ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 22.2.09— 2015

Безопасность в чрезвычайных ситуациях

ЭКСПЕРТНАЯ ОЦЕНКА УРОВНЯ БЕЗОПАСНОСТИ И РИСКА АВАРИЙ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ

Общие положения

Издание официальное

Предисловие

1 РАЗРАБОТАН Открытым акционерным обществом «Комплексный научно-исследовательский и конструкторско-технологический институт водоснабжения, канализации, гидротехнических сооружений и инженерной геологии» (ОАО «НИИ ВОДГЕО») и Федеральным государственным бюджетным учреждением «Всероссийский научно-исследовательский институт по проблемам гражданской обороны и чрезвычайных ситуаций МЧС России» (Федеральный центр науки и высоких технологий) [ФГБУ ВНИИ ГОЧС (ФЦ)]

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 071 «Гражданская оборона, предупреждение и ликвидация чрезвычайных ситуаций»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 2 декабря 2015 г. № 2100-ст

4 ВВЕДЕН ВПЕРВЫЕ

5 ПЕРЕИЗДАНИЕ. Сентябрь 2019 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Содержание

1 Область применения
2 Нормативные ссылки
3 Термины, определения и сокращения
4 Основные положения экспертной оценки уровня безопасности и риска аварий гидротехнических сооружений
5 Интегральная оценка опасности гидротехнических сооружений
6 Интегральная оценка уязвимости гидротехнических сооружений
7 Интегральная оценка уровня безопасности и риска аварий на гидротехнических сооружениях 12
Приложение А Примеры расчетов уровней безопасности
Приложение Б Пример расчета значения коэффициента уязвимости
Библиография

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Безопасность в чрезвычайных ситуациях

ЭКСПЕРТНАЯ ОЦЕНКА УРОВНЯ БЕЗОПАСНОСТИ И РИСКА АВАРИЙ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ

Общие положения

Safety in emergencies. Expert assessment of safety and accident risk levels for hydraulic structure.

General principles

Дата введения — 2016—06—01

1 Область применения

1.1 Настоящий стандарт предназначен для использования в ходе деятельности в области предупреждения и ликвидации чрезвычайных ситуаций, при экспертной оценке уровня безопасности и риска аварий гидротехнических сооружений (далее — ГТС) водохозяйственного и промышленного назначения, а также при декларировании их безопасности, экспертизе декларации безопасности, страховании рисков аварий, подготовке сведений для формирования Российского регистра гидротехнических сооружений, разработке паспортов безопасности и др.

Стандарт позволяет проводить комплексную оценку уровня безопасности и риска аварий ГТС на основе экспертного анализа всей совокупности факторов, влияющих на надежность и безопасность их работы, включая: техническое состояние сооружения, организацию службы эксплуатации, опасность превышения расчетных нагрузок и воздействий, экологическую безопасность и пр.

- 1.2 Положения настоящего стандарта предназначены для использования:
- федеральными органами исполнительной власти, входящими в единую государственную систему предупреждения и ликвидации чрезвычайных ситуаций (далее PCЧС), и их территориальными органами;
- научно-исследовательскими, проектными, строительными и монтажными организациями всех форм собственности, осуществляющими проектирование, строительство, монтаж и капитальный ремонт ГТС, декларирование их безопасности и экспертизу деклараций безопасности, страхование рисков аварий, подготовку сведений для формирования Российского регистра ГТС, разработку паспортов безопасности.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты и документы: ГОСТ 19185 Гидротехника. Основные понятия. Термины и определения

ГОСТ Р 22.0.02 Безопасность в чрезвычайных ситуациях. Термины и определения основных понятий

СП 58.13330.2012 Гидротехнические сооружения. Основные положения. Актуализированная редакция СНиП 33-01—2003

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого

стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины, определения и сокращения

3.1 Термины и определения

В настоящем стандарте применены термины и определения по ГОСТ Р 22.0.02, ГОСТ 19185, а также следующие термины с соответствующими определениями:

- 3.1.1 **авария ГТС:** Опасное техногенное происшествие, создающее угрозу жизни и здоровью людей, приводящее к разрушению зданий, сооружений, оборудования и коммуникаций, нарушению производственных и транспортных процессов, нанесению ущерба окружающей природной среде.
- 3.1.2 **безопасность ГТС:** Свойство ГТС, позволяющее обеспечивать защиту жизни, здоровья и законных интересов людей, окружающей среды и хозяйственных объектов.
- 3.1.3 **риск аварии ГТС:** Мера опасности, характеризующая возможность возникновения аварии ГТС и тяжесть ее последствий для здоровья, жизни людей, имущества и окружающей природной среды.
- 3.1.4 **опасность** (при оценке возможности аварии на ГТС): Процессы, протекающие в ГТС и зоне их влияния и представляющие угрозу для жизни или условий жизнедеятельности людей, объектов хозяйства или окружающей среды.
- 3.1.5 **оценка риска аварии ГТС:** Процесс, используемый для определения частоты (вероятности) и степени тяжести последствий реализации опасностей аварий ГТС для здоровья, жизни людей, имущества и окружающей природной среды.

Примечание — Оценка риска аварии ГТС включает оценку частоты (вероятности) и последствий возможной аварии ГТС и сравнение полученных результатов с допустимым уровнем риска аварии ГТС.

- 3.1.6 **уязвимость ГТС:** Свойство ГТС терять способность к выполнению заданных функций в результате негативных воздействий или деградационных процессов материалов с течением времени. Уязвимость есть реакция сооружения на внешние и внутренние опасности.
- 3.1.7 **уровень безопасности ГТС:** Качественная характеристика состояния ГТС и условий его эксплуатации.
- 3.1.8 **зона влияния ГТС:** Территория, на которой возможны негативные явления и процессы, определенные в ходе прогнозирования угрозы возникновения чрезвычайных ситуаций, локализация и ликвидация которых требуют заблаговременной подготовки сил и средств единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций.
- 3.1.9 **чрезвычайная ситуация локального характера:** Чрезвычайная ситуация, в результате которой территория, на которой сложилась чрезвычайная ситуация и нарушены условия жизнедеятельности людей, не выходит за пределы территории объекта, при этом количество людей, погибших или получивших ущерб здоровью, составляет не более 10 человек либо размер ущерба окружающей природной среде и материальных потерь составляет не более 100 тыс. рублей [1].
- 3.1.10 чрезвычайная ситуация муниципального характера: Чрезвычайная ситуация, в результате которой зона чрезвычайной ситуации не выходит за пределы территории одного поселения или внутригородской территории города федерального значения, при этом количество пострадавших составляет не более 50 человек либо размер материального ущерба составляет не более 5 млн рублей, а также данная чрезвычайная ситуация не может быть отнесена к чрезвычайной ситуации локального характера [1].
- 3.1.11 чрезвычайная ситуация межмуниципального характера: Чрезвычайная ситуация, в результате которой зона чрезвычайной ситуации затрагивает территорию двух и более поселений, внутригородских территорий города федерального значения или межселенную территорию, при этом количество пострадавших составляет не более 50 человек либо размер материального ущерба составляет не более 5 млн рублей [1].
- 3.1.12 **чрезвычайная ситуация регионального характера:** Чрезвычайная ситуация, в результате которой зона чрезвычайной ситуации не выходит за пределы территории одного субъекта Российской Федерации, при этом количество пострадавших составляет свыше 50 человек, но не более 500

человек либо размер материального ущерба составляет свыше 5 млн рублей, но не более 500 млн рублей [1].

- 3.1.13 **чрезвычайная ситуация межрегионального характера:** Чрезвычайная ситуация, в результате которой зона чрезвычайной ситуации затрагивает территорию двух и более субъектов Российской Федерации, при этом количество пострадавших составляет свыше 50 человек, но не более 500 человек либо размер материального ущерба составляет свыше 5 млн рублей, но не более 500 млн рублей [1].
- 3.1.14 **чрезвычайная ситуация федерального характера:** Чрезвычайная ситуация, в результате которой количество пострадавших составляет свыше 500 человек либо размер материального ущерба составляет свыше 500 млн рублей [1].

3.2 Сокращения

В настоящем стандарте применены следующие сокращения:

ГТС — гидротехнические сооружения;

ПДЗ — предельное допустимое значение;

УВ — уровень (уровни) воды;

КИА — контрольно-измерительная аппаратура;

ЧС — чрезвычайная ситуация.

