МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ FOCT ISO/TS 80004-3— 2014

НАНОТЕХНОЛОГИИ

Часть 3

Нанообъекты углеродные. Термины и определения

(ISO/TS 80004-3:2010, Nanotechnologies — Vocabulary — Part 3: Carbon nano-objects, IDT)

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0—2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении» (ВНИИНМАШ) на основе собственного перевода на русский язык англоязычной версии документа, указанного в пункте 5
- ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 441 «Нанотехнологии»
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 5 декабря 2014 г. № 46)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 00497	Код страны по МК (ИСО 3166) 004—97	Сохращенное наименование национального органа по стандартизация
Азербайджан	AZ	Азстандарт
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россия	RU	Росстандарт
Узбекистан	UZ	Узстандарт
Украина	UA	Минэкономразвития Украины

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 28 октября 2015 г. № 1647-ст межгосударственный стандарт ГОСТ ISO/TS 80004-3—2014 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2016 г.
- 5 Настоящий стандарт идентичен международному документу ISO/TS 80004-3:2010 «Нанотехнологии. Словарь. Часть 3. Углеродные нанообъекты» («Nanotechnologies — Vocabulary — Part 3: Carbon nano-objects», IDT).

Наименование настоящего стандарта изменено относительно наименования указанного документа для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).

Международный документ разработан техническим комитетом по стандартизации ISO/TC 229 «Нанотехнологии» Международной организации по стандартизации (ISO).

Стандарт подготовлен на основе применения ГОСТ Р 55417-2013/ISO/TS 80004-3:2010°

- 6 ВВЕДЕН ВПЕРВЫЕ
- 7 ПЕРЕИЗДАНИЕ, Январь 2019 г.

^{*} Приказом Федерального агентства по техническому регулированию и метрологии от 28 октября 2015 г. № 1647-ст ГОСТ Р 55417—2013/ISO/TS 80004-3:2010 отменен с 1 января 2016 г.

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

ISO, 2010 — Все права сохраняются
Стандартинформ, оформление, 2015, 2019

ΓΟCT ISO/TS 80004-3-2014

Содержание

1	Область применения
2	Основные термины и определения
3	Термины и определения понятий, относящихся к конкретным типам углеродных наночастиц 3
4	Термины и определения понятий, относящихся к конкретным типам углеродных нановолокон и нанопластин
A	лфавитный указатель терминов на русском языке5
A	лфавитный указатель эквивалентов терминов на английском языке
П	риложение А (справочное) Углеродные материалы в нанодиапазоне
Б	иблиография

Введение

В последние два десятилетия обнаружены, синтезированы или изготовлены различные новые формы углеродных наноматериалов, в том числе фуллерены и углеродные нанотрубки. Они являются перспективными материалами для многих отраслей наноиндустрии, так как обладают уникальными электронными, электромагнитными, термическими, оптическими и механическими свойствами.

В связи с увеличением объема научных знаний и числа технических терминов в области нанотехнологий (см. библиографию) целью настоящего стандарта является определение наиболее важных терминов, относящихся к углеродным нанообъектам, установление их взаимосвязей и связей с терминами, которые давно применяются для обычных углеродных материалов.

Настоящий стандарт является частью серии стандартов ISO/TS 80004, охватывающей различные аспекты нанотехнологий. В настоящем стандарте большинство определений терминов сформулированы так, чтобы была обеспечена их иерархическая взаимосвязь с терминами стандартов серии ISO/TS 80004. В некоторых случаях иерархическая взаимосвязь терминов может быть нарушена из-за особенностей применения терминов для конкретных понятий.

Установленные в настоящем стандарте термины расположены в систематизированном порядке, отражающем систему понятий в области нанотехнологий, относящуюся к углеродным нанообъектам.

Для каждого понятия установлен один стандартизированный термин.

Приведенные определения можно при необходимости изменять, вводя в них произвольные признаки, раскрывая значения используемых в них терминов, указывая объекты, относящиеся к определенному понятию. Изменения не должны нарушать объем и содержание понятий, определенных в настоящем стандарте.

