МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT ISO/TR 14735— 2015

Продукция косметическая

АНАЛИТИЧЕСКИЕ МЕТОДЫ

Техническое руководство по минимизации и обнаружению N-нитрозаминов

(ISO/TR 14735:2013,

Cosmetics — Analytical methods — Nitrosamines: Technical guidance document for minimizing and determining N-nitrosamines in cosmetics, IDT)

Издание официальное

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Автономной некоммерческой организацией «ПАРФЮМТЕСТ» (АНО «ПАРФЮМТЕСТ») на основе собственного перевода на русский язык англоязычной версии документа, указанного в пункте 5
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 27 августа 2015 г. № 79-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 00497	Сокращенное наименование национального органа по стандартизации
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Россия	RU	Росстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 6 октября 2015 г. № 1480-ст ГОСТ ISO/TR 14735—2015 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2017 г.
- 5 Настоящий стандарт идентичен международному документу ISO/TR 14735:2013 «Косметика. Аналитические методы. Нитрозамины. Техническое руководство по минимизации и обнаружению N-нитрозаминов в косметике» («Cosmetics — Analytical methods — Nitrosamines: Technical guidance document for minimizing and determining N-nitrosamines in cosmetics», IDT).

Наименование настоящего стандарта изменено относительно наименования указанного международного документа для увязки с наименованиями, принятыми в существующем комплексе межгосударственных стандартов.

Международный документ разработан Техническим комитетом по стандартизации ISO/TC 217 «Косметика» Международной организации по стандартизации (ISO)

- 6 ВВЕДЕН ВПЕРВЫЕ
- 7 Некоторые элементы настоящего стандарта могут являться объектом патентных прав
- 8 ПЕРЕИЗДАНИЕ. Апрель 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

> © ISO, 2013 — Все права сохраняются © Стандартинформ, оформление, 2015, 2019

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Введение

N-нитрозамины — класс соединений, известный более 100 лет. Канцерогенность N-нитрозаминов хорошо изучена; выявлено, что приблизительно 90 % соединений N-нитрозаминов являются канцерогенными для некоторых видов животных (Мадее и другие, 1976). В результате анализа полученных данных N-нитрозамины считаются канцерогенными и для людей (IARC 1978), и минимизация воздействия N-нитрозамины считаются канцерогенными и для людей (IARC 1978), и минимизация воздействия N-нитрозамины образуются в результате реакции вторичных аминосоединений с нитрозирующими агентами, такими как нитритный азот или оксиды азота (Ikeda Challis и другие, 1977, Ikeda и другие, 1990). Следы N-нитрозамина в косметической продукции могут образоваться из-за использования определенных косметических ингредиентов и/или из-за нитрозирования предшественников, преимущественно вторичных аминов, представленных в конечной косметической продукции (Harvey и другие, 1994).

В косметической продукции вторичные диалканоламины используют в получении диалканоламидов, а вторичные диалкиламины — в получении диалкиламидов. В присутствии оксидов азота, представленных в виде примесей или полученных из других косметических ингредиентов, может произойти нитрозирование вторичного амина, приводящее к образованию N-нитрозамина. Аналогично присутствие вторичных аминов в триалкиламинах и триалканоламинах может привести к образованию N-нитрозаминов с последующим нитрозированием с оксидами азота (SCCS/1548/11). N-нитрозамины могут также образоваться из нитрозамещенных парааминофенолов в присутствии вторичного аминосоединения.

Озабоченность по поводу загрязнения косметической продукции N-нитрозаминами датируется с 1979 (извещение Федерального регистра, 44 FR21365 от 10 апреля 1979 г.). Хотя возможность загрязнения N-нитрозодизтаноламином (NDELA) косметической продукции и ингредиентов все еще существует, согласованные усилия органов надзора и регулируемой отрасли с 1979 г. успешно направлены на обнаружение, подавление, расщепление и предупреждение формирования NDELA и привели к нескольким упоминаниям в литературе по аналитическим техническим методам и подготовке руководства для предупреждения образования NDELA и других N-нитрозаминов [Руководство Федерального управления лекарственных препаратов и продуктов питания (США) по проведению проверок производителей косметической продукции]. Кроме того, программы регулярного проведения тестирования промышленностью и программы инспектирования, проводимые органами надзора, для оценки ингредиентов и косметической продукции на присутствие NDELA и других N-нитрозаминов продемонстрировали свою эффективность и значительно сократили косметическую продукцию как основной источник воздействия N-нитрозаминов на потребителей.

N-нитрозамины также рассматриваются в Европейских косметических регламентах. Пятнадцатая Директива Европейской Комиссии 92/86/ЕЭС, касающаяся косметической продукции, не разрешает реализацию косметической продукции, которая содержит нитрозамины. Присутствие незначительных количеств нитрозаминов в косметической продукции допускается, если их присутствие неизбежно с технической точки зрения, в течение такого времени, за которое продукция не вызывает вреда для здоровья человека при применении в нормальных или предсказуемых условиях. Все это требует поддержания уровня содержания N-нитрозамина настолько низким, насколько это практически возможно, хотя не установлено специального уровня для готовой косметической продукции. Данная Директива также устанавливает предел 50 мкг/кг (ppb) для содержания N-нитрозодиалканоламина в диалканоламидах, моноалканоламинах и триалкалиаминах жирных кислот, используемых в качестве сырья в производстве косметической продукции. Подобный предел, 50 мкг/кг (ppb), установлен для содержания N-нитрозодиалкиламина в диалкиламидах, моноалканоламинах и триалкалиаминах жирных кислот и их солей, потому что свойства этих соединений похожи на их соответствующие аналоги алканоламина, учитывая их возможности, как предшественников, образования N-нитрозамина (Директива Европейской Комиссии 2003/83/ЕК).

Для того чтобы продемонстрировать соответствие законодательным требованиям и позволить осуществить достоверную оценку риска, требуется надлежащее применение установленных аналитических методов. Ряд методов для определения N-нитрозамина уже доступен, два из них содержатся в стандартах ISO (ISO 15819, ISO 10130). Важно понимать преимущества и недостатки аналитических методов для обеспечения корректными данными. Особое внимание в настоящем стандарте уделяется возможному образованию N-нитрозаминов и аналитическим возможностям обнаружения их присутствия. Необходимо отметить, что применение только GMP не является достаточным для предотвращения присутствия N-нитрозаминов, поэтому настоящий стандарт также описывает возможные стратегии минимизации образования N-нитрозаминов, методы, подходящие для измерения N-нитрозаминов, и предлагает стратегию проведения испытаний, которая может быть применена как для сырья, так и для конечной продукции. В настоящий стандарт также включено руководство по качественной аналитической практике для каждого метода для обеспечения обоснованности аналитических данных.

Продукция косметическая

АНАЛИТИЧЕСКИЕ МЕТОДЫ

Техническое руководство по минимизации и обнаружению N-нитрозаминов

Cosmetics. Analytical methods. Technical guidance document for minimizing and determining N-nitrosamines

Дата введения — 2017—01—01

1 Область применения

Настоящий стандарт направлен на содействие обеспечения общей рекомендации по выбору стратегии для минимизации вероятного образования N-нитрозамина в косметической продукции и обеспечение описанием аналитических подходов, доступных для достоверного обнаружения N-нитрозаминов в косметической продукции. Настоящий стандарт также стремится обеспечить понимание обоснованности и ограничений каждого из описанных методов и, в заключение, аналитический подход к применению N-нитрозаминов в косметической продукции и сырье.

Настоящий стандарт предусматривает сокращение или исключение случайных источников нитрита, сокращение или исключение источников вторичных аминов, введение ингибиторов образования N-нитрозамина и аналитические подходы для всех N-нитрозосоединений и особые методы для N-нитрозодиэтаноламина (NDELA).

2 Химия N-нитрозамина

N-нитрозосоединения характеризуются группой (-N = O), связанной с атомом азота, но также могут содержать другие функциональные группы. N-нитрозамины состоят из диалкил, алкилакрил и циклических производных нитрозамина. Условия для образования N-нитрозосоединений могут иметь место в ряде случаев. Теоретически N-нитрозопроизводные могут быть образованы, когда любое соединение, содержащее вторичную аминогруппу, входит в контакт с активным нитрозирующим агентом (см. SCCS/1458/11).

3 Стратегия минимизации

3.1 Сокращение или исключение случайных источников нитрита

В соответствии с GMP возможность случайного образования нитрита может быть минимизирована использованием очищенной воды в производстве и контейнеров из безнитритных стали и пластика для хранения сырья и продукции. Также важно минимизировать контакт с воздухом, содержащим оксиды азота, в процессе производства продукции, изолируя процесс производства от оборудования на углеводородном топливе и открытого огня (например, используя непрямые системы нагрева). Исключение лишних нитратов и нитритов из сырья (например, уменьшение использования сырья, произведенного в присутствии оксидов азота) является существенным фактором для минимизации образования случайных нитритов.

Если присутствует незначительное количество вторичных аминов, то в отдельных случаях они могут быть нитрозированы. Необходимо отметить, что некоторые консерванты могут катализировать возможные реакции нитрозирования. Если существует предположение о возможности возникновения реакции нитрозирования в продукции, необходимо обратиться к производителю консерванта.

FOCT ISO/TR 14735-2015

Важно проверить, существуют ли особые ограничения в косметическом законодательстве (национальном или региональном), касающиеся сочетания ингредиента с нитрозирующим агентом. Например, законодательство в области косметической продукции налагает ограничение на использование нитрита натрия. Нитрит натрия не должен быть использован с вторичными и/или третичными аминами или другими веществами, образующими N-нитрозамины (Colipa 2009).

3.2 Исключение источников вторичных аминов

Использование всех (вторичных) диалкиламинов и диалканаминов и их солей должно быть сведено к минимуму или отсутствовать вовсе. Эти вещества могут присутствовать в виде примесей в промежуточных ингредиентах. Если такое возможно, то должно учитываться исключение систем нитрозирования.

Возможные источники следов вторичного амина (т. е. диэтаноламина, диизопропаноламина) в косметической продукции включают примеси и продукты разложения сырья такие как моноалканоламины, триалканоламины и моно- и диалканоламиды жирных кислот. Диметиламин или метиламины с длинной цепью могут присутствовать в виде примесей и продуктов разложения сырья, таких как аминоокись и некоторых консервантов. Морфолин может присутствовать как примесь, так и как продукт разложения некоторых консервантов.

По этой причине моноалканоламины, моноалкиламины, триалканоламины, триалкиламины, их соли и моно- и диалканоламиды жирных кислот являются объектом особых ограничений в Европейском Союзе. Ограничения применяют к минимальной чистоте, максимальному содержанию вторичного амина, максимальному содержанию оксидов амина, а также к хранению в безнитритных контейнерах, использованию пределов и исключению систем нитрозирования.

В некоторых регионах существует законодательство (92/86/ЕЭК, 2003/15/ЕС) по уровням предшественников нитрозамина, которые могут присутствовать в косметической продукции. Использование в косметической продукции консервантов, таких как 5-бромо-5-нитро-1,3-диоксан и 2-бромо-2-нитропропан-1,3-диол, ограничено до максимально разрешенной концентрации для снижения возможности образования N-нитрозамина.

3.3 Введение ингибиторов образования нитрозамина

Кроме выбора подходящего сырья должно быть рассмотрено включение системы ингибирования. Необходимо понимать, что не существует «универсального рецепта», который дал бы общее ингибирование образования N-нитрозамина во всех возможных рецептурах продукции, а подходящие методики ингибирования необходимо оценить для каждого типа продукции.

Общие руководства (Colipa, 2009) для выбора подходящей системы ингибирования представлены ниже:

- Анионные эмульгаторы больше подходят, чем неанионные или катионные эмульгаторы в ингибированном нитрозировании гидрофобных аминов. При использовании неионных или катионных эмульсий требуется большее количество ингибиторов, вне зависимости от характеристик растворимости амина
- Гидрофильный азотсодержащий ингредиент в анионной эмульсии требует ингибитора нитрозирования в добавление к любому используемому эмульгатору.
- Ингибиторы должны быть выбраны, основываясь на их реакционной способности с нитритом и характеристиках их растворимости в масле или воде.

Возможные ингибиторы включают соединения, которые традиционно классифицируют как антиоксиданты, и множество других, которые могут преимущественно реагировать как с нитритами и оксидами азота (поглотители нитритов), так и с иминиевыми ионами, полученными в процессе реакции, катализируемой формальдегидом, с образованием нитрозамина. Исходя из практического применения этих идей необходимо отметить следующее. Ни один из реагентов не разрушит N-нитрозамины, уже присутствующие в сырье.

Ингибиторы должны быть добавлены в состав до добавления азотсодержащих ингредиентов. Есть предел, которого должен достичь ингибитор в реальных системах, и существуют ограничения, в отношении которых потенциальные ингибиторы могут быть введены в косметическую продукцию и средства личной гигиены. В любом случае рецептура, производство и последующее хранение должны выполняться при наиболее низких температурах.

Описание указанных систем ингибиторов описано в приложении А.

3.4 Возможная обработка косметического сырья для расщепления N-нитрозаминов

Исходя из практического применения данных подходов необходимо отметить следующее. Ни один из этих реагентов не разрушит N-нитрозамины, уже присутствующие в сырье. Другой методикой, применяемой в аналитических этапах подтверждения, является облучение УФ широкого спектра для расщепления связи N-NO в нитрозамине, соединенной с использованием ловушки NO, чтобы собрать высвободившийся NO (Stefan и другие 2002).

4 Аналитические методы

4.1 Проверка косметической продукции на N-нитрозосоединения с помощью хемилюминисцентного обнаружения окиси азота

Косметическую продукцию проверяют на N-нитрозосоединения с помощью хемилюминисцентного измерения окиси азота, освобожденного расщеплением N-нитрозогруппы. Во-первых, проводят разделение косметической продукции метиленхлоридом и водой для отделения полярных и неполярных N-нитрозосоединений. Проверяют каждый фрагмент на присутствие N-нитрозосоединений добавлением расщепляющего агента и уничтожают окись азота, образовавшуюся в хемилюминесцентном анализаторе. Хотя метод не предполагается как количественный, испытание на выявление вещества сопровождалось обнаружением измеримых уровней в креме и лосьоне. При анализе некоторой косметической продукции могут быть отмечены результаты исследования, продемонстрировавшие ложноположительные ответы (Challis и другие, 1995, Chou и другие, 1987). Следовательно, метод предназначен только для предварительной проверки этой продукции, и за положительным ответом от процедуры проверки должен следовать метод с использованием жидкостного хроматографа с анализатором термической энергии или газового хроматографа с анализатором термической энергии для проверки специфичных N-нитрозаминов. Используя этот метод проверки, установлен специфичный N-нитрозамин, характерный для солнцезащитных кремов и косметической продукции.

4.2 Вероятное общее содержание нитрозамина (ATNC)

Метод ATNC также является процедурой проверки для анализа основных форм косметической продукции. Метод исследован Ассоциацией косметики и парфюмерии Великобритании (СТРА) и результаты их совместного исследования опубликованы (Challis и другие, 1995).

Пробы растворяют или суспендируют в воде, водно-спиртовом или водном тетрагидрофуране. Воздействия нитрита/эфира азотистой кислоты удаляют предварительной обработкой с сульфаминовой кислотой. Денитронизуют подготовленный испытуемый раствор в одной реакции с гидробромной кислотой/уксусной кислотой при кипячении н-пропилацетата. Высвобожденную окись азота определяют в хемилюминесцентной реакции с озоном. Количественное выражение берут сравнением с внешним стандартом нитрозамина.

Этот метод является хорошим инструментом проверки, так как он определяет все источники окиси азота. Однако он не дает показаний идентичности или уровней присутствия отдельных N-нитрозаминов, следовательно, результаты обычно выражают в N-NO.

Метод может дать ложноположительные результаты, например из С-нитрозо, S-нитрозо и некоторых мультифункциональных органических нитросоединений (присутствующих в некоторых красках для волос). Из-за погрешности обеспечения полного отсутствия таких потенциальных вмешательств результаты обычно обозначают «Вероятное общее содержание нитрозамина (ATNC)». Кроме того, показано, что ATNC-метод в основном дает результаты, которые выше, чем сумма отдельно присутствующих N-нитрозаминов.

4.3 Метод для NDELA

4.3.1 NDELA методом газовой хроматографии: анализатор термической энергии (TEA)

Метод для N-нитрозоалканоламинов может быть применен для особого анализа NDELA. NDE-LA выделяют из основных форм косметической продукции многоэтапным процессом, преобразуют в летучую производную и анализируют методом газовой хроматографии с помощью анализатора термической энергии (Sommer и другие, 1988). Пробу растворяют в воде и используют внутренний стандарт [например, N-нитрозо-(2-гидроксиэтил)-(2-гидроксипропил)-амин]. Пробу абсорбируют в колонке с кизельгуром, промытой циклогексаном/дихлорметаном, и элуируют н-бутанолом. Экстракт выпаривают до полного высушивания, заново растворяют в хлороформе/ацетоне и перемещают в колонку с силикагелем. Затем колонку промывают и элюируют предположительно свободным NDELA с ацетоном. Элюат высушивают и остаток обрабатывают N-метил N-триметилсилил-гептапфторобутирамидом (MSHFBA) для преобразования N-нитрозаминов в летучие производные. Производные MSHFBA разделяют газовой хроматографией и определяют с помощью анализатора термической энергии. В ТЕА N-нитрозамины расщепляют пиролизом до выделения нитрозил-радикалов, которые определяют в хемилюминесцентной реакции с озоном.

Этот метод имеет хорошую чувствительность при использовании в оптимальных условиях и успешно применяется для широкого ряда N-нитрозаминов.

Недостаток этого метода в том, что он может быть подвержен ошибочным результатам (о чем известно с 1986 г.). Особое внимание требуется уделить избеганию процесса образования предшественников нитрозамина. Следы присутствия закиси азота в процессе очистки пробы могут привести к образованию нитрозамина, при котором пробы содержат свободный вторичный амин. Это может быть минимизировано использованием ингибиторов, таких как аскорбиновая кислота.

4.3.2 NDELA методом ВЭЖХ: постколоночная дериватизация

Пробы готовят с учетом их растворимости/дисперсии в воде. Для проб, растворимых или диспергируемых в воде, применяют метод экстрагирования на твердую фазу (SPE) с использованием фазы С₁₈. Если проба не диспергируется в воде, применяют метод экстрагирования в системе жидкость/ жидкость с использованием дихлорметана.

Затем NDELA в вытяжке пробы подвергают жидкостной хроматографии с использованием колонки с обращенной фазой. Постколоночную дериватизацию NDELA выполняют посредством фотолиза при 254 нм (для высвобождения нитрита), следующего за двухступенчатой реакцией с сульфаниламидом и н-нафтилэтилендиамином (реактив Грисса). Идентификацию и количественное выражение полученного окращенного соединения выполняют посредством обнаружения при 540 нм.

Простые методы подготовки пробы при анализе делают его быстрым и удобным в работе. Метод имеет хорошую точность и специфичен для NDELA. Метод оценен разнообразными лабораториями в совместном объединении испытаний (Flower и другие, 2006) и может с большой вероятностью определять количество NDELA в широком диапазоне косметических баз.

Этот метод специфичен для NDELA, однако в некоторых случаях, где определенные окисляемые красители присутствуют в рецептуре, необходимо соблюдать осторожность в течение процедуры.

4.3.3 NDELA методом ВЭЖХ с тандемной масс-спектрометрией

Этот метод включает простой метод подготовки пробы и хроматографическое разделение, как описано в 4.3.2. Обнаружение и определение NDELA выполняют с помощью тандемных массспектрометров с тремя квадрупольными линзами (Schothorst и другие, 2005).

Использование прибора ВЭЖХ, соединенного с масс-спектрометром для контроля фрагментированных ионов, обеспечивает высокую степень специфичности для NDELA. Предел обнаружения и определения для данного метода обычно составляет 20 и 50 мкг/кг соответственно, в зависимости от вида оборудования и основ.

Принципиальное преимущество этого метода состоит в том, что он является единственным методом, обеспечивающим однозначную идентификацию.

4.3.4 Обнаружение N-нитрозодиэтаноламина в косметической продукции с помощью анализатора термической энергии жидкостной хроматографии высокого давления

NDELA выделена из косметической продукции сериями экстракций растворителем, которые предназначены для концентрации NDELA и удаления ингредиентов, вредных для аналитической системы. Затем отделенную фракцию анализируют на NDELA с использованием жидкостного хроматографа высокого давления (ВЭЖХ), соединенного с анализатором термической энергии (ТЕА). Соединение измерено сравнением показаний детектора с показаниями известных стандартов. Присутствие NDELA проверено газовой хроматографией в сочетании с масс-спектрометрией для производной силила (Но и другие, 1981).

4.3.5 Введение маркера амина как индикатора образования предшественников

Образование предшественников N-нитрозамина в процессе анализа нитрозамина может быть проблемой из-за легкости нитрозирования вторичных аминов в присутствии нитрозирующего агента. Маркер вторичного амина добавляют в процессе подготовки пробы. Отсутствие N-нитрозопроизводной маркера указывает на отсутствие образования предшественников в процессе подготовки пробы (Chou и другие, 1995).

4.3.6 Предполагаемое фотолитическое доказательство присутствия N-нитрозаминов

Присутствие N-нитрозамина, определяемое менее специфичными методами, такими как ГХ и ВЭЖХ, может быть затем подтверждено с использованием УФ-фотолиза. Часть водной вытяжки пробы, которую предварительно исследовали с помощью ГХ или ВЭЖХ, подвергают действию УФ-излучения и затем снова исследуют. Если пик, соответствующий N-нитрозамину, почти или совсем исчезает, то присутствие N-нитрозамина предположительно доказано (Chou и другие, 1995).

4.4 Обнаружение других специфичных N-нитрозаминов

В тех случаях, где ожидается присутствие специфичных N-нитрозаминов, кроме NDELA, то есть N-нитрозодиметиламин (NDMA), N-нитрозодиизопропаноламин (NDiPLA), возможно, необходимо адаптировать вышеперечисленные методы для таких определяемых веществ. В таких случаях будет необходимо обеспечить достаточное доказательство для проверки производительности метода. Оно должно включать обоснование параметров, таких как точность, прецизионность, выход, предел обнаружения (LoD) и предел определения (LoQ). Особое внимание необходимо обратить на проявление специфичности, и должны быть предоставлены данные для обеспечения идентификации конечного соединения.

5 Аналитический подход

5.1 Общие положения

Аналитический подход может применяться либо для проверки проб до обнаружения специфичного нитрозамина в косметической продукции, либо для гарантии специфичного обнаружения при условии обеспечения информацией о косметических ингредиентах.

5.2 Проверка

Метод ATNC служит эффективным инструментом оценки присутствия N-нитрозаминов в косметической продукции и сырье. Из-за возможности вмешательства извне N-нитрозосоединений этот метод применяют не для всех типовых рецептур, например нитрозамещенные аминофенольные соединения, которые могут быть использованы в составах красок для волос, могут взаимодействовать в процессе фазы первоначального денитрозирования. Результат выше LoQ должен быть подтвержден испытанием с использованием особого метода, где это возможно. Кроме того, для понимания похожего образования любого нитрозамина требуется дальнейшая оценка. Там, где NDELA или другой специфичный N-нитрозамин могут вызвать положительный результат в ATNC, подходящим является применение любого из методов, описанных в 4.3.1—4.3.4.

5.3 Контроль специфичных N-нитрозаминов

Методология ГХ-ТЕА является специфичной для N-нитрозосоединений; однако она может привести к образованию N-нитрозаминов «на месте». Посредством включения ингибитора в процесс подготовки пробы образование N-нитрозаминов «на месте» может быть минимизировано до неопределяемых уровней. Отсутствие нитрозированного маркера является указанием на отсутствие образования предшественников N-нитрозамина «на месте». ВЭЖХ постколоночная дериватизация и методы ВЭЖХ-MC/MC изложены в стандартах ISO (ISO 15819, ISO 10130), которые доступны для выбора и используются, в основном, при возникновении разногласий с контролирующими органами.

Предложенный подход к анализу представлен в блок-схеме, показанной на рисунке 1.

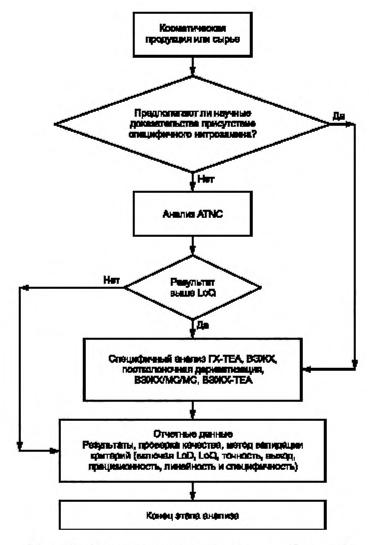


Рисунок 1 — Анализ косметической продукции и сырья (блок-схема)