4 Основные положения экспертной оценки уровня безопасности и риска аварий гидротехнических сооружений

- 4.1 Экспертная оценка уровня безопасности и риска аварий ГТС водохозяйственного и промышленного назначения при декларировании их безопасности, экспертизе деклараций безопасности и страховании рисков аварий выполняется на основе экспертного анализа всей совокупности факторов, влияющих на надежность и безопасность их работы.
- 4.2 Количественные оценки опасности, уязвимости ГТС, риска аварии ГТС определяются исходя из того, что каждое из этих понятий является сложной функцией многих случайных переменных факторов. Для получения количественных характеристик указанных понятий необходимо определить полный набор таких факторов. Их объединение по совокупностям будет являться, соответственно, показателями уязвимости ГТС, показателями опасности, показателями риска аварии ГТС (далее показатели). В зависимости от величин показателей строится градация по степеням опасности, уязвимости ГТС, риска аварии ГТС.

Такой подход позволяет работать уже с достаточно ограниченным числом переменных и выполнять общую количественную оценку, которую можно назвать интегральной.

Степень опасности по каждому из показателей устанавливается отдельно на том или ином уровне на основании экспертных оценок.

При этом под кодом опасности (уязвимости) подразумевается цифровое выражение степени опасности (уязвимости) по каждому показателю (0 — опасность отсутствует, 1 — малая опасность, 2 — средняя опасность, 3 — большая опасность).

Балл — цифровое выражение опасности (a_i) и уязвимости (b_i) в пределах установленного кода. Диапазоны возможных балльных значений указаны в таблице 1.

Таблица 1 — Диапазоны возможных балльных значений

C	Диапазоны возможных балльных значений		
Степень опасности (уязвимости)	Балл (a _i)	Балл (<i>b_i</i>)	
0 — опасность отсутствует	a _i = 0	b _i = 0	
1 — малая опасность	0 < a _i ≤ 1	0 < b _i ≤ 1	
2 — средняя опасность	1 < a _i ≤ 2	1 < b _i ≤ 2	
3 — большая опасность	2 < a _i ≤ 3	2 < b _i ≤ 3	

FOCT P 22.2.09—2015

4.3 Численные значения баллов должны назначаться в соответствии с кодами, характеризующими уровень опасности (уязвимости) по тому или иному показателю с учетом приведенных ниже рекомендаций. Дробные значения баллов показателей опасности (уязвимости) могут назначаться лишь в отдельных случаях при соответствующем обосновании.

За основу количественной оценки степени опасности, уязвимости, риска ЧС (аварий) на ГТС принят подход получения нормирующих коэффициентов, характеризующих долю от наиболее неблагоприятной ситуации, принимаемой за единицу.

5 Интегральная оценка опасности гидротехнических сооружений

- 5.1 Опасность аварии на ГТС определяется следующими показателями:
- 1 Превышение принятых при обосновании конструкции сооружения природных нагрузок и воздействий (a_1).
 - 2 Обоснованность и соответствие проектных решений современным нормативным требованиям (a_2) .
- 3 Соответствие проекту конструкции сооружения, технологии его возведения и свойств материалов сооружения и основания (a_3).
- 4 Соответствие проекту условий эксплуатации сооружения и условий проведения мониторинга его состояния и безопасности (a_4).
- 5.2 Показатель опасности a_1 является показателем опасности превышения принятых при расчетном обосновании конструкции сооружения природных нагрузок и воздействий (сейсмические, волновые и температурные воздействия; нагрузки от наносов; гидростатические, ветровые и ледовые нагрузки; опасность превышения расчетных расходов через водосбросные сооружения и т. п.) принимается по экспертной оценке на одном из четырех уровней, каждый из которых имеет соответствующий код, с учетом указаний действующих нормативных документов по определению нагрузок и воздействий на сооружения, данных натурных наблюдений за период эксплуатации ГТС и отличительных признаков, приведенных в таблице 2.

Таблица 2 — Оценка показателя a₁

Уровень опасности по показателю a ₁	<u>Код</u> балл	Отличительные признаки
Опасность отсутствует	0 0	Показатели возможных нагрузок и воздействий на ГТС не отличаются от расчетных значений, принятых при проектировании. Отсутствует возможность возникновения (развития) потенциально опасных воздействий природного и техногенного характера
Малая опасность	$\frac{1}{0 < a_1 \le 1}$	Показатели возможных нагрузок и воздействий на ГТС превышают расчетные значения, принятые при проектировании, но при этом не возникает прямой угрозы разрушения ГТС и/или потери им основных качеств своего назначения. Существует возможность возникновения (развития) потенциально опасных воздействий природного и техногенного характера, которые могут привести к нарушениям эксплуатационного режима, повреждениям отдельных конструктивных элементов и оборудования, при этом возникает угроза возникновения ЧС локального характера. Проведение дополнительных расчетных обоснований, конструктивных изменений и специальных организационных мероприятий для безопасной эксплуатации ГТС не требуется
Средняя опасность	$\frac{2}{1 < a_1 \le 2}$	Показатели возможных нагрузок и воздействий на ГТС превышают расчетные значения, принятые при проектировании, но при этом не возникает прямой угрозы разрушения ГТС и/или потери им основных качеств своего назначения. Существует возможность возникновения (развития) потенциально опасных воздействий природного и техногенного характера, которые могут привести к нарушениям эксплуатационного режима, повреждениям отдельных конструктивных элементов и оборудования, при этом возникает угроза возникновения муниципальной и межмуниципальной ЧС. Требуется проведение дополнительных расчетных обоснований, конструктивных изменений и специальных организационных мероприятий для безопасной эксплуатации ГТС

Окончание таблицы 2

Уровень опасности по показателю <i>а</i> ₁	Код балл	Отличительные признаки
Большая опасность	$\frac{3}{2 < a_1 \le 3}$	Показатели возможных нагрузок и воздействий на ГТС превышают расчетные значения, принятые при проектировании, в связи с чем возникает прямая угроза разрушения ГТС и/или потери им способности выполнять заданные функции. Существует возможность возникновения (развития) потенциально опасных воздействий природного и техногенного характера, которые могут привести к нарушениям эксплуатационного режима, разрушению конструктивных элементов и оборудования, при этом возникает угроза возникновения региональной, межрегиональной и федеральной ЧС. Необходимо проведение срочных организационных мероприятий и/или проектно-строительных работ по изменению режима эксплуатации и/или реконструкции (капитального ремонта) ГТС, вывода его из эксплуатации

При оценке риска аварии на ГТС по показателю опасности a_1 оцениваются возможные опасности возникновения негативных природных и техногенных воздействий на ГТС, которые определяются местоположением ГТС (к таким опасностям можно отнести сход селевых и снежных лавин, смерчи, ураганы, развитие карстово-суффозионных процессов, цунами, штормовой нагон, образование заторов, обрушение в водохранилище или накопитель береговых склонов, просадки, связанные с подработкой территории, падение летательного аппарата, взрыв (пожар, химическая авария) на транспортном средстве, диверсия, теракт и др).

5.3 Показатель опасности a_2 — показатель, оценивающий обоснованность и соответствие проектных решений современным нормативным требованиям, устанавливается по одному из четырех уровней в соответствии с таблицей 3.

Таблица 3 — Оценка показателя а2

Уровень опасности по показателю <i>а</i> ₂	Код балл	Отличительные признаки
Опасность отсутствует	0 0	Полное соответствие современным нормативным требованиям по всем оцениваемым факторам
Малая опасность	$\frac{1}{0 < a_2 \le 1}$	В проекте имеются незначительные отклонения от современных нормативных требований, которые не приведут к нарушениям эксплуатационного режима ГТС
Средняя опасность	2 1 < a ₂ ≤ 2	В проекте имеются значительные ошибки или существенные отклонения от современных нормативных требований, которые могут привести к нарушениям эксплуатационного режима, повреждениям отдельных конструктивных элементов и оборудования, при этом сохраняется в ограниченном режиме
Большая опасность	$\frac{3}{2 < a_2 \le 3}$	В проекте имеются грубые ошибки или существенные отклонения от современных нормативных требований, которые могут привести к нарушениям эксплуатационного режима, разрушению сооружения или отдельных его элементов. Возможность эксплуатации ГТС отсутствует

При экспертной оценке обоснованности и соответствия проектных решений современным нормативным требованиям принимаются во внимание следующие основные факторы:

- 1 Достаточность инженерно-геологических изысканий, выполненных при проектировании ГТС.
- 2 Надежность и обоснованность методов определения и назначения расчетных характеристик (физико-механические, фильтрационные и пр.) материалов сооружений и их оснований.
- 3 Достаточность расчетного обоснования конструкций сооружений, оснащения контрольно-измерительной аппаратурой, обоснованность и соответствие современным нормативным требованиям применявшихся расчетных методов.
 - 4 Повышение класса опасности ГТС.