В стандарте приведены иноязычные эквиваленты стандартизированных терминов на английском языке.

В стандарте приведен алфавитный указатель терминов на русском языке, а также алфавитный указатель эквивалентов терминов на английском языке.

Стандартизированные термины набраны полужирным шрифтом, их краткие формы, представленные аббревиатурой, и иноязычные эквиваленты — светлым.

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НАНОТЕХНОЛОГИИ

Часть 3

Нанообъекты углеродные. Термины и определения

Nanotechnologies. Part 3. Carbon nano-objects. Terms and definitions

Дата введения - 2016-01-01

1 Область применения

Настоящий стандарт является частью серии стандартов ISO/TS 80004 и устанавливает термины и определения понятий в области нанотехнологий, относящихся к углеродным нанообъектам. Настоящий стандарт предназначен для обеспечения взаимопонимания между организациями и отдельными специалистами, осуществляющими свою деятельность в области нанотехнологий.

2 Основные термины и определения

2.1

нанодиапазон: Диапазон линейных размеров приблизительно от 1 до 100 нм. nanoscale

Примечания

- 1 Верхнюю границу этого диапазона принято считать приблизительной, так как, в основном, уникальные свойства нанообъектов за ней не проявляются.
- 2 Нижнее предельное значение в этом определении (приблизительно 1 нм) введено для того, чтобы исключить из рассмотрения в качестве нанообъектов или элементов наноструктур отдельные атомы или небольшие группы атомов.

[ISO/TS 27687:2008, статья 2.1]*

2.2

нанообъект: Материальный объект, линейные размеры которого по одному, nano-object двум или трем измерениям находятся в нанодиапазоне.

Примечание — Данный термин распространяется на все дискретные объекты, линейные размеры которых находятся в нанодиапазоне.

[ISO/TS 27687:2008, статья 2.2]

^{*} Cm. FOCT ISO/TS 27687-2015.

2.3

наночастица: Нанообъект, линейные размеры которого по всем трем измерени» nanoparticle ям находятся в нанодиапазоне.

Примечание — Если по одному или двум измерениям размеры нанообъекта значительно больше, чем по третьему измерению (как правило, более чем в три раза), то вместо термина «наночастица» можно использовать термины «нановолокно» или «нанопластина».

[ISO/TS 27687:2008, статья 4.1]

2.4

нанопластина: Нанообъект, линейные размеры которого по одному измерению находятся в нанодиапазоне, а размеры по двум другим измерениям значительно больше.

nanoplate

Примечания

- Наименьший линейный размер толщина нанопластины.
- Размеры по двум другим измерениям значительно больше и отличаются от толщины более чем в три раза.
- 3 Наибольшие линейные размеры могут находиться вне нанодиапазона.

[ISO/TS 27687:2008, статья 4.2]

2.5

нановолокно: Нанообъект, линейные размеры которого по двум измерениям на- nanofibre ходятся в нанодиапазоне, а по третьему измерению значительно больше.

Примечания

- 1 Нановолокно может быть гибким или жестким.
- 2 Два сходных линейных размера по двум измерениям не должны отличаться друг от друга более чем в три раза, а размеры по третьему измерению должны превосходить размеры по первым двум измерениям более чем в три раза.
- 3 Наибольший линейный размер может находиться вне нанодиапазона.

[ISO/TS 27687:2008, статья 4.3]

2.6

нанотрубка: Полое нановолокно.

nanotube

[ISO/TS 27687:2008, статья 4.4]

2.7

наностержень: Твердое нановолокно.

nanorod

[ISO/TS 27687:2008, статья 4.5]

- 2.8 нанолуковица: Наночастица (2.3), образованная несколькими сфероподобпапо-опіоп ными концентрическими оболочками.
- 2.9 наноконус: Нановолокно (2.5) или наночастица (2.3), имеющие конуссобразную форму.
- 2.10 нанолента: Нанопластина (2.4), линейные размеры которой по двум измерениям находятся в нанодиапазоне (2.1) в соотношении больше, чем 2:1 и существенно меньше размера по третьему измерению.
- 2.11 графен: Монослой атомов углерода, в котором каждый атом связан с тремя graphene соседними, образуя таким образом сотовую структуру.

