямой синий 6	22610	2602-46-2	C ₃₂ H ₂₄ N ₆ O ₁₄ S ₄ Na ₄
11	Конго красный 28	22120	573-58-0	C ₃₂ H ₂₂ N ₆ Na ₂ O ₆ S ₂
12	Дисперсный оранжевый 11	60700	82-28-0	C ₁₅ H ₁₁ NO ₂
13	Кислотный красный 114	23635	6459-9-5	C ₃₇ H ₂₈ N ₄ Na ₂ O ₁₀ S ₃

^а Нумерация, используемая в таблицах D.1, D.4, D.5. ^b Классифицировано согласно GHS [1] и CLP [3].

^с Колориндекс [4].

Приложение В (обязательное)

Перечень аллергенных и других красителей

П р и м е ч а н и е — Не все указанные в таблице В.1 красители являются клинически подтвержденными аллергенами.

Таблица В.1 — Эталонные дисперсные красители

Номер ^а	Аллергенный краситель	Номер С.І.	Номер по CAS	Молекулярная формула
A1	Дисперсный синий 1	64500	2475-45-8	C ₁₄ H ₁₂ N ₄ O ₂
A2	Дисперсный синий 3	61505	2475-46-9	C ₁₇ H ₁₆ N ₂ O ₃
A3	Дисперсный синий 7	62500	3179-90-6	C ₁₈ H ₁₈ N ₂ O ₆
A4	Дисперсный синий 26	63305	3860-63-7	C ₁₆ H ₁₄ N ₂ O ₄
A5	Дисперсный синий 35		56524-77-7	C ₁₅ H ₁₂ N ₂ O ₄
A6		-	56524-76-6	C ₁₆ H ₁₄ N ₂ O ₄
A7	Дисперсный синий 102	11945	12222-97-8	C ₁₅ H ₁₉ N ₅ O ₄ S
A8	Дисперсный синий 106	111935	12223-01-7	C ₁₄ H ₁₇ N ₅ O ₃ S
A9	Дисперсный синий 124	111938	61951-51-7	C ₁₆ H ₁₉ N ₅ O ₄ S
A10	Дисперсный коричневый 1	11152	23355-64-8	C ₁₆ H ₁₅ N ₄ O ₄ Cl ₃
A11	Дисперсный оранжевый 1	11080	2581-69-3	C ₁₈ H ₁₄ N ₄ O ₂
A12	Дисперсный оранжевый 3	11005	730-40-5	C ₁₂ H ₁₀ N ₄ O ₂
A13	Дисперсный оранжевый 37/76/59	11132	13301-61-6	C ₁₇ H ₁₅ N ₅ O ₂ Cl ₂
A14	Дисперсный красный 1	11110	2872-52-8	C ₁₆ H ₁₈ N ₄ O ₃
A15	Дисперсный красный 11	62015	2872-48-2	C ₁₅ H ₁₂ N ₂ O ₃
A16	Дисперсный красный 17	11210	3179-89-3	C ₁₇ H ₂₀ N ₄ O ₄
A17	Дисперсный желтый 1	10345	119-15-3	C ₁₂ H ₉ N ₃ O ₅
A18	Дисперсный желтый 3	11855	2832-40-8	C ₁₅ H ₁₅ N ₃ O ₂
A19	Дисперсный желтый 9	10375	6373-73-5	C ₁₂ H ₁₀ N ₄ O ₄
A20	Дисперсный желтый 39	480095	12236-29-2	C ₁₇ H ₁₆ N ₂ O
A21	Дисперсный желтый 49	_	54824-37-2	C ₂₂ H ₂₂ N ₄ O ₂

Таблица В.2 — Другие эталонные красители

Номер ^а	Другой краситель	Homep CI	Номер по CAS	Молекулярная формула
01	Дисперсный желтый 23	26070	6250-22-3	C ₁₈ H ₁₄ N ₄ O
02	Дисперсный оранжевый 149	-	85136-74-9	C ₂₅ H ₂₆ N ₆ O ₃
О3	Морской синий 018112	_	118685-33-9	C ₃₉ H ₂₃ ClCrN ₇ O ₁₂ S Na ₂
		-	_	C ₄₆ H ₃₀ CrN ₁₀ O ₂₀ S ₂ Na ₃
04	Дисперсный оранжевый 61	111355	55281-26-0	C ₁₇ H ₁₅ Br ₂ N ₅ O ₂

Приложение С (обязательное)

Расчет

Концентрации красителей вычисляют по площади пиков отдельных компонентов красителей.