ГОСТ Р 22.2.09-2015

5.4 Показатель опасности a_3 — показатель, по которому оценивается соответствие проекту конструкций сооружения, технологии его возведения и свойствам материалов конструкций и основания.

При экспертной оценке аварии ГТС по показателю опасности a_3 подлежат учету следующие основные факторы:

- 1 Соответствие проекту компоновочных схем ГТС.
- 2 Соответствие проекту конструктивных элементов ГТС.
- 3 Соответствие проекту качества материалов (по данным геотехнического контроля при строительстве ГТС, а также данным инструментальных обследований и инженерно-геологических работ по определению фактических характеристик материалов ГТС и основания в период эксплуатации).
- 4 Соответствие проекту типов и конструкций гидромеханического оборудования и устройств по их управлению и ремонту, оборудования систем гидротранспорта и оборотного водоснабжения, а также другого вспомогательного оборудования.

Показатель опасности a_3 устанавливается на одном из четырех уровней, характеризуемых отличительными признаками, приведенными в таблице 4.

Таблица	4 —	Оценка	показателя	a_3
---------	-----	--------	------------	-------

Уровень опасности по показателю а ₃	<u>Код</u> балл	Отличительные признаки
Опасность отсутствует	0 0	Полное соответствие проектным требованиям по всем оцениваемым факторам
Малая опасность	$\frac{1}{0 < a_3 \le 1}$	Незначительные отклонения от проекта, которые не приведут к нарушениям эксплуатационного режима ГТС
Средняя опасность	$\frac{2}{1 < a_3 \le 2}$	Существенные отклонения от проекта, которые могут привести к нарушениям эксплуатационного режима ГТС. Требуется оценка возможности дальнейшей эксплуатации ГТС в проектном режиме и необходимости по обоснованию нарушения эксплуатационного режима ГТС и проведение мероприятий по восстановлению нормативной прочности и устойчивости конструктивных элементов и оборудования, включая восстановление пропускной способности водосбросов и водоспусков
Большая опасность	$\frac{3}{2 < a_3 \le 3}$	Значительные отклонения от проекта по оцениваемым факторам, которые могут привести к аварии ГТС и угрозе возникновения ЧС, превышающей локальную

5.5 Показатель опасности a_4 — показатель, по которому оценивается обоснованность и соответствие проектных и эксплуатационных решений по режиму эксплуатации и мониторингу безопасности ГТС современным нормативным требованиям.

При экспертной оценке риска аварии ГТС по показателю опасности a_4 подлежат учету следующие основные факторы:

- 1 Соответствие проекту режимов эксплуатации ГТС (изменение в водохранилище или накопителе проектных УВ, скоростей наполнения или сработки водохранилищ уменьшение запасов воды в водохранилище, когда расходы воды из водохранилища превышают приток, переключение ГТС на работу в каскаде гидроузлов или накопителей и др.).
- 2 Соответствие проекту (по номенклатурному и количественному составу) установленной на ГТС контрольно-измерительной аппаратуры (КИА).
- 3 Соответствие установленной КИА (по конструкциям, по номенклатурному и количественному составу) современным нормативным требованиям.
- 4 Соответствие режимов мониторинга состояния и безопасности ГТС (состав и сроки проводимых наблюдений) современным нормативным требованиям и проекту.

Показатель опасности a_4 устанавливается на одном из четырех уровней, характеризуемых отличительными признаками, приведенными в таблице 5.

Таблица 5 — Оценка показателя a_4

Уровень опасности по показателю a_4	Код балл	Отличительные признаки	
Опасность отсутствует	0 0	Полное соответствие современным нормативным и/или проектным требованиям по всем оцениваемым факторам	
Малая опасность	$\frac{1}{0 < a_4 \le 1}$	Незначительные отклонения от современных нормативных требований и (или) проекта, которые не приведут к нарушениям эксплуатационного режима ГТС. Возможна эксплуатация ГТС в штатном режиме, с устранением недостатков в рамках текущих ремонтно-восстановительных работ	
Средняя опасность	2 1 < a ₄ ≤ 2	Существенные отклонения от современных нормативных требован и/или проекта, которые могут привести к нарушениям нормальн эксплуатационного режима ГТС. Возможно возникновение локальных ЧС. Требуется оценка возможности дальнейшей эксплуатации ГТС в п ектном режиме и необходимости по обоснованию нарушения эксп атационного режима ГТС и проведение мероприятий по восстанов нию проектных параметров ведения мониторинга безопасности ГТС	
Большая опасность	$\frac{3}{2 < a_4 \le 3}$	Значительные отклонения от современных нормативных требований и/или проекта по оцениваемым факторам, которые могут привести к аварии ГТС и угрозе возникновения ЧС, превышающей локальную. Дальнейшая эксплуатация невозможна без принятия срочных мер по обеспечению безопасности	

5.6 Интегральная количественная оценка опасности ГТС характеризуется коэффициентом опасности λ , который представляет собой долю от наиболее неблагоприятной обстановки (сочетания показателей опасности) на объекте.

При наиболее неблагоприятном сочетании уровней четырех рассмотренных показателей опасности (интегральный код 3333 при баллах 3, 3, 3) коэффициент опасности равен λ = 1, в остальных случаях 0 < λ < 1.

Численные значения коэффициента опасности λ в зависимости от установленного интегрального кода показателей опасности получены на основе экспертной оценки коэффициентов значимости или «удельного веса» каждого из показателей опасности, а также оценки относительной роли (весовых коэффициентов) каждого из уровней опасности по тому или иному показателю. Количественные оценки этих величин приведены в таблице 6.

Таблица 6 — Экспертная оценка коэффициентов значимости показателей и уровней опасности ГТС

Порядковый номер	Показатели опасности	Коэффициент значимости показателя опасности δ_i
1	Опасность превышения природных нагрузок и воздействий	0,3
2	Обоснованность и соответствие проектных решений современным нормативным требованиям	0,2
3	Соответствие проекту конструкций сооружения, технологии его возведения и свойств материалов конструкций и основания	0,3
4	Соответствие проекту условий эксплуатации сооружения и условий проведения мониторинга его состояния и безопасности	0,2

При этом коэффициент опасности определяется из соотношения

$$\lambda = \lambda_0 \sum_{i=1}^4 \delta_i \cdot a_i,\tag{1}$$

где δ_i — коэффициент значимости i-го показателя опасности;

 a_i — значение кода i-го показателя опасности;

 λ_0^+ — нормирующий множитель показателя опасности.

ГОСТ Р 22.2.09-2015

Расчетные значения коэффициента опасности λ для каждого события, определяемого соответствующим кодом, приведены в таблице 6.

Код в таблице 1П (см. приложение A) характеризует как количество показателей опасности (четырехзначный код), так и степень опасности по каждому из показателей (четыре степени опасности: 0 — безопасно; 1 — малая опасность; 2 — средняя опасность; 3 — большая опасность).

Примеры расчетов уровней безопасности приведены в приложении А.

6 Интегральная оценка уязвимости гидротехнических сооружений

6.1 Уровень уязвимости ГТС определяется их восприимчивостью, а также восприимчивостью окружающей среды (в зоне влияния сооружения) к воздействию факторов опасности.

Приняты следующие основные показатели уязвимости ГТС:

- 1 Состояние сооружения (по данным мониторинга) (b_1).
- 2 Состояние окружающей среды в зоне влияния ГТС (по данным мониторинга) (b_2).
- 3 Организация эксплуатации ГТС (соблюдение требований безопасной эксплуатации) (b_3).
- 4 Готовность организации, эксплуатирующей ГТС, к предупреждению, локализации и ликвидации ЧС (b_{Δ}).
- 6.2 Уязвимость ГТС по показателю b_1 устанавливается в зависимости от состояния сооружения на одном из четырех уровней в соответствии с таблицей 7.