Примечание — Графен является основным образующим материалом многих углеродных нанообъектов.

2.12 графит: Аллотропная модификация углерода, состоящая из слоев графена (2.11), расположенных параллельно друг другу и образующих трехмерную упорядоченную кристаллическую структуру.

Примечания

- В настоящем стандарте определение термина «графит» приведено в соответствии с терминологией Международного союза теоретической и прикладной химии (IUPAC) [7].
- 2 Существуют две аллотропные модификации графита: гексагональная и ромбоэдрическая, отличающиеся типом чередования углеродных слоев.

3 Термины и определения понятий, относящихся к конкретным типам углеродных наночастиц

 фуллерен: Молекула, состоящая из четного числа атомов углерода, образующих замкнутую выпуклую поверхность многогранника, двенадцать граней которого образованы пятиугольниками, а остальные — шестиугольниками.

fullerene

Примечания

- 1 В настоящем стандарте определение термина «фуллерен» приведено в соответствии с терминологией Международного союза теоретической и прикладной химии (IUPAC) [7].
- 2 Общеизвестным примером является фуллерен С₆₀, который имеет сферическую форму диаметром примерно 1 нм.
- производные фуллерена: Химические соединения, которые образованы из фуллеренов (3.1) замещением углерода или ковалентным присоединением компо-

fullerene derivative

 эндоэдральный фуллерен: Фуллерен (3.1), внутри оболочки которого заключены один или несколько атомов.

endohedral fullerene

3.4 металлофуллерен: Эндоэдральный фуллерен (3.3), содержащий один или несколько ионов металлов.

metallo-fullerene

углеродная нанолуковица: Нанолуковица (2.8), состоящая из углерода.

carbon nanoonion

4 Термины и определения понятий, относящихся к конкретным типам углеродных нановолокон и нанопластин

4.1 углеродное нановолокно; УНВ: Нановолокно (2.5), состоящее из углерода.

carbon nanofibre: CNF

4.2 графитовое нановолокно: Углеродное нановолокно (4.1), состоящее из многослойных структур графена (2.11).

graphitic nanofibre

Примечание — Расположение слоев графена может быть произвольным по отношению к оси волокна; наличие дальнего порядка не является обязательным.

4.3 углеродная нанотрубка; УНТ: Нанотрубка (2.6), состоящая из углерода.

carbon nanotube: CNT

Примечание — Углеродные нанотрубки обычно состоят из свернутых слоев графена (2.11), в том числе одностенные углеродные нанотрубки (4.4) и многостенные углеродные нанотрубки (4.6).

 4.4 одностенная углеродная нанотрубка; ОУНТ: Углеродная нанотрубка (4.3), состоящая из одного цилиндрического слоя графена (2.11).

single-wall carbon nanotube: SWCNT

Примечание — Структуру ОУНТ можно представить в виде листа графена, свернутого в цилиндрическую сотовую структуру.

4.5 вектор хиральности ОУНТ: Векторное условное обозначение, используемое для описания спиральной структуры одностенных углеродных нанотрубок (4.4).

4.6 многостенная углеродная нанотрубка; МУНТ: Углеродная нанотрубка (4.3), состоящая из вложенных друг в друга концентрических или почти концентрических слоев графена (2.11) с межслоевыми расстояниями, аналогичными межслоевым расстояниям в графите (2.12).

chiral vector of SWCNT multiwall carbon nano-tube;

MWCNT

 Π р и м е ч а н и е — MУНТ представляет собой множество вложенных друг в друга одностенных углеродных нанотрубок (4.4) цилиндрической формы в случае малого диаметра и стремящихся к многоугольному сечению по мере увеличения диаметра.

4.7 двустенная углеродная нанотрубка; ДУНТ: Многостенная углеродная нанотрубка (4.6), состоящая из двух вложенных концентрических одностенных углеродных нанотрубок (4.4).

double-wall carbon nanotube; DWCNT

Примечание — Несмотря на то что ДУНТ является одним из видов МУНТ, ее свойства более соответствуют ОУНТ.