Концентрацию красителя вычисляют как массовую долю w, мг/кг, акстрагируемого красителя в испытуемом растворе по формуле

$$w = \frac{\rho_c \cdot V}{m_E},$$
 (C.1)

где w -- концентрация красителя, мг/кг;

р_с — концентрация красителя в испытуемом растворе, мг/дм³ (по калибровочной кривой);

— объем (конечный объем образца), см³;

 m_E — масса образца текстильного материала, г.

Приложение D (справочное)

Примеры хроматографических методов

D.1 Метод высокоэффективной жидкостной хроматографии (ВЭЖХ/ДМД) для дисперсных и канцерогенных красителей

D.1.1 Система ВЭЖХ высокого давления [сверхвысокоэффективная жидкостная хроматография (UHPLC)], давление выше 400 бар¹⁾

Элюент 1...... 2 % дигидрофосфат тетрабутиламмония с 10 % ацетонитрила;

Элюент 2..... ацетонитрил;

Неподвижная фаза...... HALO-C18 2,7 мкм; 150 × 2,1 мм с предколонкой;

Скорость потока...... 0,5 см³/мин;

Температура колонки....... 40 °C; Вводимый объем пробы.,.... 5 см3;

Градиент...... Время, мин Элюент 2, % Поток, см³ 1,0 n 0.5 15.0 47 0.5 25.0 55 0.5 26.0 100 0.666 28.0 100 8.0 30.0 100 8.0 35 0 0.5

D.1.2 Стандартная система ВЭЖХ, максимальное давление 400 бар

Условия по D.1.1, за исключением следующих параметров:

Неподвижная фаза.............. HALO-C18 2,7 мкм; 100 × 2,1 мм с предколонкой; Температура колонки.......................... 50 °C;

Давление	250 6ap/3 60	О фунт на кв. д	дюйм;	
Градиент	Время, мин	Элюент 2, %	Поток, см ³	
	1,0	0	0,5	
	15.0	47	0,5	
	30.0	80	0,5	
	35,0	80	0,5 —	начало градиента потока
	40,0	80	Градиент потока от 0,5 до 1,2 см ³ /мин	
	45,0	100	1,2 —	конец градиента потока
	46,0	100	1,2	
	46.1	0	0,5	
	53,0	0	0,5	

Таблица D.1 — Эталонные вещества (канцерогенные краситёли) и время удерживания для ВЭЖХ /ДМД

Номер	Канцерогенный краситель	Номер по CAS	Время удер- живания для	Длина волны количественного определения, нм			
			UHPLC, мин (см. D.1.1)	400	500	600	
1	Дисперсный синий 1	2475-45-8	8,8			Х	
2	Анилиновый желтый 1 4-аминоазобензол	60-09-4	14,6	Х			
3	Анилиновый желтый 2	60-11-7	21,2	Х			

 ^{1) 1} бар = 0,1 МПа = 0,1 Н/мм² = 105 Н/м².

ГОСТ Р ИСО 16373-2-2016

Окончание таблицы D.1

Номер	Канцерогенный краситель	Номер по CAS	Время удер- живания для	Длина волны копичественного определения, нм			
Howep	Kanaapotennan apotentana	TOMED TO ONG	UHPLC, мин (см. D.1.1)	400	500	600	
4	Анилиновый желтый 3 о-аминоазотолуол	97-56-3	18,2	х			
5	Основный красный 9	569-61-9	1.9		Х		
6	Основный фиолетовый 14	632-99-5	6,5		Х		
7	Дисперсный желтый 3	2832-40-8	15,8	X			
8	Кислотный красный 26	3761-53-3	15,1		Х		
9	Прямой черный 38	1937–37–1	17,7 18,7			Х	
10	Прямой синий 6	2602-46-2	16,8			Х	
11	Конго красный 28	573-58-0	16,0		Х		
12	Дисперсный оранжевый 11	82-28-0	15,6		Х		
13	Кислотный красный 114	6459-9-5	24,6		Х		

П р и м е ч а н и е — Все эталоны, представленные в таблицах D.1 и D.2, были разведены в метаноле, а также в смеси пиридин/вода (1:1). При сравнении двух растворов с помощью ВЭЖХ/ДМД расхождений во времени удерживания и спектрах ДМД не обнаружено.