Таблица 7 — Оценка уязвимости ГТС по показателю b_1

Уровень уязвимости ГТС по показателю b_1	<u>Код</u> балл	Отличительные признаки
Уязвимость отсутствует	0 0	Отсутствие каких-либо нарушений конструктивных элементов сооружений и превышения предельно допустимых значений контролируемых параметров состояния сооружений и их оснований
Малая уязвимость	$\frac{1}{0 < b_1 \le 1}$	Наличие локальных повреждений элементов конструкций и сооружений, которые могут быть устранены в ходе текущих (плановых) ремонтных работ; отсутствие превышения ПДЗ контролируемых параметров состояния
Средняя уязвимость	$\frac{2}{1 < b_1 \le 2}$	Наличие повреждений (разрушений) элементов конструкций, отдельных сооружений и/или превышение ПДЗ контролируемых параметров состояния, которые могут привести к нарушениям эксплуатационного режима, при этом возникает угроза возникновения локальной, муниципальной и межмуниципальной ЧС. Невозможна работа сооружения при максимальных нагрузках, предусмотренных проектом, требуется проведение неотложных ремонтных работ, временное изменение режима эксплуатации объекта
Большая уязвимость	$\frac{3}{2 < b_2 \le 3}$	Наличие разрушений конструкций и сооружений и/или превышение ПДЗ контролируемых параметров состояния, обусловливающих возникновение на объекте аварийной ситуации и угрозу прорыва напорного фронта, при этом возникает угроза возникновения региональной, межрегиональной и федеральной ЧС. Дальнейшая эксплуатация сооружения невозможна и должна быть приостановлена для проведения ремонтно-восстановительных работ и/или проектно-строительных работ по изменению режима эксплуатации и/или реконструкции (капитального ремонта) ГТС, вывода его из эксплуатации

Примечание — Степень уязвимости ГТС по показателю b_1 , находящихся в эксплуатации более 50 лет, повышается на один уровень (если отсутствуют данные инструментального обследования по определению фактических геометрических параметров, физико-механических характеристик материалов основания и тела ГТС, а также его конструктивных элементов, оценки состояния гидромеханического оборудования и др.).

Экспертная оценка уязвимости ГТС по показателю b_1 производится на основе анализа результатов визуальных и инструментальных наблюдений, осмотров, комиссионных обследований и специальных изыскательских и научно-исследовательских работ. Состояние сооружения и его основания оценивается с учетом установленных нарушений их конструктивных элементов и соответствия контролируемых параметров их предельно допустимым значениям.

ПДЗ параметров состояния, соответствующие допустимому уровню риска аварии ГТС, принимаются равными расчетным значениям для основного и особого сочетания нагрузок или значениям, уточненным в процессе эксплуатации и утвержденным в установленном порядке федеральными органами исполнительной власти, уполномоченными на осуществление федерального государственного надзора в области безопасности ГТС.

6.3 Уязвимость ГТС по показателю b_2 устанавливается на одном из четырех уровней в соответствии с таблицей 8.

Таблица 8 — Оценка уязвимости гидротехнических	сооружений по показателю <i>b</i> ₂
--	--

Уровень уязвимости ГТС по показателю b_2	Код балл	Отличительные признаки
Уязвимость отсутствует	0 0	Отсутствие каких-либо нарушений состояния окружающей среды в зоне влияния ГТС
Малая уязвимость	$\frac{1}{0 < b_2 \le 1}$	Наличие локальных нарушений состояния окружающей среды в зоне влияния ГТС, которые могут быть устранены в ходе текущих (плановых) ремонтных работ. Превышения ПДЗ контролируемых параметров состояния отсутствуют
Средняя уязвимость	$\frac{2}{1 < b_2 \le 2}$	Нарушения состояния окружающей среды в зоне влияния ГТС, которые не могут быть устранены без проведения неотложных ремонтных работ и/или изменения режима эксплуатации объекта. Наблюдаются превышения ПДЗ контролируемых параметров состояния
Большая уязвимость	$\frac{3}{2 < b_2 \le 3}$	Существенные нарушения состояния окружающей среды в зоне влияния ГТС, приводящие к деградации и разрушению отдельных ее элементов (почва, водные объекты, атмосфера, флора, фауна и т. п.) или системы в целом. Требуется обязательное проведение работ по рекультивации и восстановлению окружающей среды. Наблюдаются превышения ПДЗ контролируемых параметров состояния. Дальнейшая эксплуатация сооружения невозможна

Экспертная оценка уязвимости ГТС по показателю b_2 производится на основе анализа результатов мониторинга состояния окружающей среды в зоне влияния ГТС и сравнения контролируемых параметров с ПДЗ, которые устанавливаются в соответствие с современными нормативными (СП, СанПин, ГОСТ и др.) и/или проектными требованиями.

Экспертная оценка уязвимости ГТС в зависимости от состояния окружающей среды в зоне его влияния производится на основе анализа следующих основных факторов:

- 1 Соблюдение правил организации и содержания водоохранных зон и зон санитарной охраны.
- 2 Организация мониторинга состояния окружающей среды в зоне влияния ГТС, в том числе наличие и состояние КИА, периодичность осмотров и наблюдений, состав проводимых наблюдений и т. п.
- 3 Соответствие качества воды в водохранилище или накопителе установленным нормам и/или проектным требованиям.
- 4 Соответствие показателей качества донных отложений водохранилищ и накопителей отходов, а также складируемых гидромеханическим способом промышленных отходов нормативным и/или проектным значениям.
- 5 Соблюдение современных нормативных и/или проектных показателей по доле мелководных зон в площади водохранилища.
 - 6 Процессы эрозии береговой зоны водохранилищ.
 - 7 Качество грунтовых вод в зоне влияния накопителей жидких отходов.
 - 8 Качество воды в поверхностных водоемах, попадающих в зону влияния ГТС.
- 9 Процессы загрязнения почв и подстилающих их грунтов в зоне влияния накопителей жидких отходов.
 - 10 Процессы пыления береговой зоны водохранилищ и особенно накопителей жидких отходов.
 - 11 Процессы испарения вредных, токсичных и ядовитых жидкостей из накопителей жидких отходов.
- 12 Состояние флоры и фауны в зоне влияния ГТС, в том числе с оценкой изменения этого состояния во времени (состояние и условия жизнедеятельности растений и животных, численность, видовой состав, преобладающие виды, смена биоценозов и т. п.).

ГОСТ Р 22.2.09—2015

- 13 Воздействие на окружающую среду, возникающее вследствие проведения работ при строительстве или реконструкции ГТС (в том числе при наращивании накопителей промышленных отходов).
- 6.4 Уязвимость по показателю b_3 (организация эксплуатации ГТС) устанавливается в соответствии с таблицей 9 на одном из четырех уровней.

Таблица 9 — Оценка уязвимости ГТС по показателю b_3

Уровень уязвимости по показателю b_3	Код балл	Отличительные признаки
Уязвимость отсутствует	0 0	Полное соответствие требованиям безопасной эксплуатации по всем оцениваемым факторам
Малая уязвимость	$\frac{1}{0 < b_3 \le 1}$	Отступления от требований безопасной эксплуатации, не приводящие к нарушениям эксплуатационного режима, в том числе при максимальных нагрузках, предусмотренных проектом
Средняя уязвимость	$\frac{2}{1 < b_3 \le 2}$	Нарушения требований безопасной эксплуатации, при этом возникает угроза возникновения локальной ЧС. Требуется временное изменение режима эксплуатации объекта
Большая уязвимость	$\frac{3}{2 < b_3 \le 3}$	Грубые нарушения требований безопасной эксплуатации, в результате которых возникает вероятность возникновения муниципальной, межмуниципальной, региональной, межрегиональной и федеральной ЧС

Экспертная оценка уязвимости ГТС в зависимости от организации его эксплуатации (уровня культуры эксплуатации) производится на основе анализа следующих основных факторов:

- 1 Укомплектованность штатов и квалификация персонала службы эксплуатации.
- 2 Укомплектованность необходимой техникой, механизмами, инструментами, расходными материалами и т. п.
- 3 Наличие необходимой проектной, эксплуатационной и нормативно-методической документации, к которой относятся:
 - проект ГТС;
 - декларация безопасности ГТС;
 - критерии безопасности ГТС;
 - правила использования водных ресурсов водохранилища;
- инструкция по эксплуатации ГТС с регламентацией должностных обязанностей обслуживающего персонала, схемы заполнения накопителя промышленных отходов, вопросов техники безопасности и охраны окружающей среды;
 - инструкция по мониторингу (проведению контрольных наблюдений) ГТС;
- ежегодные графики планово-предупредительных ремонтов сооружений, сетей и оборудования, а также данные о фактически проведенных работах;
 - материалы геотехнического контроля в процессе строительства;
- документация по проводимым эксплуатирующей организацией наблюдениям за состоянием ГТС и окружающей среды (графики проводимых наблюдений, журналы наблюдений, приказы и распоряжения в связи с выявленными недостатками и т. п.);
- обобщенные материалы наблюдений в период эксплуатации (годовые отчеты, аналитические записки, заключения и рекомендации специализированных организаций), а также материалы инспекторских проверок и обследований состояния ГТС;
 - документация по расследованию аварий и повреждений;
 - предписания органов государственного и авторского надзора;
- нормативно-методические пособия и рекомендации, необходимые для эксплуатации рассматриваемого ГТС, в том числе правила безопасности, методические пособия по проведению мониторинга и ремонтных работ, заводские паспорта и инструкции по эксплуатации установленного гидромеханического, насосного и вспомогательного оборудования и т. п.
 - 4 Состояние контрольно-измерительной аппаратуры.
- 5 Регулярность (в соответствии с принятыми на объекте правилами, инструкциями, графиками) контрольных наблюдений и комиссионных обследований состояния ГТС.
- 6 Уровень и регулярность технического обслуживания и ремонта оборудования (механизмов) и сооружений.