Приложение А (информативное)

Вещества, применяемые в качестве ингибиторов

А.1 Общие положения

В литературе приведен огромный перечень веществ, используемых в качестве ингибиторов образования N-нитрозосоединений при определенных условиях. Эти вещества перечислены ниже, но необходимо подчеркнуть, что эффективность любого потенциального ингибитора должна быть установлена для каждого индивидуального применения. В соответствии с Европейской косметической директивой введение любого из этих ингибиторов рассматривается как введение косметического ингредиента и требования, касающиеся безопасности продукции и информации о продукции, необходимо рассматривать так же, как требования к этому ингредиенту.

А.2 Водорастворимые ингибиторы

Примерами водорастворимых ингибиторов являются аскорбиновая кислота, 2,5-дигидроксибензойная кислота, цистеин, эриторбовая кислота, глутатион, аскорбилфосфат магния, этаноламин, сорбат калия, адипат натрия, аскорбат натрия, аскорбат натрия, аскорбат натрия, аскорбат натрия, аскорбат натрия.

А.3 Маслорастворимые ингибиторы

Примерами маслорастворимых ингибиторов являются асхорбилпальмитат, токоферол, ди-третбутилгидрохинон, октилгаллат, пропилгаллат.

А.4 Ингибиторы, растворимые в воде и в масле

Примером ингибитора, растворимого и в воде и в масле, является галловая кислота.

А.5 Ингибиторы реакций, катализируемых формальдегидом

Эффективное ингибирование требует применения ингибиторов, которые предупреждают образование иминиевого иона так же, как и поглощенного нитрита. Подходящими ловушками иминиевого иона являются цитрат, адипат и тартрат анионы. Подходящими для использования поглотителями нитритов в сочетании с ловушками имиевого иона являются аскорбиновая кислота и ее соли, эриторовая кислота и ее соли, аскорбилфосфат натрия или аскорбилфосфат магния. Последние два являются предпочтительными ловушками нитрита из-за своей стабильности в рецептурах.

Библиография

- [1] Magee P.N., Montesano R., Preussmann R. Chemical Carcinogens, ACS Monograph 173. Americal Chemical Society, Washington, DC, 1976, стр. 491—625 [под редакцией C.E. Searle]
- [2] International Agency for Research on Cancer, Monographs on the Evaluation of the carcinogenic Risk of Chemicals to Human Beings. IARC, Lyon, Vol. 17, 1978
- [3] «Human Exposure to N-nitrosamines, Their Effects, and a Risk Assessment for N-Nitrosodiethanolamine (NDELA) in Personal Care Products», ECETOC (European Chemical Industry Ecology and Toxicology Centre) Technical Report No.41 (ISSN-07773-8072-41), ГУСТ 1990
- [4] Challis B.C., & Kyrtopoulos S.A. Br.J. Cancer. 1977, 35, crp. 693—696
- [5] Ikeda K., & Migliorese K.G.J.Soc. Cosmet. Chem. 1990, 41, crp. 283—333
- [6] Havery C., & Chou H.C. N-nitrosamines in Cosmetic Products. Cosmetics & Toiletries. 1994, 109 (5), crp. 53—61
- [7] «Opinion on Nitrosamines and Secondary Amines in Cosmetic Products» SCCS/1458/11 or 27 марта, 2012
- [8] Извещение Федерального регистра США (44 FR 21365, 10 апреля 1979)
- Федеральное управление лекарственных препаратов и продуктов питания (США) «Guide to Inspections of Cosmetic Product Manufacturers»

Table 2010	Village March	
УДК 665.58:006.354	MKC 71.100.70	IDT
Ключевые слова: косметическая продук	кция, минимизация и обнаружение N-нитрозаминов	

Редактор Л.С. Зимилова Технический редактор В.Н. Прусакова Корректор О.В. Лазарева Компьютерная верстка Л.А. Круговой

Сдано в набор 08,04.2019. Подписано в печать 29.04.2019. Формат 60×84¹/₈. Гарнитура Ариал. Усл. печ. л. 1,86. Уч.⊸изд. л. 1,10. Подготовлено на основе электронной версии, предоставленной разработчиком стандарта