Таблица D.2 — Эталонные вещества (аллергенные и другие красители) и время удерживания для ВЭЖХ/ДМД

Но- мер	Аллергенный или другой краси-	Howep no CAS	Время удержива- ния для UHPLC,	Длина волны количественного определения, нм			
	тель	Howep no CAS	мин (см. D 1.1)	400	500	600	700
A1	Дисперсный синий 1	2475-45-8	8,8			Х	
A2	Дисперсный синий 3	2475-46-9	12,2			×	
А3	Дисперсный синий 7	3179-90-6	11,3 12,4 14,7			х	
A4	Дисперсный синий 26	3860-63-7	16,8			×	
A5	Дисперсный синий 35	56524-77-7	17,4			X	
A6	Дисперсный синий 35	56524-76-6	22,2				Х
A7	Дисперсный синий 102	12222-97-8	13,7			×	
A8	Дисперсный синий 106	12223-01-7	15,2			X	
A9	Дисперсный синий 124	61951-51-7	18,9			х	
A10	Дисперсный коричневый 1	23355-64-8	16,6		Х		
A11	Дисперсный оранжевый 1	2581-69-3	25,3	(X)	Х		
A12	Дисперсный оранжевый 3	730-40-5	15,5	Х	(X)		
A13	Дисперсный оранжевый 37/76	13301-61-6	23,1	×	(X)		
A14	Дисперсный красный 1	2872-52-8	17,2		X		
A15	Дисперсный красный 11	2872-48-2	12,0		X	Х	
A16	Дисперсный красный 17	3179-89-3	14,7 15,0		х		
A17	Дисперсный желтый 1	119-15-3	13,6	Х			
A18	Дисперсный желтый 3	2832-40-8	15,8	Х			

Окончание таблицы D.2

Но- мер	Аллергенный или другой краси-	Номер по CAS	Время удержива- ния для UHPLC, мин (см. D.1.1)	Длина волны количественного определения, им			
	тель	HOMEP IIO CAS		400	500	600	700
A19	Дисперсный желтый 9	6373-73-5	13,6	Х			
A20	Дисперсный желтый 39	12236-29-2	15,1 16,1	Х			
A21	Дисперсный желтый 49	54824-37-2	19,035	х			
01	Дисперсный желтый 23	6250-22-3	24,0	Х			
02	Дисперсный оранжевый 149	85136-74-9	27,5		X		
О3	Морской синий 018112	118685-33-9	21,6 27,0			Х	
04	Дисперсный оранжевый 61	55281-26-0	24,1	х	X		

Примечания

до следующего

ввода пробы...... 3 мин.

D.2 Метод ВЭЖХ/ДМД/МС для дисперсных красителей

D.2.1 Хроматографические условия для ВЭЖХ/ДМД/МС

Элюент 1						
Элюент 2	ацетат аммония 10 ммоль, уровень pH 3,6; ацетонитрил;					
Неподвижная фаза	XDB-C18 3,5 мкм; 100 × 2,1 мм с предколонкой;					
Скорость потока	0,3 cм ³ /мин;					
Температура колонки	35 °C;					
Вводимый объем пробы	5 см ³ ;					
Давление	120 бар;					
Детектирование	ДМД, спектр	ограф;				
Градиент,	Время, мин	Элюент 2, %	Поток, см ³			
	0	40	0,3			
	5	60	0,3			
	7,5	85	0,3			
	9	98	0,3			
	13	40	0,3			
Время прогона Время перерыва	15 мин;					

D.2.2 Параметры приборов для метода ВЭЖХ/ДМД/МС

Сканирование в режиме обнаружения ДМД – от 210 до 800 нм.

Сканирование в режиме обнаружения МС - от 100 до 1 000 а.е.м.

MC-ионизация электрораспылением [ИЭР (ESI)] – индуцированная столкновениями ионизация (CID) положительно/отрицательно заряженных ионов, при напряжении 80 В.

D.2.3 Параметры измерения для метода ВЭЖX/ДМД/МС

Дисперсные красители, перечисленные в таблице D.3, разделяют на жидкостном хроматографе и идентифицируют с использованием детекторов ультрафиолетового и видимого диапазонов [УФ/УФВ (UV/VIS)] и МС. Время удерживания, данные визуального осмотра и масс-спектрометра приведены в таблице D.3. Значение измерения количества при максимальной интенсивности сигнала в масс-спектре компонента используют для количественного определения.

¹ Все эталоны, представленные в таблицах D.1 и D.2, были разведены в метаноле, а также в смеси пиридин/ вода (1:1). При сравнении двух растворов с помощью ВЭЖХ/ДМД расхождений во времени удерживания и спектрах ДМД не обнаружено.

² Данным методом ВЭЖХ/ДМД можно идентифицировать дисперсный оранжевый 37/76 в присутствии дисперсного оранжевого 61. Также возможно идентифицировать дисперсный оранжевый 3 в присутствии дисперсного желтого 3.

ГОСТ Р ИСО 16373-2-2016

Таблица D.3 — Эталонные вещества и время удерживания для ВЭЖX/МС

Но- мер	Краситель	Homep no CAS	Время удержи вания, мин	Сигнал УФВ макс., нм	Сигнал УФ макс., нм	Сигнал m/z при положи- тельном ИЭР	Сигнал m/z при от рица- тель- ном ИЭР
A1	Дисперсный синий 1	2475-45-8	2,0	620	240	268/269	-
A2	Дисперсный синий 3	2475-46-9	2,3	636	260	297	_
АЗ	Дисперсный синий 7	3179-90-6	3,7	668	242	359	-
A4	Дисперсный синий 26	3860-63-7	11,2	665	240	299	-
A5	Дисперсный синий 35	56524-77-7	9,7	648	240	285	-
A6		56524-76-6	11,6	680	239	299	-
A7	Дисперсный синий 102	12222-97-8	4,8	616	292	366	
A8	Дисперсный синий 106	12223-01-7	6,9	614	292	336	-
A9	Дисперсный синий 124	61951-51-7	10,0	598	292	378	_
A10	Дисперсный коричневый 1	23355-64-8	8,1	445	250	433	_
A11	Дисперсный оранжевый 1	2581-69-3	11,6	466	276	319/320	_
A12	Дисперсный оранжевый 3	730-40-5	7,9	434	276	243	-
A13	Дисперсный оранжевый 37/76	13301-61-6	11,2	430	268	392/394	-
A14	Дисперсный красный 1	2872-52-8	8,9	496	290	315	
A15	Дисперсный красный 11	2872-48-2	3,9	532	257	269	
A16	Дисперсный красный 17	3179-89-3	6,0	504	294	345	-
A17	Дисперсный желтый 1	119-15-3	5,8	366	264	276	274
A18	Дисперсный желтый 3	2832-40-8	7,7	356	250	270	_
A19	Дисперсный желтый 9	6373-73-5	5,6	368	240	275	273
A20	Дисперсный желтый 39	12236-29-2	7,4/8,4	368	284	291	_
A21	Дисперсный желтый 49	54824-37-2	10,1	446	234	375	_
01	Дисперсный желтый 23	6250-22-3	11,4	383	235	303	301
02	Дисперсный оранжевый 149	85136-74-9	12,6	455	265	459/476	_

D.2.4 Калибровка и оценка методом ВЭЖХ/ДМД/МС

Для калибровки исходные растворы эталонных веществ, указанных в таблице D.3, готовят в смеси пиридин/ вода (1:1). Эти исходные растворы используют для приготовления растворов эталонных смесей при концентрации отдельного вещества 1, 2,5, 5, 10 и 20 мг/дм³ относительно содержания красителя.

Выполняют анализ и данные масс-спектрометра используют для количественной оценки. Используя данные, приведенные в таблице D.3, строят калибровочную кривую зависимости площади (пика) сигнала МС от концентрации эталонного вещества.

D.2.5 Оценка методом ВЭЖХ/ДМД/МС

Количественное определение методом ВЭЖХ/ДМД/МС возможно только при полном хроматографическом разделении целевых соединений.

Примечания

- Невозможно идентифицировать со 100 %-ной определенностью методом ВЭЖХ/ДМД дисперсный оранжевый 37/76/59 в присутствии дисперсного оранжевого 61.
- 2 Невозможно количественно определить методом ВЭЖХ/ДМД дисперсный желтый 3 и дисперсный оранжевый 3, если оба эти вещества присутствуют в растворе. Необходимо выполнить количественное определение с помощью МС.

D.2.6 Точность метода ВЭЖХ/ДМД/МС

Получены данные от 10 параллельных опытов на реальных пробах и на эталонных растворах. Стандартное отклонение 9,54 % было получено для всего процесса, включая подготовку пробы и определение на массспектрометре.

D.2.7 Предел обнаружения ВЭЖX/ДМД/MC

Эталонное вещество – дисперсный синий 1 было выбрано для вычисления предела обнаружения и предела определения при наименьшей интенсивности сигнала и таким образом был определен диапазон применения данного метода.

Для выполнения расчетов была сделана смесь пяти эталонных веществ концентрациями 2, 4, 6, 8 и 10 мг/дм³. Были сняты показания и построена калибровочная кривая зависимости площади сигнала МС от концентрации эталонного вещества. Был определен предел принятия решения — 0,7 мг/дм³ и предел определения — 2,41 мг/дм³ для эталонного вещества. Предел определения можно снизить с помощью контроля выбранных ионов (SIM) или увеличения концентрации раствора пробы.

D.3 Метод ВЭЖХ/ДМД/МС для канцерогенных красителей (пример 1)

D.3.1 Хроматографические условия метода ВЭЖХ/ДМД/МС для канцерогенных красителей и приборы для ВЭЖХ/ДМД/МС

приобры для воловдиндин	•						
Элюент 1	ацетат аммония 10 ммоль, уровень рН 3,6;						
Элюент 2	ацетонитрил;						
Неподвижная фаза	XDB-C18 3,5 мкм; 100 × 2,1 мм с предколонкой;						
Скорость потока	0,3 cм ³ /мин;						
Температура колонки	35 °C:						
Вводимый объем пробы	5 mm ³ ;						
Давление	макс. 200 бар	o;					
Детектирование	ДМД, спектро	ограф МС;					
Градиент	Время, мин	Элюент 2, %	Поток, см ³				
	0	40	0,3				
	5	60	0,3				
	7,5	85	0,3				
	9	98	0,3				
	13	40	0.3				
Время прогона	15 мин;						
Время перерыва							
до следующего							

ввода пробы...... 3 мин. D.3.2 Параметры прибора для ВЭЖХ/ДМД/МС

Сканирование в режиме обнаружения ДМД - от 210 до 800 нм.

МС-детектирование — метод SIM [ИЭР положительно/ИЭР отрицательно заряженных ионов, сигналы m/z (см. таблицу D.4)].

МС-ИЭР — индуцированная столкновениями ионизация (CID) положительно/отрицательно заряженных ионов, при напряжении 80 В.

D.3.3 Параметры измерения для метода ВЭЖХ/ДМД/МС

Канцерогенные красители, указанные в таблице D.4, разделяют методом жидкостной хроматографии и идентифицируют с помощью детектора УФВ и МС. Время удерживания, данные оптической и масс-спектрометрии приведены в таблице D.4. Количественное определение проводят с помощью значения отношения массы M*/M⁻ при наиболее высокой интенсивности сигнала.

Т а б л и ц а D.4 — Эталонные вещества и время удерживания ВЭЖХ/МС, параметры ионизации электрораспылением положительно и отрицательно заряженных ионов, МС- и УФВ-данные

Номер	Канцерогенный краситель	Homep no CAS	Время удер- живания	Сигнал УФВ макс., нм	Сигнал m/z при поло- жительном ИЗР	Сигнал m/z при отрица- тельном ИЭР
1	Дисперсный синий 1	2475-45-8	1,9	620	268/269	_
2	Анилиновый желтый 1	60-09-4	7,0	384	198/199	_
3	Анилиновый желтый 2	60-11-7	10,5	413	226/227/228	_
4	Анилиновый желтый 3	97-56-3	9,5	388	226/227/228	-
5	Основный красный 9	569-61-9	1,4	540	288/289/290	-
6	Основный фиолетовый 14	632-99-5	1,6	550	302/303/304	-

Окончание таблицы D.4

Номер	Канцерогенный краситель	Homep no CAS	Время удер- живания	Сигнал УФВ макс., нм	Сигнал m/z при поло- жительном ИЭР	Сигнал m/z при отрица- тельном ИЗР
7	Дисперсный желтый 3	2832-40-8	7.8	352	270/271/272	_
8	Кислотный красный 26	3761-53-3	0,96/1,2	512	437/438	435
9	Прямой черный 38	1937-37-1	1.9	600	724/738	722/736
10	Прямой синий б	2602-46-2	0,96	592	_	421/442
11	Конго красный 28	573-58-0	1,36	510		325/651
12	Дисперсный оранжевый 11	82-28-0	7,9	480	238/239/240	_

D.3.4 Калибровка и оценка методом ВЭЖХ/ДМД/МС

Для калибровки исходные растворы эталонных веществ, указанных в таблице D.4, готовят в смеси пиридин/ вода (1:1). Эти исходные растворы используют для приготовления растворов эталонных смесей при концентрации отдельного вещества 1, 5, 10 и 20 мг/дм³ в зависимости от содержания красителя в (твердых) эталонных веществах.

Для количественного анализа выполняют измерение по 8.3 и используют масс-спектрометрические данные. Ссылаясь на данные, приведенные в таблице D.3, строят калибровочную кривую зависимости сигнала МС от концентраций эталонных веществ.

D.3.5 Оценка методом ВЭЖХ/ДМД/МС

Количественная оценка методом ВЭЖХ/МС возможна только в случае полного хроматографического разделения целевых соединений.

D.3.6 Точность метода ВЭЖХ/ДМД/МС

ввода пробы...... 4 мин.

Данные были определены из 10 парадлельных опытов на реальных пробах и растворах эталонных веществ. Оценка точности (воспроизводимости) метода дала относительное стандартное отклонение 7 % для всего процесса, включая подготовку пробы и определение на масс-спектрометре.

D.3.7 Предел обнаружения метода ВЭЖХ/ДМД/МС

Чтобы рассчитать предел обнаружения и предел количественного определения выбрали эталонное вещество № 10, поскольку оно дает наименее интенсивный сигнал и поэтому определяет рабочие условия метода.

Для определения в соответствии с DIN 32645 [5] приготовили смесь 10 эталонных веществ концентрациями от 0,1 до 10 мг/дм³. Анализ провели по 8,3 и построили калибровочные кривые зависимости сигналов МС от концентрации эталонных веществ. Для эталонного вещества № 10 предел обнаружения составил 1,7 мг/дм³, а предел определения — 2,5 мг/дм³. Предел количественного определения снижают уменьшением концентрации раствора пробы.

D.4 Метод ВЭЖХ/ДМД/МС для канцерогенных красителей (пример 2)

D.4.1 Хроматографические условия метода ВЭЖХ/ДМД/МС для канцерогенных красителей и приборы для ВЭЖХ/ЛМД/МС

приборы для ВЭЖХ/ДМД/М	3				
Элюент 1	ацетат аммо	ония 10 ммоль,	уровень рН 3,6	i;	
Элюент 2	ацетонитрил	1;			
Неподвижная фаза	Synergy polar	-RP 80A (Silica)	4 MKM; 150 × 2,0 s	мм с предколонкой (2 × 4 г	мм, polar l
Скорость потока	0,3 см ³ /мин;				
Температура колонки	35 °C;				
Вводимый объем пробы	5 мм ³ ;				
Давление	макс. 200 ба	ap;			
Детектирование	ДМД, спектр	юграф МС;			
Метод А с градиентом	Время, мин	Элюент 2, %	Поток, см3		
	0	98	0,3		
	2	60	0,3		
	4.5	20	0,3		
	7.5	20	0,3		
Метод В изократический		70	0.3		
Время прогона	8 мин;				
Время перерыва					
до следующего					

RP):

D.4.2 Параметры приборов для ВЭЖХ/ДМД/МС

Сканирование в режиме обнаружения ДМД – от 210 до 800 нм. МС-детектирование – метод SIM [ИЭР положительно/ИЭР отрицательно заряженных ионов, сигналы m/z (см. таблицу D.4)].

MC-ИЭР — индуцированная столкновениями ионизация (CID) положительно/отрицательно заряженных ионов, при напряжении 80 В.

Таблица D.5 — Эталонные вещества и время удерживания ВЭЖХ/МС

Номер	Канцерогенный краситель	Время удерживания, мин {метод А с градиентом ВЭЖХ/МС)	Время удерживания, мин (метод В изократической ВЭЖХ/МС)	
		Фаза на основе оксида кремния	Фаза на основе оксида кремния	
1	Дисперсный синий 1	1,56	1,8	
2	Анилиновый желтый 1	1,6	2,2	
3	Анилиновый желтый 2	1,86	3,2	
4	Анилиновый желтый 3	1.7	2,6	
5	Основный красный 9	4,9	2,1	
6	Основный фиолетовый 14	4,7	2,2	
7	Дисперсный желтый 3	1,6	2,1	
8	Кислотный красный 26	0,92	1.0	
9	Прямой черный 38	0,99	1,1	
10	Прямой синий 6	1,26	0,94	
11	Конго красный 28	0,93	1.0	
12	Дисперсный оранжевый 11	1,7	2,49	

Калибровку и оценку проводят по D.3.4.

Приложение Е (справочное)

Воспроизводимость метода

Приложение Е представляет сводку по результатам межлабораторных испытаний, выполненных в 2008 г. рабочей группой NA 062-05-12 AA (Химические волокна. Методы испытаний и анализ состава смеси волокон) из института DIN, Германия, показывающую относительное стандартное отклонение воспроизводимости (RSD).

Хлопок	Число ог	рытов, п	Средне	е. мг/кг	RSD,	%
RV003	дмд	MC	дмд	MC	дмд	MC
Конго красный 28	4	7	298	232	17	20
Прямой черный 38	5	7	110	111	14	12
Полиафир	Резуль	таты, п	Средне	е, мг/кг	RSD,	%
RV004	дмд	MC	дмд	MC	дмд	MC
Дисперсный желтый 3	5	6	219	245	39	37
Дисперсный оранжевый 11	5	6	211	207	14	20
Полизфир	Резуль	гаты, п	Средне	е. мг/кг	RSD,	%
RV004	дмд	MC	дмд	MC	дмд	MC
Дисперсный желтый 3	5	6	219	245	39	37
Дисперсный оранжевый 11	5	6	211	207	14	20
Оолиэфир	Результаты, п		Средне	е, мг/кг	RSD,	%
RV005	дмд	MC	дмд	MC	дмд	MC
Анилиновый желтый 1	5	7	220	215	21	19
Анилиновый желтый 2	5	7	102	99	31	34
Анилиновый желтый 3	5	6	167	155	34	29
Шерсть/Полиакрил (50:50)	Результ	гаты, п	Средне	е. мг/кг	RSD,	%
RV006	дмд	MC	дмд	MC	дмд	MC
Кислотный красный 26	5	6	226	186	9	16
Основный фиолетовый 14	2	7	114	112	35	24

перимент дважды.

Подготовку проб в каждой лаборатории выполнили по шесть раз.

Приложение F (справочное)

Множественная экстракция ряда текстильных волокон смесью пиридин/вода

F.1 Общие положения

Большинство окрашенных текстильных волокон для рабочей группы DIN NA 062-05-12 AA (Химические волокна. Методы испытаний и анализ состава смеси волокон), Германия, были подготовлены компанией «DyStar Colours Distribution» GmbH. Леверкузен.

Один материал предоставлен Институтом межлабораторных исследований (IIS), Нидерланды, который использовали ранее в межлабораторных испытаниях (материал № 0821, Межлабораторные испытания, март 2008). Данный материал окрасили дисперсным синим 1 (В1) и дисперсным оранжевым 3 (О3). Содержание красителя неизвестно.

Все материалы, произведенные для межлабораторных испытаний в Японии, были окрашены кислотным красным 114.

Бюро Веритас, Шверин предоставило следующие красители: кислотный красный 26 (AR26), основный фиолетовый 14 (BV 14), основный красный 9 (BR9), прямой черный 38 (DBk38), конго красный 28 (DR28), дисперсный желтый 3 (Y3), дисперсный оранжевый 11 (O11), анилиновый оранжевый 1, 2 и 3 (SY1, SY2, SY3).

«TÜV Rheinland LGA Products», Кельн, предоставила прямой синий 6 (DB6).

Экстракты получены в компаниях «TÜV Rheinland LGA Products (TRLP) GmbH» и «CITEVE Vila Nova de Famalicão», Португалия.

В таблице F.1 приведен выход *R* после первого этапа экстрагирования относительно общего выхода (извлечения) после 2–4 этапов экстрагирования. После этих этапов экстрагирования текстильные материалы обесцветились.

Красильный раствор рассчитан по теоретическому содержанию красителя в материале, значение приведено в схобках в мг/кг. В реальности невозможно получить такие значения ввиду достаточно неопределенного количества красителя, которое будет потеряно в процессе окращивания.

F.2 Обсуждение результатов

Хотя экстракцию волокон необходимо производить неоднократно, 2-4 раза, чтобы получить бесцветный образец, интересен тот факт, что в большинстве случаев выход красителя после первого этапа близок к 100 %.

Возможным объяснением этому наблюдению является то, что уже на первом этапе экстракции весь краситель растворяется и более не держится на волокнах. Небольшое количество растворителя, остающегося на волокнах после первого этапа, содержит молекулы красителя, которые выходят на следующих этапах экстрагирования.

Основные красители на полиакриловых волокнах являются исключением преимущественно вследствие катионного связывания. Обычно сложно обесцветить полиакриловые волокна. Тем не менее в данных экспериментах примерно 50 % растворения достигнуто на первом этапе экстракции.

Вывод: Результаты свидетельствуют о том, что смесь пиридина с водой является подходящим растворителем для экстракции исследуемых канцерогенных красителей.

Для большинства исследованных в данных испытаниях текстильных материалов примерно 100 % общего содержания красителя получили на первом этапе экстракции.

Даже для сложных материалов типа полиакриловых волокон выход (извлечение) получается около 50 %.

Таблица Е.1 — Выход (извлечение) R после первого этапа эжстракции относительно общего выхода после 2-4 этапов эжстракции

							Волокно	ЭНО						
Жраситель	Хлог	Хлопковое	Пол	Полизфирнов	Полизфирнов/ хлопковое 50.50	лизфирнов/ хлопковое 50.50	Полиг	Полизмиднов	Floating Anoil	Полияжри- ловое	Mepc	Шерстяное	Шерстя- крилов	Шерстяное/ полиз- криловое 50.50
	E %	c, Mr/kr	E %	c, MÜKT	pt %	C, Mr/kr	oč %	C. Mr/kr	0.5%	, C. M(7/87	n; %	c, Mrhar	0°, %	c, Mr?kr
Кислотный красный 26	1	1	1	1	1	1	104	(320)	1	1			104	(250)
Кислотный красный 114	1	1	1	ı	1	1	*78	(10 000)	1	1	83*	(2 000)	1	1
Основный фиолетовый 14	1	1		****	1	1	1	1	44	(300)	1	1	53	(200)
Основный красный 9	١	1	1	1	1	1	1	1	41	(200)	1	1	1	1
Прямой черный 38	103	(300)	1	-	103	(200)	1	1	1	1	1	1	1	1
Прямой синий 6	104	(280)	1	-	1	-	1	-	***	ı	1	1	-	1
Конго красный 28	102	(400)	1	1	107	(520)	1	1	1	1	1	1	1	1
Дисперсный синий 1	1	1	108	(неизвестно)		1	1	1	1	1	1	1	1	
Дисперсный оранжевый 3	1	1	85	(неизвестно)	1	-	1	1	1	1	1	1	1	1
Дисперсный оранжевый 11	1	-	83	(250)	I	1	-	waser.	-	1	man	1	passes,	1
Дисперсный желтый 3	1	I	98	(300)	86	(500)	I	1	1	I	1	1	1	1
Анилиновый желтый 1	1	1	102	(300)	1	1	1	1	1	1	1	1	1	1
Анилиновый желтый 2	1	t	86	(150)	1	-	1	1	1	1	1	1	1	*****
Анилиновый желтый 3		1	101	(250)	100	(006)	1	1	1	1	1	1	1	1

Теоретическая концентрация с в материалах дается в скобках. Экстракция производилась в компании «TÜV Rheinland LGA Products (TRLP) GmbH» и, где отмечено звездочкой (*), в компании «CITEVE Vila Nova de Famalicão», Португалия.

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов национальным стандартам Российской Федерации

Таблица ДА.1

Обозначение ссылочного международ-	Степень	Обозначение и наименование соответствующего националь-
ного стандарта	соответствия	ного стандарта
NCO 3696	MOD	ГОСТ Р 52501—2005 «Вода для лабораторного анализа. Технические условия»

П р и м е ч а н и е — В настоящей таблице использовано следующее условное обозначение степени соответствия стандарта:

MOD — модифицированный стандарт.

ГОСТ Р ИСО 16373-2-2016

Библиография

- [1] DIN 54231:2005, Textilien Nachweis von Dispersionsfarbstoffen
- [2] ST/SG/AC. 10/30/rev.4, Globally harmonized system of classification and labelling of chemicals (GHS). Fourth. United Nations, New York, Geneva, revised edition, 2011
- [3] Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006 (CLP)
- [4] COLOUR INDEX INTERNATIONAL. www.colour-index.com (2012-02-14)

УДК 677.014.252:006.354

OKC 59.080.01

Ключевые слова: текстильные материалы, аллергенные и канцерогенные красители, экстракция, смесь пиридина с водой, жидкостная хроматография, определение, метод, расчет, протокол

Редактор *И.В. Гоголь* Технический редактор *В.Н. Прусакова* Корректор *М.И. Першина* Компьютерная верстка *Е.О. Асташина*

Сдано в набор 20.06.2016. Подписано в печать 29.06.2016. Формат 60×84%. Гарнитура Ариал. Усл. печ. л. 2,79. Уч.-изд. л. 2,37. Тираж 26. Зак. 1556. Подкотовлено на основе электронной версии, предоставленной разработчиком стандарта