- 7 Соблюдение правил организации и содержания защитных и охранных зон ГТС, в том числе наличие (при необходимости) предупредительных и запретительных знаков, ограждения, освещения, охраны, а также иных разработанных мероприятий по предотвращению несанкционированного проникновения в охранную зону, и обеспечивающих антитеррористическую защищенность объекта.
- 6.5 Уровень уязвимости ГТС по показателю b_4 устанавливается на одном из четырех уровней в соответствии с отличительными признаками, приведенными в таблице 10.

Таблица 10 — Оценка уязвимости ГТС по показателю b_{Δ}

Уровень уязвимости по показателю b_4	Код балл	Отличительные признаки
Уязвимость отсутствует	0 0	Полное соответствие современным нормативным требованиям и/или проекта требованиям по всем оцениваемым факторам
Малая уязвимость	$\frac{1}{0 < b_4 \le 1}$	Отступления от современных нормативных требований и/или проекта, для устранения которых не требуются разработка и проведение специальных мероприятий по обеспечению готовности объекта и организации, эксплуатирующей ГТС, к предупреждению, локализации и ликвидации ЧС и защите населения и территорий в случае аварии гидротехнического сооружения
Средняя уязвимость	$\frac{2}{1 < b_4 \le 2}$	Нарушения современных нормативных требований и/или проекта, при которых возникает угроза возникновения локальной ЧС. Для устранения нарушений необходимы разработка и проведение специальных мероприятий по обеспечению готовности объекта и организации, эксплуатирующей ГТС, к предупреждению, локализации и ликвидации ЧС и защите населения и территорий в случае аварии гидротехнического сооружения
Большая уязвимость	$\frac{3}{2 < b_4 \le 3}$	Грубые нарушения современных нормативных требований и/или проекта, при которых возникает угроза возникновения муниципальной, межмуниципальной, региональной, межрегиональной и федеральной ЧС. Для устранения нарушений необходимы немедленная разработка и проведение специальных мероприятий по обеспечению готовности объекта и организации, эксплуатирующей ГТС, к предупреждению, локализации и ликвидации ЧС и защите населения и территорий в случае аварии гидротехнического сооружения

Экспертная оценка готовности объекта к локализации и ликвидации ЧС производится с учетом следующих основных факторов:

- 1 Наличие типовых решений по локализации и ликвидации чрезвычайных (аварийных) ситуаций по возможным сценариям их развития на ГТС объекта, плана оперативных действий персонала при возникновении ЧС, плана эвакуации персонала и населения из зоны возможного затопления волной прорыва.
 - 2 Обученность персонала действиям в условиях ЧС.
- 3 Наличие и укомплектованность аварийно-ремонтных и аварийно-спасательных бригад, регулярность их тренировок.
- 4 Оснащенность аварийно-ремонтных бригад и привлекаемых в случае необходимости для ликвидации ЧС формирований инструментом, оборудованием и механизмами для выполнения аварийно-спасательных работ.
 - 5 Наличие и достаточность аварийного запаса строительных материалов.
 - 6 Состояние дорог, мостов и подъездов к ГТС в районе гидроузла и на его территории.
 - 7 Наличие и состояние средств связи (в том числе аварийных) и систем оповещения персонала.
 - 8 Наличие и готовность локальной системы оповещения населения в нижнем бьефе ГТС.
- 9 Наличие Заключения о готовности организации, эксплуатирующей ГТС, к локализации и ликвидации ЧС и защите населения и территорий в случае аварии ГТС.
- 10 Наличие структурированной системы мониторинга и управления инженерными системами зданий и сооружений.

6.6 Интегральная оценка

Каждый из рассмотренных показателей уязвимости может проявляться независимо от других, а степень уязвимости ГТС зависит от их комплексного воздействия.

Интегральная количественная оценка уязвимости ГТС характеризуется коэффициентом уязвимости v, который, как и коэффициент опасности λ , представляет собой долю от наиболее неблагоприятной обстановки на объекте по сочетанию показателей уязвимости.

Принятый за единицу коэффициент уязвимости v соответствует наиболее неблагоприятному сочетанию показателей уязвимости на объекте и характеризуется интегральным кодом 3333 при баллах b_1 = 3; b_2 = 3; b_3 = 3; b_4 = 3.

Численные значения коэффициента уязвимости в зависимости от интегрального кода могут изменяться в диапазоне: $0 \le v \le 1$. Коэффициенты значимости показателей уязвимости ГТС приведены в таблице 11.

Таблица 11 — Коэффициенты значимости показателей уязвимости ГТС

Порядковый номер	Показатели уязвимости	Коэффициент значимости показателя уязвимости ϕ_i
1	Состояние ГТС по данным инструментальных и визуальных на- блюдений	0,35
2	Состояние окружающей среды в зоне влияния ГТС	0,15
3	Организация эксплуатации ГТС (соблюдение требований безопасной эксплуатации)	0,3
4	Готовность объекта к локализации и ликвидации ЧС	0,2

Оценка коэффициентов уязвимости и выполнена по формуле

$$v = v_0 \cdot \sum_{i=1}^4 \varphi_i \cdot b_i, \tag{2}$$

где ϕ_i — коэффициент значимости i-го показателя уязвимости;

 b_i — значение балла *i*-го показателя уязвимости;

 v_0 — нормирующий множитель показателя уязвимости.

Пример расчета значения коэффициента уязвимости приведен в приложении Б.

7 Интегральная оценка уровня безопасности и риска аварий на гидротехнических сооружениях

Оценка риска аварии производится на основании экспертного анализа уровня опасности аварии и уровня уязвимости ГТС. Для оценки уровня риска аварии вначале рассчитывается коэффициент риска D_a на основе принципа пересечения этих событий, т. е.

$$D_{a} = \lambda \cdot \mathbf{v},\tag{3}$$

где λ — коэффициент опасности для ГТС;

и — коэффициент уязвимости ГТС.

Физический смысл коэффициента D_a состоит в том, что он представляет собой меру (дозу) опасного воздействия на данное ГТС с установленной степенью уязвимости. Уровень безопасности ГТС оценивается по величине этого коэффициента D_a , характеризующего суммарную дозу вредных воздействий в соответствии с данными, приведенными в таблице 12.

Таблица 12 — Классификация уровня безопасности ГТС по значению дозы вредного воздействия D_a

Уровень безопасности ГТС	Доза вредного воздействия D_a
Нормальный уровень безопасности	Не более 0,15

Окончание таблицы 12

Уровень безопасности ГТС	Доза вредного воздействия D_a
Пониженный уровень безопасности	Свыше 0,15, но не более 0,3
Неудовлетворительный уровень безопасности	Свыше 0,3, но не более 0,5
Опасный	Более 0,5

При этом следует иметь в виду, что если хотя бы один показатель опасности или уязвимости принимает максимальное значение, равное 3, то уровень безопасности принимается неудовлетворительным.

Диапазоны изменения параметра D_a в таблице 13 определены таким образом, чтобы была возможность практически увязать характеристики риска аварии с качественными характеристиками уровня безопасности, регламентированными [1].

В области значений $D_a \le 0,15$ уровень безопасности ГТС оценивается как нормальный. Сооружение удовлетворяет всем проектным требованиям по назначению и конструктивной надежности, а также современным нормативным требованиям; эксплуатация осуществляется в соответствии с действующими законодательными актами, нормами и правилами. Дальнейшая эксплуатация сооружений и оборудования возможна без проведения каких-либо технических или организационных мероприятий по повышению безопасности при обеспечении мониторинга безопасности и своевременном выполнении плановых ремонтно-профилактических работ.

В области значений 0,15 < $D_a \le 0,30$ уровень безопасности ГТС оценивается как пониженный. Имеются те или иные отклонения от правил безопасной эксплуатации, не устраненные своевременно в ходе плановых мероприятий по обеспечению нормального уровня безопасности, которые, однако, не препятствуют возможности выполнения сооружением заданных эксплуатационных функций. Дальнейшая безопасная эксплуатация сооружения в проектном режиме возможна при обязательном выполнении в согласованные (установленные) органами государственного надзора сроки мероприятий по повышению уровня безопасности, конкретный перечень которых вытекает из анализа факторов, обусловливающих максимальные значения показателей опасности и уязвимости.

