ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ΓΟCT P 56787— 2015

КОМПОЗИТЫ ПОЛИМЕРНЫЕ

Неразрушающий контроль

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт авиационных материалов» совместно с Открытым акционерным обществом «НПО Стеклопластик» и Объединением юридических лиц «Союз производителей композитов» на основе аутентичного перевода на русский язык стандарта указанного в пункте 4, который выполнен ТК 497
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 497 «Композиты, конструкции и изделия из них»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 27 ноября 2015 г. № 2044-ст
- 4 Настоящий стандарт является модифицированным по отношению к стандарту АСТМ Е2533—09 «Стандарт на неразрушающие испытания композитных материалов с полимерной матрицей, используемых в авиакосмической промышленности» (ASTM E2533—09 «Standard Guide for Nondestructive Testing of Polymer Matrix Composites Used in Aerospace Applications») путем изменения его структуры для приведения в соответствие с правилами, установленными ГОСТ 1.5—2001 (подразделы 4.2 и 4.3), исключения отдельных разделов (подразделов, пунктов).

Разделы и подразделы, не включенные в основную часть настоящего стандарта, приведены в дополнительном приложении ДА.

В настоящем стандарте исключены ссылки на АСТМ: C274, E543, E1316, E569, E650, E750, E976, E1067, E1118. E1211, E1419, E1932, E2076, E2191, E1441, E1570, E1670, E1935, E427. E432, E493, E498, E499, E515, E1002, E1003, E1066, E1603, E2024, E747, E1025, E2002, E94, E94, E1742, E1815, E1817, E2007, E2033, E2104, E2445, E2446, E1000, E1255, E1411, E2597, E2581, F1364, E251, E1237, E1213, E1311, E1543, E1862, E1897, E1933, E1934, E2582, E114, E214, E317, E664, E1001, E1065, E1324, E1901, E2580, исключение данных ссылок обусловлено отсутствием близких по аспекту стандартизации межгосударственных и национальных стандартов (как гармонизованных с международными, так и нет) и необходимостью приводить ключевые положения ссылочных стандартов, использованных в самих ASTM, а также тем, что часть из них носит рекомендательный характер.

Исключение ссылок на справочники и стандарты: MIL-HDBK-732A, MIL-L-25567D, MIL-HDBK-728/5A, MIL-HDBK-733, MIL-HDBK-731; документы Национального совета по радиационной защите и метрологии: NCRP 49 NCRP 51, NCRP 91; стандарты: SAE-ARP 1611, SAE J428; стандарты: EN 14784-1, EN 14784-2, EN 13068-1, EN 13068-2, EN 13068-3, EN 60825-1; федеральные стандарты: 21 CFR 1040.10, 21 CFR 1040.11, а также ANSI, Z136.1-2000, ASNT SNT-TC-1A, обусловлено тем, что в Российской Федерации нет аналогичных и близких по аспекту и объекту стандартизации межгосударственных и национальных стандартов (как гармонизированных, так и негармонизированных).

Ссылка на АСТМ Д3878 заменена ссылкой на соответствующий межгосударственный стандарт.

Дополнительные положения, включенные в текст стандарта для учета особенности объекта стандартизации, характерного для Российской Федерации, выделены курсивом и заключены в рамки из тонких линий.

Сравнение структуры настоящего стандарта со структурой указанного стандарта АСТМ приведено в дополнительном приложении ДБ.

Наименование настоящего стандарта изменено относительно наименования указанного стандарта АСТМ для приведения в соответствие с ГОСТ Р 1.5—2012 (подраздел 3.5)

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0—2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, 2016

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ΓΟCT P 56787-2015

Содержание

1	Область применения	.1	
2	Нормативные ссылки	.1	
3	Термины и определения	.2	
4	Дефекты ПК и методы неразрушающего контроля	.2	
5	Акустическая эмиссия	.6	
	Радиационные методы		
7	Течеискание	.1	3
8	Шерография	.1	8
9	Измерение деформаций	.2	0
	Тепловизионный метод		
11	Ультразвуковые методы.	.2	5
12	Визуально-измерительный метод.	.3	0
П	риложение ДА (справочное) Оригинальный текст невключенных структурных элементов	.3	3
п	риложение ДБ (справочное) Сопоставление структуры настоящего стандарта		
	со структурой примененного национального стандарта	.6	3

композиты полимерные

Неразрушающий контроль

Polymer composites. Nondestructive testing

Дата введения — 2017—01—01

1 Область применения

Настоящий стандарт распространяется на применение визуально-измерительных, ультразвуковых, радиационных, тепловизионных, шерографических методов неразрушающего контроля (НК), а также акустической эмиссии, течеискания и измерения деформаций контактным неразрушающим методом для контроля полимерных композитов (ПК), применяемых в авиационной промышленности.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.1.004—91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.005—88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.030—81 Система стандартов безопасности труда. Электробезопасность. Защитное заземление, зануление

ГОСТ 12.4.021—75 Система стандартов безопасности труда. Системы вентиляции. Общие требования

ГОСТ 18353-79 Контроль неразрушающий. Классификация видов и методов

ГОСТ 20415—82 Контроль неразрушающий. Методы акустические. Общие положения

ГОСТ 32794—2014 (ISO 472:1999) Композиты полимерные. Термины и определения (ASTM D3878 Композитные материалы. Термины)

ГОСТ Р ИСО 12716—2009 (ISÓ 12716:2001) Контроль неразрушающий. Акустическая эмиссия. Словарь

ГОСТ Р 51780—2001 Контроль неразрушающий. Методы и средства испытаний на герметичность. Порядок и критерии выбора

ГОСТ Р 53697—2009 (ISO/TS 18173:2005) Контроль неразрушающий. Основные термины и определения

ГОСТ Р 53698—2009 Контроль неразрушающий. Методы тепловые. Термины и определения ГОСТ Р 54795—2011 (ISO/DIS 9712) Контроль неразрушающий. Квалификация и сертификация

ГОСТ Р 55776—2013 Контроль неразрушающий радиационный. Термины и определения

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулирования и метрологии в сети Интернет или по ежегодно издаваемому информацион-

персонала. Основные требования

ному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячно издаваемого информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ Р ИСО 12716, ГОСТ Р 55776, ГОСТ 32794, а также следующие термины с соответствующими определениями:

3.1

неразрушающий контроль; НК (nondestructive testing): Область науки и техники, охватывающая исследования физических принципов, разработку, совершенствование и применение методов, средств и технологий технического контроля объектов, не разрушающего и не ухудшающего их пригодность к эксплуатации.

[ГОСТ Р 53697, статья 2.20]

3.2

виды неразрушающего контроля: Условная группировка методов НК, объединенная общностью физических принципов, на которых они основаны.

Примечание — Виды и методы неразрушающего контроля установлены в ГОСТ 18353.

3.3 объект контроля: ОК (test object): Подвергаемая контролю продукция на стадиях ее жизненного цикла (создание, применение, хранение, ремонт и т. д.).

4 Дефекты ПК и методы неразрушающего контроля

Дефекты, выявляемые методами НК, а также общее описание методов приведены в таблицах 1 и 2.

Таблица 1 — Дефекты, выявляемые методами НК

Дефеят	Акусти- ческая эмис- сия	Ком- пью- терная томо- графия	Тече- искание	Радио- гра- фия, радио- скопия	Шеро- графия	Изме- рение дефор- мации	Тер- мо- гра- фия	Ультра- зву- ковой кон- тропь	Визуаль- но-из- мери- тельный контроль
Загрязнение		Х		Х				×	Х
Повреждение нитей	х	Х		Х					
Расслоение	Х	Х			Х		Х	Х	×
Изменение плотности		Х		Х			Х	Х	
Деформация под нагрузкой					Х	Х			
Нарушение связей		Х			Х		х	Х	х
Нарушение связей между волокнами	Х	Х					×	х	
Нарушение соосности волокна		х		х			х		

Окончание таблицы 1

Дефект	Акусти- ческая эмис- сия	Ком- пью- терная томо- графия	Тече- искание	Радио- гра- фия, радио скопия	Шеро- графия	Изме- рение дефор- мации	Тер- мо- гра- фия	Ультра- зву- ковой кон- троль	Визуаль- но-из- мери- тельный контроль
Разрывы	×	Х		Х			х	Х	х
Включения		Х		Х			Х	х	х
Утечки	×		х					×	
Незакрепленные или под- вижные части	×								
Микротрещины	×	Х		Х	Х			×	
Влага		Х		Х			Х		
Пористость	×	х		Х			Х	×	
Изменение толщины		Х		Х	×		Х	×	
Недоотверждение								×	
Объемные включения		Х							
Пустоты	X	х	×	x			х	×	

Таблица 2 — Общее описание методов НК

Метод НК	Применение	Преимущества	Ограничения	Представление результатов	Примечание
Акусти- ческая эмиссия (АЭ)	Глобальный контроль кон- струкций из ПК с целью обнару- жения и локали- зации активных источников в режиме реально- го времени	Возможен удаленный и непрерывный контроль всего изделия из ПК в режиме реального времени. Можно обнаружить развитие активных дефектов и несплошностей, обнаружить и определить местоположение дефектов и несплошностей, не выявляемых другими методами НК	Контролируемая деталь должна подвергаться воздействию напряжения от внешних источников. За исключением конкретных дефектов или несплошностей, которые выявляют методом АЭ с помощью трения, создаваемого АЭ (например, трение поверхностей расслоения), АЭ неактивные (не распространяющиеся) дефекты или несплошности нельзя обнаружить, а незначительные дефекты конструкции или несплошности могут образовывать АЭ. Таким образом, значимость обнаруженного источника АЭ нельзя однозначно оценить	Метод АЭ регистрирует проходящие упругие волны, образуемые в результате приложения напряжения или образующейся релаксации напряжений композитного материала или детали. Механические волны образуются в виде всплеска или непрерывной АЭ. Активность, сила, интенсивность АЭ коррепирует с информацией о прилагаемой нагрузке в пределах ОК	Контроль и результаты контроля являются специфическими при каждом случае применения и должны проводиться под наблюдением эксперта

ΓΟCT P 56787-2015

Продолжение таблицы 2

Метод НК	Применение	Преимущества	Ограничения	Представление результатов	Примечание
Компью- терная томогра- фия	Обнаружение подповерхност- ных объемных дефектов или несплошностей. Предоставляет количественный объемный анализ дефектов и несплошностей, определяемых другими методами НК. Подходит для измерения геометрических характеристик	Создание изображений поперечных сечений ОК. Получение трехмерных данных по дефектам или несплошностям. Широкие возможности для обработки изображения	Необходим доступ ко всем сторонам ОК. Не очень под- ходит для контропя больших участков или объектов с вы- сокими отношения- ми размеров > 15	Оцифрованная карта компью- терной томогра- фии (томограм- ма) по распреде- пению плотности испытываемого изделия в попе- речном разрезе. Возможность по- лучения полных, трехмерных карт компьютерной томографии по распределению плотности для достаточно не- больших деталей из композитных материалов	Может потребовать- ся оснастка и/или захватное приспосо бление для детали
Течеиска- ние	Любой композит- ный материал или деталь, на котором суще- ствует перепад давления и где необходимо вы- являть сквозные или внутренние протечки воздуха, воды, паров или других загрязняющих веществ в те- чение расчетного срока службы	Менее неодно- значно в сравнении с капиллярными методами НК; более чувствительно, чем АЭ или УЗК	Стоимость испыта- тельного оборудо- вания возрастает по мере увеличения необходимой чув- ствительности	Качественные показатели, например пузыри, или количественные измерения, на- пример отклоне- ния детектора, которые опреде- ляют наличие, место, концен- трацию или скорость утечки вещества	Существуют раз- личные методики для оценки больших утечек [со скоростя- ми до 10-2 Па м³ с-1 (10-1 см³ с-1)] и небольших утечек [скорости менее 10-5 Па м³ с-1 (10-4 см³ с-1)]
Радио- графия, радиоско- пия	Определение преимущественно подповерхностных дефектов и несплошностей, например, пористость и включения. Плоские дефекты или несплошности определяются в том случае, если пучок лучей направлен вдоль дефекта или несплошности, а нерезкость меньше раскрытия/ размера дефекта или несплошности	Рентгеновские пленки и некоторые пластины можно разрезать и поместить почти в любом месте на детали. Цифровые изображения можно обрабатывать для получения дополнительной информации и автоматического распознавания дефектов. В радиоскопии методы, использующие усилитель изображения и систему цифровых детекторных решеток, могут быть автоматизированы при взаимодействии с роботом или манипулятором, обеспечивая тем самым возможность для проведения быстрого контроля	Необходим доступ к обеим сторонам ОК. Возможно, не- обходимо оценить удобство досту- па. Невозможно определить глуби- ну дефектов или несплошностей; иногда возможно благодаря цифро- вым изображениям после калибровки или дополнитель- ным съемкам рентгеновскими лучами с разных направлений	Расчетная пло- щадь и измене- ние плотности подповерхност- ных дефектов и несплошностей	Деталь может по- требоваться пере- местить в ренттенов- скую лабораторию. Ренттенография с использованием снимков предусма- тривает хранение пленки и утилизацию химических реаген- тов, что может быть дорого. Цифровые методики (компью- терная радиология, система цифровых детекторных реше- ток), как правило, бы- стрее. Радиационная безопасность. При радиоскопии обеспе- чение радиационной безопасности более проблематично в слу- чае использования передвижного источ- ника по отношению движению детали

Продолжение таблицы 2

Метод НК	Применение	Преимущества	Ограничения	Представление результатов	Примечание
Шерогра- фия	Обнаружение подповерхност- ных дефектов и несплошностей, изменений в модуле упругости или внеплоскост- ной деформации	Хорошо подходит для высокоскорост- ного, автоматиче- ского контроля в условиях производ- ства	Подповерхностный дефект или разрыв должен быть достаточно большим, чтобы вызвать измеряемую деформацию под нагрузкой. Состояние поверхности, особенно глянцевитость, может мешать шерографическому контролю, что предусматривает использования реагентов для матирования поверхности (исключение: термальная	Интерферограм- ма, создаваемая путем изъятия или наложения изображений ОК до и после нагружения, определяя и тем самым локали- зуя концентра- ции деформа- ций	Требуется дополни- тельное оборудо- вание для опреде- ления изменений возникающих пере- гибов поверхности, и поэтому метод в качестве количе- ственного
Изме- рение дефор- мации	Может ис- пользоваться для измерения статической и динамической деформации при растяжении и деформации сжатия, а также сдвига, коэффи- циента Пуассона, изгиба и дефор- мации скручива- ния	Относительно недорогой, менее громоздкий, с луч- шим разрешением в сравнении с экстен- зометрами (может обеспечить общую точность лучшую ± 10 % деформа- ции)	шерография) Отдельные тен- зодатчики нельзя откалибровать, они чувствительны к воздействию не- желательного шума и прочим источни- кам погрешности, например, расши- рение или сжатие элемента тензодат- чика, изменение удельного электри- ческого сопротив- ления, гистерезис и ползучесть в результате плохого соединения	Выходные данные цепи измерения со- противления выражены в милливольтах; входные — в вольтах	В зависимости от искомой чувстви- тельности, устой- чивости к сдвигу, чувствительности к изменениям темпе- ратуры или стабилы ности положения могут применяться различные тензо- датчики (напри- мер, датчики с полупроводниковой пластиной, тензо- датчики с металли- ческим креплением, тонкопленочные и полупроводниковые тензодатчики рас- сеивания)
Термогра- фия	Обнаружение на- рушений связи, расслоений, пористости, углу- блений, трещин, включений в тонких ОК, обладающих низкой тепло- проводностью, имеющих низкую отражательную способность/ поверхности с высокой из- лучательной способностью, и в материалах, которые эффек- тивно рассеива- ют знергию	Быстрое исследование больших поверхностей и определение участков, которые должны быть подвержены более тщательному контролю	Композитные материалы имеют температурные границы, за пределами которых может произойти необратимое разрушение матрицы или волокна. Обнаружение дефекта или несплошности зависит от их ориентации относительно направления потока тепла. В более толстых материалах возможны только качественные признаки дефектов или несплошностей	Распределение температуры воздуха из- меряют путем отображения контуров одина- ковой темпера- туры (изотерм), создавая тем самым модель темпового излучения, со- относящуюся с дефектами поверхности и подповерхности	Существует как контактный (предус- матривает нанесе- ние покрытия), так и бесконтактный метод (основывает- ся на обнаружении инфракрасного излучения черного тела). Термогра- фия бывает либо пассивной, либо активной; активная термография может подразделяться на импульсную или синхронизируемую

Окончание таблицы 2

Метод НК	Применение	Преимущества	Ограничения	Представление результатов	Примечание
Ультра- звуковой контроль (УЗК)	Обнаружение подповерхност- ных дефектов или несплошно- стей. Существует два основных метода: эхо-им- пульсный метод для контроля с одной стороны ОК и теневой метод для кон- троля с доступом к двум сторонам ОК	Обнаружение под- поверхностных дефектов или не- сплошностей, в том числе пористости, включений и рас- слоений	Необходима от- носительно плоская и гладкая поверх- ность. Тип матери- ала может влиять на возможность контроля	Дефекты и несплошности сразу же за- писывают на амплитудных изображениях	Возможное удер- жание жидкости; возможное впиты- вание жидкости в пористые материа- лы, как, например, композитные мате- риалы. Существуют многочисленные методы, основанные на использовании продольных, по- перечных или по- верхностных волн. Затухание в ПМК может быть сравни- тельно высоким в сравне- нии с металлически- ми изделиями
Визуаль- но-из- мери- тельный контроль	Выявление дефектов на осматриваемых поверхностях	Низкозатратный метод. Обнаружение поверхностных дефектов или несплошностей, включая расслоения, разрывы волокон и ударные повреждения	Необходима линия прямой видимости	Дефекты и несплошности сразу же за- писывают в со- ответствующую документацию по проведению контроля, ино- гда делают фотографии	Можно обнару- жить дефекты или несплошности на внутреннем диа- метре, если можно вставить централь- ный проводник и обеспечить доста- точный электриче- ский контакт

5 Акустическая эмиссия

5.1 Общие сведения

5.1.1 Метод акустической эмиссии (АЭ) относится к пассивным методам НК.

Метод основан на регистрации упругих волн, возникающих в результате АЭ. Это явление состоит в образовании акустических волн при динамической внутренней локальной перестройке структуры материала ОК. Акустические (обычно ультразвуковые) волны возникают в процессе появления и развития трещин в ОК. Краткие сведения о методе приведены в таблице 3.

Таблица 3 — Краткие сведения об АЭ

Применение	Принцип действия	Преимущества	Недостатки	Представление результатов
Оценка структурной целостности трубопроводов, труб, резервуаров и сосудов под давлением из поли-	Датчики АЭ подключены к образцу	Дистанционный и постоянный мониторинг	Необходимость внешнего воздей- ствия на исследуе-	Датчики АЭ отслеживают кратковремен-
мерного композитного материала (ПК).	для поиска дефектных	всего образца в реальном	мый объект.	ные сигналы, вызванные в об-
Контроль качества производства и	зон во время применения	времени.	Неактивные (не- расширяющиеся)	разце, подвер- гаемом воздей-
изготовления.	внешнего воздействия	Определение роста активных	дефекты не могут быть обнаружены.	ствию. Отсут- ствие сигналов
Проверка на герметичность после производства. Может использо-	(механиче- ского, терми-	дефектов.	Недопустимы посто-	АЭ может быть показателем
ваться в качестве альтернативно- го метода при течеискании.	ческого или давления).	Обнаружение дефектов, не-	ронние шумы.	структурной целостности ПК
Периодический мониторинг про-	Положение определя-	доступных для обнаружения	Преобразователи должны быть раз-	С другой сторо- ны, при обнару-
блемных зон при эксплуатации.	ется путем триангу-	иными мето- дами нераз-	мещены на тестиру- емой части образца.	жении сигналов АЭ можно гово-
Постоянный мониторинг структу-	ляции или	рушающего		рить о наличии
ры в режиме реального времени (мониторинг состояния).	методами зональной	контроля. Использование	Часто необходимо использование иных	дефекта
Оценка адгезивной сцепки.	локации	для проверки на герметич-	средств неразруша- ющего контроля для определения харак-	
Мониторинг роста трещит:		ность	теристик дефектов	
Поиск и определение местораспо- ложения протечек				

5.1.2 Для обнаружения волн АЭ, образующихся в результате прилагаемой внешней механической (сжатие, кручение и т. д.) или тепловой нагрузки, используют специальные датчики (преобразователи).

Датчики соединены с ОК при помощи контактной жидкости или с помощью специальных составов на основе эпоксидных смол или других клеящих смесей. Выходной сигнал от датчика усиливается и фильтруется для устранения нежелательных частот. Затем условный сигнал АЭ проходит оцифровку и разделяется на дискретные пакеты колебаний. С помощью цифровой обработки сигнала эти пакеты преобразуются в частотно-временные характеристики, которые описывают форму колебаний, размер и частотные составляющие. Эти характеристики могут быть проанализированы совместно с помощью искусственного интеллекта, распознавания образов и/или методами нейронных сетей с целью отделения истичных источников АЭ от шума.

В случае, когда несколько датчиков регистрируют один и тот же сигнал АЭ, местоположение источника этого сигнала можно определить с помощью анализа времени прихода сигналов. В случае, когда несколько источников сигналов АЭ расположены близко друг к другу, они образуют группу событий, указывающую на непрерывную активность, которая служит признаком активно развивающегося источника. Помимо сигналов АЭ, вызванных ростом дефектов или несплошностей, сигналы АЭ могут также возникать в результате существования дефектов или несплошностей, которые не развиваются (например, трущиеся друг о друга расслоения во время сброса давления из сосуда высокого давления).

- 5.1.3 Сигналы АЭ делятся на два основных типа:
- непрерывная эмиссия колебания с относительно малыми амплитудами и широким частотным спектром, верхняя граница которого достигает 30 МГц;
- эмиссия дискретного типа последовательность коротких импульсов сложной формы с крутым фронтом и гораздо большими амплитудами.

5.2 Применение

5.2.1 АЭ в соответствии с ГОСТ Р ИСО 12716 — термин, используемый для описания кратковременных волн напряжения ниже предела упругости, производимых в твердых телах в результате приложенного напряжения. Прикладываемое напряжение может включать в себя механические силы

(растяжение, сжатие или кручение), внутреннее давление или температурное воздействие (часто может быть достигнуто при помощи тепловой пушки). Прикладываемое к ОК напряжение может быть кратковременным, долговременным, случайным или цикличным. Его измеряют параллельно измерению активности АЭ.

- 5.2.2 Волны напряжения АЭ производятся путем быстрого выброса энергии в пределах материала из локализованного источника. Сигнал АЭ, полученный в полимерном композитном материале, часто состоит из непрерывной и дискретной АЭ.
- 5.2.3 Оборудование АЭ регистрирует кратковременные волны напряжения ниже предела упругости, произведенные приложенным напряжением или последующим ослаблением напряжения в композитном материале или детали. Волны напряжения протекают в виде импульса или непрерывной АЭ. Активность АЭ, интенсивность и жесткость, коррелированные с приложенным напряжением, дают информацию о деградации ОК. Отсутствие активности АЭ означает отсутствие дефектов (источников АЭ), в то время как большая активность АЭ указывает на их присутствие. Источник определяется триангуляцией или методами зональной локации.
- 5.2.4 В ПК сигналы АЭ генерируются выбросом упругой энергии в ходе таких процессов, как растрескивание матрицы, или разрывов или расщепления волокон. Необратимые вязкоупругие процессы, такие как образование трещин аморфных матриц или деформация (необратимая) матрицы или волокна, не обнаруживаются при нормальных условиях с использованием широко распространенного оборудования АЭ.
- 5.2.5 Рождающиеся на поверхности раздела источники АЭ в ПК включают в себя расслоение матрицы и волокон, последующий отказ волокон и отклеивание слоев друг от друга.
- 5.2.6 АЭ в ПК также может быть произведена другими акустическими источниками, не связанными напрямую с матрицей или волокном. Такие источники включают утечку газа или жидкости через трещину, отверстие, разрыв уплотнения или др. (например, в композитной оболочке сосудов высокого давления), а также в результате перемещения или потери деталей или частей деталей (например, дефекты резьбы в собранных композитных системах трубопроводов).
- 5.2.7 У большинства сигналов АЭ, используемых в НК, наблюдаются частоты между 20 кГц и 1 МГц. Уровень и амплитуду сигналов АЭ отмечают и коррелируют со структурой или характеристиками ОК. Наиболее низкие и высокие частоты отфильтровывают с целью избежать интерференций от нежелательных источников шума, таких как механические вибрации или шумы, генерируемые электрооборудованием.
- 5.2.8 Основные функции системы контроля методом АЭ заключены в обнаружении, локализации и классификации источников АЭ. Для последующей оценки повреждений, обнаруженных в локализованной зоне источника АЭ, применяют другие методы НК, например, визуальный, ультразвуковой и др.

5.3 Преимущества и область применения

АЭ используется для оценки структурной целостности композитных труб, патрубков, резервуаров, сосудов высокого давления и других композитных деталей. Возможно дистанционное наблюдение и наблюдение в режиме реального времени. Недоступные дефекты или неоднородности могут быть не только обнаружены, но и определено их местоположение. В дополнение к обнаружению дефектов и несплошностей АЭ может использоваться для обнаружения утечек, как альтернатива течеисканию. АЭ может быть использована для оценки качества производственных процессов с использованием образцов или как 100 % контроль при приложении напряжения в процессе производства (например, наспаивание, обмотка, прессование, вулканизация и т. д.), испытаний на герметичность после завершения производства путем контроля интересующих областей или участков, вызывающих беспокойство, и повторной проверки в соответствии с интервалами обслуживания. АЭ хорошо подходит для оценки целостности клеевых соединений и контроля роста трещин. По сравнению с другими методами НК АЭ имеет следующие преимущества:

- 5.3.1 С помощью АЭ возможно обнаружить и локализовать дефекты и несплошности на расстоянии от датчиков АЭ без их перемещения по поверхности ОК.
 - 5.3.2 Возможность проведения НК в режиме реального времени.
 - 5.3.3 Метод очень чувствителен к растущим (развивающимся) дефектам.
- 5.3.4 С помощью АЭ возможно обнаружение дефектов и несплошностей, которые не обнаруживаются другими методами НК.
- 5.3.5 Может использоваться для течеискания сосудов высокого давления после их производства и в процессе эксплуатации.

5.4 Ограничения

- 5.4.1 ОК необходимо подвергать воздействию напряжения.
- 5.4.2 Дефекты и несплошности, не генерирующие сигналы АЭ, не обнаруживаются. В то же время незначительные дефекты и несплошности могут являться источниками АЭ. Таким образом, однозначно оценить степень опасности обнаруженного источника АЭ нельзя.
 - 5.4.3 Необходима фильтрация посторонних шумов.
 - 5.4.4 Метод требует размещения датчиков на поверхности ОК.

5.5 НК методом АЭ

Осуществляется с использованием методик контроля, технологических рекомендаций, производственных инструкций, руководящих технических материалов, в которых даются рекомендации по используемому оборудованию (приборы, преобразователи и т. д.), описываются процедуры настройки этого оборудования, порядок проведения контроля и обработки полученных результатов.

5.6 Геометрия и размеры

- 5.6.1 Геометрические особенности и размеры ОК могут стать причиной ослабления сигнала АЭ.
- 5.6.2 В крупногабаритных ОК можно получить существенную экономию энергии, используя чувствительные элементы с интегрированными предусилителями, устранив тем самым потребность в подключении отдельных предусилителей.
- 5.6.3 Так как композитные материалы являются анизотропными и зачастую имеют переменную толщину, ослабление сигналов АЭ может отличаться в различных частях композита.

5.7 Техника безопасности

При НК сосудов высокого давления должны быть выполнены все требования техники безопасности, устанавливаемые для испытаний данного вида.

5.8 Калибровка и стандартизация

- 5.8.1 Необходимо проведение периодической поверки и калибровки используемого оборудования АЭ.
- 5.8.2 Необходима ежедневная проверка всех электронных систем оборудования АЭ. При проверке необходимо использовать генератор формы волны.
- 5.8.3 Необходима ежедневная проверка чувствительных элементов датчиков АЭ. Необходимо записывать максимальную амплитуду и уровень электрических шумов. Необходимо заменить чувствительные элементы, имеющие значения максимальных амплитуд и уровней электрических шумов выше средних.

6 Радиационные методы

6.1 Общие сведения

6.1.1 Радиационные методы НК основаны на регистрации и анализе проникающего сквозь ОК ионизирующего излучения. Для контроля ОК из ПК используют рентгеновское излучение, позволяющее выявить дефекты, расположенные как внутри, так и на его поверхности. Первичным информативным параметром является экспозиционная доза излучения, величина которой в местах дефектов отличается от экспозиционной дозы в бездефектных зонах ОК.

Краткие сведения о методе приведены в таблице 4.

ΓΟCT P 56787-2015

Таблица 4 — Краткое описание рентгенографии

Применение	Принцип действия	Преимущества	Недостатки	Представление результатов
Применение Используют для обнаружения внутренних неоднородностей, таких как трещины, включения, пористость, неравноплотность материала, неравнопотность укладки заполнителя и т. д., когда главная ось дефекта или несплошности расположена параллельно падающему пучку рентгеновских лучей. Дополнительная информация: Может эффективно использоваться для обнаружения информация: Мспользуют для обнаружения информация и толщина и только при условии условии условии условии условия обнаружить только при условии падающего пучка рентгеновских лучей, раскрытием не менее 0,1 мм и глубине не менее 2 % от толщины исторысновно падающего пучка рентгеновских лучей, раскрытием не менее 2 % от толщины и глубине не менее 2 % от толщины	1-1500-500	Преимущества Общие сведения: Радиографическую пленку можно вырезать и разместить практически в любом месте на части или внутри объекта. Дополнительная информация: Обеспечивает контроль всего объема объекта контроля. Энергию рентгеновского излучения (проникающую способность) можно регулировать путем изменения ускоряющего напряжения. Высокая чувствительность к изменениям в толщине и плотности материала. Обеспечивает простую интерпретацию и документирование результатов контроля. Может переводиться в цифровую форму с применением соответствующего оборудования	Общие сведения: В целом не чувствителен к мелким поверхностным трещинам, за исключением идеальных условий. Дополнительная информация: Применение ионизирующего излучения требует обязательного и неукоснительного выполнения норм радиационной безопасности. В идеале контроль должен проводится в специализированных камерах (боксах), исключающих воздействие рентгеновского излучения на человека. Трудно получить достаточную величину (2 % или более) контраста при небольшой разнице в коэффициенте ослабления матрицы и заполнителя в ПК. Доступ необходим к обечим сторонам исследуемого объекта. Плоскость трещины должна быть почти параллельной пучку рентгеновских лучей, чтобы ее можно было обнаружить. Не чувствителен к расслоениям, непроклеям. Большая трудовмкость контроля, а также необходимость применения реактивов для проявки и фиксирования радиогра-	

6.2 Применение

6.2.1 В радиационной дефектоскопии методы НК определены:

- излучением (рентгеновское, гамма-, бета-, нейтронное и др. виды излучения);
- детектором (радиографическая пленка, сцинтилляционный монокристалл, ионизационная камера и др.).

Для контроля изделий из ПК наиболее эффективным является рентгенографический метод.

6.2.2 Рентгенографический метод

Рентгеновское излучение, прошедшее через ОК, ослабленное им, формируется в радиационное изображение, которое далее посредством радиографической пленки преобразуется в оптическое.

Ослабление рентгеновского излучения материалом ОК зависит от его энергии, толщины ОК и плотности ПК, из которого он изготовлен. При использовании современного оборудования можно выявить несплошности, размеры которых в направлении оси пучка излучения оставляют от 1 до 2 % и более от толщины ОК. На рентгеновском снимке дефекты изображаются в виде локальных зон, оптическая плотность которых отличается от оптической плотности фоновых участков.

6.3 Преимущества и область применения

6.3.1 Дефекты в ПК

По своим размерам и конфигурации дефекты делятся на две группы: объемные и плоскостные. Объемные дефекты отличаются тем, что их размеры во всех направлениях имеют один порядок, у плоскостных дефектов один размер отличается от двух других на порядок и более.

По физической сущности различают типы дефектов:

- расслоения между волокном и матрицей (плоскостной дефект);
- ударные и усталостные повреждения (плоскостной дефект);
- производственные дефекты или несплошности (плоскостной либо объемный дефект);
- пустоты, пористость, инородные включения (объемный дефект);
- ориентация волокон (плоскостной дефект);
- разрыв волокон (плоскостной дефект);
- изменение состава связующего (плоскостной либо объемный дефект);
- трешины (плоскостной дефект).

По техническим условиям на изделие из ПК содержащиеся в нем дефекты делят на допустимые и недопустимые.

- 6.3.2 Областью применения рентгенографического метода контроля изделий из ПК является обнаружение недопустимых по техническим условиям объемных дефектов. Плоскостные дефекты типа трещин, расслоений, разрыва волокон в общем случае рентгеновским методом не могут быть обнаружены. Условием обнаружения плоскостных дефектов, например, трещины является ее благоприятная ориентация по отношению к пучку излучения: ось пучка излучения должна быть параллельна плоскости трещины.
- 6.3.3 Для обнаружения недопустимых дефектов при рентгенографическом контроле ПК необходимо выбрать энергию излучения таким образом, чтобы радиационный контраст между низким и средним атомным числом подструктур ПК (например, матрицы, волокна, тонкого листа) был достаточен для получения контрастного оптического изображения. Известно, что глаз может различить на рентгенограмме зоны с разной оптической плотностью, отличающиеся друг от друга от 0.02 до 0,05 Б. Если физическая плотность материала аномальной зоны (г/см³) отличается от физической плотности материала подструктуры на 2 %, то оптическое изображение на рентгеновском снимке будет иметь различимый контраст. За рубежом, когда возникает необходимость повысить контраст, используют контрастные вещества.
- 6.3.4 Для получения оптического изображения недопустимых дефектов с контрастом, различимым при расшифровке рентгеновских снимков, энергию излучения следует выбирать, исходя из условия:

$$\mu \cdot d \ge 2$$
, (1)

где и — линейный коэффициент ослабления излучения материалом подструктуры, см-1;

толщина объекта контроля по оси пучка излучения, см.

Рекомендуется использовать рентгеновский аппарат, снабженный низковольтной рентгеновской трубкой до 100 кВ, снабженной бериллиевым окном для выхода пучка излучения. Выбор энергии излучения определяют эмпирически, используя специально разработанные эталонные образцы или

индикатор качества изображения (ИКИ), содержащий элементы (отверстия, лунки, канавки) разного размера. По изображению минимальных элементов эталонного образца, видимых на рентгеновском снимке, определяют режим контроля.

6.4 Ограничения

- 6.4.1 Рентгеновский метод не выявляет плоскостные дефекты: расслоения между волокном и матрицей, ударные и усталостные повреждения, трещины и другие дефекты, размеры которых в плоскости, перпендикулярной оси пучка излучения менее 0,5 мм и вдоль пучка излучения менее 3 % от просвечиваемой толщины объекта.
 - 6.4.2 При проведении рентгенографического контроля необходим двухсторонний доступ.
 - 6.4.3 Высокая стоимость оборудования.
- 6.4.4 При проведении рентгенографического контроля следует руководствоваться действующей в отрасли нормативной документацией и техническими условиями на объект контроля.

6.5 НК рентгенографическим методом

- 6.5.1 Выбор схемы контроля. Под схемой рентгенографического контроля понимают относительное расположение источника излучения (ИИ), ОК и радиографической пленки. Схему контроля выбирают, исходя из двух критериев:
- радиационная толщина (толщина ОК в направлении оси пучка излучения) должна быть минимальной:
 - ОК должен быть расположен по возможности ближе к радиографической пленке.

Выполнение первого критерия обеспечивает получение максимального радиационного контраста; выполнение второго критерия при заданном фокусном расстоянии обеспечивает получение рентгенографического снимка с требуемой четкостью. Согласно действующим нормативным документам по рентгенографическому контролю допустимая геометрическая нерезкость не должна превышать половины абсолютного значения чувствительности контроля. Таким образом, допустимая геометрическая нерезкость не должна превышать величину;

$$0.5 \cdot (0.01 \div 0.02) \cdot d$$
, (2)

где d — толщина объекта контроля по оси пучка излучения, мм.

Следовательно, минимальное фокусное расстояние (расстояние «источник-пленка») при чувствительности контроля 2 % составляет:

$$F_{\text{max}} \ge 100\Phi + d$$
, (3)

где Ф — размер фокусного пятна источника, мм;

толщина объекта контроля по оси пучка излучения, мм.

6.5.2 Продолжительность экспозиции при выбранном фокусном расстоянии и эмпирически определенном анодном напряжении выбирают таким образом, чтобы оптическая плотность снимка была не менее 2 Б.

Такая оптическая плотность соответствует участку характеристической кривой (ХК) с высоким значением градиента и тем самым позволяет увеличить оптический контраст снимка (ХК — зависимость оптической плотности от логарифма дозы излучения). При использовании в качестве источника излучения рентгеновского аппарата экспозиционная доза излучения пропорциональна величине:

$$D_{\text{accr}} = \frac{U^2 It}{F^2},$$
 (4)

где U — напряжение на аноде рентгеновской трубки, кВ;

I — внодный ток, мА;

тродолжительность экспозиции, мин.

Анодное напряжение и фокусное расстояние для достижения требуемых чувствительности и четкости изображения выбраны при использовании конкретного источника излучения и являются константами. Значение анодного тока нужно выбирать максимальным либо близким к максимальному значению, которое может обеспечить излучатель. Продолжительность экспозиции t обеспечивает требуемую оптическую плотность снимка. 6.5.3 Для практической оценки качества изображения следует использовать специальные средства — ИКИ IQI.

Для оценки достижимой чувствительности контроля изделий из ПК индикатор качества изображения специфичен: например, он может быть выполнен в виде ступенчатого клина из ПК и содержать в каждой ступеньке лунки или канавки разной глубины либо в виде набора пластин разной толщины с расположенными в ней отверстиями разного диаметра. По видимому изображению минимального элемента ИКИ на рентгеновском снимке определяют чувствительность контроля. Изготовление таких средств может представлять трудности из-за неравномерной структуры ПК. В этом случае возможно применение более технологичного индикатора, монолитного с плотностью, близкой к плотности ПК, например, оргстекло или сплав на основе бериллия.

6.6 Техника безопасности

- 6.6.1 К рентгеновскому НК изделий из ПК допускаются лица, достигшие 18-летнего возраста, прошедшие предварительный и периодический медицинский осмотр и не имеющие медицинских противопоказаний, прошедшие аттестацию по трехуровневой системе квалификации специалистов неразрушающего контроля в соответствии с ГОСТ Р 54795 (см. раздел 6), имеющие сертификат (удостоверение) установленного в отрасли образца. К работе с рентгеновскими аппаратами и другими источниками ионизирующих излучений могут быть допущены лица, отнесенные приказом по предприятию к персоналу группы А, прошедшие обучение и инструктаж по охране труда и радиационной безопасности, аттестованные на квалификационную группу по электробезопасности свыше 1000 В и ознакомленные с действующими в организации инструкциями.
- 6.6.2 При проведении рентгенографических работ необходимо соблюдать требования правил обеспечения радиационной безопасности.
- 6.6.3 Производственное электрооборудование должно быть заземлено (занулено) в соответствии с требованиями ГОСТ 12.1.030 (см. разделы 1—7).
- 6.6.4 Помещение, где проводят рентгеновский контроль, должно быть оборудовано общеобменной приточно-вытяжной вентиляцией с двукратным воздухообменом в час в соответствии с требованиями FOCT 12.4.021 (см. разделы 1—3).
- 6.6.5 Содержание вредных веществ в воздухе рабочей зоны не должно превышать предельно допустимых концентраций. Контроль за содержанием вредных веществ в воздухе рабочей зоны проводят в соответствии с требованиями ГОСТ 12.1.005 (см. раздел 4).
- 6.6.6 При проведении рентгеновского контроля во избежание контакта со свинцом используемые при работе свинцовые защитные экраны, маски, диафрагмы, маркировочные знаки: цифры, буквы, метки, реперы и пр. должны иметь защитные покрытия. Нанесение защитных покрытий следует проводить не реже одного раза в год и возобновлять их в случае повреждения. В качестве защитных покрытий могут быть использованы краски, лаки или пластиковые чехлы.
- 6.6.7 Работающие должны соблюдать правила пожарной безопасности в соответствии с требованиями ГОСТ 12.1.004 (см. разделы 1—3) и правила противопожарного режима в Российской Федерации*. Производственное помещение должно быть обеспечено первичными средствами пожаротушения: огнетушители углекислотные, песок и приборы пожарной сигнализации.

7 Течеискание

7.1 Общие сведения

- 7.1.1 Течеискание вид испытаний на герметичность, основанный на регистрации веществ, проникающих через течи. Течеискание относится к НК проникающими веществами.
 - В зависимости от вида применяемых пробных веществ методы контроля герметичности делятся на:
- гидравлические (или жидкостные), когда в качестве индикаторного вещества используют жидкость (например, масло, вода, керосин);
- газогидравлические, когда в качестве пробного вещества используют газ (например, воздух), а жидкость играет роль вспомогательной среды при определении места утечки газа;
 - газовые, когда в качестве индикаторного вещества используют газ (аргон, гелий, воздух и др.).
 Краткие сведения о методе приведены в таблице 5.

^{*} Постановление Правительства Российской Федерации от 25 апреля 2012 г. № 390 «О противопожарном режиме» (с изменениями на 23 июня 2014 г.).

Таблица 5 — Краткие сведения о течеискании

Применение	Принцип действия	Преимущества	Недостатки	Данные отчетов
Может быть выполнено на любой конструкции из полимерного композитного материала, в которой создана разница давления и где существует утечка продукта, воздуха, воздного пара или других загрязняющих веществ. Течеискание затрагивает; 1) обнаружение и локализацию утечек; 2) измерение коэффициента утечки. Используют, чтобы: 1) предотвратить материальные потери; 2) предотвратить опасность и помехи; 3) обнаружить ненадежные объекты, скорость утечки в которых превышает допустимые критерии. Используют для обнаружения дефектов типа трещин или щелей. Испытание на утечку проводят дополнительно к другим методам неразрушающих испытаний, которые чувствительны к материальным неоднородностям. Может использоваться, чтобы измерить коэффициент утечки испытуемых образцов, которые открыты (обе испытательных поверхности доступны) или герметичны (только внешняя поверхности доступна)	Поток жидкости или газа через утечку создает разность давления или концентрации. Поскольку утечка появилась внезапно, размеры отверстия утечки неизвестны, количество, используемое для определения утечки, является взвешенным коэфициентом утечки. Для улучшения чувствительности часто используют трассирующий газ в комбинации с детектором. Для обнаружения утечки и ее локализации может использоваться любой зонд с трассирующим веществом или зонд с детектором. Техника измерения коэффициента утечки попадает в две категорих: статичное и динамическое испытания. При статическом испытании в камера накапливается трассирующий газ, в то время как при динамическом испытании камера накачивается непрерывно или периодически вдетектор	Неопровержимые доказательства наличия утечки по сравнению с более неоднозначными методами, такими как проникновение жидкости. Более чувствительный, чем объемные методы обнаружения утечки, такие как метод акустической эмиссии или ультразеуковой метод	Увеличение затрат на испытательное оборудование в случае необходимости увеличения заданной чувствительности	Качественные по- казатели, напри- мер пузыри, или количественные измерения, напри- мер отклонения детектора, который устанавливает на- личие или концен- трацию проника- ющей жидкости, с присутствием или без трассирующего газа, осуществля- ются при низком давпении или со стороны низкой концентрации в испытуемом об- разце. В зависимости от выбранной техники могут быть точно определены ло- кализации утечки или коэффициен- ты утечки от 0,05 до 10 ⁻¹³ Па м ³ с ⁻¹ (0,5 к 10 ⁻¹² см ³ с ⁻¹) могут быть изме- рены

7.1.2 Обнаружение и измерение уровня утечки — все измерения уровня утечки с использованием газов основаны на перетекании этого газа из зоны высокого давления в зону низкого в месте предполагаемой утечки.

Для регистрации оттока газа из зоны высокого давления к границе (зоне низкого давления) используют аппаратуру, чувствительную к присутствию газа или его концентрации.

В зависимости от применяемой оснастки различают камерный и бескамерный способы контроля течеисканием.

При бескамерном способе внутри ОК создают избыточное давление или вакуум, а вне ОК давление равно атмосферному.

При камерном способе ОК помещают в специальную камеру.

Утечку регистрируют по изменению давления или объема газа в пределах герметизирующей камеры или в пределах ОК (в зависимости от применяемого способа).

7.1.3 Выбор метода контроля — правильно подобранный метод течеискания оптимизирует чувствительность, стоимость и надежность контроля. Выбор метода зависит от требуемой чувствительности, способа течеискания (камерный или бескамерный), типа ОК (открытый или герметичный) и осуществляется в соответствии с ГОСТ Р 51780 (см. раздел 2—4).

7.2 Применение

- 7.2.1 Процедура контроля на герметичность, требуемая чувствительность и метод обнаружения утечки должны быть установлены до проведения контроля в соответствии с особенностями ОК.
- 7.2.2 Требуемое оборудование и пробные вещества будут зависеть от методики проведения контроля.
- 7.2.3 Течеискание позволяет определять наличие и местоположение утечки, а также количество пробного вещества, проходящего через место утечки.
- 7.2.4 Скорость утечки зависит от давления, объема и времени. При контроле на герметичность необходимо смоделировать давление, которое ОК испытает в рабочем состоянии (требование необязательное). Если давление при контроле превышает рабочее, установленное для данного ОК, упругая деформация ОК может вызвать чрезмерную утечку.
- 7.2.5 Контроль ПК ограничивается ОК закрытого типа, которые могут быть закупорены, а затем загерметизированы, например, сосуды высокого давления с армированной композитной оболочкой.
- 7.2.6 Возможно также проведение течеискания ОК из ПК открытого типа, которые не могут быть герметизированы с использованием специальных барокамер.
- 7.2.7 Для того чтобы обнаружить и оценить размеры утечки с использованием газовых методов контроля герметичности, газ должен быть равномерно распределен по ОК.
- 7.2.8 Так как достичь абсолютной герметичности невозможно, для каждого ОК необходимо определить уровень максимальной утечки.
 - 7.2.9 Применение также зависит от методики контроля герметичности.
 - 7.2.9.1 Пузырьковый метод

При использовании пузырькового метода ОК заполняют воздухом или азотом под избыточным давлением. На наружную поверхность наносят жидкое индикаторное вещество. При наличие утечки газ, проникая наружу, образует в ней пузырьки. В качестве индикаторной жидкости применяют пенные эмульсии. Размер утечки может быть оценен по размеру образующихся пузырей. Скорость утечки может быть оценена по частоте образования пузырей. Перед проведением контроля необходимо очистить поверхность ОК от загрязнений. При использовании в качестве газа воздуха необходимо проведение его очистки.

7.2.9.2 Капиллярный метод

Метод основан на регистрации параметров индикаторной жидкости, проникающей под давлением в сквозные дефекты ОК. В ОК заливают жидкость, и создается избыточное давление. Для индикации утечек на внешнюю поверхность ОК наносятся проявляющие составы. После определенной выдержки проводят осмотр внешней поверхности ОК и регистрируют наличие или отсутствие утечек.

7.2.9.3 Газовый метод с использованием галогена

Течеискание с использованием газа галогена используют для определения давления, местоположения и размера утечек в закрытых сосудах и обычно используют для контроля в производственных условиях. В процессе контроля ионы излучаются разогретым анодом и направляются к коллектору. Количество положительных ионов увеличивается пропорционально количеству присутствующего галогена.

7.2.9.4 Гидростатический метод

Метод, также как и капиллярный, основан на регистрации параметров индикаторной жидкости, проникающей под давлением в сквозные дефекты ОК. В ОК заливают жидкость и создают избыточное давление. После определенной выдержки проводят осмотр, герметичность определяют по наличию капель на контролируемой поверхности. Перед применением данного метода необходимо провести предварительный УЗК с целью выявления утечек больше чем 4,5 · 10-7 моль/с.

7.2.9.5 Манометрический метод

Метод основан на изменении давления в ОК вследствие утечки газа через дефекты. Используют для выявления крупных утечек.

7.2.9.6 Масс-спектрометрический метод

Метод является одним из наиболее чувствительных и универсальных при контроле герметичности. Он основан на регистрации ионов индикаторного газа (гелия), попавшего в вакуумную камеру течеискателя через сквозные дефекты ОК. Контроль осуществляют с использованием масс-спектрометра.

Масс-спектрометр работает по принципу сортировки ионизированных газов в электрическом поле в соответствии с их молекулярной массой. В масс-спектрометре с гелием экраны с отверстиями позволяют ионам Не+ проходить через детектор, в то время как остальные ионы блокируются. Количество Не+ ионов, достигающих детектора за единицу времени, соответствует скорости утечки.

7.2.9.7 Метод теплопроводности

Этот метод основан на том, что некоторые газы имеют заметно различающиеся значения удельной теплопроводности по сравнению с воздухом. Оборудование включает в себя две нагреваемые нити, включенные по мостовой схеме. Одна нить охлаждается воздухом, другая — контролируемым газом. Любые различия выводят из равновесия мост и могут быть связаны с наличием утечки. Используют два газа с самой большой разностью в удельной теплопроводности — водород и гелий, но испытание может быть выполнено с использованием аргона, двускиси углерода, неона или фреона R-12.

7.2.9.8 Метод АЭ

На поверхность ОК устанавливают датчики АЭ, с помощью которых возможно обнаружить и локализовать источник образовавшейся утечки газа или жидкости из герметичной системы.

7.2.9.9 УЗ-метод

Метод применяют для обнаружения достаточно больших утечек, способных создавать турбулентный поток. Турбулентный поток в газе образуется, когда скорость приближается к скорости звука в газе, который имеет порядок от $4.5 \cdot 10^{-6}$ до $1 \cdot 10^{-7}$ моль/с. Методика основана на том, что турбулентный поток генерирует звуковые частоты от слышимых до $60 \text{ к}\Gamma$ ц.

7.2.10 Преимущества и область применения

7.2.10.1 Пузырьковый метод

Метод позволяет обнаружить и точно определить местоположение утечки. Преимущества и область применения — простота операции, низкая стоимость и относительно хорошая чувствительность. Метод хорошо подходит для ОК, которые могут быть загерметизированы перед проведением контроля и полностью погружены в жидкость. Без погружения в жидкость метод применяют для сосудов высокого давления, резервуаров, сфер или других крупногабаритных ОК. Ограничения — пузырьковый метод не позволяет измерить скорость утечки, необходимость тщательной очистки ОК от загрязнений, использование избыточного давления. Большое влияние на результат контроля оказывает человеческий фактор.

7.2.10.2 Капиллярный метод

Преимущества и область применения — низкая стоимость используемого оборудования, точное определение местоположения утечки. Ограничения — метод не позволяет измерить скорость утечки, применяющиеся химические вещества могут временно засорять утечку, необходимо проведение очистки ОК после проведения контроля, применяемые химические вещества могут оказывать повреждающее воздействие на ПК.

7.2.10.3 Газовый метод с использованием галогена

Преимущества и область применения — метод может быть применен для контроля любого ОК, в котором может быть получен перепад давления газа и есть доступ к стороне с предположительной протечкой. Ограничения — использование галогена оказывает неблагоприятное воздействие на окружающую среду, кроме того, метод огнеопасен. Существует необходимость постоянной калибровки применяемой аппаратуры.

7.2.10.4 Гидростатический метод

Преимущества и область применения — метод для контроля качества контейнеров (сосудов высокого давления и резервуаров), предназначенных для хранения различных жидкостей. Ограничения — сварные швы и соединения, где чаще всего происходят утечки, необходимо очищать от загрязнений. Температура жидкости, используемой при контроле, должна быть равна температуре окружающей среды для предотвращения образования конденсата. Применяемые для контроля жидкости могут засорять небольшие утечки.

7.2.10.5 Манометрический метод

Преимущества и область применения — метод применяют для определения больших скоростей утечки. Для контроля обычно используют газовые системы. Ограничения — не позволяет определить местоположение утечки. Так как давление зависит от температуры, то при проведении контроля необходимо следить за тем, чтобы температура оставалась постоянной или компенсировать изменение температуры путем использования идеальных газовых законов.

7.2.10.6 Масс-спектрометрический метод

Преимущества и область применения — метод может быть применен для контроля практически любых ОК, которые допускают использование гелия или какого-либо другого газа. Ограничения — большая вероятность ложных срабатываний аппаратуры при контроле. Поверхностные трещины, краска, смазка, грязь, различные уплотнения со следами износа, полости и т. д. могут адсорбировать гелий, что приводит к появлению фоновых сигналов и снижению чувствительности контроля.

7.2.10.7 Метод теплопроводности

Преимущества и область применения — метод позволяет получить точную информацию о скорости утечки и точно определить ее местоположение. Низкая стоимость оборудования, простота операций, пониженная чувствительность к загрязняющим веществам, находящимся в воздухе. Ограничения — применяемая аппаратура чувствительна ко всем газам, удельная теплопроводность которых отличается от удельной теплопроводности воздуха. Снижение чувствительности контроля за счет наличия фоновых газов. Поверхности ОК должны быть очищены от загрязнений.

7.2.10.8 Ультразвуковой метод

Преимущества и область применения — метод позволяет обнаружить утечку с высокой точностью, а также с помощью преобразователя, расположенного на некотором расстоянии от нее. Метод применяют перед контролем другими, более трудоемкими и чувствительными методами контроля герметичности. Ограничения — отсутствие чувствительности к малым скоростям утечки (меньше 10-2 см3/с). Метод нельзя применять для контроля утечек ядовитых или взрывчатых веществ. Велико воздействие мешающих факторов, таких как вибрации оборудования и воздуха.

7.3 Размеры

- 7.3.1 Ограничения по размерам ОК связаны с невозможностью погрузить крупногабаритные ОК целиком в жидкость. Для таких ОК широко применяется пузырьковый метод.
- 7.3.2 Геометрические характеристики ОК могут затруднять проведение контроля герметичности из-за ограниченного доступа к его поверхностям.

7.4 Техника безопасности

- 7.4.1 Независимо от применяемого метода контроля герметичности особое внимание должно уделяться безопасности работы персонала.
- 7.4.2 Необходимо принимать повышенные меры безопасности при работе с галогеном и аммиаком.
- 7.4.3 При проведении контроля герметичности с использованием разности давлений необходимо учитывать требуемый запас прочности ОК.

7.5 Настройка и стандартизация

7.5.1 Пузырьковый метод

Необходимости в настройке оборудования нет.

7.5.2 Капиллярный метод

За счет изменения концентрации пенетранта, давления, времени проявления чувствительность метода может значительно меняться. В зависимости от минимального размера обнаруживаемой утечки необходимо следить за тем, чтобы эти изменения были минимальными.

7.5.3 Газовый метод с использованием галогена

При контроле этим методом чувствительность датчика проверяют и регулируют в работе таким образом, чтобы легко обнаруживалась утечка определенного указанного размера.

7.5.4 Гидростатический метод

Калибровка оборудования не требуется. Чувствительность метода напрямую зависит от оператора, проводящего контроль.

7.5.5 Манометрический метод

Применяемое оборудование должно проходить поверку и настройку в установленном порядке.

7.5.6 Масс-спектрометрический метод

При контроле этим методом чувствительность датчика проверяют и регулируют в работе таким образом, чтобы легко обнаруживалась утечка определенного указанного размера.

7.5.7 Метод теплопроводности

Настройка должна быть выполнена до, во время и по завершении контроля с промежутками не более 1 ч. Невозможность при настройке получить такой же или больший отклик, как при предыдущей настройке, говорит о необходимости оценки и/или повторного исследования всех ОК. Используемый в работе датчик должен быть включен, разогрет и обнулен, как это определено изготовителем. После

этого зонд (чувствительный элемент) должен быть перемещен в область утечки известного размера и перемещаться в этой области на расстояния не более 1 мм от утечки со скоростью не более 20 мм/с, регистрируя при этом показания. Данная процедура должна быть повторена несколько раз. Любое отклонение параметров контроля от параметров, используемых при настройке, может вызвать ухудшение чувствительности.

7.5.8 УЗ-метод

Ультразвуковую аппаратуру необходимо настраивать перед каждым контролем. В процессе контроля необходимо время от времени осуществлять проверку настройки аппаратуры.

8 Шерография

8.1 Общие сведения

8.1.1 Шерография или сдвиговая спекл-интерферометрия — разновидность интерферометрических методов НК, с помощью которой дефекты ОК определяются посредством измерения и анализа поверхностных нанодеформаций. Деформации образуются как ответная реакция внутренней структуры на некоторое внешнее незначительное тепловое или вакуумное нагружение. Путем накладывания показываемых изображений ОК в ненагруженном состоянии с изображением, взятым в нагруженном состоянии, определяют изменение любой заданной точки изображения. Краткие сведения о методе приведены в таблице 6.

Таблица 6 — Краткая информация о шерографии

Применение	Принцип деиствия	Преимущества	Недостатки	Представление результатов
Бесконтактное обнару- жение расслоений, тре- щин, ударных поврежде- ний, изменений модутя упругости в режиме реального времени. Быстрый, экономичный метод для контроля качества, оптимизации материала и техно-	Шерография пред- ставляет собой интерфероме- трический метод, который предус- матривает при- ложение неболь- ших безопасных нагрузок иссле- дуемому изделию между получением	Можно выполнять ис- спедования больших участков. Менее чувствителен к эффекту ухудше- ния изображения в результате механиче- ских колебаний среды в сравнении с другими интерферометриче-	Вид поверх- ности может мещать шерогра- фическому исследова- нию, поэтому необходимо предусматри- вать исполь- зование ре-	Дефекты, возника- ющие в результате деформации, как правило, выводят на монитор в виде интерференци- онных полос. На выходных изобра- жениях системы изображены каче- ственные фотогра-
логического процесса изготовления.	первого и послед- него изображения. Путем изъятия или	скими методами.	агентов для матирования поверхности	фии структурных особенностей и аномалий поверх-
Может быть реализован с помощью переносных установок или встроен в системы с портальным загрузочным устрой- ством для сканирования	наложения изо- бражений изделия из полимерного композитного мате- риала, полученных в ненагруженном	ние просто в освоении и использовании. Нет расходных материалов.	(исключение: термальная шерография). Для опре- деления	ности, а также та- кие количествен- ные данные, как размер, площадь, глубина дефекта, деформация мате-
больших конструкций. Может использоваться для измерения реакции	и нагруженном со- стояниях, возмож- но определение локализованных	Может быть автомати- зирован для производ- ственной среды.	изменений возникающих перегибов поверхности	риала в зависимо- сти от изменения нагрузки
деформации конструкции на прилагаемую нагрузку	концентраций де- формаций, возни- кающих в результа- те дефектов	Возможна высокая производительность в диапазоне от 10 до 50 м ² /ч	необходимо дополнитель- ное оборудо- вание	

8.1.2 Системы неразрушающих испытаний методом шерографии используют интерферометр Майкельсона. Нагрузки могут быть термическими, воздействием давления или в виде напряжений под воздействием вакуума или акустических (ультразвуковых) вибраций. Величина прилагаемой нагрузки значительно ниже порога разрушения ОК. Оптимальный тип нагрузки и величина зависят от вида дефекта или несплошности и глубины, и лучше всего его можно определить до серийных испытаний путем выполнения пробных измерений.

8.2 Применение

- 8.2.1 Шерографические системы могут быть выполнены в виде переносных установок или портальных систем, аналогичных ультразвуковым системам для сканирования крупногабаритных конструкций с построением С-скана.
- 8.2.2 Изменения величины прикладываемой нагрузки, необходимой для обнаружения дефектов, вызывают большую деформацию или вращение ОК.
- 8.2.3 В качестве выходных данных шерографических систем выступают качественные фотографии структурных особенностей, поверхностных и внутренних дефектов, а также такие количественные данные, как размер, площадь, глубина залегания дефекта и изменения деформации материала в зависимости от нагрузки и свойств материала.
- 8.2.4 Преимущества и область применения лазерная шерография является эффективным, быстрым и точным методом контроля места и размера дефекта. Это бесконтактный метод контроля, подходящий для технологического контроля ПК. С помощью лазерной шерографии можно обнаружить и количественно измерить деформации поверхности до 2—3 нм.
- 8.2.4.1 Портативные системы могут быть использованы для обнаружения зон ремонта в многослойных ПК.
- 8.2.5 Шерография под давлением эффективный метод контроля сосудов высокого давления, армированных волокном. Повышение давления в таких сосудах увеличивает кольцевую и продольную деформацию на поверхности сосудов. При этом возможно обнаружить составляющую напряжения по оси z, что позволяет оценить целостность армированной оболочки.
- 8.2.6 Тепловая шерография чувствительна к изменениям теплового расширения конструкции. Поскольку ударные повреждения (например, в сосудах высокого давления, армированных углеродным волокном и кевларом), расслоения, инородные включения и др. вызывают локальные изменения в коэффициенте теплового расширения, эти дефекты можно обнаружить с помощью этого метода.
- 8.2.7 Вакуумная шерография эффективна для выявления локальных расслоений в деталях и элементах конструкций из ПК в процессе производства.
- 8.2.8 Акустическая шерография эффективна для формирования изображения нарушений связей и пористости в процессе контроля методом распыления пены на ракетоносителях, для которых необходимы теплозащитные системы для предотвращения повреждений в результате воздействия пламени при горении, фрикционного аэродинамического нагрева во время полета и потерь криогенного ракетного топлива.
- 8.2.9 Ультразвуковая голография обеспечивает надежное выявление нарушений связей с легко интерпретируемыми изображениями, схожими с результатами ультразвукового контроля, но на них не отображаются изменения геометрии детали или толщины материала.
- 8.2.10 Ограничения полированные поверхности: например, темная блестящая поверхность может отклонять лазерное излучение, и может понадобиться покрытие для исключения блеска поверхности.

8.3 Геометрия и размеры

- 8.3.1 В зависимости от размеров ОК используют различные лазерные источники излучения.
- 8.3.2 На результаты шерографии практически не влияют геометрия детали или изменения толщины в сравнении с другими методами НК.
- 8.3.3 Шерографическое оборудование можно устанавливать в многокоординатные системы позиционирования для того, чтобы обеспечить полное описание поля ОК со сложными формами (конические, цилиндрические поверхности и др.) и особенностями (края, кромки и др.).

8.4 Техника безопасности

8.4.1 Безопасность использования лазера — для освещения поверхности ОК в шерографии используют луч лазера. Лазер является удобным источником монохроматического и когерентного света. Все изделия, использующие лазерное излучение, представляют определенную опасность, которая связана с прямым воздействием лазерного луча на глаза и кожу (исключение — лазерные системы малой мощности). При работе с шерографическими установками необходимо соблюдать правила техники безопасности для минимизаций данной опасности.

8.5 Настройка и стандартизация

8.5.1 Точная настройка шкалы изображения шерограммы (пиксели/дюймы) и вектора сдвига позволяет выполнять последующую обработку данных шерографии для определения размеров выявленных дефектов, площади и деформации материала.

8.5.2 Для получения изображения с дефектами известных размеров и местоположения, относительно которого можно оценить работу шерографической аппаратуры, необходимо использовать контрольные образцы. Образцы должны быть выполнены в виде защищенной деформируемой мембраны на жестком блоке, содержащем отверстия разного размера и формы. Мембрана должна быть изготовлена из такого материала, который сохраняет свои физические свойства с течением времени с минимальным старением. Внутренние отверстия в блоке пропускают атмосферное давление либо закрыты при номинальном давлении, обеспечивая тем самым наличие перепада давления в мембране, когда блок подвергнут воздействию вакуума. Шерографическая аппаратура измеряет прогиб мембраны при перепаде давления. При изучении наличия и четкости интерференционного рисунка, полученного при помощи контрольных образцов, можно провести корректировки настройки, такие как оптическое центрирование, мощность лазерного излучения, уровень нагрузки (вакуума), изменения отношения луча и т. д., обеспечив тем самым оптимальную работу аппаратуры.

9 Измерение деформаций

9.1 Общие сведения

9.1.1 Металлические наклеиваемые тензодатчики сопротивления состоят из сетки очень тонкой металлической проволоки, фольги или полупроводникового материала, наклеиваемой непосредственно на деформируемую поверхность ОК с помощью тонкого слоя эпоксидной смолы. При приложении нагрузки к ОК соответствующую деформацию измеряют относительно электрического сопротивления проволоки или фольги, линейно изменяющегося при увеличении деформации. Металлическая сетка и склеивающее вещество должны совместно передавать деформацию, но клеящее вещество также должно выполнять функцию диэлектрика между сеткой и поверхностью ОК из ПК. Краткие сведения о методе приведены в таблице 7.

Таблица 7 — Краткая информация об измерении деформации

Применение	Принцип действия	Преимущества	Недостатки	Представление результатов
Может использоваться для измерения как ста- тической, так и динами- ческой деформации. Измерение деформации в различном диапазоне температур, от криоген- ных до очень высоких. В тех случаях, когда необходимы более вы-	Металлические наклеива- емые тензодатчики сопро- тивления состоят из сетки проволочной нити металли- ческой фольги (резистор), наклеиваемой непосред- ственно на деформируемую поверхность тонким слоем эпоксидной смолы. При приложении нагрузки на по- верхность результирующее изменение длины поверхно-	Относительно доступна стоимость. Менее гра- моздкий; бо- лее высокое разрешение, чем у экстен- зометров. Высокая	Калибровка от- дельного тензодат- чика невозможна. Низкий уровень отклика на дефор- мацию. Низкий уровень сигнала делает тензодатчи- ки подверженными воздействию помех от электрических	Выходной сигнал цепи измерения сопротивле- ния (напри- мер, мост со- противления) выражается в милливольта: выходного на пряжения на вольт вход-
сокое удельное сопро- тивление и чувствитель- ность (выше коэффици- ент тензоустой-ивости), предпочтение отдается полупроводниковой пластине.	сти сообщается резистору, и соответствующая деформа- ция измеряется в выражении электрического сопротивле- ния проволоки или фольги, изменяющегося линейно с увеличение деформации. Металлическая сетка и скле-	чувстви- тельность, способность обеспечи- вать общую точность выше ± 0,10 % де-	устройств, вызы- вающих необходи- мость экранирова- ния или изолиро- вания. Измерения тензо- датчиками подвер-	ного напря- жения. Из-за формирова- ния выход- ного сигнала очень низкого напряжения требуется
В тех случаях, где требу- ются меньшая чувстви- тельность к изменениям температуры и меньшая погрешность, предпочте- ние отдается металли- ческим наклеиваемым тензодатчикам.	ивающее вещество долж- ны совместно передавать деформацию, в то время как клеящее вещество должно также выполнять функцию дизлектрика между сеткой и поверхностью композитного изделия.	формации. Небольшие размеры и масса. Доступны версии датчиков	жены многочислен- ным потенциаль- ным источникам ошибок, таким как расширение или сжатие тензодатчи- ка и/или материала основания; изменение способ-	чувствитель- ность 100 мкв или лучше
В тех случаях, когда необходимы стабильная установка, меньшая погрешность и устране- ние ошибок вследствие смещения и гистере- зиса, предпочтение отдается тонкопленоч- ным и диффузионным полупроводниковым тензодатчикам.	Полупроводниковые тен- зодатчики, состоящие из пластины с резистивным элементом, диспергирован- ным в подслой, измеряют тензорезистивные изменения в кремнии и германии как функцию от напряжения по сравнению с деформацией. Датчик наклеивают непо- средственно на деформи- руемую поверхность тонким	различной длины [от 0,2 до 100 мм (от 0,008 до 4 дюймов)]	ности регистрации или температурно- го коэффициента сопротивления из-за воздействия температуры или старения, веду- щего к очевидной деформации или загрязнению соот- ветственно	
характеристик осе- вой деформации (при деформации и сжатии), а также деформации сдвига, Пуассона, из- гиба и кручения можно использовать комплек- ты тензодатчиков	слоем эпоксидной смолы. Тонкопленочные и диффузи- онные полупроводниковые тензодатчики прочно при- соединяют к испытываемой поверхности, исключая необходимость адгезионного связывания		зание, вызванные несовершенным склеиванием. Нелинейное отно- шение сопротивле- ния к деформации для полупрово- дниковых тензодат- чиков	

9.2 Применение

- 9.2.1 Наклеиваемые тензодатчики сопротивления измеряют среднее удлинение ОК (ΔL/L) относительно его номинальной длины.
- 9.2.2 Тензодатчики наиболее часто используют для определения напряжений в конструкциях. Поскольку испытания нередко имеют разрушающий характер, тензодатчики невозможно использовать

повторно. Тем не менее рабочие характеристики тензометрических датчиков зависят как от материала изготовления, так и от геометрических параметров ОК.

- 9.2.3 Оптимальное и воспроизводимое определение деформации поверхности ОК зависит в значительной степени от материалов, используемых для очистки поверхности склеивания, для приклеивания датчика и нанесения защитного покрытия. К индивидуальным факторам, способным повлиять на рабочие характеристики тензодатчика, относится сплав резистивного элемента, материал носителя, рабочая длина, конфигурация датчика и резистивного элемента, тип и конфигурация припоя, компенсация температуры, сопротивление активных элементов и коэффициент тензоустойчивости.
- 9.2.4 Тензодатчики очень чувствительные устройства с фактически бесконечной разрешающей способностью. Они способны определять незначительные изменения размеров в конструкциях с хорошей точностью, намного превосходящей уровень других известных устройств.

9.3 Ограничения

- 9.3.1 Отклик на деформацию имеет небольшое значение. Необходимо проявлять большую осторожность при их использовании. Кроме того, чтобы обеспечить заданную точность данных, датчики необходимо надлежащим образом приклеить и предварительно проверить. Наиболее распространенный признак неправильной работы датчика это нестабильность, проявляющаяся с изменением времени или температуры. Если тензодатчики не возвращаются к нулевым показаниям при повторении первоначальных условий, или при низком или изменяющемся сопротивлении относительно земли, их работа может считаться некорректной.
- 9.4 Перед использованием система из тензодатчиков проверяется на целостность и возможность обеспечения получения надежных и повторяющихся данных. Возможны два варианта проверки: (1) первоначальная проверка после установки и (2) проверки после подключения электропроводов.
- 9.5 Параметры проведения испытаний и соответствующие тензодатчики выбирают, исходя из требований нормативных документов или технической документации.

9.6 Размеры

9.6.1 Крупногабаритные ОК, например сосуды высокого давления с армированной внешней оболочкой, делающие применение традиционных экстензометров непрактичным, идеально подходят для применения тензодатчиков.

9.7 Техника безопасности

9.7.1 В процессе очистки поверхности образца и приклеивания тензодатчиков могут использоваться опасные для здоровья контролера химические вещества. Необходимо соблюдать меры предосторожности при работе с этими веществами и не допускать их попадание на кожу, в глаза и дыхательные пути.

9.8 Настройка и стандартизация

- 9.8.1 Так как тензодатчики, используемые для определения значений рабочих характеристик, как правило, непригодны к повторному использованию, данные, полученные при первом использовании от нескольких выборочных датчиков используют для прогнозирования рабочих характеристик для всех датчиков одной партии.
- 9.8.2 Перед проведением контроля система тензодатчиков проверяется на целостность и возможность получения надежных и повторяющихся данных.

10 Тепловизионный метод

10.1 Общие сведения

- 10.1.1 Метод основан на регистрации инфракрасной видеокамерой распределения температуры на всей поверхности ОК во время или сразу после нагрева (или охлаждения) контролируемой области. Изменение интенсивности теплового потока, вызванное расположенными близко к поверхности дефектами, воздействует на получаемое распределение температуры на поверхности ОК. В соответствии с ГОСТ Р 53698 (пункт 2.2) различают:
- активный тепловизионный метод: заключается в использовании внешнего импульса, возбуждающего поток тепла (диффузию) в ОК. Нагрев может проводиться при контакте ОК с объектом другой

температуры (теплопроводность), при нагнетании воздуха или жидкости в изделие (конвекционный нагрев) или при воздействии на ОК светом импульсной лампы или прожектора (нагрев излучением). Охлаждение не менее эффективно, но при этом доступна только теплопередача или конвекция. Еще одной формой внешнего воздействия является циклическая механическая деформация ОК. В целом общей для ПК является циклическая частота в диапазоне от 5 до 30 Гц. Бесконтактные методы можно применять для контроля крупногабаритных конструкций;

 бесконтактный метод, при котором излучаемая энергия не требует среды для передачи тепла от источника к поверхности ОК. Для бесконтактного метода наиболее часто используют лампы нагрева (импульсные лампы или прожекторы). Используя нагрев излучением, как правило, легче получить равномерное тепловое излучение по относительно большой поверхности. Метод нагрева излучением также подходит для изделий неправильной формы или с неровной поверхностью. Краткие сведения о методе приведены в таблице 8.

Таблица 8 — Краткая информация о тепловизионном методе неразрушающего контроля

Применение	Принцип действия	Преимущества	Недостатки	Представление результатов
Возможно обнару-	Инфракрасная	Относительно	Инфракрасной	Инфракрасная камера
жение расслоений,	видеокамера	быстрый (ло-	камере необходим	выводит видеоизображе-
нарушений адгезии,	контролирует	кальное иссле-	прямой обзор испы-	ние поверхностного рас-
пустот, трещин и за-	распределение	дование). В не-	туемого изделия, за-	пределения температуры
полнений особенно	температуры по	которых случаях	зор необходим для	испытываемого изделия.
в тонких многослой-	всей поверхно-	данные исследо-	наведения фокуса.	Частота кадров состав-
ных материалах.	сти исследуемой	вания сравнимы	наведения фокуса.	
	the state of the s		Hananianian	ляет обычно, 60 Гц. До-
Предел толщины зависит от коэффи-	детали во время	с рентгеновским	Неравномерное	ступны другие настройки частоты кадров. Некото-
	или сразу после	или ультразву-	применение нагрева	
циента теплопро-	нагрева (или	ковым методами	или охлаждения	рые камеры оснащены
водности полимер-	охлаждения)	в определен-	может привести к пу-	аналоговым видеовы-
ного композитного	исспедуемой	ной части (как	танице термографи-	ходом для записи и/или
материала, а также	зоны. Подпо-	правило, 20 %)	ческих изображений.	цифрового ввода/вывода
используемого	верхностные	времени обсле-	140 70 40 70 70	для подключения к ком-
оборудования и	дефекты влияют	дования.	Нагревательное	пьютеру.
метода.	на тепловой		оборудование опас-	
	поток, создавая	Исследование	но использовать	Дефектные зоны отобра-
Хорошо подходит	локализован-	может быть	в средах, богатых	жают в виде изменений
для быстрого ска-	ные изменения	полностью бес-	горючим.	поверхностной темпе-
нирования больших	температуры на	контактным.		ратуры, наблюдаемой
поверхностей. По-	поверхности.		Поверхностная кон-	инфракрасной камерой.
иск зон, подверга-	Внутренние	Не требуется до-	трастная температу-	Для просмотра эти коле-
емых дальнейшей	дефекты обна-	ступа к противо-	ра из-за внутренних	бания температуры рас-
более тщательной	руживаются с	положной сторо-	дефектов экспо-	пределены по цветной
проверке.	помощью термо-	не конструкции.	ненциально падает	или полутоновой шкале.
	диффузии.		с увеличением глу-	
Наилучшим об-		Обеспечивает	бины, ограничивая	Изображения внутрен-
разом подходит	Термодиффузия	дополнительные	использование для	них дефектов имеют
для поверхностей	может быть вы-	сведения для	тонких многослой-	временный характер.
с высоким коэффи-	звана проце-	других методов	ных материалов	Время визуализации,
циентом излучения	дурой нагрева	неразрушающего	(толщиной до 1/3	пик контраста изобра-
(коэффициент от-	(излучение,	контроля.	дюйма).	жения и последующая
ражения). Плоская	конвекция или			потеря четкости зависят
черная поверхность	проводимость)	Отсутствие вред-	Неэффективен для	от теплофизических
обеспечивает опти-	или охлажде-	ного излучения.	деталей с поверх-	свойств исследуемой де-
мальные результа-	ния (конвекция		ностями с низким	тали и теплофизических
ты, также хорошие	или проводи-	Большое раз-	коэффициентом	свойств дефекта, а также
результаты можно	мость), а также	нообразие	излучения, за ис-	от размера и глубины
получить на боль-	механическим	возможных сфер	ключением случаев	дефекта. В некоторых
шинстве матовых	воздействием	практического	нанесения покрытия	случаях перепад тем-
поверхностей.	(вибрация)	применения.	с высокой излучаю-	ператур очень слабый
		Может быть ис-	щей способностью	и/или кратковременный.
Возможность на-		пользован на са-	(например, черная	
стройки односто-	(A)	мых различных	матовая темперная	Может быть необходима
роннего или двусто-	[1] _[2] [4]	теплопроводных	маска)	система хранения дан-
роннего контроля	19 77	материалах		ных и/или дополнитель-
F	11 6 64			ная обработка данных

10.2 Применение

- 10.2.1 Оборудование для тепловизионного метода может быть очень простым (ручной тепловизор и тепловая пушка) и очень сложным (полностью интегрированная система с компьютерным управлением).
- 10.2.2 Рекомендуется иметь в наличии контрольный образец со свойствами, аналогичными ОК. Контрольный образец должен содержать реальные или искусственные дефекты, размеры которых удовлетворяют требованиям чувствительности тепловизионного контроля.

10.2.3 Следует учитывать.

- характеристики дефекта (диффузионная способность, размер, глубина залегания);
- характеристики тепловизора (чувствительность, полоса частот, частота кадров и т. д.);
- параметры сбора и хранения данных, а также точность и повторяемость результатов.
- 10.2.4 К типичным дефектам, определяемым тепловизионным методом, относятся пустоты, заполнения, трещины, расслоения и присутствие жидких сред. Размер наименьшего обнаруживаемого дефекта ограничен расстоянием между тепловизором и поверхностью детали, а также мгновенным полем обзора тепловизора. Контраст температуры, определяемый на поверхности, экспоненциально падает с увеличением глубины.
- 10.2.5 Контраст температуры, вызванный наличием дефектов в ПК, очень невелик. Поэтому важно провести оценку возможностей тепловизора с использованием контрольного образца, содержащего искусственные дефекты.
- 10.2.6 Данные контроля могут быть представлены в виде одного изображения дефекта или последовательности изображений, отображающей развитие и последующее снижение интенсивности отображения дефекта.
- 10.2.7 Повторяемость результатов контроля зависит от использованного оборудования и методов. Лучшая повторяемость результатов достигается с помощью автоматизированного сбора и хранения данных, синхронизированного с применением теплового импульса.
- 10.2.8 Параметры тепловизионного контроля должны выбираться в соответствии с действующей нормативной документацией.

10.3 Ограничения

- 10.3.1 Ориентация дефекта относительно направления теплового потока.
- 10.3.2 Глубина залегания дефекта относительно рассматриваемой поверхности и размер дефекта относительно глубины его залегания.
- 10.3.3 Отражение падающей энергии на поверхность ОК (при условии, что ОК имеет отражающую поверхность) из-за отражения лампы нагрева или близлежащего горячего объекта может мешать интерпретации теплового излучения от ОК, хотя отличие состоит в том, что сигналы от дефектов имеют кратковременный характер, а сигналы от иных источников (близлежащие горячие объекты) зачастую постоянны.

10.4 Размеры

10.4.1 Способность тепловизора обнаруживать небольшие контрасты температур является функцией относительного угла между поверхностью ОК и камерой с прямым углом обзора, обеспечивающим оптимальные результаты. Необходимо избегать угла обзора более 45° от нормали.

10.5 Техника безопасности

- 10.5.1 При проведении тепловизионного контроля следует руководствоваться действующими в отрасли нормативными документами или технической документацией по охране труда.
- 10.5.2 Требуется соблюдение правил техники безопасности при работе с электрическим и нагревательным оборудованием.

10.6 Настройка и стандартизация

- 10.6.1 Инфракрасные камеры требуют периодической повторной настройки. Кроме того, для проверки работы камеры можно использовать контрольные образцы.
- 10.6.2 Контрольные образцы должны быть изготовлены из таких же материалов, что и ОК, и иметь такие же свойства. Контрольные образцы должны содержать реальные или искусственные дефекты.

11 Ультразвуковые методы

11.1 Общие сведения

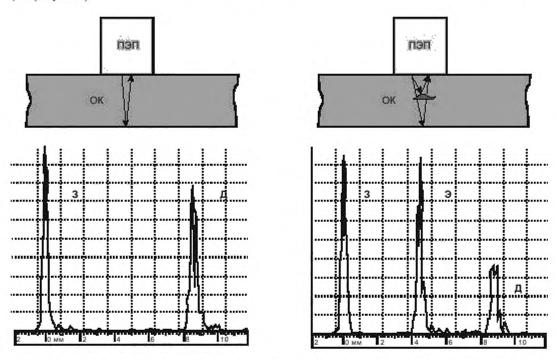

11.1.1 Ультразвуковые методы НК в соответствии с ГОСТ 18353 (приложение 2) основаны на регистрации и анализе параметров упругих волн, которые возбуждаются в ОК. Ультразвуковые методы по характеру взаимодействия с ОК относятся к активным методам и основаны на измерении интенсивности пропускаемого или отражаемого объектом ультразвукового сигнала. Различные несплошности способны отражать, рассеивать и ослаблять энергию сигнала. Ультразвуковая энергия генерируется короткими импульсами при помощи пьезоэлектрических преобразователей. Используемые частоты, как правило, находятся в диапазоне от 1 до 25 МГц. При контроле ультразвуковыми методами применяют контактные или иммерсионные способы создания акустического контакта между преобразователями и ОК. Поскольку воздух не передает высокие частоты, для обеспечения стабильного акустического контакта используется контактная жидкость, например, вода или масло. Перед проведением НК поверхность ОК должна быть очищена от грязи и других инородных частиц. Краткие сведения о методе приведены в таблице 9.

Таблица 9 — Краткая информация об ультразвуковом методе неразрушающего контроля

Применение	Принцип действия	Преимущества	Недостатки	Представление результатов
Общий обзор: Обнару- живает подповерх- ностные и внутренние дефекты. Дополни- тельные сведения: Возможен выбор методов обнаружения рас- слоений и непро- клеев в по- лимерных композит- ных мате- риалах. Возможно автомати- зирован- ное скани- рование деталей	Основные сведения: Импульсная высокоча- стотная ультразвуковая волна заданной частоты вводится в исследуемую деталь посредством пье- зоэлектрического датчи- ка. На поверхность иссле- дуемой детали наносят контактную жидкость, по- зволяющую осуществлять ввод ультразвуковых воли непосредственно в ис- следуемую деталь. Датчик может напрямую контактировать с по- верхностью исследуемой детали или находиться на определенном рас- стоянии при погружении в жидкую среду (иммерси- онный контроль). Измеря- ют амплитуду отраженно- го сигнала или время его прохождения. Дефекты, ориентирован- ные перпендикулярно направлению распростра- нения волны, вызывают ее отражение, таким образом позволяя опре- делить их относительные размеры и расположение (см. столбец «Представ- ление результатов»). Контроль может осущест- вляться вручную или с помощью автоматизиро- ванных систем	Общий обзор: Обнаруживает подповерхностные дефекты: пористость, трещины, инородные включения, расслоения и т. д. Дополнительные сведения: Возможен контроль с использованием продольных, поперечных и поверхностных волн. Многочисленные методы, в том числе эхо-импульсный и теневой метод. Глубину залегания дефектов можно точно измерить. Высокая чувствительность и точность. Портативный. Автоматизированные системы можно использовать для дефектоскопии больших деталей. Оборудование может быть как простым, так и дорогим переносным. От систем с представлением результатов в виде А-скана до крупных портальных систем с представлением результатов в виде С-скана, способных накапливать большие объемы данных	Общий обзор: Требует относи- тельно ровной и гладкой по- верхности. Характеристики материалов (состояние поверхности, направление дефектов) могут повлиять на результаты контроля. Дополнитель- ные сведения: Требуется применять контрольные образцы, не- обходимые для настройки оборудования и оценки дефек- тов. Использование контактной жидкости может привести к ее попаданию внутрь иссле- дуемой детали или возможно- му поглощению пористыми материалами	Общий обвор: Дефекты не ото- бражаются и не записываются на- прямую. Дефекты измеряются путем сравнения положи- тельной амплитуд относительно кон- трольного образца. Данные представ- лены в различных форматах. Дополнительные сведения: Дефекты ото- бражаются на осциллограмме с указанием време- ни и амплитуды, после чего из- меряются путем сравнения ампли- туды отраженного сигнала от дефекта с контрольным от- ражателем

11.2 Методы

11.2.1 Эхометод основан на излучении в ОК акустических импульсов, отражении их от границ раздела сред и дефектов — несплошностей, приеме отраженных импульсов и анализе их параметров (см. рисунок 1).

ПЭП — пьезоэлектрический преобразователь; 3 — зондирующий импульс; Д — донный сигнал, Э — эхосигнал от дефекта

Рисунок 1 — Принцип выявления дефектов эхометодом

11.2.2 Теневые методы или методы прохождения (см. рисунки 2—5) основаны на наблюдении изменения параметров прошедшего через ОК акустического сигнала (сквозного сигнала). При контроле излучающий и приемный преобразователи располагают по разные стороны от ОК или контролируемого его участка (в некоторых методах прохождения преобразователи располагают с одной стороны ОК на некотором расстоянии друг от друга). Информацию получают, измеряя параметры прошедшего от излучателя к приемнику сигнала.

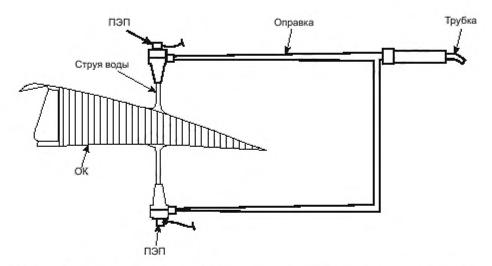


Рисунок 2 — Ручной теневой контроль со струйным способом создания акустического контакта

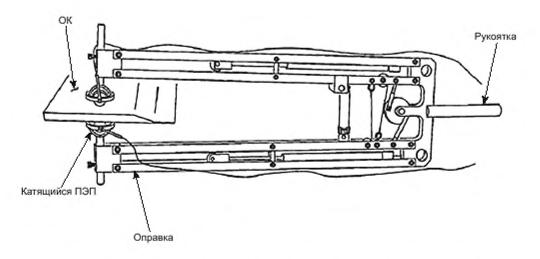


Рисунок 3 — Ручной теневой контроль с использованием катящихся преобразователей

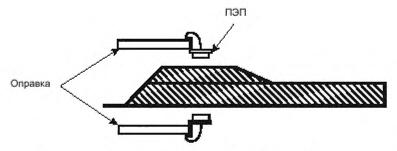


Рисунок 4 — Ручной теневой контроль с использованием преобразователей с воздушным вводом и приемом УЗК

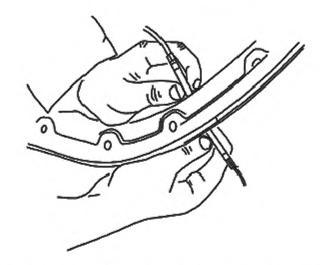


Рисунок 5 — Ручной теневой контактный контроль с использованием малогабаритных преобразователей, снабженных эластичными протекторами

11.3 Применение

- 11.3.1 Размеры минимально выявляемого дефекта при контроле будут зависеть от следующих параметров:
 - 11.3.1.1 Чувствительность ультразвукового оборудования.
 - Физические характеристики преобразователей.
 - (2) Характеристики усиление/ширина пропускания прибора.
 - 11.3.1.2 Материал ОК.
 - (1) Физические свойства.
 - (2) Состояние поверхности.
- 11.3.1.3 Используемые частоты (высокие частоты позволяют выявлять более мелкие несплошности; низкие частоты позволяют проводить контроль более толстых ОК).
 - 11.3.1.4 Ориентация и глубина залегания дефекта.
 - 11.3.2 Эхо-импульсный метод
- 11.3.2.1 Преимущества использование одного преобразователя позволяет проводить НК с односторонним доступом к ОК. Разрешающая способность и чувствительность эхо-импульсного метода зависит от характеристик преобразователя.
- 11.3.2.2 Ограничения. Минимальная толщина ОК зависит от методики контроля (для небольших толщин рекомендуется применение иммерсионного ввода ультразвуковых волн).

11.3.3 Теневой метод

- 11.3.3.1 Преимущества. Ультразвуковая энергия проходит через ОК только один раз, что позволяет проводить контроль деталей и элементов конструкций с большим затуханием ультразвука, а также небольшой толщины.
- 11.3.3.2 Ограничения. Требуется доступ с двух сторон к ОК. Требуется использование специальных оправок для точного соосного позиционирования преобразователей друг относительно друга и их совместного перемещения. Метод не позволяет определить глубину залегания дефектов.

11.3.4 Использование контактных способов создания акустического контакта

- 11.3.4.1 Преимущества. Использование недорогого оборудования. Возможно применение компактного оборудования, работающего от батарей или аккумуляторов. Такие методики используются для определения глубины залегания дефектов эхо-импульсным методом после их обнаружения теневым методом. Методики, использующие контактные способы создания акустического контакта, применяют для оценки повреждений деталей и элементов конструкций из ПК.
- 11.3.4.2 Ограничения. Неровная поверхность ОК может стать причиной рассеивания и поглощения УЗ-энергии, поэтому необходимо, чтобы поверхность была ровной. УЗ-энергию невозможно сфокусировать для получения лучшей разрешающей способности и чувствительности (трудно управлять формой и направлением УЗ-пучка). Преобразователи подвергают износу и требуют периодической замены. Чувствительность переменная величина, зависящая от свойства и количества контактной жидкости.

11.3.5 Использование иммерсионного способа создания акустического контакта

- 11.3.5.1 Преимущества. Позволяет фокусировать или собирать УЗ-энергию на ОК, тем самым увеличивая разрешающую способность и чувствительность. Облегчает НК неравномерно обработанных фасонных деталей и обеспечивает лучшую автоматизацию процесса контроля и запись результатов.
- 11.3.5.2 Ограничения. Для большинства ПК не допускается их полное погружение в иммерсионную ванну. Размеры ОК ограничиваются размером иммерсионной ванны, а оборудование более дорогостоящее, чем то, которое используется для контактных методов.
- 11.3.6 НК эхо-методом и теневым методом осуществляется с использованием методик контроля, технологических рекомендаций, производственных инструкций, руководящих технических материалов, разработанных в соответствии с ГОСТ 20415 (раздел 2).

11.3.7 Размеры

- 11.3.7.1 Если ОК достаточно толстый для того, чтобы разделить последовательные донные отражения, то рекомендуется применять эхо-импульсный метод с одним совмещенным преобразователем. Если ОК достаточно тонкий или наблюдается значительное затухание УЗ-волн в материале ОК, то рекомендуется применять теневой метод с двумя преобразователями.
- 11.3.7.2 При использовании контактного эхо-импульсного метода необходимо учитывать геометрические параметры закругленных поверхностей. Например, при контроле поверхностей, имеющих радиус кривизны от 100 до 130 мм или более, для настройки могут быть использованы контрольные образцы с плоской поверхностью. При контроле поверхностей, имеющих радиус кривизны менее 100—130 мм, необходимо использовать контрольные образцы с такими же радиусами кривизны, если не указано иное.
- 11.3.7.3 Поверхность ОК должна быть однородной, без загрязнений, которые могут оказывать влияние на акустический контакт между преобразователем и ОК.
- 11.3.7.4 При сравнении величины затухания в различных ОК из ПК, эти ОК должны быть геометрически подобными, также должны быть одинаковы и используемая методика, и преобразователи.

11.4 Техника безопасности

При проведении работ необходимо принять меры предосторожности, исключающие возможность поражения контролера электрическим током.

11.5 Настройка и стандартизация

- 11.5.1 Необходимые процедуры и периодичность проведения поверок дефектоскопического оборудования утверждаются специализированными организациями.
- 11.5.2 Для настройки оборудования необходимо изготовление контрольных образцов из идентичного ОК материала с контрольными отражателями известного размера.
 - 11.5.3 Для настройки оборудования можно использовать АРД-диаграммы.

12 Визуально-измерительный метод

12.1 Общие сведения

12.1.1 Визуально-измерительный контроль — один из методов НК оптического вида. Он основан на получении первичной информации об ОК при визуальном наблюдении или с помощью оптических приборов и средств измерений. Это органолептический контроль, т. е. воспринимаемый органами чувств (органами зрения). Световые образы распознаются человеческим глазом в качестве линий, пятен, граней, теней, цветовых тонов, направлений и/или точек отсчета в пределах поля зрения. Затем визуальное наблюдение по памяти сравнивают с ранее сделанными наблюдениями, и определяются отличия по форме, структуре и цвету.

В большинстве случаев визуально-измерительный контроль может быть улучшен и дополнен путем использования зеркал, реагентов, увеличительных стекол, бороскопов, осветительных приборов и приборов для обработки изображений. Краткие сведения о методе приведены в таблице 10.

Таблица 10 — Краткая информация о визуально-измерительном методе неразрушающего контроля

Применение	Принцип действия	Преимущества	Недостатки	Представление результатов
Применяют для проверки поверхностей на наличие усталостных трещин, ударных повреждений, точечной коррозии, пустот, пор, включений, а также для оценки чистоты поверхности. Применяют во время технологического и производственного цикла для обеспечения качества изделия. При использовании вместе с механическими измерениями может применяться для проверки размеров и допусков. Применяют во время анализа дефектов, например, для оценки цветовых изменений, вызванных перегревом, окислением и т. д. Применяют во время контроля в процессе эксплуатации для определения дефектов или неоднородностей, а также для контроля их	Световые изо- бражения рас- познаются чело- веческим глазом в качестве линий, пятен, граней, теней, цветовых тонов, направлений и точек отсчета в пределах поля зрения. Затем визуальное наблюдение по памяти сравни- вается с ранее сделанными наблюдениями, и определяются отличия по фор- ме, структуре и цвету	Может предо- ставлять качественные результаты на- много быстрее, чем другие методы нераз- рушающего контроля. Можно выпол- нять без какого- либо аппарата. Необходимое оборудование обычно являет- ся дорогосто- ящим (напри- мер, зеркала, бороскопы и увеличитель- ные приборы)	Нечувствительность к объемным свойствам и характеристикам. Нельзя проверять сложные структуры с выемкой или внутренними поверхностями. Зависимость от контролера (отличие в остроте зрения). Для стандартизации результатов рекомендуют периодические проверки остроты зрения. Тяжело установить отличия для подобных поформе и цвету объектов или образцов. Установление цветового отличия образца. Поиск сложных дефектов занимает больше времени, чем точечных дефектов. Легче установить наличие дефекта, чем его	результатов Виду того, что видно неустой- чивое световое изображение, ши- роко используется печатная докумен- тация в виде фото- графий на основе фотопленки или видеозаписи. Фотографии на основе пленки со слабым увеличе- нием используют для документи- рования наруше- ний сплошности поверхности, а видеозапись ис- пользуется для документирова- ния недоступных участков, в част- ности при переме- щении устройства обработки изобра- жений в недо- ступные участки с включенной видеокамерой

12.2 Применение

12.2.1 Визуально-измерительный метод НК, осуществляемый опытным контролером, является одним из самых важных и в то же время простых методов НК. Он является недорогим, универсальным способом подтверждения соответствия контролируемых деталей и элементов конструкций производственным и эксплуатационным параметрам и отсутствия на них механических и иных повреждений.

- 12.2.2 Визуально-измерительный метод НК включает качественный контроль физического состояния детали или элемента конструкции из ПК с целью определения явных дефектов или нарушения сплошности, однако может требовать окончательного подтверждения другими разрушающими или неразрушающими методами того, что деталь или конструкция соответствует требованиям технологического чертежа и не была подвержена никаким механическим повреждениям.
- 12.2.3 Визуально-измерительный метод НК используется для обнаружения трещин, поверхностных расслоений, пузырей, вмятин, инородных включений, поверхностных деформаций, чистоты поверхности, разрывов волокон или складок.
- 12.2.4 Полный визуально-измерительный контроль может включать анализ данных и сведений, имеющих отношение к ОК для проверки их соответствия. В некоторых случаях данный анализ выполняют контролером, закрепленным за конкретным участком производства. Полный контроль с отбраковкой изделий выполняется квалифицированным аттестованным по данному методу специалистом. Качественное описание любых обнаруженных дефектов (трещин, расслоений, пузырей, вмятин, включений, деформаций и т. д.) должно быть представлено вместе с соответствующими количественными характеристиками (расположение, количество, размер, классификация по размеру). Результаты контроля оформляют (рекомендуют оформлять) с приложением фото- и/или видеоматериалов.

12.2.5 Преимущества и область применения

- 12.2.5.1 Визуально-измерительный метод обеспечивает оперативный контроль конструкций из ПК для подтверждения их соответствия предъявляемым требованиям. Данный метод подтверждает наличие или отсутствие механических повреждений. Этот метод НК дополняют другими методами НК с целью лучшего понимания характера выявленных дефектов.
- 12.2.5.2 Визуально-измерительный метод выполняют сразу после производства детали или элемента конструкции, обычно без использования вспомогательных средств увеличения с целью выявления складок, поверхностных расслоений и пустот, трещин и т. д.
- 12.2.5.3 Если проводят НК деталей или элементов конструкций из ПК с полупрозрачной матрицей, внутренние пустоты можно обнаружить путем просвечивания структуры светом высокой интенсивности.
- 12.2.5.4 Визуально-измерительный метод необходимо применять в процессе эксплуатации для деталей и элементов конструкций из ПК, подверженных воздействию климатических факторов, тепловых флуктуаций и ударных повреждений. Эти воздействия могут привести к образованию расслоений, растрескиваний и т. д. После визуально-измерительного контроля необходимо использование других методов НК.

12.2.6 Ограничения

- 12.2.6.1 Нечувствительность к объемным свойствам и характеристикам. Этот метод НК не дает информации о глубине и размере дефектов. Метод следует применять с дополнительными методами НК для лучшего понимания характера обнаруживаемых дефектов. Для проведения визуального контроля необходимо понимать производственный процесс и допустимые повреждения ОК.
- 12.2.6.2 Невысокая повторяемость и большая погрешность результатов контроля вследствие индивидуальных особенностей контролеров — близорукость и дальнозоркость, восприятие глубины, периферическое и стереоскопическое зрение и т. д.

12.3 Размеры

При исследовании больших по площади участков большее значение имеют эффекты периферического зрения, которые могут изменять контраст и цвет, а также восприятие глубины.

12.4 Техника безопасности

Учитывая разнообразие задач, типов освещения и связанную с ними нагрузку на органы зрения, очень важно принимать во внимание возможное появление долговременных эффектов, влияющих на остроту зрения.

12.5 Настройка и стандартизация

- 12.5.1 Контролеры, проводящие визуально-измерительный контроль, должны периодически проходить сертификацию для подтверждения требуемого уровня естественной или корригированной остроты зрения, особенно при проведении НК деталей и элементов конструкций, используемых в авиационной промышленности.
- 12.5.2 Персонал, проводящий визуально-измерительный контроль, должен быть обучен и аттестован в области контроля ПК.

- 12.5.3 При проведении визуально-измерительного контроля необходимо принимать во внимание такие факторы, как правильное положение, регулирование угла зрения, надлежащее освещение (человеческий глаз оптимально функционирует при естественном дневном освещении) и др.
- 12.5.4 При НК зеркальных (отражающих) поверхностей осмотр проводят под углом, не превышающим 45°. При НК незеркальных поверхностей рекомендуемый угол зрения должен составлять прямой угол с осматриваемой поверхностью.
- 12.5.5 Невысокая повторяемость и большая погрешность результатов контроля должны быть сведены к минимуму и устранены с помощью соответствующих программ обучения и сертификации. Для того чтобы максимально снизить погрешности, необходимо внедрить стандартизированный порядок проведения визуально-измерительного контроля.
- 12.5.6 Визуально-измерительный контроль проводят (необходимо проводить) на расстоянии от 25 до 60 см от ОК.
- 12.5.7 При увеличении расстояния от ОК значительно снижается как острота человеческого зрения, так и разрешение электронного оборудования, формирующего изображение.
- 12.5.8 Источник естественного или искусственного света должен быть соответствующей освещенности и спектра. В большинстве случаев рекомендовано освещение лампой накаливания. Для общего визуально-измерительного контроля минимальная освещенность должна составлять 160 лк. Для испытания на предельном режиме или контроля мелких деталей минимальная интенсивность должна составлять 500 лк.
- 12.5.9 Для исследования остроты зрения рекомендуются таблицы, представляющие собой черные символы или буквы на белом матовом фоне и освещаемые комнатным светом, достаточным для обеспечения яркости фона таблицы до (85 ± 5) кд/м².

Приложение ДА (справочное)

Оригинальный текст невключенных структурных элементов

ДА.1

1. Область применения

- 1.2 В данном стандарте не указаны критерии приемки-отбраковки, и он не предназначен для использования в качестве средства для утверждения композитных материалов или компонентов для применения.
- 1.4 Ценность данного стандарта заключается в подробных описаниях общих процедур и разделов «Значение и применение» для разработанных методов неразрушающих испытаний применительно к композитным материалам с полимерной матрицей. Приведена дополнительная информация по использованию действующих документов, относящихся к стандарту (акцент делается на применимых стандартах, методиках и методах неразрушающих испытаний Комитета ASTM E07 по неразрушающим испытаниям), размерам, безопасности и опасным факторам, и информации по материальным эталонам.
- 1.5 Для обеспечения надлежащего использования нормативных документов, относящихся к стандарту, есть признанные специалисты по неразрушающим испытаниям, которые аттестованы в соответствии с техническими требованиями промышленности и компании в части неразрушающих испытаний. Необходимо, чтобы специалист по неразрушающим испытаниям принимал участие в разработке компонентов композитных материалов, контроле качества, техническом контроле в процессе эксплуатации или осмотре повреждения.
- 1.6 В данном стандарте приведено краткое описание методов неразрушающих испытаний для волоконных композитов и композитов с полимерной матрицей, армированных волокном. Рассматриваемые композитные материалы в основном являются композитными материалами с содержанием высокомодульных [более 20 ГПа (3 10⁶ фунт/дюйм²)] волокон. Особое внимание уделяют композитным материалам, армированным непрерывным (в противоположность прерывистому) волокном.
- 1.7 Настоящий стандарт применяют к композитным материалам с полимерной матрицей, которые содержат без ограничения бисмалеимидную, эпоксидную, фенолоальдегидную, полиамидную/полиимидную, полибензимидазольную, полиэфирную (термоактивную и термопластичную), полиэфирную/полиэфирэфиркетоннную, полиэфирную/полиимидную, полиимидную (термоактивную и термопластичную), полифенилен/полисульфидную или полисульфоновую матрицу; и алюмооксидное, арамидное, борное, углеродное стекловолокно, кварцевое или карбидокремниевое волокно.
- 1.8 Композитные материалы, рассматриваемые в настоящем стандарте, включают однонаправленные слои, перекрестно-армированные слоистые материалы, слоистые материалы с разнонаправленной укладкой слоев и конструкции типа «сэндвич». Компоненты композитных материалов, выполненные из них, включают сосуды высокого давления с филаментной намоткой волокна, поверхности управления полетом и различные конструкции из композитного материала.
- 1.9 Величины, указанные в единицах СИ, в настоящем стандарте считают нормативными. Величины, указанные в круглых скобках, приведены исключительно для информации.
- 1.10 Настоящий стандарт не претендует на полноту описания всех мер безопасности, связанных с его применением, если таковые имеются. Вся ответственность за установление соответствующих правил техники безопасности и мер по охране здоровья, а также определение пределов применимости регламентов перед началом использования данного стандарта лежит на пользователе стандарта.

ДА.2

2. Нормативные ссылки

2.1 Стандарты ASTM

С274 Многослойные конструкции типа «сэндвич». Термины

D3878 Композитные материалы. Термины

E543 Технические условия для организаций, выполняющих неразрушающие испытания

Е1316 Неразрушающий контроль. Термины

2.2 Стандарт ASNT

SNT-TC-1A Рекомендуемая методика квалификации и аттестации персонала, выполняющего неразрушаюшие испытания

2.3 Приложения ASTM

Блок нагружения вулканизационного пресса (13 чертежей)

ДА.3

3. Термины и определения

3.2 Определения. Определения терминов, имеющих отношение к композитным материалам, используемым в авиакосмической промышленности, которые встречаются в терминах и определениях Е1316, а также в терминах и определениях D3676, следует применять к терминам данного стандарта.

ДА.4

4. Краткое описание руководства

- 4.1 В данном стандарте представлены описание и ссылки на методики и использование следующих разработанных методов неразрушающих испытаний применительно к композитным материалам с полимерной матрицей:
 - 4.1.1 Акустическая эмиссия (раздел 7).
 - 4.1.2 Компьютерная томография (метод рентгеновской дефектоскопии) (раздел 8).
 - 4.1.3 Испытание на герметичность (раздел 9).
- 4.1.4 Рентгенография, компьютерная рентгенография, цифровая радиология с системами цифровых детекторных решеток и радиоскопия (раздел 10).
 - 4.1.5 Ширография (раздел 11).
 - 4.1.6 Измерение деформации (тензодатчики) (раздел 12).
- 4.1.7 Инфракрасная термография (бесконтактные методы с использованием инфракрасной камеры) (раздел 13).
 - 4.1.8 Ультразвуковое исследование (раздел 14).
 - 4.1.9 Визуальный неразрушающий контроль (раздел 15).
- 4.2 Выбор метода неразрушающего испытания. Такие детали из композитного материала, как слоистые материалы, литые изделия и узлы, могут обследоваться с использованием простых процедур, включающих измерение размеров и допусков, определение масс и плотности, определение отверждения путем измерения твердости, визуального осмотра на наличие дефектов, обстукивание с целью определения пористости. Если для целостности узла необходимо провести более полный контроль, это можно выполнить с помощью различных методов неразрушающих испытаний. Неразрушающие испытания можно провести быстро. Однако неразрушающие испытания, как правило, увеличат стоимость детали, и их следует использовать только в тех случаях, когда это необходимо для критически важных видов применения. Кроме того, объем неразрушающих испытаний на деталях из композитного материала зависит от того, является ли деталь основной конструкцей, влияющей на безопасность полета, или второстепенной конструкцией, не влияющей на безопасность полета. Тип или класс детали, как правило, определен на конструкторском чертеже. Некоторые дефекты, которые можно определить с помощью неразрушающих испытаний, указаны в таблице 1.
- 4.3 Общее оборудование и квалификация персонала. Минимальные общие требования к оборудованию для проведения неразрушающих испытаний и квалификации персонала приведены в методике E543. Эту методику можно использовать в качестве основы для оценки организаций контроля или инспекционных органов, или тех и других, она предназначена для использования в целях квалификации или аккредитации, или того и другого, организаций контроля или инспекционных органов, государственных или частных. Рекомендации по данному методу рассмотрены в соответствующем разделе (разделы с 7 по 15).
- 4.4 Общие рекомендации по оборудованию и измерительным приборам. Общие рекомендации по оборудованию и измерительным приборам приведены в методике E543. Рекомендации по данному методу неразрушающих испытаний рассмотрены в соответствующем разделе (разделы 7—15).
- 4.5 Эталонные стандарты. Материальные эталоны, имитирующие целевые дефекты или места разрыва, используют для оценки результатов неразрушающих испытаний. Использование материальных эталонов помогает обеспечить воспроизводимость и повторяемость измерений. Можно использовать материальные эталоны, прошедшие калибровку в признанных государственных или промышленных организациях.
- 4.6 Объем исследований. Специальные виды применения могут предусматривать исследование локальных участков или всего компонента. Исследование может проходить в режиме реального времени или с задержкой, в зависимости от доступности данных. Исследование может быть прямым, косвенным, на месте или удаленным, согласно указанному в договорном соглашении или документации с установленными требованиями.
- 4.7 Срок исследования. Исследования проводят в соответствии с договорным соглашением или документацией с установленными требованиями, и они могут проводиться в течение жизненного цикла изделия, проходящего испытания.
- 4.8 Тип исследований. Существует много разных конфигураций системы неразрушающих испытаний благодаря широкому диапазону доступных компонентов системы. Для покупателя неразрушающих испытаний важно понимать возможность и ограничения применяемой конфигурации. Метод неразрушающих испытаний и систему должна выбирать организация, проводящая испытания, если иное не указано покупателем в договоре или документе с требованиями (т. е. технический чертеж, технические условия и т. д.).
- 4.8.1 Существует много разных конфигураций системы неразрушающих испытаний благодаря широкому диапазону доступных компонентов системы. Для покупателя неразрушающих испытаний важно понимать возможность и ограничения применяемой конфигурации.
- 4.9 Сравнение в табпичной форме большей части разработанных методов неразрушающих испытаний, рассматриваемых в стандарте, приведено в приложении X1 методики E543; а именно: рассмотрены акустическая эмиссия, рентгенография, измерение деформации, термография (инфракрасная) и ультразвуковое исследование. В сравнении приведено краткое описание обнаруженных или измеренных свойств, обнаруженных типичных разрывов, типичных видов применения, применимых стандартов ASTM, преимуществ и ограничений. Аналогичное краткое описание приеедено в таблице 2.

ДА.5

5. Значение и применение

- 5.1 В данном стандарте приведены ссылки, которые предназначены для контроля качества данных неразрушающих испытаний. Цель данного стандарта заключается, следовательно, не в том, чтобы устанавливать критерии приемки, а в том, чтобы утвердить композитные материалы или детали для использования в авиакосмической промышленности.
- 5.2 Некоторые методики, на которые ссылается данный стандарт, написаны, чтобы их можно было указывать в технических чертежах, технических условиях, заказах на поставку или договоре, например, методика Е1742 (рентгенографическое исследование).
- 5.3 Критерии приемки. Соответствие композитного материала или детали критериям приемки и их пригодности для применения в авиакосмической промышленности должна определять компетентная проектная организация. При выполнении исследования в соответствии с нормативными документами, указанными в данном стандарте, в технических чертежах, технических условиях, заказе на поставку или договоре должны быть указаны критерии приемки.
- 5.3.1 Критерии приемки/отбраковки должны включать перечень предполагаемых видов дефектов и уровень отбраковки для каждого.
- 5.3.2 Классификация изделий, проходящих испытания в зонах для разных критериев приемки/отбраковки, должна быть определена из договорной документации.
- 5.3.3 Отбраковка изделий из композитных материалов. Если обнаружено, что тип, размер или количество дефектов выходит за пределы допустимых ограничений, указанных в чертеже, заказе на поставку или договоре, то изделие из композитного материала следует отделить от принятых изделий с соответствующим указанием как неудовлетворяющее техническим условиям, передать его компетентной проектной организации для проверки качества материала и определить его как: (1) приемлемое в данном виде, (2) подлежащее дальнейшей доработке или ремонту с целью обеспечения приемлемости материалов или детали или (3) подлежащее списанию, если того требует договорная документация.
- 5.3.4 Критерии приемки и интерпретация результатов должны быть определены в документации с требованиями выполнения исследования. Между покупателем и поставщиком должна быть достигнута предварительная договоренность об интерпретации результатов. Все разрывы с признаками превышения уровня отбраковки, определяемого документацией с технологическими требованиями, должны быть отбракованы, за исключением случаев, когда в чертеже детали определено, что неприемлемые разрывы не должны оставаться в готовой детали.
- 5.4 Особенности жизненного цикла. Рассматриваемые методики неразрушающих испытаний и методы испытания доказали свою практичность при контроле качества ПМК в течение жизненного цикла изделия. Современная модель неразрушающих испытаний, которая получила развитие в течение последних двадцати лет, полностью подтвердила преимущества, имеющие место при использовании неразрушающих испытаний в процессе: (а) разработки и оптимизации продукции и процесса, (b) технологического контроля в режиме реального времени, (c) контроля после изготовления, (d) технического контроля в процессе эксплуатации и (e) контроля технического состояния.
- 5.4.1 Неразрушающие испытания в процессе производства можно использовать для технологического контроля с обратной связью, поскольку все испытания основаны на измерениях, которые не повреждают испытуемое изделие.
- 5.4.2 Краткое описание применимости методов неразрушающих испытаний для оценки материалов ПМК и деталей в течение их жизненного цикла приведено в таблицах 3 и 4.
- 5.5 Особенности общей геометрии и размеров. Контур детали, кривизна и условие поверхности могут ограничивать возможность проведения определенных испытаний для определения дефектов с необходимой точностью.
- 5.6 Отчетность. Отчеты и записи должны быть указаны в соглашении между покупателем и поставщиком. Необходимо, чтобы любой отчет по неразрушающим испытаниям или архивный отчет содержал по возможности информацию о типе материала, способе изготовления, названии производителей, номере детали, партии, дате выкладки и/или отверждения, дате и нагружении давлением в предыдущих испытаниях (для сосудов под давлением), статистических данных по предыдущей эксплуатации (для эксплуатируемых и вышедших из строя изделий из композитных материалов). Прямая и обратная совместимость данных, наличие данных, значимость (срок хранения данных), изменение технических условий, редакция и дата технических условий, особенности программного и аппаратного обеспечения также будут определять способ выполнения отчета.

ГОСТ Р 56787-2015

Таблица 3 — Примеры применения разработанных методов неразрушающих испытаний в течение жизненного никля

Метод неразрушающего контроля	Применение				
Акустическая эмиссия	Используют для контроля качества процесса производства и изготовления (например, для оценки клеевого соединения после намотки выкладки или отверждения), для кон- трольного испытания сосудов высохого давления после изготовления и для периодиче- ского технического контроля в процессе эксплуатации и контроля технического состоя- ния до усталости				
Компьютерная томография	Используют в качестве метрологического метода после изготовления				
Испытание на гер- метичность	Используют для проверки герметичности после изготовления и повторной оценки сосу- дов высокого давления в процессе эксплуатации. Например, обнаружение утечки с по- мощью гелия используют в процессе изготовления изделия из композитного материала с целью обнаружения и устранения утечек навсегда (желательно) или на время таким об- разом, чтобы позднее можно было выполнить ремонт. Аналогично, обнаружение утечки с помощью газообразного галогена использовалось во время исследования в процессе производства				
Рентгенографиче- ская дефектоскопия и радиоскопия	Используют в процессе контроля изготовления для оценки дефектов или разрывов со- тового наполнителя, например, связи между узлами, стыки между наполнителем, стыки между наполнителем и конструкцией, пористость, включенный материал, а также про- верка размещения конструкции. Структура связи материала на основе воды не для сло- истых материалов				
Ширография	Используют при контроле качества, оптимизации материала и технологическом контроле процесса изготовления				
Измерение дефор- мации	Используют в процессе контрольного испытания до ввода в эксплуатацию или в процес- се повторной оценки. Может быть разрушающим, в зависимости от пороговых значений напряжения, достигаемых во время испытания				
Термография	Используют для отслеживания развития дефектов и разрывов в процессе эксплуатации. При использовании видеоаппаратуры для проведения термографии системы, которые подвергаются динамическим испытаниям или используются, могут исследоваться в ре- жиме реального времени				
Ультразвуковое ис- следование	Системы автоматической записи позволяют убрать деталь с производственной линии, если серьезность дефекта превышает установленные ограничения. Измерение види- мого затухания в композитных материалах целесообразно в таких видах применения, как сравнение кристаллизации и нагружения волокна в разных партиях или оценка ухуд- шения состояния окружающей среды. Самый распространенный метод, применяемый для определения дефекта, связанного со споистым материалом, например, ударного повреждения, вызывающего волокнистый излом расслоения, включенный материал, и пористость				
Визуальный нераз- рушающий контроль	Используют преимущественно для контроля качества композитных материалов и дета- лей при получении (после изготовления и до установки)				

Таблица 4— Применение установленных NDT-методов в течение жизненного цикла композитных материалов с полимерной матрицей

Дефект	Разработка и оптимизация из- делия и процесса	Технологический контроль в режиме реального времени	Контроль после изго- товления	Технический кон- троль в процессе эксплуатации	Контроль техническо- го состояния
Акустическая эмиссия	×	X	х	X	Х
Компьютерная томография			х		
Испытание на герметичность	х	×		x	
Рентгенографическая де- фектоскопия и радиоскопия	x	×	х	х	
Ширография	×	×	х	х	
Измерение деформации			х		х
Термография			Х	х	
Ультразвуковое исследование	×	X	х	×	х
Визуальный контроль	х	X	X	х	х

ДА.6

6. Процедура

6.1 Если неразрушающие испытания выдают показание о разрыве материала, то показание должно интерпретироваться как ложное, соответствующее или несоответствующее. Если показание интерпретируется как соответствующее, то необходимая последующая оценка приведет к решению о приемке или отбраковке композитного материала или детали.

ДА.7

- 7. Акустическая эмиссия
- 7.1 Нормативные ссылки
- 7.1.1 Стандарты ASTM:2

E569 Методика для контроля конструкций методом акустической эмиссии в процессе контролируемого моделирования

Е650 Руководство по монтажу пьезоэлектрических датчиков акустической эмиссии

Е750 Методика для описания контрольно-измерительных приборов акустической эмиссии

Е976 Руководство по определению воспроизводимости ответа датчика акустической эмиссии

Е1067 Методика для исследования емкостей/сосудов из стеклопластика методом акустической эмиссии

E1118 Методика для исследования труб из армированной термоусадочной резины методом акустической эмиссии

E1211 Методика для определения протечки и ее места с использованием датчиков акустической эмиссии, установленных на поверхности

Е1419 Метод испытания для исследования бесшовных сосудов высокого давления, заполненных газом, с помощью акустической эмиссии

Е1932 Руководство по исследованию небольших деталей методом акустической эмиссии

E2076 Метод испытания для исследования лопаток вентилятора из стеклопластика с помощью акустической эмиссии

E2191 Метод испытания для исследования сосудов высокого давления с филаментной намоткой волокна, заполненных газом, с помощью акустической эмиссии

7.1.3 Справочники и стандарты по неразрушающим методам контроля

MIL-HDBK-732A Неразрушающие методы контроля композитных материалов. Акустическая эмиссия

7.3.8 В дополнение к непосредственной оценке испусканий, обнаруженных во время использования побудителя, постоянная локализация количества и локализация испусканий источников и относительного количества АЕ, обнаруженных из каждого источника, создают базис для сравнения с источниками, обнаруженными во время экспертизы и во время последовательного возбуждения.

7.3.10 Коэффициент Фелисити. Коэффициент Фелисити — численное значение применяемого напряжения, в котором «существенные АЕ» начинают разделяться применимым напряжением во время предыдущего цикла. Термин «существенные АЕ» не имеет никакого количественного определения в настоящее время и открыт для интерпретации практиками АЕ. Однако практика Е1067 предлагает три руководящих принципа для того, чтобы определить начало образования существенных АЕ:

7.3.10.1 Более пяти импульсов во время 10 % увеличения применяемого напряжения.

- 7.3.10.2 Более 20 интервалов во время 10 % увеличения применяемого напряжения.
- 7.3.10.3 Увеличение АЕ в константе применяемого напряжения.
- 7.3.11 Эффект переменных на коэффициенте отношения Фелисити при приложении и перемещении напряжения, период пикового применяемого напряжения, чувствительность системы АЕ, время между циклами нагружения, состоянием напряжения во время нагружения, АЕ исходного механизма, условия испытаний и применяемое напряжение относительно предела прочности испытуемого образца (отношение напряжения) все может воздействовать на отношение Фелисити. Композитные материалы и комплектующие, свойства которых зависят от коэффициента, такие как армированные волокном соединения с пластиковыми матрицами, будут подвержены воздействию в большей степени.
- 7.3.12 Эффект Кайзера. Если композитный материал или комплектующая нагружены в соответствии с данным уровнем напряжения и затем разгружены, обычно АЕ не будут наблюдаться относительно непосредственного перегружения, пока предьдущее нагружение не будет завершено. Это явление известно как эффект Кайзера. Эффект Кайзера сохраняется, когда отношение Фелисити составляет более или равно 1,0, и нарушается, когда отношение Фелисити менее или равно 1,0. Поэтому эффект Кайзера сохраняется, когда никакие новые АЕ-источники не присутствуют или когда нет никаких реверсивных источников АЕ, существующих во время последовательного проведения цикла нагружения. В иных случаях, когда эффект Кайзера нарушается, тогда оба этих случая имеют место быть.

7.4 Использование ссылочных документов

- 7.4.1.2 Испытание сосудов высокого давления:
- (1) Учитывают требования брошюры С6 СGA для обучения персонала, проводящего испытания АЕ на сосудах высокого давления.
- (2) Учитывают требования руководства E569 для изучения руководящих принципов экспертизы АЕ и контроля структур, таких как сосуды высокого давления, которые подвергаются напряжению механическими или тепловыми средствами.
- (3) Учитывают требования метода испытаний Е1419 для изучения руководящих принципов для проведения экспертизы АЕ для некриогенных сосудов высокого давления бесшовного типа (трубы), используемых для дистрибуции или хранения промышленных газов под давлением больше рабочего, в качестве альтернативы периодическому гидростатическому испытанию на герметичность.
- (4) Учитывают требования метода испытаний Е2076 для измерения АЕ во время моделирования изгибающего нагружения.
- (5) Учитывают требования метода испытаний Е2191 для изучения руководящих принципов для измерения АЕ новых и существующих сосудов высокого давления, сосудов под давлением из намоточного композитного материала, при давлении, равном или большем рабочему, в качестве альтернативы методу сжатой газовой ассоциации (CGA) — предполагает трехлетнюю визуальную экспертизу.

Примечание 3 — Медленное нагружение должно проходить на скоростях потока, которые не производят фон от потока среды, на которую оказывают давление. Во время испытания на герметичность композитных сосудов высокого давления энергия АЕ от отдельного явления АЕ, достигающая чувствительного элемента АЕ, изменяется в зависимости от уровня жидкости в сосуде. Кроме того, характеристики распространения волны АЕ будут зависеть от того, есть ли у сосуда металлическая или резиновая подкладка, например.

Примечание 4 — Герметизация при быстрой нагружаемости может использоваться, если используются периоды выдержки. В этом случае данные АЕ регистрируются только во время периодов выдержки. В то время как эта техника для периода выдержки может быть применена для охарактеризования стеклянных или армированных арамидным волокном соединений, та же самая техника, возможно, не будет подходить для углеродистых и усиленных графитом соединений.

Примечание 5 — Для соединений, изготовленных по определенным маршрутам производства (например, обмотка нити), поверхность композита, возможно, не столь же гладка, как обычно. Чтобы получить однородное сцепление от образца к образцу, оптимальное количество соединяющего вещества, вероятно, придется определить экспериментально, применяя различное количество компонентов и определяя, какое количество дает самый однородный сигнал АЕ от графитового стержня, например.

7.4.1.3 Испытание на утечку. Следуют требованиям руководства E1211 для описания пассивного метода, использующего: (1) установленные поверхностью АЕ чувствительные элементы или (2) чувствительные элементы, прикрепленные посредством акустических волноводов, которые позволяют обнаружение и локализацию источника установившегося состояния газа и жидкости, просачивающейся из герметизируемой системы. Примеры применения, чтобы пояснить использование АЕ для обнаружения утечки в предохранительном клапане, шаровом клапане и линии передачи, также даются в приложении X1 практики E1211.

7.4.2 Оборудование АЕ и инструментарий

- 7.4.2.1 Следуют требованиям руководства Е650 для изучения руководящих принципов об установке пьезоэлектрических чувствительных элементов АЕ.
- 7.4.2.2 Следуют требованиям руководства Е750 для заданных критериев и измерений на компонентах оборудования и установках АЕ, определения ширины полосы инструмента, частотной характеристики, усилия, уровня помех, порогового уровня, динамического диапазона, точки сигнализации перегрузки, глухого времени и установливают точность.

7.4.2.3 Следуют требованиям приложения X1 руководства Е750 для обсуждения электронных блоков или установок АЕ, включая чувствительные элементы, предусилители, фильтры, усилители мощности, усилители привода линии, порог и расчетные инструменты, а также сигнальные кабели. Кроме того, самые современные системы АЕ используют компьютеры, чтобы управлять сбором, хранением, показом и анализом данных. Особенности машинной системы включают в себя данные о форме волны, а также широкий отбор параметров измерения, касающихся сигнала АЕ.

Примечание 6 — Сигналы АЕ от композитов, как правило, имеют высокую амплитуду, таким образом, чувствительность элемента обычно не является проблемой, кроме случаев, когда чувствительные элементы установлены слишком далеко друг от друга или если порог устанавливается слишком высоко. Использование широкополосных нерезонансных элементов (по сравнению с резонансными чувствительными элементами) полезно в обнаружении сигналов по амплитуде частот и может применяться, когда используется теория распространения волн, чтобы расшифровать сигнал АЕ и более точно локализовать источник АЕ. Иным образом резонансные или нерезонансные чувствительные элементы могут использоваться, пока они установлены на таком расстоянии на композитном материале или комплектующей, чтобы сохранить чувствительность к источникам АЕ, распределенным по испытуемому образцу. Типичные сигналы АЕ, генерируемые в соединениях, имеют более высокую амплитуду около источника по сравнению с АЕ, генерируемым в металлах. В отличие от металлов, более высокие частоты в сигнале АЕ логлощаются соединением на относительно коротких расстояниях распространения. Таким образом, для соединений часто используются низкочастотные чувствительные элементы и фильтры. Вследствие того что источники АЕ, как правило, имеются везде в соединениях, когда таковые подвергаются напряжению, для источников АЕ весьма необычна ситуация, когда они возникают в композитах непосредственно под чувствительными элементами. Такая ситуация может быть сигналом очень высокой амплитуды. Такие случаи маловероятны в металлических образцах, поскольку маловероятно, что чувствительный элемент будет размещен прямо по ходу трещины. Ввиду амплитуды сложных сигналов АЕ в некоторых случаях необходимо использовать предусилитель только с 20 ДБ усилия, чтобы избежать насыщения сигнала. Большинство коммерческих предусилителей АЕ насыщают на выходе двойной амплитуды напряжением 10-20 В. По этим причинам распространены предусилители с усилием 20—40 ДБ, выходным напряжением двойной амплитуды на 10 В и динамическим диапазоном на 80—100 ДБ.

- 7.4.2.4 Следуют требованиям приложения X2 руководства Е750 для объяснения предложенных измерений (например, входное полное сопротивление предусилителя, фасонирование волны, измерения усилия).
- 7.4.2.5 Следуют требованиям приложения X3 руководства Е750 в отношении электрической конфигурации цепи для измерения входного полного сопротивления.
 - 7.4.2.6 Знакомятся с приложением X4 практики E750 об источниках акустических и электрических помех.
- 7.4.2.7 Следуют требованиям приложения А1 руководства Е1067 или приложения А1 руководства Е1118 для изучения эксплуатационных требований инструментария для чувствительных элементов, сигнального кабеля, соединяющего вещества, предусилителя, фильтров, энергетического сигнального кабеля, главного усилителя и главного процессора.
- 7.4.2.8 Следуют требованиям приложения А2 руководства Е1067 или приложения А1 руководства Е1118 для базовой калибровки оборудования АЕ, включая порог низкой амплитуды, высокоамплитудный порог и контроль калибровки инструмента.
- 7.4.2.9 Следуют требованиям приложения А3 руководства Е1067 для изучения руководящих принципов размещения чувствительного элемента для атмосферных, атмосферных под давлением и атмосферных вакуумных резервуаров.
- 7.4.2.10 Следуют требованиям приложения А1 руководства Е1419 для изучения спецификаций для компонентов АЕ, а именно чувствительных элементов, сигнального кабеля, соединительного вещества, предусилителя, энергетического сигнального кабеля, источника питания и сигнального процессора, используемых в качестве альтернативы периодическому гидростатическому испытанию на герметичность.
- 7.4.2.11 Следуют требованиям MIL-HDBK-732A для изучения полезных деталей применения относительно испытательной установки и проверки фиксации (раздел 4); соединительных веществ и волноводов (раздел 5); тип, локализация, и приложение чувствительных элементов (раздел 6); кабели (раздел 7); предусилители (раздел 8); вторичные усилители и фильтры (раздел 9); временные интервалы импульса и непрерывные АЕ (раздел 10); источники АЕ в соединениях (разделы 11—14); характеристики распространения волны (раздел 15); источник или локализация дефектов или разрыва (раздел 16); отношение эффекта/отношения Кайзера (раздел 17); коэффициенты значения данных АЕ (раздел 18); калибровка АЕ-критериев на месте (раздел 19); посторонние АЕ (раздел 20) и проверка испытания АЕ (раздел 21).

7.4.3 Калибровка и стандартизация АЕ

- 7.4.3.1 Следуют требованиям руководства E569 для выполнения проверки чувствительности локализации (включает в себя зональную проверку чувствительности локализации и исходную проверку чувствительности алгоритма локализации).
- 7.4.3.2 Следуют требованиям руководства Е976 для выполнения проверки чувствительного элемента или системной проверки рабочих характеристик, используя графитовый стержень.
- 7.6.1.2 Температура при проведении испытания не должна быть ниже температуры перехода в пластично-хрупкое состояние (β-релаксация) полукристаплической матрицы или выше температуры остекления резины (α-релаксация или переходная температура остекления) аморфной матрицы, используемой для обертывания композитных сосудов высокого давления.

FOCT P 56787-2015

- 7.6.1.3 Должны быть соблюдены предосторожности на случай последствий аварии, когда в результате испытания давлением, например, необходимо предотвратить выброс мусора или разбрызгивание жидкости. Применение давления при пневматических условиях не рекомендуется, кроме тех случаев, когда нормальные рабочие нагрузки включают в себя только наложенное давление газа или просто давление газа. Необходимо избегать перенапряжения низких отделов сосуда при нагружении жидкостью для моделирования рабочего давления газа.
- 7.6.1.4 Пневматическое испытание чрезвычайно опасно. Специальные меры безопасности должны быть предприняты при необходимости пневматического испытания, например, в отношении предохранительных клапанов и т. д.
- 7.7.4 Системная проверка должна быть немедленно выполнена до и немедленно после проведения каждой экспертизы. Для системной проверки используют механическое устройство, такое как графитовый стержень или пьезоэлектрический датчик, чтобы вызвать волны напряжения в испытуемый образец. Сгенерированная волна напряжения должна быть неразрушающей. Системная проверка определяет чувствительность каждого системного канала (включая соединяющее вещество и испытательное крепление).
 - 7.8 Эталоны материалов
 - 7.8.1 Не применяется.

ДА.8

8. Компьютерная томография (рентгеновский метод)

8.1 Ссылочные документы

8.1.1 Стандарты Американского общества по испытанию материалов (ASTM):2

Директива E1441 для компьютерной томографии (CT) — Отображение

Практика Е1570 для томографического испытания (СТ)

Директива E670 года для компьютерной томографии (CT) — Системный отбор. Метод испытаний E1935 для калибрования и измерения плотности CT

Таблица 6 — Общие данные о компьютерной томографии

Применение	Принцип действия	Преимущества	Недостатки	Данные отчето
Позволяет	Проникающее рент-	Предлагает ясную	Сканеры устройств СТ имеют	Переве-
определить	геновское излучение	поперечную карти-	обычно верхний предел в отноше-	денное в
глубину	проходит через испы-	ну предмета.	нии размера образца, однако для	цифровую
дефектов или	туемый образец вдоль		крупных образцов могут использо-	форму по-
неоднородно-	нескольких каналов.	Из-за отсутствия	вать специализированные сканеры.	перечное СТ
стей.	чтобы получить общее	структурного шума	Большие образцы (сложные лопа-	изображение
	поперечное изображе-	от деталей вне	сти вентилятора) могут требовать	плотности
Количествен-	ние СТ-плотности, на-	тонкой плоскости	использования источников для	(томограмма)
ный анализ	зываемое томограммой.	исследования изо-	рентгеновского излучения линейно-	испытуемого
размера эле-		бражения намного	го ускорителя (1 МЕВ и выше).	образца. По-
мента и фор-	Система СТ имеет	легче интерпрети-		зволяет полу-
мы, передача	много вариантов	ровать.	Удобен для осмотра больших пло-	чить полные
контраста	предоставления дан-		щадей.	трехмерные
плотности,	ных рентгеновского	Идеально для	Подготовка снимков компьютерной	изображения
толщины сте-	исследования (также	позиционирова-	томографии может занять много	плотности
нок, толщины	называемых представ-	ния и калибровки	времени.	для весьма
покрытия,	лениями) от DDA (или	плоской и объ-		маленьких
отражение	1D или 2D), преобра-	емной детали в	Время сканирования зависит от	объектов
абсолютной	зовывает измеренный	трех измерениях,	размера образца, рентгеновского	
материаль-	сигнал в цифровой	например, дефект	исходного излучения, заданного	
-онтопп йон	формат и затем выпол-	или распростране-	разрешения и геометрии детектора.	
сти и средне-	няет восстановление,	ние разрыва.		
го числа	чтобы собрать диа-	A	Трудность в получении достаточ-	
атомов.	грамму или трехмер-	Используется	ного контраста между нижними	
	ный набор трехмерных	одинаково ре-	подструктурами атомного числа	
Может дать	изображений.	зультативно для	соединений (например, матрица,	
ограниченно		металлических и	слой, тонкие пластины), особенно	
химическую	Системы СТ сегодня	неметаллических	для систем СТ, базирующихся на	
характеристи-	не ограничивают-	образцов, твердых	плоской поверхности (получение	
ку внутренней	ся генерированием	тел и волокнистых	достаточного контраста не является	
структуры	томограмм. Они могут	материалов, а	проблемой для систем СТ высокого	
материалов	также генерировать	также гладких и	диапазона).	
	объемные данные,	неравномерных		
	трехмерную визуализа-	предметов.	Возможность наличия артефактов	
	цию и переформатиро-		в данных.	
	ванные, многослойные	Обширные возмож-	Может потребоваться набор ин-	-4
	изображения	ности обработки	струментов и/или крепления для	
		изображения	обработки образца	

8.2 Общая процедура

8.2.1 СТ — метод радиографической дефектоскопии, который использует компьютер, чтобы реконструировать изображение поперечной плоскости (пластина) через испытуемый образец. СТ предполагает осуществление измерений проникающего рентгеновского излучения на предмет непрозрачности испытуемого образца через несколько каналов, чтобы составить перекрестное изображение плотности ослабления СТ-массы, называемое томограммой. Полученное в результате поперечное общее изображение — это количественное отображение линейного рентгеновского массового коэффициента затухания в каждой точке в плоскости. Линейный массовый коэффициент затухания характеризует локальный мгновенный коэффициент, в котором рентгеновские лучи ослабляются во время сканирования, или разброса, или поглощения от падающего излучения, поскольку оно распространяется через испытуемый образец.

8.3 Значение и использование

- 8.3.1 СТ обычно выполняется после получения двух размерных рентгеновских отображений.
- 8.3.2 СТ как условная радиография и радиоскопическое исследование широко применим к любому материалу или предмету, через который может пройти луч проникающего излучения и может быть обнаружен, включая композитные материалы и комплектующие. Новый пользователь может быстро научиться (часто при первом контакте с технологией) читать данные СТ, потому что изображения соответствуют наиболее близко способу, которым человеческий разум визуализирует пространственные структуры в отличие от проекционной радиографии. Далее, поскольку изображения СТ являются цифровыми, они могут быть увеличены, разложены, сжаты, заархивированы, введены как данные в вычисления рабочих характеристик для сравнения с цифровыми данными от других методов неразрушающих испытаний или переданы другим подразделениям для дистанционного наблюдения. Дополнительно СТ имеют увеличенную контрастность по компактным областям более 20—25 ликселов. У этого качества нет никакого классического аналога. Распространено контрастное различение более 0,1 % на доверительных уровнях с тремя сигмами по областям столь же малым, как квинта АЕ одного процента размер предмета.
- 8.3.3 Изображения компьютерной томографии (СТ) хорошо зарекомендовали себя для использования в создании количественных измерений. Величина и природа погрешности в измерениях СТ в большой степени зависят от характеристик аппарата сканирующего устройства, параметров сканирования, предмета и других особенностей. Среди параметров, которые могут быть оценены на изображениях СТ, размер элемента и форма, контраст плотности, толщина стенок, толщина покрытия, абсолютная материальная плотность и среднее число атомов.
- 8.3.4 Использование таких количественных измерений требует, чтобы были известны погрешности, связанные с ними. Точность измерения может лучше всего быть определена при отслеживании распространения измерений той же самой характеристики при повторном сканировании, предпочтительно количеством смещения предмета между сканированиями, как ожидается на практике. Это гарантирует учет всех эффектов, которые изменяют результат, такой как статистика фотонов, дрейф детектора, артефакты выравнивания, пространственная вариация, вариация функции рассеяния точки, размещение объекта и т. д.
- 8.3.5 Одним из источников такой вариации являются неисправленные систематические эффекты, такие как изменения усилия или смещения между различными изображениями. Такие разности изображения могут часто удаляться от вычисления измерения включением калибровки материалов в изображение, которое тогда преобразовывается таким образом, чтобы градуировочные материалы были в стандартных величинах.
- 8.3.6 В дополнение к случайной вариации при измерении любого значения может также проявится смещение плотности. Это может быть результатом артефактов в изображении или ложных предположений, используемых в алгоритме измерения. Если такое определено измерением испытуемого образца, такие смещения могут быть устранены путем их учета в алгоритме.
- 8.3.7 Исследование распространения результатов измерения повторенных сканирований образцов с известными свойствами, подобными тем, которые являются целью исследования неразрушающих испытаний, являются лучшим методом для определения точности и смещений в измерениях СТ. Как только такие определения для данной системы и набора объектов и условий сканирования будут выполнены, они могут использоваться, чтобы дать хорошо обоснованные оценки точности и смещения для промежуточного звена объектов по размеру, композиции и форме, пока на изображениях не появятся какие-либо необычные артефакты.
- 8.3.8 При условии правильной калибровки также могут быть выполнены очень точно абсолютные определения плотности. Величины ослабления могут также быть точно связаны с удельной массой материалов. Если детали в изображении являются чистыми однородными злементами, величины плотности могут все еще быть достаточными, чтобы в некоторых случаях распознать материалы. В случае если никакая изначальная информация недоступна, удельные массы СТ не могут использоваться, чтобы опознать неизвестные материалы с однозначным результатом, так как может быть предположен бесконечный спектр составов, которые могут приводить к любому данному наблюдаемому ослаблению. В этом моменте все еще может использоваться исключительная чувствительность плотности СТ, чтобы определить морфологию комплектующей и выдвинуть на первый план структурный дефект.
- 8.3.9 Поскольку время создания изображений компьютерной томографии, как правило, предполагает порядка минуты на каждов, полные трехмерные исследования СТ могут быть достаточно трудоемкими. Полномасштабные исследования комплектующей требуют большие возможности хранения информации, или опереженные методы показа, или соблюдение обоих условий, а также оборудование, чтобы помочь оператору рассмотреть огромный объем генерируемых данных. Это может быть компенсировано современными графическими техническими.

средствами и автоматическим программным обеспечением для исследования в помощь пользователю. Таким образом, часто достаточно проведения неполных исследований СТ, дополняя исследование цифровым радиологическим сканированием.

- 8.3.10 Практика экспертизы СТ общая часть и специфическое применение. Промышленное использование СТ достаточно ново, что отражается на том, что во многих случаях методы согласования еще не созданы. Ситуация осложняется далее фактом того, что системные технические средства СТ и рабочие характеристики все еще подвергаются существенному развитию и усовершенствованию.
 - 8.3.11 Преимущества и применение
- 8.3.11.1 В отличие от радиографии или радиоскопии СТ позволяет наблюдать глубину дефектов. Это позволяет показать малые аспекты дефектов таким образом: можно получить информацию о дефекте, недоступную в условной радиографии.
 - 8.3.11.2 СТ идеально подходит для расположения и калибровки плоской и объемной детали в трех измерениях.
- 8.3.11.3 Из-за чувствительности поглотительных поперечных разрезов к атомной химии разрешение СТ ограничено химической характеристикой внутренней структуры материалов.
- 8.3.11.4 Так как метод базируется на рентгеновском излучении, он применяется одинаково хорошо для металлических и неметаллических образцов, твердых тел и волокнистых материалов, а также гладких и нерегулярноровных предметов. При использовании с другими неразрушающими методами (неразрушающими испытаниями) методы, такие как ультразвук, данные СТ, могут предоставить оценку материальной целостности, которая не может быть в настоящее время достигнута никакими иными средствами.
- 8.3.11.5 Главное преимущество СТ состоит в том, что он без разрушения предоставляет количественные данные вязкости (т. е. плотность и размеры) на изображениях тонких поперечных разрезов через предмет. Из-за отсутствия структурного шума от детали вне тонкой плоскости осмотра изображения намного легче интерпретировать, чем условные результаты радиологического исследования.

Примечание 7 — Линейный массовый коэффициент затухания также несет энергетическую зависимость, которая является функцией материальной композиции. Эта особенность может или не может (в зависимости от материалов и энергии используемых рентгеновских лучей) быть более важной, чём основная зависимость плотности. В некоторых случаях этот эффект может быть вредным, маскируя разности плотности в компьютерной томографии; в других случаях он может использоваться, чтобы способствовать увеличению контраста между различными материалами подобной плотности.

- 8.3.12 Ограничения и интерференции
- 8.3.12.1 Как и в радиографии, и радиоскопии, возможно самый большой вопрос при применении рентгеновского СТ в отношении к композитным материалам и комплектующим это достижение достаточного контраста между низкоатомными подструктурами соединения (например, матрица, слой, тонкие пластинки). В то время как получение достаточного контраста является более трудным для систем СТ, базируемых на плоской панели, это не является проблемой для системы СТ высокого динамического диапазона.
- 8.3.12.2 Как и в случае с любой модальностью, у СТ есть свои ограничения. Самое фундаментальное то, что объекты исследования должны быть достаточно небольшого размера, который будет приспособлен системой обработки оборудования СТ, доступного пользователю, и радиометрическим параметрам рентгеновских лучей, используемых этой конкретной системой. Далее, алгоритмы восстановления Коннектикута требуют, чтобы полные 180 степеней данных были собраны сканирующим устройством. Объект предмета или его прозрачность ограничавают объем данных, который может быть учтен в некоторых случаях. В то время как есть методы компенсирования неполных данных, которые воспроизводят поддающиеся диагностике изображения, полученные изображения являются в любом случае менее предпочтительными изображениям от полных наборов данных.
- 8.3.12.3 Другой потенциальный недостаток с отображением СТ возможность наличия артефактов в данных. В данном случае артефакт что-либо в изображении, что точно не отражает истинное строение исследуемого объекта. Поскольку они нереальны, артефакты ограничивают способность пользователя количественно извлечь данные о массовых коэффициентах затухания, плотности, размерные или другие данные изображения. Поэтому как с любой техникой, пользователь должен учиться признавать и быть в состоянии отбросить общие артефакты субъективно. Некоторые артефакты изображения можно понизить или устранить с улучшением практики использования СТ; другие являются недостатками методологии. Примеры последнего включают в себя рассеянное излучение и электронный шум, полосы края и эффекты парциального объема. Некоторые артефакты содержат и то, и другое. Хороший пример артефакт дефекта, который лоявился ввиду лучевого разброса (который может быть в значительной степени устранен), а также относительно многохроматичности ренттеновского потока (который является присущим использованию источников тормозного излучения). Применимые артефакты для композитных соединений, особенно большей проекций, или использования различных конфигурации сканирования, или с применением болюсов здесь не обсуждаются.

8.4 Использование ссылочной литературы

8.4.1 Общее

8.4.1.1 Следуют требованиям руководства Е1441 для изучения общего описания рентгеновского исследования СТ (включая обсуждение теоретического базиса отображения в СТ), системные особенности СТ

(пространственное разрешение, статистический шум, экспонаты), глоссарий терминов, которые имеют значения, уникальные для СТ. Потенциальные пользователи и покупатели, так же как опытные инспекторы СТ, найдут для себя в директиве E1441 полезный источник информации для того, чтобы определить пригодность СТ для особенных задач экспертизы, определить системные рабочие характеристики СТ в новых ситуациях и для разработки и предписания новых процедур сканирования.

8.4.1.2 Следуют требованиям руководтва Е1670, содержащим основные эксплуатационные характеристики на компьютерную томографию (СТ), системные требования/спецификации или устанавливающим общую терминологию, чтобы ввести покупателя и поставщика в процесс системного отбора СТ.

8.4.2 Оборудование СТ и инструментарий

- 8.4.2.1 Следуют требованиям руководства Е1441 и практике Е1570 для изучения типов крупных компонентов системы, существующих в современных системах СТ.
- 8.4.2.2 Следуют требованиям руководства Е1441 для описания современных системных крупных компонентов системы СТ (лучевые источники, ионизационные и люминесцентные детекторы, механическое сканирующее оборудование, вычислительные системы, интерфейсы оператора, отображение и обработка изображения).
 - 8.4.3 Калибровка СТ и стандартизация
- 8.4.3.1 Следуют требованиям руководства Е1441 для проверки эксплуатационных параметров СТ, интерпретации результатов СТ
- 8.4.3.2 Знакомятся с практикой Е1570 для изучения требований по обеспечению надежности и качества изображений СТ вне зависимости от запланированных калибровки, стандартизации, использования эталонов материалов или осмотра. Обеспечение надежности и качества также осуществляется путем осуществления однородных процедур по системной конфигурации СТ, установке, оптимизации и измерению рабочих характеристик.
- 8.4.3.3 Следуют требованиям метода испытаний Е1695, определяющим пространственное разрешение и контрастную чувствительность в рентгеновском излучении и изображении компьютерной томографии (СТ). Измерение пространственного разрешения выводится из анализа изображения остроты края диска. Контрастное измерение чувствительности выводится из анализа изображения статистического шума в центре диска. Этот метод испытаний может также использоваться, чтобы оценить другие эксплуатационные параметры, такие как среднечастотное повышение зерна восстановления, присутствие (или отсутствие) перекрестной связи детектора, грубая выборка представлений и зажим нематериальных (т. е. отрицательных) номеров СТ.
- 8.4.3.4 Следуют требованиям метода испытаний Е1935 для калибровки плотности систем СТ и для использования этой информации для измерения материального удельного веса по изображениям СТ.

8.5 Размер и масса

- 8.5.1 Размер. Кроме массы и материального состава самый основной параметр размер образца. Определяют максимальную высоту и диаметр испытуемого образца, который может быть исследован на системе СТ, оболочку экспертизы оборудования. Размер и масса будут определять тип механической подсистемы, которая будет необходима, чтобы переместить образец относительно луча (образец, вращаемый или переведенный относительно стационарного луча и источника) или переместить луч относительно образца (источник луча и система детектора, вращаемая вокруг образца). Например, совсем другая механическая подсистема будет должна поддерживать и точно перемещать большой, тяжелый образец по сравнению с легким и небольшим образцом. Точно так же логистика и крепление большого числа одинаковых образцов будут отличаться от таковых в отношении одного образца. Большие образцы в зависимости от материального состава вообще в большей степени ослабят луч, который будет, в свою очередь, определять тип лучевого источника и детекторов, необходимых для исследования.
- 8.5.2 В качестве метрологического инструмента большинство систем СТ обеспечивают разложение пиксела примерно 1:1000 (так как в настоящее время 1024 х 1024 изображения норма), и метрологические алгоритмы могут часто измерять размеры с приемлемой точностью вниз к амплитуде подпиксела. Для малых предметов (меньше чем 4 дюйма в диаметре) это составляет приблизительно 0,1 мм (от 0,003 до 0,005 дюйма) с тремя сигмами. Для больших предметов соответствующий показатель будет пропорционально больше.

Примечание 8 — В настоящее время доступны системы с элементами трехмерного разложения 0,01 мм.

8.5.3 Максимальная высота и диаметр испытательного образца, который может быть исследован на системе СТ, определяют оболочку исследования оборудования. Вес предмета и любые связанные крепления должны быть в пределах возможностей системы. Например, совсем другая механическая система будет поддерживать и точно перемещать большой, тяжелый испытательный образец по сравнению с небольшим и легким. Точно так же логистика и крепление для обработки большого количества образцов по сравнению с одним образцом.

8.6 Безопасность и риски

- 8.6.1 Процедуры экспертизы СТ должны быть выполнены при соблюдении условий безопасности, чтобы персонал не подвергся излучению в дозах, превышающих разрешенные компанией, городом, государством или национальным законодательством. Все риски и регламенты безопасной работы, которые применяются, должны быть идентифицированы, включая:
 - 8.6.1.1 Нормы федерального права;
 - 8.6.1.2 Государственные/местные постановления;
 - 8.6.1.3 Местные;
 - 8.6.1.4 Контроль персонала;

FOCT P 56787-2015

- 8.6.1.5 Расположение стола с захватами;
- 8.6.1.6 Область эвакуации.
- 8.6.2 Для дололнительной информации, имеющей отношение к радиационной безопасности и рискам, связанным с использованием рентгеновского оборудования, см. пункт 10.2.8.

8.7 Калибровка и стандартизация

- 8.7.1 Эксплуатационные параметры систем испытаний СТ должны быть определены и регулярно контролироваться, чтобы гарантировать достоверные результаты. Лучшая оценка системных рабочих характеристик СТ может быть выполнена на работающей системе с использованием испытуемого образца в фактических рабочих условиях.
- 8.7.2 Методики измерения системных рабочих характеристик должны быть стандартизированы так, чтобы критерии измерения рабочих характеристик могли быть с готовностью дублированы в указанных интервалах. Системные рабочие характеристики экспертизы СТ должны оцениваться в достаточно частых интервалах по согласованию с поставщиком и пользователем оборудования СТ, чтобы минимизировать возможность изменения рабочих характеристик с течением времени.
- 8.7.3 Количественное измерение пространственного разрешения, разложения сигнала шума, контрастной чувствительности, контрастные детальные кривые должны быть осуществлены в соответствии с руководством Е1570.
- 8.7.4 Калибровка плотности систем СТ с использованием дисков материалов с закладными образцами известного состава и плотности должна быть выполнена в соответствии с методом испытаний Е1935. Взвешенные средние величины СТ известных стандартов определяются на основе анализа изображения, а их линейные массовые коэффициенты затухания определяются путем умножения их взвешенной материальной плотности на их известные массовые коэффициенты затухания. Калибровка плотности выполняется с применением линейной рессии к данным. После калибровки линейный коэффициент затухания неизвестного действия на изображении может быть измерен от определения его средней величины СТ. Его плотность может тогда быть извлечена из его массового коэффициента затухания или одной из характеристик.

8.8 Эталоны материалов

8.8.1 Измерения рабочих характеристик влияют на использование моделируемого композитного образца (также испытательный фантом), имеющего фактические или моделируемые особенностей, которые должны быть достоверно обнаружены и измерены. Испытательный фантом может быть разработан, чтобы обеспечить достоверность выявления возможностей системы СТ. Тестовые фантомные категории, в настоящее время используемые в СТ, и моделируемые особенности, которые будут отображены, могут быть классифицированы в соответствии с таблицей 1 руководства Е1570.

Таблица 9 — Краткое описание рентгеноскопии

Применение	Принцип деяствия	Преимущества	Недостатки	Данные отчетов
Широко	Физические принципы,	Получение рентгено-	Не может использоваться в	Можно получить
используют	лежащие в основе рент-	графических изо-	режиме реального времени	записи длитель-
для быстрого	геноскопии и рентге-	бражений в режиме	с испытуемыми материа-	ного хранения с
сканирова-	нографии, одинаковы.	реального времени	лами, которые являются	помощью кино-
ния объектов	Однако рентгеноскопия	или близком к реаль-	толстыми или слишком	съемки, видео-
с грубыми	отличается тем, что она	ному времени.	плотными из-за чрезмер-	записи или
внутренними	проводится в режиме	Возможно получе-	ного ослабления пучка.	отдельных фото-
неоднород-	реального времени или	ние непрерывного	Соединение с компьютером	кадров.
ностями или	близком к реальному	изображения или	на основе интеграции по-	Системы удален-
разрывами,	времени, а не в режиме	изображения в	зволяет улучшить качество	ного просмотра -
например,	рентгенограммы. Можно	движении (хорошо	изображения.	экран телевизора
проводится	получить информацию	подходит для изо-	Чувствительность и раз-	или монитор
до просвечи-	в трехмерном простран-	бражения процесса	решающая способность	компьютера по-
вания.	стве как с помощью	или производствен-	систем, работающих в	зволяют прово-
Для непре-	статических, так и дина-	ной линии).	режиме реального времени,	дить удаленный
рывного	мических рентгеноскопи-	Можно получить по-	хуже, чем та, которая до-	просмотр.
изображения	ческих систем.	стоянную цифровую	стигается при использова-	Постоянные за-
или изо-	Имеются как системы с	или фотографиче-	нии рентгенографии.	писи на вторично
бражения в	ручным управлением, так	скую запись.	Наблюдается тенденция,	носителе (на-
движении	и автоматизированные.	Значительно более	что рентгеноскопические	пример, жестком
процесса	В системах удаленно-	низкие эксплуата-	системы являются более	диске компьютер
или проверки	го просмотра вместо	ционные расходы,	специализированными и	видеокассете, в
производ-	рентгенограммы исполь-	чем при выполнении	менее универсальными,	печатном виде
ственной	зуются чувствительная	рентгенографии с	чем те, которые использу-	или в виде фото-
линии.	к рентгеновским лучам	точки зрения потра-	ются в рентгенографии.	графии).
Обеспечива-	передающая телевизион-	ченного времени,	Для рентгеноскопических и	Фактические не-
ет оператив-	ная трубка и видеокаме-	рабочей силы и	электронных систем визуа-	однородности ил
ную проверку	ра с усилителем рентге-	материалов. Напри-	лизации требуется допол-	несплошности
размеров и	новского излучения или	мер, не возникают	нительное дорогостоящее	изображаются, к
внутренней	DDA в режиме реального	затраты на обработ-	оборудование.	правило, в нату-
конфигура-	времени, связанная	ку рентгенограммы.	Недостаток непрерывной	ральную величин
ции ком-	с компьютером и/или	Позволяет наблю-	записи, как правило, со-	Невозможно опре
позитных	видеомонитор, которые	дателю находиться	стоит в потере детализа-	делить глубину
материалов	преобразуют рентгенов-	вне зоны действия	ции, если оборудование	неоднородности
и компонен-	ские лучи в электроны,	опасного излучения.	не приобретено вместе с	или разрыва без
тов.	что позволяет мгновенно	Рентгеноскопия	компьютером, потому что	дополнительного
С помощью	вывести изображение	имеет преимущества	она сделана на вторичном	рентгеновского
рентгено-	на экран телевизора или	над рентгенографией	носителе (например, на	обследования
скопии в	монитор компьютера.	по характеристике	видеокассете или на фото-	со всех сторон.
результате	По сравнению с рентге-	несимметричных	графии).	Глубину объемнь
применения	новским изображением	испытуемых мате-	В динамических системах	неоднородностей
манипуляций	с помощью указанных	риалов, поскольку	по сравнению со статиче-	и несплошностей
можно пре-	выше систем достигается	позволяет отобра-	скими системами требуется	можно определи:
доставить в	более высокая степень	жать в трехмерном	более высокий уровень	по цифровым изс
трехмерном	яркости.	пространстве, когда	рентгеновского потока для	бражениям после
простран-	В системах прямого	используется меха-	выработки подходящего	калибровки.
стве инфор-	просмотра вместо рент-	ническое движение	изображения. Кроме того,	В системах пря-
мацию об	генограммы в рентгено-	объектов по отноше-	требуются контроль рассея-	мого просмотра
искажениях,	графических системах	нию к пучку рентге-	ния и тщательная центров-	ренттеновское
дефектах и	рентгеновское изобра-	новских лучей.	ка источника.	изображение вы-
несплошно-	жение выводится на	Компьютерные	В динамических системах	водится на флуо
стях внутри	флуоресцентный экран и	автоматизированные	требования радиационного	ресцентный экра
композитного	рассматривается косвен-	системы могут вклю-	контроля, дополнительные	и рассматрива-
материала	но с помощью зеркала	чать программное	требования к экраниро-	ется косвенно с
или компо-	или защитного окна для	обеспечение, позво-	ванию и приобретение	помощью зеркал
нента	предотвращения прямого	ляющее автоматиче-	устройств по позициониро-	или защитного
	воздействия на глаза	ски распознавать де-	ванию испытуемого объекта	окна для предот-
-5	вредного излучения	фекты и принимать/	обычно приводят к более	вращения прямо
1	-b-is-a- rand same.	отклонять решения.	высоким затратам на основ-	воздействия на
		которые должны	ное оборудование	глаза вредного

ΓΟCT P 56787-2015

Таблица 10 — Краткое описание цифровой ренттенографии с применением цифровой детекторной решетки

Применение	Принцип действия	Преимущества	Недостатки	Данные отчетов
Используют для обнаружения подповерхностных неоднородностей или несплошностей, таких как грещины, инородные материалы, включения, пористости, смещения волокон, отсутствие срединения и других дефектов в двух- или грехмерных проекциях. ООА работает лучше, нем ренттенография, при применении, требующем малой дозый быстрого отбора образцов, когда требуется высокая пропускная способность, и в исследованиях ЗО, включая КТ (см. раздел 8). Используется для обнаружения дефектов в трехмерных проекциях, которые расположены в направлении падающего излучения, голщина которых составляет 0,5 % или больше от толщины исследуемого препарата, голщина которых составляет 0,5 % или больше от толщины исследуемого препарата, големены в награемирования препаратов с внутренними дефектами или разрывами. Обеспечивает оперативную проверку размеров и внутренней конфигурации компонентов. С помощью системы ОК в результате применения манипуляций можно предоставить в грехмерном пространстве информацию об искажениях, дефектах и несплошностях внутри компонентов. Обеспечивает обнаружить особенности поверхности и неоднородности и неоднородности и неоднородности и неоднородности и неоднородности	Принцип действия Физические принципы, лежащие в основе систем DR, рентгеноскопии и рентгенографии, похожи на принципы систем DR. DR сочетает в себе преимущества систем рентгеноскопии и рентгенографии: диагностика без использования рентгенограммы практически в режиме реального времени с таким геометрическим и контрастным разрешением, как у рентгенограммы, или даже лучше, Можно получить информацию в трехмерном пространстве с просмотром нескольких изображений, а также можно использовать DDA как часть компьютерной томографической системы. Имеются как системы с ручным управлением, так и автоматизированные. В системах удаленного просмотра вместо рентгенограммы используются чувствительная к рентгеновским лучам передающая телевизионная трубка и видеокамера с усилителем рентгеновского излучения или DDA в режиме реального времени, связанная с компьютером, и/или видеомонитор, которые преобразуют рентгеновские лучи в электроны, что позволяет мгновенно вывести изображение на экран телевизора или монитор компьютера. По сравнению с рентгеновским изображение спомощью указанных выше систем достигается более высокая степень яркости и контрастности. DDA захватывает рентгеновские лучи с помощью сцинтиллятора, который генерирует видимый свет, а затем выявляет этот свет с помощью фотоидной матрицы. Фотоидная матрица квантует сигнал для хранения на ПК и отображения на мониторе компьютера. DR имеет более низкое пространственное разрешение, чем рентгеноговых способы увеличения, когда требуется более высокое разрешение, чем рентгеноговых способы увеличения, когда требуется более высокое разрешение	Преимущества Рентгенографические изображения можно увидеть быстро (менее 15 с) после окончания экспозиции рентгеновского излучения. Можно получить изображения с высоким уровнем отношения «сигнал — шум» с большим динамическим диапазоном за одно DDA-ситывание. Отношение «сигнал — шум» можно значительно увеличить путем усреднения результатов нескольких изображения можно получить практические изображения можно получить прежиме реального времени. Изображения можно получить на ПК; с помощью этой технологии можно получить очень высокий уровень отношения «сигнал — шум». Вполне достижима контрастная чувствительность менее 0,1 %	Наблюда- ется тен- денция, что си- стемы DR являются более специ- ализиро- ванными и менее универ- сальными, чем те, которые исполь- зуются в рентгено- графии. Для си- стем DR требуется дополни- тельное дорого- стоящее оборудо- вание	Общие сведения: Отображаются фактические неоднородности или несплошности, внутренняя структура/геоме трические, параметры, внутренние/внешние повреждения и изменчивость производственного процесса; размер можно отрегулировать на компьютере помощью калибровки. Позволяет определить глубину неоднородности или несплошности с помощью второго (дополнительного) рентгеновского снимка. Можно получить записи долгосрочного хранения на компактдиск и DVD. Изображения просматриваться при высокой контрастности, высоком разрешении и сильной яркости монитора TFT

ДА.9

9. Испытание на утечку

9.1 Ссылочная литература

9.1.1 Стандарты ASTM:2

Е427 Практики для испытания на утечки, используя указатель утечки с использованием галогена (щелочной ионный диод)

Е432 Директива для отбора метода тестирования утечки

Е493 Метод испытаний на утечку с использованием масс-спектрометра

Датчик утечки в режиме обратного тестирования

Е498 Метод испытаний на утечку с использованием масс-спектрометра

Датчик утечки или зонд-анализатор выделяющегося газа в режиме изотопного анализатора

Е499 Метод испытаний на утечку с использованием масс-спектрометра

Датчик утечки в режиме детектора

E515 Метод испытаний на утечку с использованием метода пузырения

Е1002 Метод испытаний на утечку с использованием акустических ультразвуковых частот

Е1003 Метод испытаний для гидростатического испытания на утечку

Е1066 Метод колометрического испытания аммиаком на утечку

Е1603 Метод испытаний для измерения утечки с использованием масс-спектрометра в качестве датчика определения выделяющегося газа в режиме насадки

Е2024 Метод испытаний для атмосферных утечек датчика утечки на основе теплопроводности

9.1.2 Справочники и стандарты по военным вопросам:6

MIL-L-25567D Состав для обнаружения утечки, кислородные системы

9.1.3 Руководство Американского института по стандартам (ASNT):3

Испытание на утечку, объем 1, руководство по неразрушающему испытанию

9.3.7 Важно различать чувствительность инструмента, используемого, чтобы измерить утечку, и чувствительность испытательной системы, используя инструмент. Чувствительность различных испытательных систем различна, например, по критерию использования указателя датчика утечки масс-спектрометра, обычно максимальная чувствительность составляет 4,5 × 10⁻¹⁵ моль/с (10⁻¹⁰ см³/с), когда процедуры затрагивают измерение установившейся скорости утечки газа.

Эта чувствительность может быть увеличена до 4,5 × 10⁻¹⁹ моль/с (10⁻¹⁴ стандарт см³/с), позволяя утечке накопиться прежде, чем будет проведено измерение утечки. Наоборот, если испытательная система использует указатель датчика утечки масс-спектрометра в режиме зонда детектора, чувствительность может быть от 10² до 10⁴ — меньше, чем у масс-спектрометра непосредственно.

- 9.3.8 Локализация утечки с использованием трассирующих газов, таких как гелий, может подразделяться на использование зонда трассирующего газа и режима зонда детектора. Режим зонда трассирующего газа используется, когда испытуемый образец извлечен и трассирующий газ прибывает из зонда, расположенного вне образца. Режим зонда детектора используется, когда испытуемый образец герметизируется с трассирующим газом и испытание проводится при атмосферном давлении. Обычно техника зонда трассирующего газа более быстра, потому что газ достигает детектора на более высокой концентрации, несмотря на любые текущие эффекты, которые прочисходят с зондом детектора, который обнаруживает первый трассирующий снаряд, который чрезвычайно разбавлен атмосферными газами. В режиме зонда детектора может использоваться более высокий перепад давлений через систему, и поэтому могут быть найдены утечки более малой проводимости. В использовании любого режима важно, чтобы локализация утечки была предпринята только после того, как присутствие утечки было проверено.
- 9.3.11 В то время как более распространено принимать и отклонять критерии указанной величины для максимальной допустимой скорости утечки или для целой системы, или для единственной утечки, может также использоваться установка по принципу «годен — не годен», например, как определено методом испытаний Е515 метод пузырения.

9.4 Использование ссылочной литературы

- 9.4.1 Следуют требованиям руководства Е432 для помощи в отборе метода испытания на герметичность в зависимости от типа объекта, который будет проверен, и информации (измерение скорости утечки или определение локализации утечки). Соответствующие методы испытания на герметичность упорядочиваются в порядке увеличивающейся чувствительности.
- 9.4.2 Многочисленные методы испытания на герметичность были разработаны, чтобы обнаружить, локализовать и/или измерить утечки. Большинство, но не все методы, которые рассматриваются в данном руководстве, имеют соответствующие практикам Американского общества по испытанию материалов методы испытаний или директивы. Основные методы испытания на герметичность:
- 9.4.2.1 Испытание пузырением на утечку. Следуют требованиям метода испытаний E515 для процедур по обнаружению или расположению утечек методом пузырения в ситуации, когда количественное измерение непрактично. Нормальный предел чувствительности для этого метода испытаний 4,5 × 10⁻¹⁰ моль/с (10⁻⁵ см³/с). Рассматриваются два метода: (1) иммерсионный метод и (2) метод жидкостного определения.
- 9.4.2.2 Испытание на утечку химическим проникающим веществом. Следуют требованиям метода испытаний Е1066 для испытания утечки больших одно- и двустенных резервуаров, сосудов под давлением и вакуумных

FOCT P 56787-2015

сосудов, ламинированных, выровненных или с двойной обмоткой, используя аммиак и колориметрический метод. Этот метод может использоваться на контейнерах со сварными, подогнанными или ламинированными секциями, которые могут быть уплотнены на концах или между их внешними и внутренними стенками и которые разрабатываются для внутреннего давления 34,5 кПа (5 днм) или более. Хотя метод испытаний Е1066 разработан прежде всего для компонентов, которые, по существу, содержат или будут содержать аммиак (большого тоннажа для систем охлаждения системы хранения удобрения), метод может использоваться, чтобы проверить критичные разделы или контейнеры, которые будут содержать ядовитые или взрывнатые газы или жидкости, или в качестве экспресс-метода для испытания других контейнеров. Основные процедуры описываются на типе исследования. Эти процедуры должны быть ограничены локализацией утечки 4,5 × 10·12 моль/с (10·7 см³/с) или больше. Нет никакой применимой практики Американского общества по испытанию материалов, методов испытаний или директив для испытания утечки химическим проникающим веществом с использованием других газообразных трассирующих веществ, таких как двуокись углерода.

- 9.4.2.3 Испытание на утечку газом галогена. Следуют требованиям руководства Е427 для испытания и локализации источников газа, протекающего со скоростью 2.2 × 10⁻¹⁴ моль/с (5 × 10⁻¹⁰ см³/с), с использованием датчика утечки галогена (щелочной ионный диод). Испытание может быть проведено на любом устройстве или компоненте, в котором может быть создан перепад давления трассирующего газа галогена и на котором область с предположительной утечкой доступна для зонацирования с датчиком утечки галогена. Описано пять методов: (1) прямое исследование без существенного загрязнения галогеном атмосферы, (2) прямое исследование с существенным загрязнением галогеном атмосферы, (3) испытание завесой, (4) испытание воздушной завесой и (5) испытание накопления высокой чувствительности.
- 9.4.2.4 Гидростатическое испытание на утечку. Следуют требованиям метода испытаний Е1003 для того, чтобы проверить компоненты на утечки путем их внутренней герметизации с жидкостью. Этот метод испытаний может использоваться на контейнерах, которые могут быть уплотнены на концах и которые разрабатываются для внутреннего давления. Основные процедуры основаны на типе проводимого испытания. Такие процедуры должны быть ограничены обнаружением указаний утечки 4,5 × 10⁻⁹ моль/с (10⁻⁴ см³/с) или больше.
- 9.4.2.5 Массовая потеря и падение давления. Отсутствуют применимые утвержденные стандартные практики Американского общества по испытанию материалов, методы испытаний или директивы.
- 9.4.2.6 Испытание на утечку масс-спектрометром. Существуют пять методов испытаний Американского общества по испытанию материалов, а именно:
- (1) Следуют требованиям метода испытаний Е493 (режим зонда трассирующего вещества) для процедур по определению утечки через стенки ограждений, которые могут быть уплотнены до испытания на утечку. В процедуры включены обнаружение утечки телия масс-спектрометром и различные степени чувствительности в зависимости от внутреннего объема, прочности ограждения, времени, доступного для подготовки критерия, характеристик сорбции материала ограждения в отношёнии гелия. После того как испытуемый образец был подвергнут герметизации с гелием, его размещают в вакуумной камере, и выходной сигнал, полученный от датчика утечки масс-спектрометра (MSLD). В общей практике пределы чувствительности от 4,5 × 10⁻¹⁴ до 4,5 × 10⁻¹⁰ моль/с (10⁻⁰ до 10⁻⁵ см³/с при 0 °С) для гелия, хотя эти пределы могут быть изменены на несколько десятков в любом направлении при некоторых обстоятельствах. Описываются два метода: испытание бомбардировкой и испытание предварительным заполнением.
- (2) Следуют требованиям метода испытаний Е498 (режим зонда трассирующего вещества) для чувствительных процедур по процедурам испытания и локализации источников газа, протекающего со скоростью 4,5 × 10°¹4 моль/с (10°9 см³/с) или больше с использованием датчика утечки масс-спектрометра или анализатора остаточного газа. Испытание может быть проведено на любом объекте, который может быть извлечен и на другой стороне которого могут быть применены гелий или другой газ трассирующего действия. Испытуемый образец должен быть устойчив к давлению 0,1 Па (приблизительно 10°³ торр).

Примечание — Образцы, которые могут быть извлечены и подвергнуты разумному испытательному давлению в приемлемый отрезок времени, должны быть чистыми и сухими и не превышать нескольких кубических футов в объеме. Чтобы проверить большие объемы или «грязные» компоненты, используйте вспомогательные вакуумные насосы, имеющие большую емкость, чем используемые в MSLD, которые могут использоваться с MSLD. Чувствительность испытания на герметичность при таких условиях снизится.

- (3) Следуют требованиям метода испытаний Е499 для процедур по испытанию и локализации источников газа, протекающего со скоростью 4,5 × 10⁻¹³ моль/с (10⁻⁸ см³/с при 0 °C) для гелия. Методы испытаний, процитированные в методах испытаний Е499, отличаются от процитированных в методах испытаний Е493, Е498 и Е1603 в том, что вытекающая сторона испытуемого образца доступна для атмосферного исследования с пробоотборным зондом MSLD. И прямой зонд, и методы тестирования накопления описываются здесь же.
- (4) Следуют требованиям метода испытаний Е1603 (кожух) для чувствительных процедур по процедурам по испытанию и локализации источников газа, протекающего со скоростью 4,5 × 10⁻¹⁴ моль/с (10⁻⁹ см³/с) или больше, с использованием датчика утечки масс-спектрометра или анализатор остаточного газа. Испытание может быть проведено на любом объекте, который может быть извлечен и на другой стороне которого могут быть применены гелий или другой газ трассирующего действия. Испытуемый образец должен быть устойчив к давлению 0,1 Па (приблизительно 10⁻³ торр).

- (5) Следуют требованиям метода испытаний Е2024 для процедур по обнаружению источников газа, протекающего со скоростью 4,5 × 10⁻⁹ моль/с (10⁻⁴ см³/с) или больше. Критерии могут быть проведены на любой испытуемый образец, который может герметизироваться с трассирующим газом, который может быть обнаружен детектором удельной теплопроводности. Испытательная чувствительность будет значительно различаться в зависимости от используемого трассирующего газа. Сканирование (номинальная чувствительность) и накопление (высокая чувствительность) методы, лучше подходящие для испытания на утечку объектов сложной формы при использовании описанных процедур.
- 9.4.2.7 Испытание теплопроводностью. Следуют требованиям метода испытаний Е2024 для процедур по обнаружению источников газа, протекающего со скоростью 4,5 × 10-9 моль/с (10-4 см³/с) или больше. Критерии могут быть проведены на любой испытуемый образец, который может герметизироваться с трассирующим газом, который может быть обнаружен детектором удельной теплопроводности. Испытательная чувствительность будет значительно различаться в зависимости от используемого трассирующего газа.
- 9.4.2.8 Ультразвуковое испытание на утечку. Следуют требованиям метода испытаний Е1002 для процедур по локализации и/или оценке размера газовой утечки в атмосферу с использованием бортовой ультразвуковой техники (ультразвуковой перевод). В общей практике инструменты класса I и класса II используются с минимальными определяемыми коэффициентами утечки 6,7 × 10⁷ до 6,7 × 10⁸ моль/с (1,5 × 10² к 1,5 × 10¹ см³/с при 0 °C). Описаны два метода: (1) локализацию утечки и оценку утечки доводят до требуемого размера в образцах при испытании в ходе которого образец может быть герметизирован, и (2) локализация утечки в образцах, не способных к герметизации, но способных к введению ультразвукового тона в испытательную область для воздействия в качестве ультразвукового источника следа утечки.
- 9.5.1 Испытуемые образцы при испытании на утечку попадают в две категории: (1) открытые установки, которые доступны на двух сторонах, и (2) уплотненные установки, которые доступны с одной стороны. Сосуды высокого давления с обмоткой волокном отнесены к последней категории.
- 9.5.2 Испытуемые образцы, у которых диаметр и длина не очень отличаются (такие как композитные резервуары), могут быть проверены на удовлетворительном уровне путем добавления газа трассирующего действия. Однако когда проверяется система с длинными или ограниченными геометрическими конфигурациями, большее равномерное распространение трассирующего газа будет достигнуто путем первого извлечения нескольких торр, и затем заполнение испытательным газом. Последний должен быть предварительно перемешан, если он не состоит 100 % трассирующего газа.
- 9.5.3 В случае малых внутренних объемов или больших утечек должны быть сделаны поправки для выполнения испытания на утечку немедленно после заполнения (сосуд, заполненный газом трассирующего действия и загерметизированный), герметизации (сосуд, герметизируемый с газом трассирующего действия и уплотненный) или бомбардировки (уплотненный сосуд высокого давления, подвергнутый воздействию под герметизацией газа трассирующего действия снаружи в обнаруженной утечке); или необходимо применение дополнительного метода испытаний для больших утечек, например, испытание пузырением или бомбардировка жидкостью и последовательное изменение веса.
- 9.5.4 Нет никаких ограничений размера для атмосферного прямого обнаружения утечки гелия под давлением зондом (например, см. методы испытаний Е499 методов испытаний А). Для частей до нескольких кубических метров в объеме или больших сложных компонентов могут быть выполнены атмосферные испытания на скопления под давлением (например, см. методы испытаний Е499 методов испытаний Б).
- 9.6.3 Грубые методы испытания на герметичность, такие как гидростатическое испытание, методы изменения массы и давления, а также ультразвуковое испытание, недостаточно чувствительны для испытания на утечки для контроля качества контейнеров, используемых для хранения ядовитых или взрывчатых жидкостей и газов.
 - 9.8 Эталоны материалов
 - 9.8.1 Не применяется.

ДА.10

- 10.1 Нормативные ссылки
- 10.1.1 Стандарты ASTM, применимые к рентгенографии, компьютерной рентгенографии, рентгеноскопии и цифровой рентгенографии:2
- Е747 Метод разработки, производства и классификация материала по группам проволочного индикатора качества изображения (IQI), используемого в рентгенографии
- E1025 Метод разработки, производства и классификация материала по группам пластинчатого индикатора качества изображения (IQI), используемого в рентгенологии
 - Е2002 Метод определения общей нечеткости изображения в рентгенографии
 - 10.1.2 Стандарты ASTM, применимые к рентгенографии и цифровой рентгенографии:2
 - Е 94 Руководство по рентгенологическому исследованию
 - Е1742 Практические указания по рентгенографическому исследованию
 - Е1815 Контрольный метод классификации систем рентгенограмм для промышленной рентгенографии
- E1817 Практические указания по управлению качеством рентгенографических исследований с использованием индикатора качества отображения (RQI)
 - E2007 Руководство по компьютерной рентгенографии [метод фотоиндуцированной люминесценции (PSL)]

E2033 Практические указания по компьютерной рентгенографии (метод фотоиндуцированной люминесценции)

E2104 Практические указания по рентгенографическому исследованию усовершенствованных материалов и комплектующих для самолетов и турбин

Е2445 Практические указания по аттестации и долгосрочной стабильности компьютерных рентгенографических систем

Е2446 Практические указания по классификации компьютерной рентгенографической системы

10.1.3 Стандарты ASTM, применимые к рентгенографии:2

Е1000 Руководство по рентгеноскопии

Е1255 Практические указания по рентгеноскопии

Е1411 Практические указания по аттестации рентгенографических систем

10.1.4 Стандарты ASTM, применимые к цифровой рентгенографии:2

Е2597 Практические указания по производственным характеристикам цифровой детекторной решетки

10.1.5 Государственные стандарты:6

НБС Справочник 114. Установки генеральной радиационной безопасности. Использование рентгеновского излучения в немедицинских целях и закрытых гамма-источников до 10 МэВ

Раздел 10. Свод федеральных постановлений (CFR). Часть 20. Стандарты защиты от радиации

Раздел 21. Свод федеральных постановлений (CFR). 1020.40. Требования безопасности кабинета ренттеновской системы

Раздел 29. Свод федеральных постановлений (CFR). 1910.96. Ионизирующее излучение (рентгеновские лучи, радиочастота и др.)

10.1.6 Справочники и стандарты:6

MIL-HDBK-728/5A Рентгенографическое испытание

MIL-HDBK-733 Испытание композитных материалов методами неразрушающего контроля — рентгенография 10.1.7 Документы Национального совета по радиационной защите и метрологии (NCRP)

HKP349 Проектирование структурных устройств и оценка для медицинского применения энергии рентгеновского и гамма-излучения до 10 MэB

HKP351 Рекомендации по разработке радиационной безопасности для аппаратуры для ускорителя частиц от 0,1 до 100 МэВ

НКРЗ91 Рекомендации по ограничению для ренттеновских съемок ионизирующих излучений

10.1.8 SAE стандарты

SAE ARP-1611 пересмотренное издание А. Контроль качества процедур, композитные материалы: радиоизотопная рентгеноскопия и рентгенография

10.1.9 Нормы ASME

Нормы ASME для котлов и сосудов высокого давления. Раздел V. Исследование методом неразрушающего контроля, дополнение к нормам 2476, рентгенография. Использование фосфорной рентгенографической пластины

10.1.10 Европейские стандарты

EN14784-1 Исследование методом неразрушающего контроля — промышленная компьютерная рентгенография с хранением информации на фосфорных рентгенографических пластинах. Часть 1. Классификация систем

ЕN14784-2 Исследование методом неразрушающего контроля — промышленная компьютерная ренттенография с хранением информации на фосфорных рентгенографических пластинах. Часть 2. Общие принципы испытаний металлических материалов с помощью рентгеновских лучей и гамма-лучей

EN13068-1 Исследование методом неразрушающего контроля — рентгеноскопическое исследование. Часть 1. Количественная оценка свойств визуализации

ЕN13068-2 Исследование методом неразрашающего контроля — рентгеноскопическое исследование. Часть 2. Проверка долговременной стабильности устройств обработки изображений

EN13068-3 Исследование методом неразрушающего контроля — рентгеноскопическое исследование. Часть 3. Общие принципы рентгеноскопического исследования металлических материалов с помощью рентгеновских и гамма-лучей

10.2.5 Использование нормативных ссылок: Применение

10.2.5.1 Е94 Консультационное руководство по предпочтительным методам рентгенологического исследования и производственным методам, связанным с рентгенографической записью на пленку (т. е. выбор напряжения, фильтров, маскировки, защиты от обратного рассеяния, экранов, обработки результатов съемки); выбором рентгенографической пленки, обработкой (автоматизированной или ручной), просмотром (качество изображения, искажение) и хранением, поддержанием контроля записей, и список имеющихся нормативных ссылок, относящихся к рентгенографии. В руководстве Е2007 описаны основы компьютерной рентгенографии и ее применение.

10.2.5.2 Е1742 Рекомендуемые практические указания по применению и контролю для рентгенографического метода и Е2033 Практические указания по компьютерной рентгенографии. Эти практические указания написаны таким образом, что они могут быть указаны в технологическом чертеже, технических требованиях или договоре. Подробно не описывается, как использовать процедуру с помощью устройств для исследования методом неразрушающего контроля, и поэтому необходимо дополнительное подробное описание процедуры в письменном виде.

10.2.5.3 Рекомендуемые практические указания Е1742, Е2033, Е2445 или Е2104 по минимальным требованиям по применению и контролю по рентгенографическому и СR-методу. Например, приведены конкретные

требования по аттестации (персонала и управления по испытаниям), безопасности (области воздействия, фотолаборатории, области просмотра, испытания долгосрочной стабильности), материалам (с использованием пластинки и без использования пластинки), оборудованию (источники излучения, держатели пленки, экраны, приборы для просмотра пленок, классы системы пленок, классы системы СR, плотномеры, вспомогательные устройства для просмотра пленок), и индикаторы качества изображения (IQI), которые в совокупности предназначены для контроля качества рентгенографических и цифровых изображений.

10.2.5.4 Рекомендации SAE ARP1611, пересмотренное издание А для процедуры исследования индикатора контрастного вещества, которая доказала свою полезность в характеристике неоднородностей или несплошностей в композитных материалах и компонентах, которые появляются по неосторожности в результате резания, обработки или сверления в процессе изготовления. Типы неоднородностей или несплошностей, обнаруженных с помощью проведения этой процедуры: расслаивание, прорыв (обычно раскол на выходной стороне, просверленное отверстие или разрез), микротрещины (в том числе растрескивание матрицы), выдергивание волокна/смолы и разрывы (разрыв одного или нескольких слоев).

10.2.5.5 Рекомендации MIL-HDBK-728/5А по общему обсуждению основных принципов, лежащих в основе рентгенологического испытания (генерация проникающих пучков излучения, характеристики луча ослабления и поглощения, системы обнаружения), основных процедур и методов, IQI, применения, руководств по использованию персонала (инженеров-конструкторов, технологов, QA-персонала, НК-инженеров и техников) и вопросов безопасности.

10.2.5.6 Рекомендации MIL-HDBK-733 по получению информации о рентгенологических методах изучения дефектов или несплошностей в армированных пластмассах (в том числе расслоения, выдергивания волокна/растрескивания матрицы, ударов или усталостных повреждений, производственных неоднородностей или несплошностей, дезориентации/разориентации волокна и изменения состава смолы и повреждения волокна), методы улучшения компьютерного изображения (включая электронное усиление яркости изображения, обработку сигналов, удаление нежелательных параметров) и методы использования непрозрачных добавок (процедуры пропитки).

10.2.5.7 Рекомендации MIL-HDBK-733 по получению информации о микрорентгеновском изображении тонкостенных образцов композитных материалов, в том числе дискуссии о методах, воздействии излучения низкого напряжения, а также эффектах окна рентгеновской трубки.

10.2.5.8 Рекомендации EN14784-1 по обсуждению: 1) индикаторов качества CR (в том числе описания индикаторов качества CR для производственных и эксплуатационных испытаний, процедуры подачи заявок для индикаторов качества CR, затухание матричного детектора), 2) процедур по количественному измерению параметров качества изображения (в том числе описания измерения нормализованного отношения «сигнал — шум», измерения минимального вывода параметров интенсивности, определения нечеткости и других испытаний) и 3) классификации и интерпретации результатов (включая описания диапазона классификации системы CR и определение скорости CEN).

10.2.5.9 Рекомендации EN14784-2 по обсуждению общих правил для промышленного CR с использованием люминесцентных рентгенографических пластин (IP), в том числе классификации методов CR (подготовка поверхности, идентификация рентгеновских снимков, маркировка, перекрытие люминесцентных рентгенографических пластин, индикаторы качества изображения) и рекомендуемые способы получения компьютерных рентгеновских снимков (образцы для испытаний, выбор напряжения и источника излучения, система сканирования люминесцентных рентгенографических пластин и экранов, системная нечеткость изображения, выравнивание луча, уменьшение рассеянного излучения, расстояние от источника до объекта, максимальная область единичной съемки, минимальный вывод параметров интенсивности, а также условия просмотра изображений на пленке и на мониторе).

10.2.6 Использование нормативных ссылок: оборудование, контрольно-измерительные приборы и материалы 10.2.6.1 Рекомендуемые руководства Е94 и Е2007, практики Е1742, Е1815, Е2033, Е2445, Е2446 и Е2104 и МІС-НDВК-728/5А по информации о рентгенографических приборах и оборудовании, например, оборудование для экранирования зоны, кассеты, фотолаборатории, мониторы, плотномеры, диафрагмы и коллиматоры, методы оцифровки объектов, съемочные зоны, системы рентгеновских снимков, системы рентгенографических пластин, решения в области обработки пластин, держателей пластин, идентификационные маркеры и маркеры определения местонахождения, линейные и угловые измерительные устройства, рентгенографические носители информации без использования пластины, эталоны чувствительности (IQI), устройства позиционирования, зоны просмотра, окна рентгеновской трубки, источники рентгеновского излучения и т. д.

10.2.6.2 Рекомендации SAE ARP1611, пересмотренное издание А по получению информации о материалах для индикаторов контрастного вещества, используемых для обнаружения и определения размеров неоднородностей или несплошностей в композитных материалах и компонентах.

10.2.8 Безопасность и вредные факторы

10.2.8.1 Основными принципами, которые регулируют радиационную безопасность, являются: (1) допустимое рабочее время, (2) рабочее расстояние и (3) экранирование. Эти понятия используются при проведении безопасных рентгенологических процедур.

10.2.8.2 В ходе работы и использования источников ионизирующего излучения должны соблюдаться процедуры техники безопасности. Обязательные правила и положения публикуются правительственными агентствами по лицензированию. Необходимо проводить тщательные исследования излучения в соответствии с положениями и кодексами; должны проводиться на проверенных территориях, а также в прилегающих территориях при соблюдении всех возможных условий эксплуатации. 10.2.8.3 Вопросы, связанные с защитой персонала от рентгеновского излучения и гамма-лучей, не полностью раскрыты в настоящем документе. Для получения информации о защите персонала обратитесь к документам, выпущенным Национальным комитетом по радиационной защите и измерениям, к Федеральному реестру исследований и разработок Министерства энергетики США, к документам, выпущенным Национальным институтом стандартов и технологий (NIST) (ранее Национальное бюро стандартов) и к государственным и местным нормативным положениям, если таковые существуют. Для получения конкретной информации по радиационной безопасности обратитесь к Справочнику NIST 114, 10 CRF 20, 21 CFR 1020,40 и 29 CFR 1910,1096 или государственным нормативным положениям для штатов — участников соглашения.

10.2.8.4 Рентгенологические процедуры осмотра проводят при таких условиях безопасности, чтобы персонал не получил облучения в дозах, превышающих допустимые уровни, установленные компанией, властями города, штата или государственными предписаниями. Руководством по радиационной безопасности должны служить рекомендации Национального комитета по радиационной защите (НКРЗ). Чтобы обеспечить проведение радиологических или рентгеноскопических процедур таким образом, чтобы персонал не получал дозу облучения, превышающую максимально допустимую, установленную властями города, штата или государственными предписаниями, в качестве руководства можно использовать NRCP 49, НКРЗ 51, NRCP 91 и Справочник NIST 114.

10.2.8.5 Техника безопасности. Рентгенолог должен соблюдать практические указания по технике безопасности при работе с рентгеновским оборудованием. В современной рентгеновской аппаратуре используются цепи с высоким напряжением. Стационарные рентгеновские установки спроектированы таким образом, чтобы персонал как можно меньше подвергался опасности поражения электрическим током, однако при использовании портативного рентгеновского оборудования требуется предпринимать дополнительные меры предосторожности, например, обеспечивая надлежащее заземление установок; провода электропитания не должны быть изношены, а конденсаторы — разряжены перед проверкой цепей.

10.2.9 Калибровка и стандартизация

10.2.9.1 Уровень качества рентгенографии — уровень качества, необходимый для проведения рентгенографии составляет 2 %, если только большее или меньшее значение не будет согласовано между локупателем и поставщиком. При 2 % уровне качества с учетом уровня контраста имеются три уровня качества обследования: 2-17, 2-27 и 2-47 (см. Е1025 Практические указания). Если индикаторы качества изображения (IQI) материала в аспекте рентгенологии, аналогичные исследуемому изделию, отсутствуют, можно использовать IQI требуемых размеров но из материала с более низким поглощением. Если плотность пластинки варьируется от +30 до -15 % по сравнению с плотностью, измеренной через корпус IQI, можно использовать два IQI таким образом, чтобы требуемая чувствительность достигалась на наиболее и наименее плотных участках рентгенограммы.

10.2.9.2 Нечеткость всего изображения (Пространственная разрешающая способность) — в обычных IQI, описанных в практических указаниях Е747 и Е1025, показатель контрастной чувствительности и результаты измерения разрешения соединяются в общий показатель качества/надежности. Такие показатели надежности могут быть некорректными для целей выявления незначительных изменений в работе системы формирования изображения. При необходимости оценить и измерить нечеткость всего изображения (пространственная разрешающая способность) системы отдельно и помимо измерений контрастной чувствительности можно использовать инструмент или измеритель, как описано в практических указаниях Е2002.

10.2.9.3 Денситометры. Выполняют калибровку перед каждым использованием, используя калиброванные отрезки пленки.

10.3 Радиоскопия

10.3.1 Основная процедура — процедура радиоскопии состоит из выявления, отображения и записи без использования пластинки в режиме реального времени или близком к реальному времени радиологических изображений. Как и все исследования методом неразрушающего контроля, рентгеноскопия основана на ослаблении рентгеновских лучей при их прохождении через исследуемое изделие. Кроме того, значительное пространственное расширение происходит из-за системных недостатков, несимметричного прохождения излучения и процесса формирования изображения. Поэтому происходят значительные изменения околопороговой тонкой структуры спектра рентгеновского поглощения и физические неоднородности и обнаруживают себя лутем изменений интенсивности в радиоскопическом изображении.

10.3.2 Значение и использование — рентгеноскопическая экспертиза может широко применяться к любому композитному материалу или компоненту, через который может проходить и выявляться пучок проникающего излучения. Несмотря на то что рентгеноскопия тесно связана с рентгенографией, она имеет гораздо более низкие эксплуатационные расходы с точки зрения времени, рабочей силы и материалов. В дополнение к преимуществам, обычно связанным с радиографией, рентгеноскопическое обследование может являться либо динамическим, беспленочным способом, позволяющим манипулировать исследуемым объектом и оптимизировать параметры обработки изображений при обследовании, либо статическим, беспленочным способом, при использовании которого исследуемый объект неподвижен по отношению к падающему излучению. Последние достижения технологии в области проекции изображений, детекторов и цифровой обработки изображений обеспечивают приемлемый уровень чувствительности для самых разнообразных применений.

10.3.2.1 Используются радиомикроскопические системы различной сложности как с ручным управлением, так и автоматизированные. Можно монтировать системы, имеющие широкий спектр возможностей между этими двумя крайностями.

- 10.3.2.2 Ренттеноскопия может служить как многосторонний неразрушающий инструмент. Он позволяет немедленно получить информацию о размере, расположении и распространении погрешностей как внутренних, так и внешних. Посредством манипуляций с источником, связанным с исследуемой композитной структурой, можно получить трехмерную информацию о размерах и относительном расположении интересующих элементов композитного материала или компонента. Рентгеноскопия позволяет своевременно оценить целостность элемента, продукции и быстро принять решение относительно продукции согласно стандартам приемки.
- 10.3.2.3 Длительные записи рентгеновского изображения могут быть получены посредством записи движущегося изображения (кинорентгенографии), видеозаписи или «неподвижных» фотографий с использованием обычных камер. Рентгеноскопическое изображение может быть увеличено при помощи электронных средств, оцифровано или иным образом обработано для улучшения его визуального анализа, автоматического анализа с помощью компьютера или того и другого.
- 10.3.2.4 Поскольку существует много методов обнаружения радиации, ее энергии и индукции, существует и несколько возможных систем. Рентгеноскопические системы удобно классифицируются на две основные категории: (1) основанные на конверсии рентгеновских лучей в свет с использованием люминисцентных составов, сцинтилляторов или усилителей рентгеновских лучей (систем непосредственного просмотра изображения) и (2) основанных на конверсии рентгеновских лучей в электроны с использованием полупроводниковых соединений или микроканальных пластин (систем удаленного просмотра изображения).
- 10.3.3 Преимущества и применения рентгеноскопия предпочтительна в тех случаях, когда требуется информация о трехмерном распределении погрешностей, дефектов и нарушении целостности в композитном материале или компоненте. Рентгеноскопия позволяет быстро проверить параметры и внутреннюю конфигурацию в композитных материалах и компонентах и может быть использована для оценки в режиме реального времени функционирования композитного материала или компонента. Рентгеноскопия имеет преимущества перед рентгенографией при характеристике несимметричных элементов во время тестирования за счет возможности получения трехмерного изображения при механическом перемещении элемента относительно рентгеновского луча.
- 10.3.4 Ограничения и вмешательства как и в рентгенографии, возможно, самая трудная задача рентгеноскопии в том, что касается композитных материалов и компонентов, получение достаточного контраста между композитными основаниями с низким атомным номером (например, матрица, волокно, ламинат). Соответственно, зачастую необходимо усилить контраст, используя радионепроницаемые материалы или контрастные вещества. Несмотря на многочисленные преимущества рентгеноскопических систем, чувствительность и разрашение систем, действующих в режиме реального времени, обычно не так хороши, как это могло бы быть с использованием пленки. Динамичные сцены требуют более высокого уровня потока рентгеновского излучения. При обращении с продукцией в системе динамического изображения необходимо отделять плоскость изображения от поверхности продукции, в связи с чем изображение получается нечетким. Ограничения, налагаемые динамической системой, затрудняют контроль над рассеиванием и геометрическими параметрами по сравнению с обычными рентгенографическими системами. И наконец, динамические радиоскопические системы требуют тщательного выравнивания источника, тестируемого предмета и детектора. Требования к работе с радиацией и расположение приборов в зависимости от используемых динамических систем обычно влекут за собой увеличение капитальных затрат на оборудование по сравнению с обычной статической радиографией.

10.3.5 Использование справочной документации

10.3.5.1 Методическое руководство по общим принципам радиоскопического изображения см. в руководстве Е1000. В руководстве описываются практики и система измерения изображения в реальном времени, а также приближенные к реальному времени, непленочное обнаружение, показ и запись радиоскопических изображений. Такие изображения, используемые при исследовании материалов, получаются посредством прохождения проникающей радиации через исследуемый материал и получения изображения на средстве обнаружения. Техники обнаружения и вывода изображения на экран являются непленочными, но при этом использование фотопленки в качестве средства для постоянной записи изображения не возбраняется. Руководство Е1000 также включает в себя описания различных конфигураций радиоскопичсеких системы конверсии ренттеновских лучей/света с использованием флюоресцентных люминисцентных составов или средств изображения сцинтиллирующих кристаллов и систем конверсии ренттеновских лучей/зпектронов, использующих полупроводниковые соединения или средства изображения на микроканальных пластинах, источники радиации (источники радиоактивных изотопов с низкой и высокой энергией, геометрия источников), средства вывода и записи изображений и соображения касательно качества изображения.

10.3.5.2 См. в практическом руководстве E1255 сведения о правилах проведения радиоскопического исследования с использованием проникающей радиации. Оно включает в себя динамическую радиоскопию и в целях данной практики радиоскопию, во время которой предмет не движется в процессе воздействия (далее именуется статическое радиоскопическое изображение). Поскольку используемые технологии и способы применения при радиоскопических исследованиях отличаются, эта практика не будет носить ни ограничивающего, ни запретительного характера, в ней, скорее всего, будут использоваться общие средства применения технологии, что таким образом облегчит их исследование. Общие принципы, обсуждаемые в этой практике, широко применяются в радиоскопических системах с проникающей радиацией. Практическое руководство E1255 также включает в себя обсуждение минимальной конфигурации системы, практику, рабочие показатели системы и измерение ее рабочих показателей.

10.3.5.3 В руководстве Е1411 описываются данные для тестирования и измерения работы радиоскопических систем. Поскольку радиоскопическое исследование применяют в разных случаях, система также имеет разные конфигурации, которые постоянно меняются с развитием технологии. Данное практическое руководство предназначено как средство первичной квалификации и переквалификации радиоскопической системы для конкретного применения посредством определения уровня ее рабочих показателей при работе в статическом режиме. Архитектура системы, включая способы архивирования записей радиоскопического исследования и способ принятия решения относительно приемки/выбраковки, также представляет собой уникальные характеристики; и их влияние на рабочие характеристики системы должно быть оценено. Общие принципы, как описывается в этой практике, широко применяются к радиоскопическим системам с проникающей радиацией переданного луча.

10.3.6 Геометрические параметры и размеры

- 10.3.6.1 Радиоскопия хорошо подходит для характеристики несимметричных предметов за счет возможности трехмерного измерения при использовании механического движения предметов относительно рентгеновского луча.
- 10.3.6.2 Относительное расположение источника, предмета, проходящего тест, и средств изображения, толщины предмета и видимых размеров дефекта описываются в пункте 10.2.7 (Рентгенография).

10.3.7 Калибровка и стандартизация

- 10.3.7.1 Справочные стандарты. Эталонные рентгенографы производства ASTM и стандарты приемки, написанные другими организациями, могут использоваться для радиоскопического исследования, а также для радиографии при условии, что будут сделаны соответствующие корректировки для выравнивая различий на флюороскопических изображениях.
- 10.3.7.2 Ссылочные стандарты. Эталонные рентгенограммы, созданные ASTM, и стандарты приемки, разработанные другими организациями, могут использоваться для рентгеноскопического исспедования, а также для рентгенографии, если выполнены соответствующие корректировки, учитывающие разницу в флуороскопических изображениях.
- 10.3.7.3 Учет качества изображения. Качество изображения зависит от двух факторов: контраста изображения и разрешения изображения. В разделе 11 руководства Е1000 рассмотрен ряд разных методов оценки качества изображений.
- 10.3.7.4 Использование двойного проволочного калибра и оптического клина. Если необходимо, можно использовать двойной проволочный калибр, как указано в методах E1255 и E2002, и оптический клин для определения и отслеживания производительности рентгеноскопической системы в части пространственного разрешения и контрастной чувствительности. Двойной проволочный калибр используют без дополнительного поглотителя для оценки пространственного разрешения системы. Оптический клин используется для оценки контрастной чувствительности системы.
- 10.3.7.5 Аттестация оборудования. Необходимо аттестовать ряд характеристик системы для гарантии того, что система может выполнять требуемые задачи по рентгеноскопическому исследованию. Кроме того, аттестация рентгеноскопической системы должна быть выполнена в соответствии с требованиями метода Е1411, и лучше всего может быть оценена индикаторами качества изображения, подобно исследованию типов дефектов или разрывов.

10.3.8 Меры предосторожности и безопасности

- 10.3.8.1 Общее описание мер предосторожности и безопасности в радиологических условиях и применяемых федеральных документах и документах Национального комитета по радиационной защите приведено в разделе 10.2.8 (Рентгенография и компьютерная радиология).
- 10.3.8.2 При работе с рентгеноскопическими системами, в которых манипуляции производятся с источником радиации вместо или совместно с исследуемым изделием, должны соблюдаться более строгие требования к экранированию.

10.3.9 Материальные эталоны

- 10.3.9.1 Эталоны чувствительности (индикаторы качества изображения) чувствительность к рентгеновскому излучению, показанная индикатором качества изображения, является измерением контраста и в ограниченной степени разрешения. Поскольку большинство рентгеноскопических систем имеют ограниченное разрешение, тем не менее большее внимание уделяется индикаторам качества изображения, измеряющим разрешение (таким как проволочное сито или контрольный образец линейной пары).
- 10.3.9.2 Применение эталонного блока см. описание эталонного блока в пункте 10.2.10.3. Эталонный блок должен быть помещен в рентгеноскопическую систему в таком же положении, что и реальное испытываемое изделие, и им можно манипулировать в том же диапазоне перемещений и подвергать тому же воздействию излучения систем динамической рентгеноскопии, которые доступны для реального объекта, чтобы получить максимальную реакцию системы рентгеноскопического исследования на моделированные дефекты.

10.4 Цифровая радиология с системами цифровой детекторной решетки

10.4.1 Общая процедура. Система цифровой радиологии включает сбор, отображение и хранение рентгенологических снимков, выполненных не на пленке, в режиме, близком к реальному времени. Подобно всем рентгенологическим методам неразрушающих испытаний системы цифровой радиологии основаны на принципе затухания рентгеновских лучей в процессе их прохождения через испытываемое изделие.

- 10.4.2 Значение и применение. Как и традиционная рентгенография, исследования системами цифровой радиологии широко применяются для любых композитных материалов или деталей, через которые может пройти и может быть обнаружен луч проникающей радиации. Несмотря на свою близкую связь с рентгенографией, системы цифровой радиологии отличаются значительно более низкими эксплуатационными расходами в плане времени, человеческого труда и материалов. Помимо преимуществ, которые обычно характерны для рентгенографии, исследование системой цифровой радиологии позволяет использовать динамичную и не требующую пленки технологию, которая позволяет манипулировать исследуемой деталью и оптимизировать лостроение изображений во время исследования; либо статическую и не требующую пленки технологию, котда исследуемая деталь остается неподвижной по отношению к подающему излучению. Новую технологию прогрессивно применяют в рентгеновских трубках, детекторах, а цифровая обработка изображений обеспечивает приемлемую чувствительность, которая подходит для широкого спектра применения.
- 10.4.2.1 Изображения, создаваемые системой цифровой радиологии, имеют очень большое количество оттенков серого цвета (до 65 000). Поэтому системы цифровой радиологии всегда компьютеризированы; для работы с системой цифровой радиологии необходимы функции обработки изображений. На рынке существуют высокопроизводительные инструменты для обработки изображений.
- 10.4.2.2 Системы цифровой радиологии могут быть универсальным инструментом неразрушающих испытаний. Они предоставляют оперативную информацию о размере, расположении и распределении внутренних и внешних дефектов. Посредством перемещения источника по отношению к исследуемой конструкции из композитного материала можно получить трехмерные данные о размерах и относительном положении исследуемых элементов внутри композитного материала или детали. Системы цифровой радиологии позволяют оперативно оценивать целостность продукта и быстро утилизировать продукцию на основании требований стандартов по приемке.
- 10.4.2.3 Изображение, полученное системой цифровой радиологии, можно увеличить электронным способом или обработать другим способом, чтобы улучшить визуальный анализ изображения или компьютеризированный анализ, либо тот и другой. Запись может вестись длительное время благодаря хранению изображений на CD- или DVD-дисках.
- 10.4.2.4 Поскольку существует много методов обнаружения радиации в режиме реального времени или почти реального времени с помощью цифровой детекторной решетки, то можно использовать несколько систем. Системы цифровой радиологии традиционно разделяют на две основные категории: (1) системы, основанные на преобразовании рентгеновских лучей в свет с помощью сцинтилляторов, и (2) системы, основанные на преобразовании рентгеновских лучей в электроны с помощью соединений полупроводников (прямое преобразование).
- 10.4.3 Преимущества и виды применения. Системы цифровой радиологии желательно использовать, когда необходима информация о пространственном распределении недостатков, дефектов и разрывов в композитном материале.
- 10.4.3.1 Системы цифровой радиологии позволяют быстро проверять размеры и внутреннее строение композитных материалов и деталей.
- 10.4.3.2 Системы цифровой радиологии превосходят возможности рентгенографии в части определения характеристик несимметричных испытываемых изделий, поскольку они имеют возможность трехмерного описания изделия в случае его механического перемещения.
- 10.4.3.3 Системы цифровой радиологии дают значительно лучшее контрастное разрешение в сравнении с рентгеноскопическими системами. С помощью функций интеграции компьютерного программного обеспечения можно получать очень высокие отношения «сигнал помеха» (>> 1000), и при таком высоком отношении «сигнал помеха» контрастная чувствительность может превышать 0,5 %. Это обеспечивает достаточный контраст между компонентами композитного материала с низкими атомными числами (например, матрица, волокно, слой). Применение радионепроницаемых материалов или контрастных веществ может не потребоваться.
- 10.4.3.4 Системы цифровой радиологии могут обеспечить высокое геометрическое разрешение с помощью: (1) небольшого размера пикселей (50 пм) и (2) трубки с микрофокусом и большего увеличения. Возможно комбинированное применение.
- 10.4.3.5 Экраны и переднюю крышку детектора системы цифровой радиологии можно адаптировать к очень малым энергиям. Это обеспечивает высокую чувствительность при малых энергиях, например, 20 кэВ. При малой энергии снижается рассеянное излучение радиации композитного материала в луче.
- 10.4.4 Ограничения и влияющие факторы. Системы цифровой радиологии предусматривают тщательное центрирование источника, испытываемого изделия и детектора. Поскольку системы цифровой радиологии отличаются большим допуском на дозу, чем рентгеноскопические системы, то центрирование может быть не таким строгим, как в рентгеноскопических системах.
- 10.4.4.1 Требования к обращению с радиоактивными устройствами и устройства позиционирования изделий из композитных материалов, характерные для динамических систем, обычно приводят к увеличению капитальных затрат на оборудование, в сравнении с традиционной статической рентгенографией.
- 10.4.4.2 У систем цифровой радиологии должно быть компьютерное управление. Оператор должен знать технологию рентгеновского излучения, а также он должен знать, как пользоваться компьютерной системой.
- 10.4.4.3 Очень высокое отношение «сигнал помеха» в системе цифровой радиологии возможно только при наличии тщательно откалиброванного детектора. Процесс калибрования требует от оператора знания некоторых специализированных ноу-хау.

10.4.5 Применение нормативных документов

10.4.5.1 Обратитесь к методике E2597, где приведено сравнение цифровых детекторных решеток, чтобы выбрать соответствующую цифровую детекторную решетку, отвечающую требованиям неразрушающих испытаний, с помощью общего комплекса технических измерений, а именно: основное пространственное разрешение, клд, доступная контрастная чувствительность, диапазон удельной толщины материала, запаздывание изображения, приработка аппаратуры, мертвые пиксели и внутренняя рассеянная радиация.

10.4.6 Учет геометрии и размеров

- 10.4.6.1 Системы цифровой радиологии хорошо подходят для определения характеристик несимметричных испытываемых изделий, поскольку они имеют возможность трехмерного описания изделия, если его механически передвигать по отношению к рентгеновскому лучу.
- 10.4.6.2 Информация о геометрии проведения испытаний (относительно положения источника, испытываемого изделия и устройств построения изображений), толщине испытываемого изделия и наблюдаемых размерах дефекта приведена в пункте 10.2.7 (рентгенография).

10.4.7 Меры предосторожности и безопасности

- 10.4.7.1 Общее описание мер предосторожности и безопасности в радиологических условиях и применяемых федеральных документах и документах Национального комитета по радиационной защите приведено в пункте 10.2.8 (Рентгенография и компьютерная радиология).
- 10.4.7.2 При работе с системами цифровой радиологии, в которых манипуляции производятся с источником радиации вместо или совместно с исследуемым изделием, должны соблюдаться более строгие требования к экранированию.

10.4.8 Калибровка и стандартизация

- 10.4.8.1 Ссылочные стандарты. Эталонные рентгенограммы, созданные ASTM, и стандарты приемки, разработанные другими организациями, могут использоваться для цифрового радиологического исследования, а также для рентгенографии, если выполнены соответствующие корректировки, учитывающие разницу в флуороскопических изображениях.
- 10.4.8.2 Учет качества изображения. Качество изображения зависит от трех факторов: контраста изображения, разрешения изображения и отношения «контраст помехи». В разделе 11 руководства Е1000, а также в методиках Е2445, Е2446 и Е2597 рассмотрен ряд разных методов оценки качества изображений.
- 10.4.8.3 Использование двойного проволочного индикатора качества изображения и двойного оптического клина. Если необходимо, можно использовать двойной проволочный индикатор качества изображения и оптический клин с канавками на любой ступени для определения и отслеживания производительности системы цифровой радиологии в части пространственного разрешения, контрастной чувствительности, отношения «сигнал помеха», динамического диапазона и изменения параметров запаздывания изображения. Двойной проволочный индикатор качества изображения используется без дополнительноготителя для оценки пространственного разрешения детектора. Канавочный оптический клин применяют для оценки контрастной чувствительности системы, отношения «сигнал помеха» и динамического диапазона. Запаздывание изображения можно измерить путем захвата серии изображений, при котором источник отсекается.
- 10.4.8.4 Аттестация оборудования. Необходимо аттестовать ряд характеристик системы для гарантии того, что система может выполнять требуемые задачи по исследованию. Кроме того, аттестацию системы цифровой радиологии можно лучше всего оценить с помощью индикаторов качества изображения, подобно исследованию типов дефектов и разрывов.

10.4.9 Материальные эталоны

- 10.4.9.1 Эталоны чувствительности (индикаторы качества изображения) чувствительность к рентгеновскому излучению, показанная индикатором качества изображения, является измерением контраста и в ограниченной степени разрешения. В системах цифровой радиологии оба параметра будут значительно отличаться при использовании разных тилов детекторов. Оба параметра необходимо измерять независимо друг от друга.
- 10.4.9.2 Применение эталонного блока см. описание эталонного блока в пункте 10.2.10.3. Эталонный блок должен быть помещен в систему цифровой радиологии в таком же положении, что и реальное испытываемое изделие, и им можно манипулировать в том же диапазоне перемещений и подвергать тому же воздействию излучения систем динамической цифровой радиологии, которые доступны для реального объекта, чтобы получить максимальную реакцию системы исследования цифровой радиологии на моделированные дефекты.

ДA.11

11.1 Нормативные ссылки

11.1.1 Стандарты ASTM:2

E2581 Методика по проведению ширографии композитных материалов с полимерной матрицей, материалов заполнителя сэндвич-панелей и сосудов высокого давления с филаментной намоткой волокна в авиакосмической промышленности

F1364 Методика применения откалиброванных устройств для демонстрации возможности контроля системы неразрушающего контроля пневматических шин, формирующей изображения с помощью интерферометрического лазера

11.1.2 Федеральные стандарты

21CFR 1040.10 Лазерные изделия

21CFR 1040.11 Специализированные лазерные изделия

11.1.3 Документ Американского лазерного института (LIA)

ANSI Z136.1-2000 Безопасное применение лазеров

11.1.4 Документ Британского института стандартов

EN60825-1 Безопасность лазерных изделий. Часть 1. Классификация оборудования, требования и руководство пользователя

11.3.4 Системы ширографии с портальным загрузочным устройством, установленные на производстве, имеют много общего с системами кругового ультразвукового сканирования. Среди них: обучающая часть программы сканирования, электронная обработка изображения всего испытуемого изделия, анализ изображения и инструменты для измерения дефектов, автоматизированная работа.

11.4 Применение нормативных документов

- 11.4.1 Обращаясь к методу F1364, где представлено описание конструкции и применение блочного натяжного устройства, которое можно использоваться для калибровки способности обнаружения аномалии аппаратуры ширографии.
- 11.4.2 Обращаясь к методу E2581, где представлено описание процедур ширографии для композитных материалов с полимерной матрицей, материалов заполнителя сэндвич-панелей и сосудов высокого давления с филаментной намоткой волокна.
- 11.6.2 Системы, классифицируемые как лазерные системы классов 1 и 2, как правило, не требуют никакой специальной безопасности, кроме базового понимания безопасного применения лазеров. При нормальных условиях работы лазерные системы класса 3а выдают допустимые уровни излучения лазерной системы, в пять раз превышающие допустимые уровни излучения лазерных систем класса 2 без дополнительных ограничений, кроме более глубоких знаний по безопасной работе с лазером. При использовании лазерных систем класса 3а, следует обратить внимание на то, чтобы не смотреть на излучения лазера с использованием оптической системы, которая будет увеличивать излучение лазера (т. е. бинокуляры или телескопические устройства). Это ограничение не включает обычные коррегирующие линзы.
- 11.6.3 Вообще следует избегать использование лазерных систем класса 3b и класса 4 для всех видов применения, кроме лабораторных систем, потому что они предполагают эксплуатационные ограничения и необходимость дополнительного медицинского наблюдения.

ДА.12

12.1 Нормативные ссылки

12.1.1 Стандарты ASTM:2

- E251 Методы испытания рабочих характеристик металлических наклеиваемых тензодатчиков сопротивления E1237 Руководство по установке наклеиваемых тензодатчиков сопротивления
- 12.3.1 Тензодатчики являются частью сложной системы, в которую входит испытуемое изделие, клеящее вещество, датчик, провода, КИП и (часто) средства защиты окружающей среды.
- 12.3.2 Тензодатчики правильной конструкции и исполнения, чьи свойства были с точностью определены и применены с соответствующей долей неопределенности, представляют собой достоверные средства измерения. Тензодатчики это очень чувствительные устройства с фактически бесконечной разрешающей способностью. Параметры производительности, описанные в методах испытания E251, необходимо знать с допустимой точностью, чтобы получить убедительные результаты при эксплуатации.
- 12.3.6 Наконец, контрольно-измерительная аппаратура должна тщательно рассчитываться, чтобы не понижать неоправданно рабочие характеристики датчиков. Во многих случаях эту цель достичь невозможно. В таком случае следует допускать погрешность при определении точности данных.
- 12.3.7 Условия испытания могут в некоторых случаях быть настолько серьезными, что сигналы об ошибках от систем тензодатчиков намного превышают сигналы об измеряемых структурных деформациях. При документировании амплитуды сигналов об ошибках необходимо проявлять предельную осторожность, чтобы для соответствующих неточностей можно было подставлять реальные значения.
- 12.3.8 Несмотря на доступность новых типов тензодатчиков, а именно полупроводниковые тензодатчик, тонкопленочные тензодатчики, диффузионные полупроводниковые тензодатчики, в настоящем руководстве делается упор на использование металлических наклеиваемых тензодатчиков сопротивления. Некоторые преимущества и недостатки указанных новых типов тензодатчиков в сравнении с металлическими наклеиваемыми тензодатчиками сопротивления кратко представлены в таблице 13.

FOCT P 56787-2015

Таблица 13 — Сравнение новых типов тензодатчиков с металлическими наклеиваемыми тензодатчиками сопротивления

Тип тензодатчика	Преимущества	Недостатки
Полупроводниковый	Меньше размером. Менее дорогостоящий. Выше удельное сопротивление	Повышенная чувствительность к ко- лебаниям температуры. Тенденция к смещению. Нелинейное отноше- ние сопротивления к деформации
Тонкопленочный	Исключает необходимость адгезионного свя- зывания. Гораздо более стабильная установка (меньшее смещение значений сопротивления). Датчиком силы напряжения может быть метал- лическая мембрана или стержень с осажденным слоем керамической изоляции	При изготовлении применяется осаждение напылением в вакууме или метод напыления (несъемный монтаж)
Диффузионный Полупроводниковый	Исключает необходимость адгезионного связывания. Меньше размером. Менее дорогостоящий. Точность и повторяемость. Обеспечивает широкий диапазон давления. Создает мощный выходной сигнал. Ошибки из-за смещения и гистерезиса устранены	Повышенная чувствительность к колебаниям наружной температуры (отграничена условиями умеренных температур). Измерения зачастую требуют компенсации температуры. При изготовлении применяется метод фотолитографического ма- скирования (несъемный монтаж)

12.4 Использование актуальных стандартных документов

- 12.4.1 Рабочие характеристики тензодатчиков описаны в методах испытаний E251. Конструкции испытательного оборудования приведены. Описание методов определения пяти параметров тензодатчиков: (1) сопротивление при исходной температуре, (2) коэффициент тензоустойчивости при исходной температуре, (3) температурный коэффициент для коэффициента тензоустойчивости, (4) поперечная чувствительность и (5) тепловая мощность. Данные методы испытаний не применимы к таким датчикам, как датчики нагружения и экстензометры, использующие наклеиваемые тензодатчики сопротивления в качестве чувствительных элементов.
- 12.4.2 Принципы установки и проверки тензодатчиков описаны в руководстве Е1237. Настоящий документ не предназначен для насыпных или диффузионных полупроводниковых датчиков. Настоящий документ относится только к тензодатчикам сопротивления, крепящегося при помощи клеящего вещества. Подробное описание приведено по выбору датчика, методам склеивания, подготовке поверхности, установке датчика (общие аспекты и аспекты применения клеящего вещества), соединению электропроводов, контрольным проверкам и защитным покрытиям.
- 12.4.3 Вопросы, связанные с точностью бесконтактных систем измерения деформации (например, муаровая интерферометрия), и общие принципы количественного сравнения оптических систем описаны в руководстве E2208. Выходные сигналы от бесконтактной оптической системы измерения напряжения и деформации в общем делятся на оптические данные и данные визуального анализа. Оптические данные содержат информацию, связанную с деформацией образца, процесс визуального анализа првобразует зашифрованную оптическую информацию в данные о деформации. В руководстве E2208 описаны потенциальные источники ошибок в данных о деформации, общие методы количественной оценки погрешности и определения точности измерений при применение обесконтактных методов для изучения событий, для которых время оптической интеграции намного меньше, чем обратное значение максимальной временной частоты в закодированных данных (т. е. события, которые могут рассматриваться в качестве статистики времени интеграции). В приложении приводятся краткое описание применения, а также конкретные примеры, определяющие различные термины.
 - 12.8 Материальные эталонные образцы
- 12.8.1 Важно понимать, что калибровка индивидуальных тензодатчиков невозможна. Не используйте тензодатчики, если необходима калибровка и отслеживаемость до стандартов материальных эталонов.

ДА.13

- 13.1 Нормативные ссылки
- 13.1.1 Стандарты ASTM:2
- Е1213 Метод испытания на минимальный разрешимый температурный перепад для систем формирования ИК-изображений
- Е1311 Метод испытания на минимальный определяемый температурный перепад для систем формирования ИК-изображений
- Е1543 Метод испытания на перепад эквивалентной шумовой температуры систем формирования ИКизображений.

E1862 Методы испытаний для измерения и компенсации отраженной температуры с помощью систем формирования ИК-изображений

Е1897 Методы испытаний для измерения и компенсации коэффициента пропускания самой смягчающей среды с помощью систем формирования ИК-изображений

Е1933 Методы испытаний для измерения и компенсации коэффициента излучения с ломощью систем формирования ИК-изображений

E1934 Руководство по обследованию электрического и механического оборудования методом инфракрасной термографии

E2582 Практические указания по инфракрасной термографии вспышек панелей из композитных материалов и ремонтных заплат, используемых в аэрокосмической отрасли

13.1.2 Справочники и стандарты:6

MIL-HDBK-731 Метод неразрушающего испытания композитов — термография

13.3.6 Активная термография — активная термография требует использования внешнего импульса, возбуждающего поток тепла (диффузией) в испытываемом образце. Нагрев может вводиться (1) помещением испытываемого изделия в контакте с объектом другой температуры (теплопроводность); (2) нагнетанием воздуха или жидкости в изделие (конвекционный нагрев), или воздействием на испытываемое изделие светом импульсной лампы или прожектора (нагрев излучением). Охлаждение не менее эффективно, но при этом доступна только теплопередача или конвекция. Еще одной формой внешнего воздействия является циклическая механическая деформация испытываемого изделия. Примерами являются (1) резонанс тела или (2) локальный резонанс с помощью ультразвукового датчика. В целом циклическая частота в диапазоне от 5 до 30 Гц является общей для композитов.

13.3.6.1 Бесконтактные методы — излучаемая энергия не требует среды для передачи тепла от источника к поверхности испытываемого образца. Для бесконтактного образца наиболее часто используются лампы нагрева (импульсные лампы или прожекторы). Кроме того, принудительный воздушный нагрев (или охлаждение) обычно считают бесконтактным (конвекционный нагрев/охлаждение). Как правило, легче получить равномерное тепловое излучение по относительно большой поверхности, используя нагрев излучением. Метод нагрева излучением также подходит для изделий неправильной формы или с неровной поверхностью. Схемы теплового излучения от источников излучающего нагрева, как правило, более воспроизводимы и в большей степени поддаются количественной интерпретации, чем в случае с конвекционным нагревом.

13.4 Использование нормативных ссылок

- 13.4.1 Общий обзор активных и пассивных методов термографии с использованием бесконфликтных способов получения схем излучения тепловой энергии представлен в справочнике MIL-HDBK-731.
- 13.4.2 В отношении контактной термографии с пассивным или активным возбуждением специализированный стандарт ASTM не разработан.

13.4.3 Бесконтактные (инфракрасные) методы

- 13.4.3.1 Способность определения минимального разрешимого температурного перепада (МРТП) сложной системы формирования ИК-изображений как функция от пространственной частоты описана в методе испытаний Е1213. Значения МРТП дают оценку разрешающей способности и могут использоваться для сравнения одной системы с другой (меньшие значения МРТП указывают на более высокую разрешающую способность).
- 13.4.3.2 Способность определения минимального разрешимого температурного перепада (МРТП) сложной системы формирования ИК-изображений как функция от угла, противолежащего к объекту, описана в методе испытаний Е 1311. Значения МРТП дают оценку разрешающей способности и могут использоваться для сравнения одной системы с другой (меньшие значения МРТП указывают на более высокую способность обнаружения).
- 13.4.3.3 Определение перепада эквивалентной шумовой температуры (ПЭШТ) тепловых систем визуализации обычного типа ИК-систем переднего обзора (ИКПО) или других типов, использующих оптико-механический сканер, не включает ПЗС или пировидиконы. Части данного метода испытания были сформулированы с допущением фотонного(ых) датчика(ов) при стандартной фоновой температуре. 295 °К (22 °С). Кроме фактора неравномерности испытания, проведенные при иных фоновых температурах, могут привести к ухудшению прецезионности и систематической погрешности. ПЭШТ относится к минимальному разрешаемому перепаду температуры, таким образом, увеличение ПЭШТ могут проявляться как потеря деталей на термографическом изображении.
- 13.4.3.4 Процедуры измерения и компенсации отраженной температуры при измерении температуры поверхности образца с помощью радиометра для получения инфракрасного изображения описаны в методах испытаний Е1862.
- 13.4.3.5 Процедуры измерения и компенсации коэффициента пропускания при использовании радиометра для получения инфракрасного изображения, чтобы измерить температуру образца через смягчающую среду, например окно, фильтр или атмосфера, описаны в методах испытаний Е1897.
- 13.4.3.6 Процедуры измерения и компенсации коэффициента излучения при измерении температуры поверхности образца формированием инфракрасного изображения описаны в методах испытаний Е1933.
- 13.4.3.7 Перечень обязанностей конечного пользователя и оператора инфракрасной термографии при проверке электрических и механических систем приведен в руководстве Е1934. В настоящем руководстве описываются конкретные данные, необходимые для документирования качественных и количественных инфракрасных термографических испытаний.

- 13.4.3.8 Процедура обнаружения подповерхностных дефектов в композитных панелях и ремонтных заплатах, применяемых к композитным конструкциям с полимерной или керамической матрицей, обследуемая поверхность которых достаточно визуально непрозрачна, поглощает падающий свет и имеет достаточный коэффициент излучения, позволяющий контролировать поверхностную температуру ИК-камерой.
- 13.5.1 Так как бесконтактная инфракрасная термография работает на основе методов оптического поля, ее можно применять при быстром осмотре больших поверхностей.
- 13.5.2. Очень тонкие материалы, например слоистые композиты, как было доказано, имеют хорошую точность конфигурации тепловых поверхностных потоков по отношению к дефектам или разрывам внутренней части. Толстые композиты будут иметь дефекты большего размера на большей глубине, чем они обычно бывают из-за поперечного теплового потока (методы обработки изображений могут компенсировать этот факт). По мере того как размеры в поперечном сечении дефектов становятся сравнимыми с их глубиной, кажущийся размер будет больше фактического размера дефекта.
- 13.6.2 Работа с воздушными пушками, импульсными лампами и прожекторами может запрещаться в условиях непосредственной эксплуатации.

ДА.14

14. Ультразвук

14.1 Нормативные ссылки

14.1.1 Стандарты ASTM:2

E114 Практические указания по контактному методу дефектоскопии прямолинейным пучком ультразвукового импульса/эха

Е214 Практические указания по ультразвуковой погружающей дефектоскопии методом отраженных импульсных горизонтальных волн

ЕЗ17 Практические указания по оценке рабочих характеристик приборов и систем дефектоскопии ультразвуковым импульсом/эхом без электронного контрольно-измерительного оборудования приборов

Е664 Практические указания по измерению кажущегося затухания ультразвуковых горизонтальных волн методом погружения

E1001 Практические указания по обнаружению и оценке разрывов погруженным методом дефектоскопии прямолинейным пучком ультразвукового импульса/эха с использованием горизонтальных волн

Е1065 Руководство по определению характеристик ультразвуковых искателей

Е1324 Руководство по измерению некоторых электронных параметров приборов ультразвуковой дефектоскопии

Е1901 Руководство по обнаружению и оценке разрывов контактным методом ультразвуковой дефектоскопии прямолинейным пучком ультразвукового импульса/эха Е 2580

E2580 Практические указания по ультразвуковой дефектоскопии плоских композитных панелей и материала среднего слоя многослойных конструкций, используемых в аэрокосмической отрасли

SAE J428 Ультразвуковая дефектоскопия

14.1.2 Справочники и стандарты:6

MIL-HDBK-731 Метод неразрушающего испытания композитов — ультразвуковые испытания

14.2.3 Типы процедур

- 14.2.3.1 Контактное испытание датчик помещается непосредственно напротив испытываемого изделия, при этом между ними наносится пленка жидкого связующего вещества.
- 14.2.3.2 Испытание с погружением испытываемое изделие устанавливается в резервуар со связывающей жидкостью, обычно водой. Датчик погружается в резервуар и точно устанавливается относительно испытываемого изделия. Если погружение нежелательно, можно использовать водяные колонки между датчиком и испытываемой поверхностью.
- 14.3.1 Один из наиболее широко используемых видов НРИ для композитов и компонентов это ультразвуковая дефектоскопия С-сканирования теневым методом и ультразвуковая эхоимпульсная дефектоскопия А-сканированием. В силу широкого развития этой сферы и разнообразия возможных методов и процедур ультразвуковых испытаний технические требования и критерии допуска/отклонения обычно приводятся в документе, упомянутом в технологических спецификациях пользователя.
- 14.3.2 Теневой метод, использующий электронное регистрирующее оборудование (С-сканер), хорошо подходит для дефектоскопии многослойных конструкций. Этот метод является одним из наиболее распространенных прикладных методов обнаружения расслоений, нарушений адгезии, а также дефектов пористого типа.
- 14.3.3. Несмотря на то что информацию о различных возможных дефектах или внутренних разрывах можно получить методом ультразвукового испытания, к основным определяемым дефектам можно отнести внутренние пустоты/объем пустот, нарушение адгезии, расслаивания и пористость. Также можно определить направление волокон.

14.4 Использование нормативных ссылок

14.4.1 Общие сведения

14.4.1 Ультразвуковое определение направления волокон, содержания пустот, расслоений, характеристик прочности (например, конечная прочность) с помощью коэффициента волны напряжения (КВН), разрушение от усталости и эластичные константы в матрице жесткости описаны в справочнике МІL-HDBK-787.

14.4.2 Эхоимпульсный метод

- 14.4.2.1 Ультразвуковая дефектоскопия испытываемых изделий эхоимпульсным методом с помощью прямолинейного пучка продольных волн, введенных прямым контактом искателя с испытываемым материалом, описана в практических указаниях Е114. Данные практические указания применяются для разработки процедуры испытания, согласованной покупателем (осведомленная инженерная организация) и поставщиком.
- 14.4.2.2 Процедуры обнаружения разрывов в материале с помощью измерительных приборов, которые передают и получают импульсные продольные ультразвуковые волны, введенные в испытываемый материалы, при погружении или контакте с жидким связующим веществом, описаны в практических указаниях Е214. Данные практические указания применяются ко всем материалам, способным проводить звук подходящей частоты и которые можно погружать в жидкое связующее вещество для проведения дефектоскопии или которые можно подвергнуть испытанию с использованием водяных колонок или потока связующего вещества между искателем и испытываемым материалом.

Примечание 15 — Практические указания E1001 — это дополнительный документ к практическим указаниям E214.

- 14.4.2.3 Измерения кажущегося затухание ультразвука материалов или компонентов с плоской, параплельной поверхностью с помощью обычного эхопульсного оборудования ультразвукового обнаружения дефектов и разрывов, где отражение отображается в виде А-сканирования, описано в практических указаниях Е664. Эта процедура измерения легко адаптируется для определения относительного затухания между материалами. Для измерения абсолютного (истинного) затухания, указывающего на имманентный характер материала, необходимо внести поравки на геометрические параметры образца, рассеивание звукового пучка, контрольно-измерительные приборы и процедурный фактор. Эти результаты можно получить более узконаправленным ультразвуковым оборудованием и методами. Данные практические указания связаны с затуханием продольных волн, введенных в испытываемое методом погружения изделие.
- 14.4.2.4 Процедура ультразвуковой дефектоскопии сыпучих материалов или деталей путем передачи импульсных продольных волн через жидкое сеязующее вещество в материал и наблюдением за признаками отражения волн описана в практических указаниях Е100. В них охвачены только те испытания, в которых один искатель используется как для передачи, так и для приема сигнала (эхоимпульный) и где часть испытываемого материала полностью погружена в связывающее вещество (испытание при погружении). В них приведены обще требования и процедуры, которые можно использовать для определения разрывов и для относительной или приблизительной оценки размера разрыва. Практические указания дополняет практические указания Е214, добавляя более подробные сведения по выбору и калибровке систем проверки, а также по оценке полученных признаков.
- 14.4.2.5 Контактная ультразвуковая дефектоскопия для сыпучих материалов путем передачи импульсных ультразвуковых волн в материал и наблюдения за признаками полученных волн описана в руководстве Е1901. В нем описаны только те типы дефектоскопии, при которых используют только один исжатель как для передачи, так и для приема сигнала (ахоимпульный). В нем приведены общие требования и процедуры, которые можно использовать для определения разрывов, расположения глубины и расстояния от точки отсчета, а также для относительного или приблизительного определения размеров разрывов в сравнении с оценкой размера разрывы в качестве сравнения с эталонным образцом. Практические указания дополняют практические указания Е114, добавляя более подробные сведения по выбору и калибровке систем проверки, а также по оценке полученных признаков.
- 14.4.2.6 Описание двух процедур ультразвуковой дефектоскопии (УД) плоских композитных панелей и материала среднего слоя многослойных конструкций (параллельные поверхности), а именно процедура испытания А, эхоимпульсное испытание, и процедура проверки В, теневой метод дефектоскопии, приведено в практических указаниях E2580.

14.4.3 Теневой метод

14.4.3.1 В отношении теневого метода ультразвукового определения характеристик материалов, композитов и пр. специализированный стандарт ASTM не разработан. Теневой метод ультразвукового определения характеристик композитов и их компонентов описан в справочнике MIL-HDBK-787.

14.4.4 Оборудование и приборы

- 14.4.4.1 Процедура измерения следующих параметров производительности ультразвуковых приборов описана в руководстве Е1324.
- 14.4.4.2 Датчики сведения по оценке определенных характеристик ультразвуковых искателей, используемых с контрольно-измерительным ультразвуковым оборудованием, приведены в руководстве Е1065. В настоящем руководстве описываются средства получения данных производительности, которые могут использоваться при определении акустических и электрических характеристик ультразвуковых искателей.
- 14.5.1 Ультразвуковые передатчики, часто называемые «искателями», как правило, имеют диаметр не больше 25 мм (1 дюйм). Эти датчики могут иметь различные выходные звуковые характеристики. Поэтому при дефектоскопии больших объектов необходимо сканировать объект с учетом эффективной величины звукового пучка, связанного с датчиком.
- 14.7.3 При необходимости получить количественную информацию необходимо проверить вертикальную или горизонтальную линейность или оба эти параметра в соответствии с практическими указаниями Е317 или другими

FOCT P 56787-2015

процедурами, утвержденными уполномоченным органом и заказчиком. Приемпемые характеристики линейности могут согласовываться между уполномоченным органом и заказчиком.

14.8 Материальные эталонные стандарты

14.8.1 Эхоимпульсные эталонные стандарты и образцы — испытываемое изделие само по себе может являться достаточным эталоном, использующим эхо от задней стенки в качестве начала отсчета. Для получения более подробной количественной информации для стандартизации можно использовать обработанные искусственные отражатели (разрывы) или графики отношения расстояния к амплитуде известных размеров отражения для того или иного искателя и материала. Искусственные отражатели могут представлять собой инородные материалы, оказавшиеся внутри при формировании структуры слоев в искусственных пористых участках, отверстиях плоской нижней поверхности, просверленных боковых отверстиях или прорезях. Покрытие поверхности эталонного образца должно быть идентично поверхности единицы производства. Материал эталонного образца и материал изготовления должны иметь идентичные акустические свойства (по скорости и затуханию). Выбранный эталонный при проведении испытаний образец должен использоваться как основа для сравнения сигналов.

ДА.12

15 Визуальный неразрушающий контроль

15.1 Нормативные ссылки

15.1.1 Руководство ASNT3

Руководство по неразрушающим испытаниям, визуальные и оптические испытания, том 8

SNT-TC-1A Рекомендуемые практические указания по квалификации персонала и сертификации при неразрушающих испытаниях

15.4 Использование нормативных ссылок

 15.4.1 Подробную информацию касательно квалификации персонала, обучения и сертификации можно найти в документе SNT-TC-1A Американского общества неразрушающих испытаний.

15.4.2 Подробное описание физиологии зрения, проверки остроты зрения, определения характеристик света, проверки окружающей среды, вспомогательных средств и приспособлений, норм и стандартов, взаимодействие визуального неразрушающего контроля с другими методами неразрушающего контроля можно найти в руководстве по неразрушающим испытаниям, том 8, Американского общества неразрушающих испытаний.

Приложение ДБ (справочное)

Сопоставление структуры настоящего стандарта со структурой примененного национального стандарта

Таблица ДБ.1

	Структура стандарта /	ASTM E2533-09	Структура настоящего стандарта		
Раздел	Подраздел	Пункт/Подпункт	Раздел	Подраздел	Пункт/Подпункт
1	1.1, 1.3	-	1	1.1	_
	1.2*	-		2	_
	(1.4—1.10)*				_
2	2.1	-	2	_	_
	(2.2-2.3)*		1 1		_
3	3.1	-	3	3.1	3.1.1—3.1,3
	3.2*	_	Ī I	12 1254 1	737
	3.3	3.3.1—3.3.11	Ī		
4	(4.1-4.9)*	4,1,1—4.1.9	431		
5*	5.1—5.6	_	_		_
6*	6.1	_		1 - 10-A	
7	7.11)	7.1.1—7.1.3	5	: : : : : : - :	_
	7.2	7.2.1		5.1	5.1.1—5.1.3
	7.3	7.3.1—7.3.7	i i	5.2	5.2.1—5.2.7
		7.3.8*			_
		7.3.9			5.2.8
		(7.3.10—7.3.12)*			3-2
		7.3.13		5.3	5.3.1—5.3.5
		7.3.14	1 1	5.4	5.4.1-5.4.4
	7.42)	7,4.1—7.4.3	1		-
	7.5	7.5.1—7.5.3	1 1	5.6	5.6.1—5.6.3
	7.6	7.6.1	1 1	5.7	-
		7.6.1.1	1 1		
		(7.6.1.2—7.6.1.4)*	†		
	7.7	7.7.1—7.7.3	1	5.8	5.8.1—5.8.3
		7.7.4*	†		_
	7.8*	7.8.1	†		1-
8*	8.1—8.8	_	_	_	_
9	9.11)	9.1.1—9.1.3	7	_	_

ГОСТ Р 56787-2015

Продолжение таблицы ДБ.1

	труктура стандарта		D		P
Раздел	Подраздел	Пункт/Подпункт	Раздел	Подраздел	Пункт/Подпункт
9	9.2	9.2.1—9.2.3	7	7.1	7.1,1—7.1.3
	9.3	9.3.1—9.3.6		7.2	7.2.1—7.2.6
		(9.3,79.3.8)*			
		9.3.99.3.10			7.2.7—7.2.8
		9,3,11*			_
		9.3.12			7.2.9
		9.3.12.1—9.3.12.7			7.2.9.1—7.2.9.6
		9.3.12.8—9.3.12.10			7.2.9.7—7.2.9.9
		9.3.13	. 1 -		7,2,10
		9.3.13.1—9.3.13.8	14		7.2.10.1—7.2.10.8
	9.42)	9.4.1—9.4.2			— — — — — — — — — — — — — — — — — — —
	9.5	(9.5.1—9.5.4)*		7.3	_
- 3		9.5.5			7.3.1—7.3.2
	9.6	9.6.1—9.6.2		7.4	7.4.1—7.4.2
		9.6.3*			-
		9.6.4			7.4.3
	9.7	9.7.1—9.7.8		7.5	7.5.1—7.5.8
	9.8*	9.8.1		——————————————————————————————————————	_
10	10.11)	10.1.1—10.1.10	6		_
	10.2	10.2.1—10.2.2		6.1	6.1.1
		10.2.3		6.2	6.2.1—6.2.2
		10.2.3.1		6.3	6.3.1—6.3.4
		10.2.4		6.4	6.4.1—6.4.4
	4,	10.2.5 ²⁾		- 0 -	
		10.2.6 ²⁾		- T-	-
		10.2.7		6.5	6.5.1
		(10.2.8—10.2.9)**		6.6	6.6.1—6.6.9
		10.2.10		6.5	6.5.3
	10.3***	10.3.1—10.3.9			
	10.4***	10.4.110.4.9		_	-
11	11.1 ¹⁾	11.1,111.1,3	8	_	_
	11,2	11.2.1		8.1	8.1.1—8.1.2
	11.3	11.3.1—11,3.3		8.2	8.2.1—8.2.3
		11.3.4*			_
		11.3.5			8.2.4

Продолжение таблицы ДБ.1

	труктура стандарта	451M E2533-09		Структура настояще	го стандарта
Раздел	Подраздел	Пункт/Подпункт	Раздел	Подраздел	Лункт/Подпункт
11	11.3	11.3.5.1	8	8.2	8.2.4.1
-		11.3.6—11.3.8			8.2.5-8.2.10
	11.42)	11.4.1—11.4.2		_	
	11.5	11.5.1—11.5.3		8.3	8.3.1—8.3.3
	11.6	11.6.1		8.4	8.4.1
		(11.6.2—11.6.3)*	111		
	11,7	11.7.1		8.5	8.5.1—8.5.2
	11.8	11.8.1			
12	12.11)	12.1.1	9	-	_
	12.2	12.2.1		9.1	9.1.1
	12.3	(12.3.1—12.3.2)*		9.2	_
		12.3.3—12.3.5			9.2.1—9.2.3
		(12.3.6—12.3.8)*]		_
	()	12.3.9]		9.2.4
		12.3.9.1]		
	1 1 1 1 1 1 1	12.3.10		9.3—9.5	9.3.1
		12.3.10.1]		
	12.42)	12.4.1—12.4.3		_	-
	12.5	12.5.1		9.6	9.6.1
	12.6	12.6.1		9.7	9.7.1
	12.7	12.7.1—12.7.2		9.8	9.8.1—9.8.2
	12.8*	12.8.1		_	-
13	13.1 ¹⁾	13.1.1—13.1.2	10	_	_
	13.2	13.2.1		10.1	10.1.1
	13.3	13.3.1		10.2	10.2.1—10.2.2
		13.3.1.1—13.3.1.4			10.2.3
	10.0	13.3.2—13.3.5			10.2.4—10.2.8
		13.3.6*			
		13.3.7		10.3	10.3.1—10.3.3
- 5	13.42)	13.4.1—13.4.3		_	T-
	13.5	13.5 (13.5.1—13.5.2)*	10.4		
V.		13.5.3	1		10.4.1
	13.6	13.6.1	1 1	10.5	10.5.1—10.5.2
		13.6.2*			_
	13.7	13.7.1	1 1	10.6	10.6.1
	13.8	13.8.1	1		10.6.2

FOCT P 56787-2015

Окончание таблицы ДБ.1

Стру	ктура стандарта А	ASTM E2533-09		Структура настояще	его стандарта
Раздел	Подраздел	Пункт/Подпункт	Раздел	Подраздел	Пункт/Подпункт
14	14.11)	14.1.1—14.1.2	11	-	_
	14.2	14.2.1	1	11.1	11.1.1
14	14.2	14.2.2	11	11.2	11.2.1—11.2.2
		14.2.3*		_	(-)
Ī	14.3	(14.3.1-14.3.3)*	1 1	11.3	
Α		14.3.4			11,3.1
		14.3.4.1—14.3.4.4			11.3.1.1—11.3.1.4
- 1		14.3.5	1		11.3.2
		14.3.5.1—14.3.5.2	1		11.3.2.1—11.3.2.2
		14.3.6	1		11.3.3
		14.3.6.1—14.3.6.2			11.3.3.1—11.3.3.2
		14.3.7			11,3.4
		14.3.7.1—14.3.7.2			11.3.4.1—11.3.4.2
		14.3.8			11.3.5—11.3.6
		14.3.8.1—14.3.8.2			11.3.5.1—11.3.5.2
	14.42)	14.4.1—14.4.4			_
	14.5	14.5.1*			_
		14.5.2—14.5.5			11.3.7.1—11.3.7.4
t	14.6	14.6.1		11.4	_
t	14.7	14.7.1—14.7.2		11.5	11.5.1—11.5.3
		14.7.3*			
1	14.8*	14.8.1		-	_
15	15.11)	15.5.1	12		_
Ī	15.2	15.2.1	1 1	12.1	12.1.1
Ī	15.3	15.3.1—15.3.6	1 1	12.2	12.2.1—12.2.6
Ť	15,42)	15.4.1—15.4.2	1 1	_	_
Ī	15.5	15.5.1	1 1	12.3	_
†	15.6	15.6.1	1 1	12.4	_
t	15.7	15.7.1—15.7.3	1 1	12.5	12.5.1—12.5.8
	15.8	15.8.1	1		12.5.9
16**	16.1	_		_	_
оиложение		Приложение	ДА		
†	_		ДБ		

Данный раздел (подраздел, пункт) исключен, так как его положения носят поясняющий, справочный или рекомендательный характер.

^{**} Данный раздел модифицирован в соответствии с действующей нормативной документацией РФ.

¹⁾ Данный раздел (подраздел, пункт) исключен, так как содержит ссылки на зарубежные национальные и международные стандарты, не применяемые на территории Российской Федерации, а также в связи с тем, что нет аналогичных национальных и межгосударственных стандартов.

²⁾ Данный раздел (подраздел, пункт) исключен, так как его положения содержат информацию о ссылочных нормативных документах, которые носят справочный характер.

³⁾ В настоящем разделе используется информация таблицы 1 и 2 подразделов 4.2 и 4.9 национального стандарта США, которые выделены в приложении ДА подчеркнутым курсивом.

УДК 691.175:006.354 MKC 19.060 OKC 19.060

Ключевые слова: композиты полимерные, неразрушающий контроль, руководство

Редактор В.М. Костылева
Технический редактор В.Н. Прусакова
Корректор Е.Р. Ароян
Компьютерная верстка И.В. Белюсенко

Сдано в набор 09.11.2015. Подписано в печать 25.02.2016. Формат 60 × 84¹/₈. Гариитура Ариал. Усл. печ. л. 7,91. Уч.-изд. л. 7,12. Тираж 33 экз. Зак. 601.