4.8 гирляндная углеродная нанотрубка; ГУНТ: Углеродная нанотрубка (4.3), составленная из усеченных наноконусов (2.9) графена (2.11).

cup-stacked carbon nano tube

П р и м е ч а н и е — По структуре ГУНТ полностью отличается от ОУНТ или МУНТ. Открытые верхнее и нижнее основания усеченных наноконусов графена образуют соответственно внутреннюю и внешнюю поверхности нанотрубки.

 4.9 углеродный наностручок: Линейный массив фуллеренов (3.1), заключенный в углеродную нанотрубку (4.3).

carbon nanopeapod

П р и м е ч а н и е — Углеродный наностручок можно рассматривать как пример композиционного нановолокна.

4.10 углеродный нанорог: Короткая, неправильной формы углеродная нанотрубка (4.3), вершиной которой является наноконус (2.9).

carbon nanohorn

Примечание — Углеродные нанорога обычно образуются в виде агрегатов.

4.11 углеродная нанолента: Нанолента (2.10), состоящая из углерода.

carbon nanoribbon

Примечание — Углеродные наноленты чаще всего состоят из нескольких слоев графена (2.11). Если лента состоит из одного слоя графена, то применяют термин «графеновая лента».

Алфавитный указатель терминов на русском языке

вектор хиральности ОУНТ	4.5
графен	2.11
графит	2.12
ГУНТ	4.8
дунт	4.7
металлофуллерен	3.4
MYHT	4.6
нановолокно	2.5
нановолокно графитовое	4.2
нановолокно углеродное	4.1
нанодиапазон	2.1
наноконус	2.9
нанолента	2.10
нанолента углеродная	4.11
нанолуковица	2.8
нанолуковица углеродная	3.5
нанообъект	2.2
нанопластина	2.4
нанорог углеродный	4.10
наностержень	2.7
наностручок углеродный	4.9
нанотрубка	2.6
нанотрубка углеродная	4.3
нанотрубка углеродная гирляндная	4.8
нанотрубка углеродная двустенная	4.7
нанотрубка углеродная многостенная	4.6
нанотрубка углеродная одностенная	4.4
наночастица	2.3
OYHT	4.4
производные фуллерена	3.2
УНВ	4.1
УНТ	4.3
фуллерен	3.1
фуллерен эндоэдральный	3.3

ΓΟCT ISO/TS 80004-3-2014

Алфавитный указатель эквивалентов терминов на английском языке

carbon nanofiber	4.1
carbon nanohorn	4.10
carbon nano-onion	3.5
carbon nanopeapod	4.9
carbon nanoribbon	4.11
carbon nanotube	4.3
chiral vector of SWCNT	4.5
CNF	4.1
CNT	4.3
cup-stacked carbon nanotube	4.8
double-wall carbon nanotube	4.7
DWCNT	4.7
endohedral fullerene	3.3
fullerene	3.1
fullerene derivative	3.2
graphene	2.11
graphite	2.12
graphitic nanofiber	4.2
metallofullerene	3.4
multiwall carbon nanotube	4.6
MWCNT	4.6
nanocone	2.9
nanofiber	2.5
nano-object	2.2
nano-onion	2.8
nanoparticle	2.3
nanoplate	2.4
nanoribbon	2.10
nanorod	2.7
nanoscale	2.1
nanotube	2.6
single-wall carbon nanotube	4.4
SWCNT	4.4

Приложение А (справочное)

Углеродные материалы в нанодиапазоне

А.1 Общие положения

Существует много видов углеродных материалов, изготовляемых и широко применяемых в промышленности в течение многих лет. Так как в последнее время появилась возможность измерять объекты, размеры которых находятся в нанодиапазоне, теперь некоторые углеродные материалы можно отнести к области нанотехнологий. Термины, относящиеся к обычным углеродным материалам, следует рассматривать как устоявшиеся и не подлежащие пересмотру в настоящем стандарте.

А.2 Алмазные наночастицы

Алмазные наночастицы (часто называемые «наноалмазами») относят к углеродным материалам и изготовляют различными методами, например детонационным синтезом, химическим осаждением из газовой фазы, физическим осаждением из газовой фазы. Алмазные наночастицы разнообразны по внешнему виду, размерам, свойствам и применению. Некоторые алмазные наночастицы, например диамандоиды, встречаются в природе, их можно обнаружить в месторождениях углеводородов. Термины и определения, относящиеся к алмазным наночастицам, приведены в нормативном документе [3].

А.3 Углеродные пленки

Углеродные пленки применяют в лакокрасочной промышленности для придания материалам определенных свойств. Углеродные пленки получают методами дугового катодного и магнетронного распылений. В литературе используют различные термины для углеродных покрытий на основе, например, алмазоподобного углерода (АПУ), стеклоуглерода и тетраздрического аморфного углерода. Углеродные пленки отличаются соотношением видов гибридизации sp², sp³ и содержанием в них водорода. Например, алмазоподобный углерод используют для снижения абразивного износа, стеклоуглерод применяют там, где необходимы устойчивость к высоким температурам, химической коррозии, газо- или водонепроницаемость. Некоторые термины и определения, относящиеся к углеродным пленкам, приведены в нормативном документе [3].

А.4 Технический углерод (сажа)

Технический углерод (сажа) является коллоидным углеродным материалом промышленного производства, имеющим вид сфер или их агрегатов размерами менее 1000 нм (см. [7]). Размеры первичной частицы находятся в пределах от 5 до 50 нм. Технический углерод наиболее часто применяют в качестве усиливающего компонента в производстве резиновых шин, пигмента для чернил, красок и тонеров. Технический углерод изготовляют методами термического разложения, включая детонационное, или методами неполного сгорания углеводородных соединений. Технический углерод имеет определенную морфологию с минимальным содержанием смол или других включений, и его следует отличать по содержанию смол, золы и примесей от копоти (также называемой «сажей»), образующейся случайно.

Библиография

[1]	ISO/TS 27687:2008	Nanotechnologies — Terminology and definitions for nano-objects — Nanoparticle, nanofibre and nanoplate (Нанотехнологии. Термины и определения нанообъектов. Наночастица, нановолокно и нанопластина)	
[2]	BS PAS 71:2005	Vocabulary — Nanopärticles (Словарь. Наночастицы)	
[3]	BS PAS 134:2007	Terminology for carbon nanostructures (Терминология наноструктуры углерода)	
[4]	ASTM E 2456—2006	Standard Terminology Relating to Nanotechnology (Терминология в области нанотех- нологий)	
[5]	SAC GB/T 19619-2004	Terminology for nanomaterials (Терминология наноматериалов)	
181	SETTON R BERNIER P	and LEERANT S. ed. Carbon Molecules and Materials (Taylor & Francis London, 2002).	

- [7] IUPAC Compendium of Chemical Terminology, available at: http://goldbook.iupac.org/
- [8] FETZER E., KÖCHLING K.-H., BOEHM H. P. and MARSH H., Recommended Terminology for the Description of Carbon as a Solid, Pure & Appl. Chem., Vol. 67, No. 3, pp. 473—506 (IUPAC, 1995)

УДК 53.04:006.354 MKC 01.040.07 IDT 07.030

Ключевые слова: нанотехнологии, нанообъект, наночастица, нановолокно, нанодиапазон, углеродный нанообъект, нанотрубка, углеродная нанотрубка, термины, определения

Редактор Е.В. Якоелева Технический редактор И.Е. Черепкова Корректор И.А. Королева Компьютерная верстка А.Н. Золотаревой

Сдано в набор 11.01.2019 Подписано в печать 08.02.2019. Формат 60×84 1/8. Гарнитура Ариал. Усл. печ. л. 1,86 Уч.-изд. л. 1,49. Подготовлено на основе электронноя версии, предоставленной разработчиком стандарта

Создано в единичном исполнении ФГУП «СТАНДАРТИНФОРМ» для комплектования Федерального информационного фонда стандартов, 117418 Москва, Нахимовский яр-т, д. 31, к. 2. www.gostinfo.ru info@gostinfo.ru