При большом значении дозы вредного воздействия $(0,30 < D_a \le 0,50)$ уровень безопасности ГТС оценивается как неудовлетворительный. Имеются отклонения от проектного состояния и нарушения правил безопасной эксплуатации, которые могут привести к возникновению аварийной ситуации. Дальнейшая эксплуатация сооружения в проектном режиме недопустима без проведения в установленные органами государственного надзора сроки тех или иных технических (вплоть до капитального ремонта, замены оборудования и др.) и организационных мероприятий по снижению риска аварий и восстановлению нормального уровня безопасности на основе анализа факторов, обусловливающих максимальные значения показателей опасности и уязвимости. К проведению такого анализа и разработке мероприятий по повышению уровня безопасности, как правило, должны привлекаться специализированные научно-исследовательские и проектные организации; в случае необходимости по специальным программам предусматриваются полевые исследования физико-механических характеристик грунтовых материалов, бетонных конструкций, проводятся дополнительные расчеты обоснования прочности и устойчивости сооружений и конструкций, корректируются ПДЗ контролируемых параметров состояния и пр.

Значения параметра $D_a > 0,50$ свидетельствуют об аварийной ситуации, уровень безопасности ГТС оценивается как критический или опасный. В этом случае дальнейшая эксплуатация сооружения в проектном режиме по условиям риска аварии недопустима и должна осуществляться в соответствии с требованиями [2].

При уровне безопасности ГТС «опасный» необходимо незамедлительно информировать органы государственного надзора и в соответствии с полученным предписанием ввести ограничения на режим эксплуатации (снижение уровня верхнего бьефа и др.), разработать и утвердить временные правила эксплуатации. Мероприятия по восстановлению нормального уровня безопасности должны выполняться на основании анализа факторов, обусловливающих возникновение аварийной ситуации, с обязательным привлечением специализированных организаций. После проведения необходимых мероприятий перевод сооружений вновь в проектный режим эксплуатации должен быть согласован с органами государственного надзора за безопасностью ГТС.

FOCT P 22.2.09—2015

Расчеты дозы вредного воздействия D_a позволяют не только определять уровень безопасности ГТС, но и оценивать вероятность возникновения аварии P_a (ГТС):

$$P_{a}(\Gamma TC) = 0.5 \, erfc \, x, \tag{4}$$

где erfc x — вероятностная функция, значения которой приведены в таблице 13.

$$x = \left[\frac{\beta \ln \left(\frac{D_a}{D_k} \right)}{\ln \left(\frac{D_{AOn}}{D_{L_k}} \right)} \right];$$

 D_k — критическое (опасное) значение дозы вредного воздействия; $D_{ ext{доп}}$ — допустимое значение дозы вредного воздействия, выше которого не обеспечивается нормальный уровень безопасности ГТС;

β — коэффициент вероятности, зависящий от класса ГТС (см. таблицу 14).

Таким образом, формула принимает вид

$$P_{a}\left(\Gamma TC\right) = 0.5 \, erfc \left[\frac{\beta \ln \left(D_{a} / D_{k}\right)}{\ln \left(D_{\text{gon}} / D_{k}\right)} \right]. \tag{5}$$

Таблица 13 — Значения функции *erfc x*

x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
erfc x	1,0000	0,9887	0,9774	0,9662	0,9549	0,9436	0,9324	0,9211	0,9099	0,8987
Х	0,10	0,11	0,12	0,13	0,14	0,15	0,16	0,17	0,18	0,19
erfc x	0,8875	0,8764	0,8652	0,8541	0,8431	0,8320	0,8210	0,8100	0,7991	0,7882
Х	0,20	0,21	0,22	0,23	0,24	0,25	0,26	0,27	0,28	0,29
erfc x	0,7773	0,7665	0,7557	0,7450	0,7343	0,7237	0,7131	0,7026	0,6921	0,6817
х	0,30	0,31	0,32	0,33	0,34	0,35	0,36	0,37	0,38	0,39
erfc x	0,6714	0,6611	0,6509	0,6407	0,6306	0,6206	0,6107	0,6008	0,5910	0,5813
х	0,40	0,41	0,42	0,43	0,44	0,45	0,46	0,47	0,48	0,49
erfc x	0,5716	0,5620	0,5525	0,5431	0,5338	0,5245	0,5153	0,5062	0,4973	0,4883
х	0,50	0,52	0,54	0,56	0,58	0,60	0,62	0,64	0,66	0,68
erfc x	0,4795	0,4621	0,4451	0,4284	0,4121	0,3961	0,3806	0,3654	0,3506	0,3362
Х	0,70	0,72	0,74	0,76	0,78	0,80	0,82	0,84	0,86	0,88
erfc x	0,3218	0,3086	0,2953	0,2825	0,2700	0,2579	0,2462	0,2349	0,2239	0,2133
Х	0,90	0,92	0,94	0,96	0,98	1,00	1,1	1,2	1,3	1,4
erfc x	0,2031	0,1932	0,1837	0,1746	0,1658	0,1573	0,1198	0,0897	0,0660	0,0477
х	1,5	1,6	1,7	1,8	1,9	2,0	2,1	2,2	2,3	2,4
erfc x	0,0339	0,0237	0,0162	0,0109	0,0072	0,0047	0,0029	0,0016	0,0007	0,0002

В таблице 14 приведены допустимые значения вероятностей возникновения аварий на напорных ГТС в соответствии с СП 58.13330.2012 и значений коэффициента вероятности β.

Таблица 14 — Допустимые значения вероятностей возникновения аварий на напорных ГТС I—IV классов опасности $P_{\text{доп}}$ (ГТС) и значения коэффициента β

Класс сооружения	Допустимое значение вероятности аварии ГТС Р _{доп} (ГТС), 1/год	Значение коэффициента вероятности β
1	5 · 10 ⁻⁵	2,75
II	5 · 10 ⁻⁴	2,25
III	2,5 · 10 ⁻³	2,00
IV	5 · 10 ⁻³	1,80

Если при оценке риска аварии ГТС вне зависимости от конечных величин D_a и $P_{\text{доп}}$ (ГТС) установлены максимальные значения тех или иных показателей опасности и уязвимости с кодом 3, собственник (эксплуатирующая организация) обязан информировать об этом органы государственного надзора за безопасностью ГТС и принять меры по устранению причин, вызывающих повышенную опасность или уязвимость сооружения по конкретному показателю в сроки, установленные соответствующим предписанием органов государственного надзора.

При х ≥ 2,5 можно использовать зависимость

erfc
$$x = \frac{1}{\sqrt{\pi}} \frac{e^{-x^2}}{x} \left(1 - \frac{1}{2x^2} + \frac{3}{4x^4} \right).$$
 (6)

Оценка риска аварии ГТС как мера опасности в виде возможных потерь в экономической, социальной и экологической сферах может быть выполнена по формуле

$$R_a = P_a (\Gamma TC) \Sigma Y, \tag{7}$$

где R_a — риск, выраженный в удельном (годовом) экономическом ущербе от аварии ГТС на момент обследования сооружения (млн руб./год);

 ΣY — суммарный ущерб, который вызывается аварией ГТС (млн руб.).

При этом величина P_a (ГТС) [1 год] как вероятность аварии или частота ЧС в соответствии с (4) рассчитывается по формуле

$$P_a(\Gamma TC) = 0.5 \ erfc(-0.83 \ \beta \ln 2 \ D_a).$$
 (8)

Величина суммарного ущерба ΣY в случае аварии ГТС определяется в соответствии с нормативными правовыми актами Российской Федерации.

Классификация уровня риска аварии ГТС определяется величиной вероятности аварии, рассчитанной по формуле (8). По результатам расчета вероятности аварии определяется уровень риска эксплуатации ГТС в соответствии с данными, приведенными в таблице 15.

Таблица 15 — Классификация уровня риска по значению вероятности аварии ГТС

Класс сооружения	Приемлемый (допустимый) уровень в соответствии с СП 58.13330.2012	Условно приемлемый уровень	Повышенный уровень	Недопустимый уровень
ı	5 · 10 ⁻⁵	5 · 10 ⁻⁵ ÷ 5 · 10 ⁻⁴	5 · 10 ⁻⁴ ÷ 10 ⁻²	Больше 0,01
11	5 · 10 ⁻⁴	5 · 10 ⁻⁴ ÷ 2,5 · 10 ⁻³	$2,5 \cdot 10^{-3} \div 5 \cdot 10^{-2}$	Больше 0,05
III	2,5 · 10 ⁻³	2,5 · 10 ⁻³ ÷ 10 ⁻²	10 ⁻² ÷ 8 · 10 ⁻²	Больше 0,08
IV	5 · 10 ⁻³	$5 \cdot 10^{-3} \div 1,5 \cdot 10^{-2}$	1,5 · 10 ⁻² ÷ 10 ⁻¹	Больше 0,10

Приложение А

Примеры расчетов уровней безопасности

Пример: код 2321 означает, что по первому показателю опасности степень опасности средняя, по второму показателю опасности степень опасности большая, по третьему показателю степень опасности средняя, а по четвертому — малая. При этом каждый из четырех показателей опасности стоит на соответствующем номеру месте. Поскольку выбрана трехбалльная система (максимальная опасность — балл 3), то:

$$\lambda_0 = \frac{1}{3}$$
.

