НИКЕЛЬ. КОБАЛЬТ

Метод определения алюминия

Издание официальное

Предисловие

1 РАЗРАБОТАН Межгосударственными техническими комитетами по стандартизации МТК 501 «Никель» и МТК 502 «Кобальт», АО «Институт Гипроникель»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 21 от 30 мая 2002 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации		
Азербайджанская Республика	Азгосстандарт		
Республика Армения	Армгосстандарт		
Республика Беларусь	Госстандарт Республики Беларусь		
Грузия	Грузстандарт		
Кыргызская Республика	Кыргызстандарт		
Республика Молдова	Молдовастандарт		
Российская Федерация	Госстандарт России		
Республика Таджикистан	Таджикстандарт		
Туркменистан	Главгосслужба «Туркменстандартлары»		
Республика Узбекистан	Узгосстандарт		
Украина	Госстандарт Украины		

- 3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 17 сентября 2002 г. № 334-ст межгосударственный стандарт ГОСТ 13047.19—2002 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 2003 г.
 - 4 B3AMEH FOCT 13047,16-81, FOCT 741.11-80

Содержание

1	Область применения
2	Нормативные ссылки
3	Общие требования и требования безопасности
4	Атомно-абсорбционный метод
	4.1 Метод анализа
	4.2 Средства измерений, вспомогательные устройства, материалы, реактивы, растворы
	4.3 Подготовка к анализу
	4.4 Проведение анализа
	4.5 Обработка результатов анализа
	4.6 Контроль точности анализа
П	Гриложение А Библиография

НИКЕЛЬ. КОБАЛЬТ

Метод определения алюминия

Nickel, Cobalt, Method for determination of aluminium

Дата введения 2003-07-01

1 Область применения

Настоящий стандарт устанавливает атомно-абсорбционный метод определения алюминия при массовой доле от 0,0002 % до 0,010 % в первичном никеле по ГОСТ 849 и кобальте по ГОСТ 123.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

- ГОСТ 123-98 Кобальт. Технические условия
- ГОСТ 849-97 Никель первичный. Технические условия
- ГОСТ 3118-77 Кислота соляная. Технические условия
- ГОСТ 4461-77 Кислота азотная. Технические условия
- ГОСТ 9722-97 Порошок никелевый. Технические условия
- ГОСТ 10157-79 Аргон газообразный и жидкий. Технические условия
- ГОСТ 11069—2001 Алюминий первичный. Марки ГОСТ 11125—84 Кислота азотная особой чистоты. Технические условия
- ГОСТ 13047.1—2002 Никель. Кобальт. Общие требования к методам анализа
- ГОСТ 14261-77 Кислота соляная особой чистоты. Технические условия

3 Общие требования и требования безопасности

Общие требования к методам анализа и требования безопасности при выполнении работ - по ГОСТ 13047.1.

4 Атомно-абсорбционный метод

4.1 Метод анализа

Метод основан на измерении поглощения при длине волны 309,3 нм резонансного излучения атомами алюминия, образующимися в результате электротермической атомизации раствора пробы.

4.2 Средства измерений, вспомогательные устройства, материалы, реактивы, растворы

Атомно-абсорбционный спектрофотометр, обеспечивающий проведение измерений с электротермической атомизацией, коррекцию неселективного поглощения и автоматизированную подачу раствора в атомизатор.

Лампа с полым катодом для возбуждения спектральной линии алюминия.

Аргон газообразный по ГОСТ 10157.

Фильтры обеззоленные по [1] или другие средней плотности.

Кислота азотная по ГОСТ 4461, при необходимости очищенная перегонкой, или по ГОСТ 11125, разбавленная 1:1, 1:9 и 1:19.

Кислота соляная по ГОСТ 3118 или при необходимости по ГОСТ 14261, разбавленная 1:1.

Порошок никелевый по ГОСТ 9722 или стандартный образец состава никеля с установленной массовой долей алюминия не более 0,0002 %.

Издание официальное

Кобальт по ГОСТ 123 или стандартный образец состава кобальта с установленной массовой долей алюминия не более 0.0002 %.

Алюминий первичный по ГОСТ 11069.

Растворы алюминия известной концентрации.

Раствор А массовой концентрации алюминия 0,0001 г/см³: в стакан вместимостью 100 см³ помещают навеску алюминия массой 0,1000 г, приливают 20—30 см³ соляной кислоты, растворяют при нагревании, выпаривают до объема 5—10 см³, приливают 10—15 см³ азотной кислоты, разбавленной 1:1, выпаривают до объема 5—7 см³, охлаждают, переводят в мерную колбу вместимостью 1000 см³, приливают 50 см³ азотной кислоты, разбавленной 1:1, и доливают до метки водой.

Раствор Б массовой концентрации алюминия 0,00001 г/см³: в мерную колбу вместимостью 100 см³ отбирают 10 см³ раствора A, доливают до метки азотной кислотой, разбавленной 1:19.

Раствор В массовой концентрации алюминия 0,000002 г/см³: в мерную колбу вместимостью 100 см³ отбирают 20 см³ раствора Б, доливают до метки азотной кислотой, разбавленной 1:19.

4.3 Подготовка к анализу

4.3.1 Для градуировочного графика 1 при определении массовых долей алюминия не более 0,0020 % в стаканы или колбы вместимостью 250 см³ помещают навески массой 0,500 г проб никелевого порошка или кобальта или стандартного образца состава никеля или кобальта с установленной массовой долей алюминия. Число навесок должно соответствовать числу точек градуировочного графика, включая контрольный опыт.