Значение коэффициента λ определяется по таблице 1П. Таблица 1П построена таким образом, что она справедлива, когда балл по любому из показателей совпадает с его кодом, т. е. для кода 2321 — баллы a_1 = 2; a_2 = 3; a_3 = 2; a_4 = 1. В этом случае по таблице имеем λ = 0,6667.

При дробных значениях баллов показателей опасности, которые могут назначаться в отдельных случаях в соответствии с экспертной оценкой, значение коэффициента λ определяется по формуле 1, а не по таблице 1П. Если, например, второй показатель опасности a_2 для ситуации, описанной кодом 2321, равен не 3, а, скажем, 2,5, то коэффициент опасности λ по формуле (1) равен

$$\lambda = \frac{1}{3} \cdot \left(0, 3 \cdot 2 + 0, 2 \cdot 2, 5 + 0, 3 \cdot 2 + 0, 2 \cdot 1\right) = 0,6333.$$

Все другие показатели по степени опасности также могут оцениваться дробным числом, например a_1 = 1,5; a_2 = 2,5; a_3 = 1,8; a_4 = 0,8. В этом случае

$$\lambda = \frac{1}{3} \cdot (0, 3 \cdot 1, 5 + 0, 2 \cdot 2, 5 + 0, 3 \cdot 1, 8 + 0, 2 \cdot 0, 8) = 0,5500.$$

Расчетная величина коэффициента опасности λ является критерием для оценки интегральной опасности процессов на ГТС.

Та6лица 1А — Значения коэ ϕ фициентов опасности λ

٧	0,3000	0,3667	0,4333	0,5000	0,4000	0,4667	0,5333	0,6000	0,5000	0,5667	0,6333	0,7000	0,6000	0,6667	0,7337	0,8000	0,5000	0,5667	0,6333	0,7000	0,6000	0,6667	0,7333	0,8000
Код (баллы)	1300	1301	1302	1303	1310	1311	1312	1313	1320	1321	1322	1323	1330	1331	1332	1333	3300	3301	3302	3303	3310	3311	3312	3313
٧	0,2333	0,3000	0,3667	0,4333	0,3333	0,4000	0,4667	0,5333	0,43333	0,5000	0,5667	0,6333	0,5333	0,6000	0,6667	0,73333	0,43333	0,5000	0,5667	0,6333	0,5333	0,6000	0,6667	0,7333
Код (баллы)	1200	1201	1202	1203	1210	1211	1212	1213	1220	1221	1222	1223	1230	1231	1232	1233	3200	3201	3202	3203	3210	3211	3212	3213
γ	0,1833	0,2333	0,3000	0,3667	0,2667	0,3333	0,4000	0,4667	0,3667	0,4333	0,5000	0,5667	0,4667	0,5333	0,6000	0,6667	0,3667	0,4333	0,5000	0,5667	0,4667	0,5333	0,6000	0,6667
Код (баллы)	1100	1101	1102	1103	1110	1111	1112	1113	1120	1121	1122	1123	1130	1131	1132	1133	3100	3101	3102	3103	3110	3111	3112	3113
γ	0,1000	0,1667	0,2333	0,3000	0,2000	0,2667	0,3333	0,4000	0,3000	0,3667	0,4333	0,5000	0,4000	0,4667	0,5333	0,6000	0,3000	0,3667	0,4333	0,5000	0,4000	0,4667	0,5333	0,6000
Код (баллы)	1000	1001	1002	1003	1010	1011	1012	1013	1020	1021	1022	1023	1030	1031	1032	1033	3000	3001	3002	3003	3010	3011	3012	3013
٧	0,2000	0,2667	0,3333	0,4000	0,3000	0,3667	0,4333	0,5000	0,4000	0,4667	0,5333	0,6000	0,5000	0,5667	0,6333	0,7000	0,4000	0,4667	0,5333	0,6000	0,5000	0,5667	0,6333	0,7000
Код (баллы)	0300	0301	0302	0303	0310	0311	0312	0313	0320	0321	0322	2323	0330	0331	0332	0333	2300	2301	2302	2303	2310	2311	2312	2313
٧	0,1333	0,2000	0,2667	0,3333	0,2333	0,3000	0,3667	0,4333	0,3333	0,4000	0,4667	0,5333	0,4331	0,5000	0,5667	0,6333	0,3333	0,4000	0,4667	0,5333	0,4333	0,5000	0,5667	0,6333
Код (баллы)	0200	0201	0202	0203	0210	0211	0212	0213	0220	0221	0222	0223	0230	0231	0232	0233	2200	2201	2202	2203	2210	2211	2212	2213
х	0,0067	0,1333	0,2000	0,2667	0,1667	0,2333	0,3000	0,3667	0,2333	0,3333	0,4000	0,4667	0,3667	0,4333	0,5000	0,5667	0,2667	0,3333	0,4000	0,5333	0,3667	0,4333	0,5000	0,5667
Код (баллы)	0100	0101	0102	0103	0110	0111	0112	0113	0120	0121	0122	0123	0130	0131	0132	0133	2100	2101	2102	2103	2110	2111	2112	2113
х	0,000,0	0,0667	0,1333	0,2000	0,0100	0,1667	0,2333	0,3000	0,2000	0,2667	0,3333	0,4000	0,3000	0,3667	0,4333	0,5000	0,2000	0,2667	0,3333	0,4000	0,3000	0,3667	0,4333	0,5000
Код (баллы)	0000	1000	0002	6000	0010	0011	0012	0013	0020	0021	0022	0023	0030	0031	0032	0033	2000	2001	2002	2003	2010	2011	2012	2013

Окончание таблицы А.1

						-,		
٧	0,7000	0,7667	0,8333	0,9000	0,8000	0,8667	0,9333	10 000
Код (баллы)	3320	3321	3322	3323	0888	3331	3332	3333
٧	0,6333	0,7000	0,7667	0,8333	0,7333	0,8000	2998'0	0,9333
Код (баллы)	3220	3221	3222	3223	3230	3231	3232	3233
γ	0,5667	0,6333	0,7000	0,7667	0,6667	0,7333	0,8000	0,8667
Код (баллы)	3120	3121	3122	3123	3130	3131	3132	3133
γ	0,5000	0,5667	0,6333	0,7000	0,6000	0,6667	0,7333	0,8000
Код (баллы)	3020	3021	3022	3023	0808	3031	3032	8033
γ	0,5333	0,6000	0,6667	0,7333	0,7000	0,7667	0,8333	0,9000
Код (баллы)	2320	2321	2322	2323	2330	2331	2332	2333
γ	0,4667	0,5333	0,6000	2999'0	0,6333	0,7000	0,7667	0,8333
Код (баллы)	2220	2221	2222	2223	2230	2231	2232	2233
γ	0,4667	0,5333	0,6000	2999'0	0,5667	0,6333	0,7000	0,7667
Код (баллы)	2120	2121	2122	2123	2130	2131	2132	2133
ч	0,4000	0,4667	0,5333	0,6000	0,5000	0,5667	0,6333	0,7000
Код (баллы)	2020	2021	2022	2023	2030	2031	2032	2033

Пример 1: Код 2321 означает, что по первому показателю опасности степень опасности — средняя, по второму показателю — большая, по третьему — средняя, а по четвертому — малая. При этом каждый из четырех показателей опасности стоит на соответствующем номеру месте.

Поскольку выбрана трехбалльная система (максимальная опасность — балл), то

$$\lambda_0 = \frac{1}{3}$$
.

Таблица 1П построена таким образом, что она справедлива, когда балл по любому из показателей совпадает с его кодом, т. е. для кода 2321 — баллы a_1 = 2; a_2 = 3; a_3 = 2; a_4 = 1. В этом случае по таблице имеем λ = 0, 6667.

При дробных значениях баллов показателей опасности, которые могут назначаться в отдельных случаях в соответствии с экспертной оценкой, значение коэффициента λ определяется по формуле 1, а не по таблице 1П.