К пробам приливают 15—20 см³ азотной кислоты, разбавленной 1:1, растворяют при нагревании. При использовании никелевого порошка растворы фильтруют через фильтры (красная или белая лента), предварительно промытые 2—3 раза азотной кислотой, разбавленной 1:9, фильтры промывают 2—3 раза горячей водой. Растворы выпаривают до объема 10—15 см³, приливают 40—50 см³ воды, нагревают до кипения, охлаждают, переводят в мерные колбы вместимостью 100 см³.

В колбы отбирают 0,5; 1,0; 2,0; 3,0; 4,0; 5,0 см3 раствора В, в колбу с раствором контрольного опыта раствор алюминия не вводят, доливают до метки водой и измеряют абсорбцию, как указано в 4.4.

Масса алюминия в растворах для градуировки составляет 0.000001; 0.000002; 0.000004; 0.000006; 0.000008; 0.000008; 0.000010 г.

4.3.2 Для градуировочного графика 2 при определении массовых долей алюминия свыше 0,0020 % в мерные колбы вместимостью 100 см³ отбирают по 20 см³ раствора контрольного опыта, подготовленного, как указано в 4.3.1, вводят 0,5; 1,0; 2,0; 3,0; 4,0; 5,0 см³ раствора В, в одну из колб с раствором контрольного опыта раствор алюминия не вводят, доливают до метки азотной кислотой, разбавленной 1:19, и измеряют абсорбцию, как указано в 4.4.

Масса алюминия в растворах для градуировки указана в 4.3.1.

4.4 Проведение анализа

В стакан или колбу вместимостью 250 см³ помещают навеску пробы массой 0,500 г, приливают 15—20 см³ азотной кислоты, разбавленной 1:1, растворяют при нагревании, выпаривают до объема 5—7 см³, переводят в мерную колбу вместимостью 100 см³, охлаждают и доливают до метки водой.

При массовой доле алюминия свыше 0,0020 % в мерную колбу вместимостью 100 см³ отбирают аликвотную часть раствора объемом 20 см³, доливают до метки азотной кислотой, разбавленной 1:19.

Измеряют абсорбщию раствора пробы и соответствующих растворов для градуировки при длине волны 309,3 нм, ширине щели не более 0,7 нм с коррекцией неселективного поглощения в токе аргона не менее двух раз, последовательно вводя их в атомизатор. В зависимости от типа спектрофотометра подбирают оптимальный объем раствора от 0,010 до 0,050 см³ или оптимальное время аэрозольного распыления от 5 до 50 с. Промывают систему водой, проверяют нулевую точку и стабильность градуировочного графика. Для проверки нулевой точки используют раствор соответствующего контрольного опыта, подготовленный, как указано в 4.3.

Подбор оптимальных температурных режимов для атомизатора проводят индивидуально для применяемого спектрофотометра по растворам для градуировки. Рекомендуемые условия работы атомизатора указаны в таблице 1.

Таблица 1 — Условия работы атомизатора

Наименование стадин	Температура, "С	Время, с
Cymka	150-200	2-30
Озоление	1100-1200	10-20
Атомизация	2400-2500	4-5

По значениям абсорбции растворов для градуировки и соответствующим им массам алюминия строят градуировочные графики.

По значению абсорбции раствора пробы находят массу алюминия по соответствующему градуировочному графику.

4.5 Обработка результатов анализа

Массовую долю алюминия в пробе Х, %, вычисляют по формуле

$$X = \frac{M_x K}{M} 100, \qquad (1)$$

где M_x — масса алюминия в растворе пробы, г;

 \hat{K} — коэффициент разбавления раствора пробы;

М - масса навески пробы, г.

4.6 Контроль точности анализа

Контроль метрологических характеристик результатов анализа проводят по ГОСТ 13047.1. Нормативы контроля и погрешность метода анализа приведены в таблице 2.

Таблица 2 — Нормативы контроля и погрешность метода анализа

В процентах

Массовая доля алюминия	Допускаемые расхожде- ния результатов двух паражлельных определе- ний d ₂	Допускаемые расхожде- ния результатов трех параллельных определе- ний d_3	Допускаемые расхождения двух результатов анализа D	Погрешность метода анализа /
0,00020	0,00004	0,00005	0,00008	0,00006
0,00030	0,00006	0,00007	0,00012	0,00008
0,00050	0,00007	0,00008	0,00014	0,00010
0,00100	0,00010	0,00012	0,00020	0,00014
0,0030	0,0004	0,0005	0,0008	0,0005
0,0050	0,0005	0,0006	0,0010	0,0007
0,0100	0.0010	0.0012	0.0020	0.0014

ПРИЛОЖЕНИЕ А (справочное)

Библиография

[1] ТУ 6-09-1678-95* Фильтры обеззоленные (красная, белая, синяя ленты)

^{*} Действует на территории Российской Федерации.

УДК 669.24/.25:543.06:006.354

MKC 77.120.40

B59

ОКСТУ 1732

Ключевые слова: никель, кобальт, алюминий, химический анализ, средства измерений, раствор, реактив, проба, градуировочный график, погрешность, нормативы контроля, результат анализа

> Редактор Л.И. Нахимова Технический редактор О.Н. Власова Корректор М.В. Бучная Компьютерная верстка Л.А. Круговой

Изд. лиц. № 02354 от 14,07,2000.

Сдано в набор 01.11.2002. Уч.-изд. л. 0,45. Тираж 256 экз. С 8622. Зак. 1044.

Подписано в печать 22,11,2002.

Усл. печ. л. 0,93.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14. e-mail: info@standards.ru http://www.standards.ru