Т. е. если второй показатель опасности a_2 для ситуации, описанной кодом 2321, равен не 3, а, скажем, 2,5, то коэффициент опасности λ по формуле (1) равен

$$\lambda = \frac{1}{3} \cdot \left(0, 3 \cdot 2 + 0, 2 \cdot 2, 5 + 0, 3 \cdot 2 + 0, 2 \cdot 1 \right) = 0,6333.$$

Все другие показатели по степени опасности также могут оцениваться дробным числом, например a_1 = 1,5; a_2 = 2,5; a_3 = 1,8; a_4 = 0,8. В этом случае

$$\lambda = \frac{1}{3} \cdot \left(0, 3 \cdot 1, 5 + 0, 2 \cdot 2, 5 + 0, 3 \cdot 1, 8 + 0, 2 \cdot 0, 8\right) = 0,5500.$$

Расчетная величина коэффициента опасности λ является критерием для оценки интегральной опасности процессов на ГТС.

Приложение Б

Пример расчета значения коэффициента уязвимости

Пример: Значение v для кода 2312 в таблице 2П получено в предположении, что b_1 = 2; b_2 = 3; b_3 = 1; b_4 = 2. Расчетное значение величины v:

$$v = \frac{1}{3} \cdot (0,35 \cdot 2 + 0,15 \cdot 3 + 0,3 \cdot 1 + 0,2 \cdot 2) = 0,6167.$$

Если баллы имеют дробное значение, то коэффициент уязвимости v оценивается не по таблице 2 Π , а получается расчетным путем по формуле (2).

Так, например, при b_1 = 1,8; b_2 = 2,5; b_3 = 1,0; b_4 = 2,0 имеем:

$$v = (0,35 \cdot 1,8 + 0,15 \cdot 2,5 + 0,3 \cdot 1 + 0,2 \cdot 2)\frac{1}{3} = 0,5683.$$

Вопросы балльной оценки уязвимости ГТС по каждому показателю решаются на этапе изучения имеющихся или получаемых в результате специальных исследований данных. Точность балльной оценки зависит от точности имеющихся данных.

Расчетные значения коэффициента уязвимости для каждого события, определяемого соответствующим кодом, приведены в таблице 2П. Таблица построена по принципу равенства балла соответствующему коду.

Таблица 2Б — Значения коэффициентов уязвимости

>	0,2667	0,3333	0,4	0,4667	0,3667	0,4333	6,0	0,5667	0,4667	0,5333	9,0	0,6667	0,5667	0,6333	2,0	0,7667	6,0	0,5667	0,6333	2,0	9,0	0,6667	0,7333	8,0	0,7
Код	1300	1301	1302	1303	1310	1311	1312	1313	1320	1321	1322	1323	1330	1331	1332	1333	3300	3301	3302	3303	3310	3311	3312	3313	3320
>	0,2167	0,2833	0,35	0,4167	0,3167	0,3833	0,45	0,5167	0,4167	0,4833	0,55	0,6167	0,5167	0,5833	0,65	0,7167	0,45	0,5167	0,5833	99'0	0,55	0,6167	0,6833	0,75	9,0
Код	1200	1201	1202	1203	1210	1211	1212	1213	1220	1221	1222	1223	1230	1231	1232	1233	3200	3201	3202	3203	3210	3211	3212	3213	3220
>	0,1667	0,2333	6,0	0,3667	0,2667	0,3333	0,4	0,4667	0,3667	0,4333	0,5	0,5667	0,4667	0,5333	9,0	0,667	0,4	0,4667	0,5333	9,0	9,0	0,5667	0,6333	2,0	9,0
Код	1100	1101	1102	1103	1110	1111	1112	1113	1120	1121	1122	1123	1130	1131	1132	1133	3100	3101	3102	3103	3110	3111	3112	3113	3120
>	0,1167	0,1833	0,25	0,3167	0,2167	0,2833	0,35	0,4167	0,3167	0,3833	0,45	0,5167	0,4167	0,4833	0,55	0,6167	0,35	0,4167	0,4833	0,55	0,45	0,5167	0,5833	0,65	0,55
Код	1000	1001	1002	1003	1010	1011	1012	1013	1020	1021	1022	1023	1030	1031	1032	1033	3000	3001	3002	3003	3010	3011	3012	3013	3020
^	0,15	0,2167	0,2833	0,35	0,25	0,3167	0,3833	0,45	0,35	0,4167	0,4833	0,55	0,45	0,5167	0,5833	0,65	0,3833	0,45	0,5167	0,5833	0,4833	0,55	0,6167	0,6833	0,5833
Код	0300	0301	0302	0303	0310	0311	0312	0313	0320	0321	0322	0323	0330	0331	0332	0333	2300	2301	2302	2303	2310	2311	2312	2313	2320
>	0,1	0,1667	0,2333	6,0	0,2	0,2667	0,3333	0,4	6,0	0,3667	0,4333	9,0	0,4	0,4667	0,5333	9'0	0,3333	0,4	0,4667	0,5333	0,4333	9,0	0,5667	0,6333	0,5333
Код	0200	0201	0202	0203	0210	0211	0212	0213	0220	0221	0222	0221	0230	0231	0232	0233	2200	2201	2202	2203	2210	2211	2212	2213	2220
^	0,05	0,1167	0,1833	0,25	0,15	0,2167	0,2833	0,35	0,25	0,3167	0,3833	0,45	0,35	0,4167	0,4833	0,55	0,2833	0,35	0,4167	0,4833	0,3833	0,45	0,5167	0,5833	0,4833
Код	0100	0101	0102	0103	0110	0111	0112	0113	0120	0121	0122	0123	0130	0131	0132	0133	2100	2101	2102	2103	2110	2111	2112	2123	2120
>	0	0,067	0,133	0,2	0,1	0,1667	0,2333	6,0	0,2	0,2667	0,3333	0,4	6,0	0,3667	0,4333	9,0	0,2333	6,0	0,3667	0,4333	0,3333	6,0	0,4667	0,5333	0,4333
Код	0000	1000	0005	0003	0010	0011	0012	0013	0020	0021	0022	0023	0030	1600	0032	0033	2000	2001	2002	2003	2010	2011	2012	2013	2020

Окончание таблицы Б.1

^	0,7667	0,8333	6'0	8'0	0,8667	0,9333	1,0
Код	3321	3322	3323	3330	3331	3332	3333
^	0,7167	0,7833	0,85	0,75	0,8167	0,8833	0,95
Код	3221	3222	3223	3230	3231	3232	3233
^	0,6667	0,7333	8'0	2'0	0,7667	0,8333	6'0
Код	3121	3122	3123	3130	3131	3132	3133
^	0,6167	0,6833	0,7499	99'0	0,7167	0,7833	0,85
Код	3021	3022	3023	0808	3031	3032	3033
^	0,65	0,7167	0,7833	0,6833	0,75	0,8167	0,8833
Код	2321	2322	2323	2330	2331	2332	2333
^	9'0	0,6667	0,7333	0,6333	2'0	0,7667	0,8333
Код	2221	2222	2223	2230	2231	2232	2233
^	0,55	0,6167	0,6833	0,5833	0,65	0,7167	0,7833
Код	2121	2122	2123	2130	2131	2132	2133
>	0,5	0,5667	0,6333	0,5333	9'0	0,6667	0,7333
Код	2021	2022	2023	2030	2031	2032	2033

Библиография

- [1] Постановление Правительства РФ от 21 мая 2007 г. № 304 «О классификации чрезвычайных ситуаций природного и техногенного характера»
- [2] Постановление Правительства РФ от 27 февраля 1999 г. № 237 «Об утверждении Положения об эксплуатации гидротехнического сооружения и обеспечении безопасности гидротехнического сооружения, разрешение на строительство и эксплуатацию которого аннулировано (в том числе гидротехнического сооружения, находящегося в аварийном состоянии), гидротехнического сооружения, которое не имеет собственника или собственник которого неизвестен, либо от права собственности на которое собственник отказался»

УДК 614.8:006.354 OKC 13.200

Ключевые слова: гидротехническое сооружение, безопасность, уязвимость, авария, риск

Редактор Н.Е. Рагузина
Технические редакторы В.Н. Прусакова, И.Е. Черепкова
Корректор Е.Ю. Каболова
Компьютерная верстка Д.В. Кардановской

Сдано в набор 30.09.2019. Подписано в печать 25.10.2019. Формат $60 \times 84^{1}/_{8}$. Гарнитура Ариал Усл. печ. л. 3,26. Уч.-изд. л. 2,75.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

ИД «Юриспруденция», 115419, Москва, ул. Орджоникидзе, 11. www.jurisizdat.ru y-book@mail.ru

Создано в единичном исполнении во ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский пр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru