МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ΓΟCT ISO 3506-4— 2014

МЕХАНИЧЕСКИЕ СВОЙСТВА КРЕПЕЖНЫХ ИЗДЕЛИЙ ИЗ КОРРОЗИОННО-СТОЙКОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ

Часть 4

Самонарезающие винты

(ISO 3506-4:2009, IDT)

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0—92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2—2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении» (ВНИИНМАШ) на основе собственного аутентичного перевода на русский язык международного стандарта, указанного в пункте 5
 - 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 229 «Крепежные изделия»
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 20 октября 2014 г. № 71-П)

За принятие проголосовали:

Краткое наименование страны по МК (ISO 3166) 00497	Код страны по МК (ISO 3166) 004-97	Сохращенное наименование национального органа по стандартизации
Азербайджан	AZ	Азстандарт
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Грузия	GE	Грузстандарт
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Туркменистан	TM	Главгосслужба «Туркменстандартлары»
Узбекистан	UZ	Уэстандарт
Украина	UA	Минэкономразвития Украины

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 10 июня 2015 г. № 609-ст межгосударственный стандарт ГОСТ ISO 3506-4—2014 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2017 г.
- 5 Настоящий стандарт идентичен международному стандарту ISO 3506-1:2009 Mechanical properties of corrosion-resistant stainless steel fasteners Part 4: Тарріпд screws (Механические свойства крепежных изделий из коррозионно-стойкой нержавеющей стали. Часть 4. Самонарезающие винты).

Международный стандарт разработан подкомитетом ISO/TC 2/SC 1 «Механические свойства крепежных изделий» технического комитета по стандартизации ISO/TC 2 «Крепежные изделия» Международной организации по стандартизации (ISO).

Перевод с английского языка (en).

В настоящем стандарте приведено дополнительное приложение ДА «Химический состав коррозионно-стойких сталей».

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам приведены в дополнительном приложении ДБ.

Степень соответствия — идентичная (IDT)

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2015

ΓΟCT ISO 3506-4-2014

Содержание

1 Область применения	1
2 Нормативные ссылки	1
3 Обозначения, маркировка и обработка	2
3.1 Обозначения	2
3.2 Маркировка	3
3.3 Отделка	3
4 Химический состав	4
5 Механические свойства	4
5.1 Общие положения	
5.2 Твердость поверхности	4
5.3 Твердость сердцевины	5
5.4 Прочность на скручивание	5
5.5 Способность нарезать резьбу	5
6 Методы испытаний	
6.1 Испытание твердости поверхности	5
6.2 Испытание твердости сердцевины	
6.3 Испытание на скручивание	5
6.4 Испытание на ввинчивание	
Приложение А (обязательное) Описание классов и марок нержавеющих сталей	8
Приложение В (справочное) Нержавеющая сталь для холодной высадки и штамповки	
Приложение С (справочное) Аустенитные нержавеющие стали с особой стойкостью к хлоридам,	
вызывающим коррозионные напряжения	11
Приложение D (справочное) Температурно-временная диаграмма межкристаллитной коррозии	
в аустенитной нержавеющей стали марки А2 (18/8 стали)	12
Приложение Е (справочное) Магнитные свойства аустенитных нержавеющих сталей	13
Приложение ДА (справочное) Химический состав коррозионно-стойких сталей	14
Приложение ДБ (справочное) Сведения о соответствии межгосударственных стандартов	
ссылочным международным стандартам	15
Библиография	

МЕХАНИЧЕСКИЕ СВОЙСТВА КРЕПЕЖНЫХ ИЗДЕЛИЙ ИЗ КОРРОЗИОННО-СТОЙКОЙ НЕРЖАВЕЮЩЕЙ СТАЛИ

Часть 4

Самонарезающие винты

Mechanical properties of corrosion-resistant stainless steel fasteners.

Part 4. Tapping screws

Дата введения — 2017—01—01

1 Область применения

Настоящий стандарт устанавливает механические свойства самонарезающих винтов, изготовленных их аустенитных, мартенситных и ферритных марок стали коррозионно-стойких нержавеющих сталей при испытании в условиях с температурой окружающей среды от 10 °C до 35 °C. Механические свойства изменяются при повышении или понижении температуры.

Стандарт распространяется на самонарезающие винты с резьбой от ST2,2 до ST8 включительно по ISO 1478.

Настоящий стандарт не распространяется на самонарезающие винты, со специальными свойствами, такие как свариваемость.

П р и м е ч а н и е — Система обозначения настоящего стандарта может быть использована для размеров, выходящих за предел, представленный в настоящем разделе (например, d > ST8), при условии, что все соответствующие механические и физические требования к классам твердости выполняются.

Настоящий стандарт не устанавливает требования к коррозионной стойкости в особых условиях окружающей среды. Часть информации о материалах, для особых условий окружающей среды, приведена в приложении С. Определения коррозии и коррозионной стойкости — по ISO 8044.

Настоящий стандарт устанавливает классификацию самонарезающих винтов из коррозионностойкой нержавеющей стали по классам твердости.

Коррозионная стойкость, окисляемость и механические свойства при повышенных и пониженных температурах могут быть согласованы между изготовителем и потребителем в каждом конкретном случае. Изменение риска межкристаллитной коррозии при повышении температуры в зависимости от содержания углерода показано в приложении D.

Все крепежные изделия из аустенитных нержавеющих сталей при нормальных условиях — немагнитные; после холодного деформирования могут проявиться магнитные свойства (см. приложение E).

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы. Для датированных ссылок применяют только указанное издание ссылочного документа.

ISO 1478:1999 Tapping screws thread (Резьба самонарезающих винтов)

ISO 3651-1:1998 Determination of resistance to intergranular corrosion stainless steels — Part 1: Austenitic and ferritic-austenitic (duplex) stainless steels — Corrosion test in nitric acid medium by measurement of loss in mass (Huey test) (Стали нержавеющие. Определение стойкости к межкристаллитной коррозии.

FOCT ISO 3506-4-2014

Часть 1. Аустенитные и ферритно-аустенитные (дуплекс) нержавеющие стали. Коррозионное испытание в азотной кислоте посредством измерения потери массы (метод Хью))

ISO 3651-2: 1998 Determination of resistance to intergranular corrosion steels — Part 2: Ferrictic, austenitic and ferritic-austenitic (duplex) stainless steels — Corrosion test in media containing sulfuric acid (Стали нержавеющие. Определение стойкости к межкристаллитной коррозии. Часть 2. Ферритные, аустенитные и ферритно-аустенитные (дуплекс) нержавеющие стали. Коррозионное испытание в среде, содержащей серную кислоту)

ISO 6507-1:2005 Metallic materials — Vickers hardness test — Part 1: Test method (Материалы металлические — Определение твердости по Виккерсу — Часть 1. Метод испытания)

ISO 16048:2003 Passivation of corrosion-resistant stainless-steel fasteners (Пассивация крепежных изделий из коррозионно-стойкой нержавеющей стали)

ISO 16426:2002 Fasteners — Quality assurance system (Изделия крепежные. Система обеспечения качества)

3 Обозначения, маркировка и обработка

3.1 Обозначения

Система обозначений марок нержавеющей стали и классов твердости самонарезающих винтов приведена на рисунке 1. Обозначение материала состоит из двух частей, разделенных дефисом. Первая часть — условное обозначение марки стали, вторая часть — класс твердости.

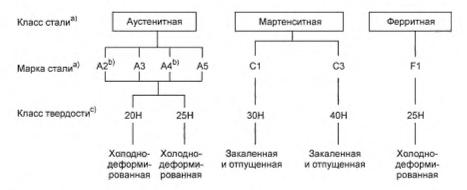
Условное обозначение марки стали (первая часть) состоит из одной буквы:

- A аустенитная сталь;
- С мартенситная сталь, или
- F ферритная сталь, которые обозначают класс стали, и цифры, которая обозначает диапазон предельных значений химического состава этого класса стали (см. таблицу 2).

Обозначение класса твердости (вторая часть) состоит из двух цифр, обозначающих 0,1 минимальной твердости стали по Виккерсу, и буквы H, обозначающей твердость (см. таблицу 1).

Т а б л и ц а 1 — Обозначение класса твердости в зависимости от твердости по Виккерсу

Класс твердости	20H	25H	30H	40H
Твердость по Виккерсу HV, не менее	200	250	300	400


Примеры обозначения:

аустенитной стали марки стали А4, холоднодеформированной с минимальной твердостью
 HV:

A4-25H

2 — мартенситной стали марки стали С3, закаленной и отпущенной, с минимальной твердостью 400 HV:

C3-40H

в) Классы стали, классифицированные по рисунку 1, описаны в приложении А и определены химическим составом по таблице 2.

Б) Нержавеющие стали с содержанием углерода не более 0,03 % могут быть дополнительно промаркированы буквой «L»

Пример — А4L-25Н

с) При пассивации самонарезающих винтов в соответствии с ISO 16048 возможна дополнительная маркировка с «Р»

Пример — А4-25НР

Рисунок 1 — Система обозначений марок нержавеющей стали и классов твердости самонарезающих винтов

3.2 Маркировка

3.2.1 Общие положения

Маркировка самонарезающих винтов необязательна.

Если самонарезающие винты, изготовленные в соответствии с требованиями настоящего стандарта, обозначены и маркированы, они должны быть обозначены в соответствии с системой обозначений, описанной в 3.1, и маркированы в соответствии с 3.2.2 и 3.2.3. Однако, система обозначений, описанная в 3.1, и условия для маркировки, соответствующие 3.2.3, должны использоваться только тогда, когда все соответствующие требования настоящего стандарта выполнены.

3.2.2 Товарный знак изготовителя

Товарный знак изготовителя должен быть включен во время производственного процесса на все самонарезающие винты, маркированные символом класса твердости, при условии, что это возможно по техническим причинам. Товарным знаком изготовителя рекомендуется маркировать также самонарезающие винты, которые не маркированы символом класса твердости.

3.2.3 Самонарезающие винты

Если самонарезающие винты маркированы, они должны иметь четкую маркировку в соответствии с 3.1. Маркировка должна включать марку стали и класс твердости.

3.2.4 Упаковка

Все упаковки для всех видов самонарезающих винтов всех размеров должны быть маркированы (например, с помощью ярлыка/этикетки). Маркировка или ярлык должны включать идентификатор изготовителя и / или продавца и маркировочный символ марки стали и класса твердости в соответствии с рисунком 1 и номер производственной партии, как определено в ISO 16426.

3.3 Отделка

Если не указано иное, самонарезающие винты в соответствии с настоящим стандартом поставляют без дополнительной обработки. Для достижения максимальной коррозионной стойкости рекомендуется пассивация. Если пассивация необходима, ее выполняют в соответствии с ISO 16048. Самонарезающие винты, прошедшие пассивацию, могут быть дополнительно маркированы символом «Р» после символа марки стали и класса твердости (см. сноску «с», рис. 1).

Для самонарезающих винтов, изготовленных по специальному заказу, дополнительно следует наносить одинаковую маркировку на крепежное изделие и на ярлык. Для самонарезающих винтов, доставленных со склада, дополнительная маркировка должна быть нанесена на ярлыке.

4 Химический состав

Химический состав нержавеющих сталей для самонарезающих винтов согласно настоящему стандарту приведен в таблице 2.

Примечание — Химический состав, приведенный в таблице 2, совладает с химическим составом соответствующих марок сталей по ISO 3506-1:2009, таблица 1.

Выбор химического состава в установленных для марки стали пределах — на усмотрение изготовителя, если химический состав не согласован между изготовителем и потребителем.

В случаях возникновения риска межкристаллитной коррозии рекомендуется проведение испытаний по ISO 3651-1 или ISO 3651-2. В таких случаях рекомендуется применять стабилизированные нержавеющие стали марок АЗ и А5 или нержавеющие стали марок А2 и А4 с содержанием углерода не более 0.03 %.

Таблица 2 — Марки нержавеющей стали. Химический состав

Класс стали	Марка				>		ий состав ^{а)} , я доля, %				Сноска
	стали	С	Sı	Mn	Р	s	Cr	Мо	Ni	Cu	
Аустенитные	A2	0,10	1	2	0,05	0,03	15-20	b)	8,0—19,0	4	c), d)
	А3	0,08	1	2	0,045	0,03	17-19	_b)	9,0—12,0	1	e)
	A4	0,08	1	2	0,045	0.03	16-18,5	2-3	10.0—15,0	4	d), f)
	A5	0,08	1	2	0,045	0.03	16-18,5	2-3	10,5—14,0	1	e), f)
Мартенситные	C1	0,09-0,15	1	1	0,05	0,03	11.5-14	-	1,0	_	f)
	C3	0,17-0,25	1	1	0,04	0.03	16—18	_	1,5 - 2,5	_	-
Ферритные	F1	0,12	1	1	0,04	0,03	1518	9>	1,0	-	h), i)

а) Приведены максимальные значения, если не указано инов.

5 Механические свойства

5.1 Общие положения

При приемке следует выполнять требования по 5.2—5.5, испытания следует проводить по 6.1—6.4.

5.2 Твердость поверхности

Твердость поверхности самонарезающих винтов из мартенситной стали должна соответствовать указанной в таблице 3 лри испытании по 6.1.

b) Молибден может присутствовать по решению изготовителя стали. В случае если содержание молибдена влияет на условия применения стали, его содержание должно быть согласовано между изготовителем и потребителем стали.

с) Если содержание хрома менее 17 %, содержание никеля должно быть не менее 12 %.

для аустенитных сталей с минимальным содержанием углерода 0,03 % содержание азота не должно превышать 0,22 %.

е) Для стабилизации содержание титана должно быть не менее 5 x %C, но не более 0,8 % или содержание ниобия (columbium) и /или тантала должно быть не менее 10 x %C, но не более 1,0 %, маркировано соответственно, как установлено в этой таблице.

По решению изготовителя стали содержание углерода может быть выше для достижения особых механических свойств, но не должно превышать 0,12 %.

⁹⁾ Молибден может присутствовать по решению изготовителя стали.

h) Здесь допускается содержание титана не менее 5 х %С, но не более 0,8 %.

і) Здесь допускается содержание ниобия и (или) тантала не менее 10 х %С, но не более 1.0 %.

Примечания

Описание указанных марок нержавеющих сталей с учетом их свойств и области применения приведено в приложении А.

² Примеры нержавеющих сталей, стандартизованных в соответствии с ISO 4954, приведены в приложении В.

³ Некоторые материалы для специального применения приведены в приложении С.

Таблица 3 — Твердость поверхности

Класс стали	Марка стали	Класс твердости	Твердость поверхности HV, не менее
Мартенситные	C1	30H	300
	C3	40H	400

5.3 Твердость сердцевины

Твердость сердцевины самонарезающих винтов из аустенитной и ферритной сталей должна соответствовать указанной в таблице 4 при испытании по 6.2. В спорных случаях при приемке для определения соответствия самонарезающих винтов требованиям настоящего стандарта используют требования к работоспособности по 5.5.

Таблица 4 — Твердость сердцевины

Класс стали	Марка стали	Класс твердости	Твердость сердцевинь HV ^{a)} , не менее
Аустенитные	A2, A3, A4, A5	20H	200
		25H	250
Ферритные	F1	25H	250

а) Для резьб ≤ ST3,9 при испытании используют нагрузку HV 5; для резьб > ST3,9 при испытании используют нагрузку HV 10.

5.4 Прочность на скручивание

Самонарезающие винты из нержавеющей стали должны иметь прочность на скручивание, достаточную для того, чтобы разрушающий крутящий момент при испытании по 6.3 был не менее указанных в таблице 5 для соответствующего класса твердости.

5.5 Способность нарезать резьбу

Самонарезающие винты из нержавеющей стали должны нарезать резьбу при ввинчивании в испытательную пластину по 6.4 без деформации их собственной резьбы.

6 Методы испытаний

6.1 Испытание твердости поверхности

Это испытание применимо для самонарезающих винтов из мартенситных сталей.

Определение твердости по Виккерсу проводят по ISO 6507-1.

Вдавливание пирамидой следует проводить на плоской поверхности, предпочтительно на головке винта.

6.2 Испытание твердости сердцевины

Это испытание применимо для самонарезающих винтов из аустенитных и ферритных сталей. Определение твердости сердцевины по Виккерсу проводят в соответствии с ISO 6507-1, на середине радиуса поперечного сечения самонарезающего винта, проходящего на достаточном расстоянии от конца через полный внутренний диаметр самонарезающего винта.

6.3 Испытание на скручивание

Разрушающий крутящий момент, $M_{\rm B}$, определяют в специальном устройстве, изображенном на рисунке 2. Устройство для определения крутящего момента должно иметь точность в пределах \pm 6 % измеряемого минимального значения крутящего момента.

Резьбу испытуемого самонарезающего винта (в исходном виде — с покрытием либо без) зажимают в разъемном зажиме или другом устройстве так, чтобы зажатая часть самонарезающего винта не была повреждена; как минимум два полных витка резьбы должны выступать над зажимающим устройством и как минимум два полноразмерных витка резьбы оказаться под зажимающим устройством. Вместо зажимающего устрой-

FOCT ISO 3506-4-2014

ства может быть использована резьбовая вставка с глухим отверстием (см. рисунок 2), с глубиной отверстия, достаточной для того, чтобы обеспечить разрушение самонарезающего винта в полноразмерной части.

Крутящий момент следует прикладывать к самонарезающему винту до появления разрушения. Самонарезающий винт должен выдержать без разрушения минимальный крутящий момент, указанный в таблице 5.

Таблица 5 — Минимальный крутящий момент

	F	Разрушающий крутящий мо	омент М _В , Н•м, не менее	
Резьба		Класс тве	рдости	7
	20H	25H	30H	40H
ST2,2	0,38	0,48	0,54	0,6
ST2,6	0,64	0,8	0,9	1
ST2,9	1	1,2	1,4	1,5
ST3,3	1,3	1,6	1,8	2
ST3,5	1,7	2,2	2,4	2,7
ST3,9	2,3	2,9	3,3	3,6
ST4,2	2,8	3,5	3,9	4,4
ST4,8	4,4	5,5	6,2	6,9
ST5,5	6,9	8,7	9,7	10,8
ST6,3	11,4	14,2	15,9	17,7
ST8	23,5	29,4	32,9	36,5

1 — разъемный резьбовой зажим или резьбовая вставка; 2 — резьбовая вставка с глухим отверстием; 3 — разъемный резьбовой зажим

Рисунок 2 — Устройство для определения разрушающего крутящего момента $M_{
m B}$

6.4 Испытание на ввинчивание

Испытуемый самонарезающий винт (в исходном состоянии — с покрытием или без) должен быть ввинчен в испытательную пластину так, чтобы один виток резьбы полного диаметра прошел через пластину насквозь. Для испытаний на ввинчивание самонарезающих винтов из аустенитных или ферритных сталей испытательная пластина должна быть из алюминиевого сплава твердостью от 80 HV 30 до 120 HV 30.

Для испытаний на ввинчивание самонарезающих винтов из мартенситных сталей испытательная пластина должна быть изготовлена из низкоуглеродной стали с содержанием углерода не более 0,23 %. Твердость пластины должна быть от 130 HV 30 до 170 HV 30 при измерении по ISO 6507-1.

Толщина испытательной пластины должна соответствовать указанной в таблице 6.

Испытательное отверстие должно быть просверлено или перфорировано и развернуто до диаметра, указанного в таблице 6.

Т а б л и ц а 6 — Толщина испытательной пластины и диаметр испытательного отверстия

Резьба	Толщина испытател	тьной пластины, мм	Диаметр испытатель	ного отверстия, мя
Резьод	не менее	не более	не менее	не более
ST2,2	1,17	1,30	1,905	1,955
ST2,6	1,17	1,30	2,185	2,235
ST2,9	1,17	1,30	2,415	2,465
ST3,3	1,17	1,30	2,680	2,730
ST3,5	1,85	2,06	2,920	2,970
ST3,9	1,85	2,06	3,240	3,290
ST4,2	1,85	2,06	3,430	3,480
ST4,8	3,10	3,23	4,015	4,065
ST5,5	3,10	3,23	4,735	4,785
ST6,3	4,67	5,05	5,475	5,525
ST8	4,67	5,05	6,885	6,935

Приложение А (обязательное)

Описание классов и марок нержавеющих сталей

А.1 Общие положения

В ISO 3506 (всех частях) описаны стали марок от A1 до A5, от C1 до C4 и F1, входящие в состав следующих классов сталей:

аустенитная сталь

от А1 до А5:

мартенситная сталь

C1 go C4;

F1.

ферритная сталь

Характеристики перечисленных классов стали и марок стали описаны в данном приложении.

Также в данном приложении приведена информация о нестандартизированном классе сталей FA, имеющем ферритно-аустенитную структуру.

А.2 Стали класса А (аустенитная структура)

А.2.1 Общие положения

В ISO 3506 (всех частях) описаны пять основных марок аустенитных сталей — от А1 до А5. Стали этих марок не могут подвергаться закалке, и они обычно немагнитные. Для повышения износостойкости в стали марок от А1 до А5 может быть добавлена медь, как указано в таблице 2.

Для нестабилизированных сталей марок А2 и А4 применимо следующее.

- Так как оксид хрома повышает коррозионную стойкость стали, для нестабилизированных сталей имеет большое значение низкое содержание углерода. Из-за высокого сродства хрома к углероду вместо оксида хрома получается карбид хрома, особенно при повышенных температурах (см. приложение D).

Для стабилизированных сталей марок A3 и A5 применимо следующее.

 Элементы Ті, Nb или Та воздействуют на углерод и позволяют оксиду хрома проявить свои свойства в полной мере.

Для применения в открытом море или похожих условиях требуются стали с содержанием примерно 20 % хрома и никеля и от 4.5 % до 6.5 % — молибдена.

В случае высокой вероятности коррозии должны быть проведены консультации с экспертами.

А.2.2 Стали марки А1

Стали марки А1 разработаны специально для применения в машиностроении. Из-за высокого содержания серы стали этой марки менее коррозионно-стойкие, чем другие марки сталей этой группы.

А.2.3 Стали марки А2

Стали марки А2 являются наиболее часто применяемыми нержавеющими сталями. Они применяются для кухонного оборудования и аппаратов для химической промышленности. Стали этой марки неприменимы для использования неокисляющей кислоты и хлоросодержащих соединений, как, например, в морской воде и плавательных бассейнах.

А.2.4 Стали марки А3

Стали марки АЗ являются стабилизированными нержавеющими сталями со свойствами сталей марки А2.

А.2.5 Стали марки А4

Стали марки А4 кислотоустойчивые, легированы молибденом и более коррозионно-стойкие. Стали марки А4 наиболее востребованы в бумажной промышленности, так как эта марка разработана для работы с серной кислотой (отсюда и название «кислотоустойчивые»), а также в некоторой степени подходят для работы в хлоросодержащей среде. Стали марки А4 также часто применяют в пищевой и кораблестроительной промышленности.

А.2.6 Стали марки А5

Стали марки А5 являются стабилизированными, кислотоустойчивыми сталями со свойствами сталей марки А4.

А.3 Стали класса F (ферритная структура)

А.3.1 Общие положения

В ISO 3506 (всех частях) описана одна марка ферритных сталей, F1. Стали этого класса обычно не допускается подвергать закалке и не следует подвергать закалке в тех случаях, когда она возможна. Стали марки F1 — магнитные.

А.3.2 Стали марки F1

Стали марки F1 обычно используют для несложного оборудования, за исключением суперферритов, имеющих очень низкое содержание углерода и азота. Такие стали могут заменять стали марок А2 и А3 и использоваться в среде с высоким содержанием хлора.

А.4 Стали класса С (мартенситная структура)

А.4.1 Общее описание

В ISO 3506 (всех частях) описаны мартенситные стали марок С1, С3 и С4. Стали этого класса могут закаливаться до очень высокой прочности. Стали этого класса — магнитные.

А.4.2 Стали марки С1

Стали марки С1 имеют ограниченную коррозионную стойкость. Они применяются в турбинах, насосах и ножах. А.4.3 Стали марки С3

Стали марки СЗ имеют ограниченную коррозионную стойкость, хотя и лучшую, чем стали марки С1. Они применяются в насосах и клапанах.

А.4.4 Стали марки С4

Стали марки C4 имеют ограниченную коррозионную стойкость. Они применяются в машиностроении, в остальном они схожи со сталями марки C1.

А.5 Стали класса FA (ферритно-аустенитная структура)

Стали класса FA не описаны в ISO 3506 (всех частях), но, вероятно, будут описаны в будущей версии.

Стали этого класса называют дуплексными сталями. Первые разработанные стали FA имели некоторые недоработки, которые были устранены в сталях, разработанных позже. Стали класса FA лучше, чем стали марок A4 и A5, особенно по прочностным характеристикам. Стали класса FA также имеют повышенное сопротивление точечной коррозии и коррозионному растрескиванию.

Примеры химического состава сталей этого класса приведены в таблице А.1.

Таблица А.1 — Примеры состава сталей с ферритно-аустенитной структурой

			Химически	й состав. массон	зая доля, %		
Класс стали	С, не более	Sı	Mn	Ct	Nr	Мо	N
Ферритно-аусте-	0,03	1.7	1,5	18,5	5	2,7	0,07
нитные	0.03	<1	<2	22	5,5	3	0.14

Приложение В (справочное)

Нержавеющая сталь для холодной высадки и штамповки

выдержки из ISO 4954:1993 [1])

Таблица В,1— Нержавеющая сталь для холодной высадки и штамповки

	,	10.				Химиче	CIMIN COCI	Химический состав, массовая доля, % (м/м) Ы	доля, % (мей	4) b]		Обознане-
	тип стали (обозначение)	GHKG)	(IS	Mn	۵.	ø		:			име марки
Номер	Наименование	Tlo ISO 49541979	د		не б	не болев		5	Ma	ž	Ipowe	изделия с)
17	Ферритные стали X 3 Ст. 17 Е		×0.04	1 00	1 00	0.040	0.030	16.0 - 18.0		510		ū
72	X6Cr 17 E	D 1	€ 0,08	1,00	1,00	0,040	0.030	16,0-18,0		5 1,0		E
73	X 6 CrMo 17 1 E	D 2	\$ 0,08	1,00	1,00	0,040	0000	16.0 - 18,0	0,9 - 1,3	\$10		F1
74	X6CrT 12E		s 0,08	1,00	1,00	0,040	0.030	10,5-12,5		50,5	Ti 6x%C s 1,0	F1
75	X 6 CrNb 12 E	,	€ 0,08	1,00	1,00	0,040	0,030	10,5-12,5		5,0%	Nb, 6x%C < 1,0	Ε
	Мартенситные стали											
92	X 12 Cr 13 E	D 10	0,09-0,15	1,00	1,00	0,040	0,030	11,5 - 13,5		\$1.0		5
27	X 19 CrNs 16 2 E	D 12	0,14-0,23	1,00	1,00	0,040	0,030	15,0-17.5		1.5 - 2.5		83
	Аустенитные стали											
78	X2 CrNi 18 10 E	D 20	< 0,03	1,00	2,00	0.045	0,030	17,0-19,0		9,0 - 12,0		AZGI
79	X5 CrN: 189 E	D 21	20,02	1,00	2,00	0,045	0,030	17,0 - 19,0		8,0 - 11,0		AZ
80	X 10 CrNi 18 9 E	0.22	\$ 0.12	1,00	2,00	0,045	0.030	17,0 - 19,0		8,0 - 10,0		A2
81	X 5 CrNi 18 12 E	0.23	20,02	1,00	2,00	0,045	0.030	17,0-19,0		11,0 - 13,0		AZ
82	X 6 CrN 118 16 E	0.25	\$ 0.08	1,00	2,00	0,045	0,030	15,0 - 17,0		17,0-19,0		A2
83	X 6 CrN/Th 18 10 E	D 386	s 0,08	1,00	2,00	0.045	0.030	17.0 - 19.0		9,0 - 12,0	Tr. 5x %C, s 0.8	A363
84	X5CrNMo17122E	D 29	20'0\$	1,00	2,00	0,045	0.030	16,5 - 18,5	2,0 - 2,5	10,5 - 13,5		A&
85	X 6 CrNIMoTi 17 122 E	D 30	\$ 0.08	1,00	2,00	0,045	0,030	16,5 - 18,5	2,0 - 2,5	11,0 - 14,0	Ti 5x%C, s 0,8	A5 el
86	X2 CrNMo 17 133E		5 0.03	1,00	2,00	0.045	0,030	16,5 - 18,5	2,5 - 3,0	11.5 - 14.5		A4 6)
87	X2 CrNiMoN 17 13 3 E		\$ 0,03	1,00	2,00	0,045	0.030	16,5 - 18,5	2,5 - 3,0	11,5 - 14,5	N.0,12-0,22	A4 01
88	X3 CrNiCu 1893E	D 32	\$ 0,04	1,00	2,00	0,045	0,030	17,0~19,0		8.5-10,5	Cu 3.00-4,00	A2

a) В первой графе приведены последовательные номера. Во второй графе приведены обозначения в соответствии с системой, предложенной Международным тахническим комитетом ИСОЛК 17/ЛК 2. В третьей графе приведены устаревшие номера по ISO 4954.1979 (пересмотрен — ISO 4954.193).

 В) Элементы, не указанные в данной таблице, не должны добавляться в сталь без соглашения между изготовытелем и потребителем стали, за исключением элементов, предназначенных для завершения плавления Должны быть приняты все необкодимые меры предосторожности, чтобы предотератить попадание в сталь, из отходов и материалов, используемых при производстве элементов, которые могут повлиять на прочность, механические свойства и применяем ость стали. c) He no ISO 4954.

Очень высокое сопротивление межиристаллитной коррозми

е) Стабилизированные стали.

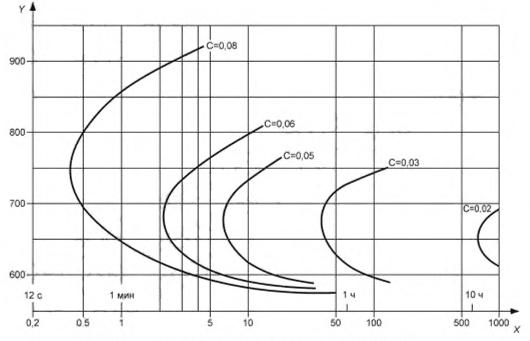
Приложение С (справочное)

Аустенитные нержавеющие стали с особой стойкостью к хлоридам, вызывающим коррозионные напряжения

(выдержки из EN 10088-1:2005 [3])

Опасность разрушения болтов, винтов и шпилек под действием хлорной коррозии (например, внутри плавательных бассейнов) может быть уменьшена, если применять материалы, указанные в таблице С.1.

T а б л и ц а C.1 — Аустенитные нержавеющие стали с особой стойкостью к хлоридам, вызывающим коррозионные напряжения


					Химиче	ский состав,	массовая дол	1я, %		
Аустенитные нержаве- ющие стали (обозначе-	С	Si	Mn	Р	s					
ние/номер материала)			не боле	ie	:	N	Cr	Мо	Ni	Cu
X2CrNiMoN17-13-5 (1.4439)	0,030	1,00	2,00	0,045	0,015	0,12-0,22	16,5–18,5	4,0-5.0	12,5–14,5	-
X1NiCrMoCu25-20-5 (1.4539)	0,020	0,70	2,00	0,030	0,010	≤0,15	19,0-21,0	4,0-5,0	24.0-26,0	1,20-2,00
X1NiCrMoCuN25-20-7 (1.4529)	0,020	0,50	1,00	0,030	0,010	0,15-0,25	19,0-21,0	6,0-7,0	24.0-26,0	0,50-1,50
X2CrNiMoN22-5-3a) (1.4462)	0,030	1,00	2,00	0,035	0,015	0,10-0,22	21,0-23,0	2,5–3,5	4,5-6,5	-

Приложение D (справочное)

Температурно-временная диаграмма межкристаллитной коррозии в аустенитной нержавеющей стали марки A2 (18/8 стали)

На рисунке D.1 показано приблизительное время появления риска межкристаллитной коррозии для аустенитной нержавеющей стали марки A2 (стали 18/8) с различным содержанием углерода при температуре от 550 °C до 925 °C.

П р и м е ч а н и е — С уменьшением содержания углерода устойчивость к межкристаллитной коррозии улучшается.

X — время, выраженное в минутах; Y — температура, выраженная в градусах Цельсия

Рисунок D.1 — Температурно-временная диаграмма межкристаллитной коррозии в аустенитной нержавеющей стали марки A2

Приложение Е (справочное)

Магнитные свойства аустенитных нержавеющих сталей

Там, где требуются особенные магнитные свойства, необходимо консультироваться у опытного металлурга. Все крепежные изделия из аустенитных нержавеющих сталей при нормальных условиях — немагнитные, но после холодного деформирования возможно появление некоторых магнитных свойств.

Каждый материал характеризуется способностью намагничиваться, это применимо и к нержавеющим сталям. Только вакуум может быть полностью немагнитным. Магнитную проницаемость материала обозначают коэффициентом µ_r, показывающим отношение магнитной проницаемости материала к магнитной проницаемости вакуума. Материал имеет низкую магнитную проницаемость, если его коэффициент µ, близок к 1.

Пример 1: $A2: \mu_r \approx 1,8.$ Пример 2: $A4: \mu_r \approx 1,015$ Пример 3: $A4L: \mu_r \approx 1,005$ Пример 4: $F1: \mu_r \approx 5.$

Приложение ДА (справочное)

Химический состав коррозионно-стойких сталей (выдержки из ГОСТ 5632—2014 [4])

Таблица ДА. 1 - Химический состав коррозионно-стойких сталей

	Марка стали					Химический состав. %	состав. %				Обозначе-
№ марки	Наименование класса. марка стали	U	Si max.	Mn max.	p max.	S max	Cr	Mo	N	т	ние марки крепежных изделий 1
					Ферритные стали	е стали					
3.7	12X17	0,12 max	8'0	8'0	0,035	0,025	16-18	t	1	ı	F1
3-3	08X17T	0,08 max	8.0	8,0	0,035	0,025	16-18	1	1	5 * C-0,8	F1
				~	Мартенситные стали	ые стали					
2-3	12X13	0,09-0,15	8,0	8,0	0,030	0,025	12-14	-	1	1	C1
1-12	20X17H2	0,17-0,25	8,0	8,0	0,035	0,025	16-18	1	1,5-2,5	1	ខ
					Аустенитные стали	ие стали					
6-4	03X17H14M3	0,03 max	0,4	1-2	0,030	0,020	16,8-18,3	2,2 - 2,8	13,5 — 15	1	₩
6-20	08X17H13M2T	0,08 max	8'0	2	0,035	0,020	16-18	2-3	12 — 14	5×C-0,7	A5
6-35	10X17H13M2T	0,10 max	8,0	2,0	0,035	0,020	16-18	2-3	12 — 14	5×C-0,7	AS
96-36	10X17H13M3T	0,10 max	8'0	2,0	0,035	0,020	16-18	3-4	12 — 14	5 × C-0,7	A5
6-40	12X18H9	0,12 max	8'0	2,0	0,035	0,020	17-19		8-10	1	A1
6-41	12X18H9T	0,12 max	8'0	2,0	0,035	0,020	17-19	ı	8-10	5×C-0,8	A3
6-11	04X18H10	0,04 max	8'0	2,0	0,030	0,020	17—19	1	9-11	1	A2
6-22	08X18H10	0,08 max	8'0	2,0	0,035	0,020	1719	_	11 - 6	1	A2
6-23	08X18H10T	0,08 max	8'0	2,0	0,035	0,020	17-19	-	11 6	5×C-0,7	A3
6-42	12X18H10T	0,12 max	8'0	2,0	0,035	0,020	17-19	-	9-11	5 × C - 0,8	A3
9-9	03X18H11	0,03 max	8'0	2.0	0.030	0,020	17-19	1	10,5-12,5	1	A2
6-14	06X18H11 ²⁾	0,06 max	8'0	2,0	0,035	0,020	17-19	_	10 12	I	A2
2-9	03X18H12 2)	0,03 max	0,4	0,4	0,030	0,020	17-19	-	11,5-13,0	0,005 max	A2
6-24	08X18H12T	0,08 max	8'0	2,0	0,035	0,020	17-19	_	11-13	5 × C - 0,6	A3
1) Oбas	1) Обозначение не по ГОСТ 563	5632-2014									

Обозначение не по ГОСТ 5632—2014.
 Не допускаются к применению во вновь создаваемой и модернизируемой технике.

Приложение ДБ (справочное)

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам

Т а б л и ц а ДБ.1 — Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам

Обозначение и наименование международного стандар- та	Степень соот- ветствия	Обозначение и наименование межгосударственного стандарта
ISO 1478:1999 Резьба самонарезающих винтов	IDT	ГОСТ ISO 1478 Резьба самонарезающих винтов ¹⁾
ISO 3651-1:1998 Стали нержавеющие. Определение стойкости к межкристаллитной коррозии. Часть 1. Аустенитные и ферритно-аустенитные (дуплекс) нержавеющие стали. Коррозионное испытание в азотной кислоте посредством измерения потери массы (метод Хью)	MOD	ГОСТ 6032—2003 (ISO 3651-1:1998, ISO 3651-2:1998)* Стали и сплавы коррозионно-стойкие. Методы испытаний на стойкость к межкристаллитной коррозии.
ISO 3651-2:1998 Стали нержавеющие. Определение стойкости к межкристаллитной коррозии. Часть 2. Ферритные, аустенитные и ферритно-аустенитные (дуплекс) нержавеющие стали. Коррозионное испытание в среде, содержащей серную кислоту	MOD	ГОСТ 6032—2003 ((SO 3651-1:1998, ISO 3651-2:1998)* Стали и сплавы коррозионно-стойкие. Методы испытаний на стойкость к межкристаллитной коррозии.
ISO 6507-1:2005 Материалы металлические — Определение твердости по Виккерсу — Часть 1. Метод испытания	NEQ	ГОСТ 2999—75 Металлы и сплавы. Метод измерения твердости по Виккерсу ²
ISO 16048:2003 Пассивация крепежных изделий из коррозионно-стойкой нержавеющей стали	IDT	ГОСТ ISO 16048—2014 Пассивация кре- пежных изделий из коррозионно-стойкой нержавеющей стали
ISO 16426:2002 Изделия крепежные. Система обе- спечения качества	IDT	ГОСТ ISO 16426 ³⁾ Изделия крепежные. Система обеспечения качества

^{*} Внесенные технические отклонения обеспечивают выполнение требований настоящего стандарта.

П р и м е ч а н и е — В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

IDT — идентичные стандарты;

MOD — модифицированные стандарты;

⁻ NEQ — неэквивалентные стандарты.

¹⁾ Стандарт находится в процессе разработки. На территории России действует ГОСТ Р ИСО 1478—93 (ISO 1478:1983).

²⁾ На территории России действует ГОСТ Р ИСО 6507-1-2007 (ISO 6507-2:2005, IDT).

³⁾ Стандарт находится в процессе разработки. На территории России действует ГОСТ Р ИСО 16426—2009 (ISO 16426:2002, IDT).

Библиография

- [1] ISO 4954:1993, Steels for cold heading and cold extruding
- [2] ISO 8044, Corrosion of metals and alloys Basic terms and definitions
- [3] EN 10088-1:2005, Stainless steels Part1: List of stainless steels
- [4] ГОСТ 5632—2014 Легированные нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки

УДК 621.882.2:006.89:006.354

MKC 21.060.10

Γ32

OKI 16 4000

IDT

Ключевые слова: винты самонарезающие, механические свойства, методы испытаний, система обозначений, маркировка

Редактор М.А. Гетманова
Технический редактор В.Н. Прусакова
Корректор Л.С. Лысенко
Компьютерная верстка Е.О. Асташина

Сдано в набор 13.10.2015. Подписано в печать 23.10.2015. Формат 60×84¹/₈. Гарнитура Ариал. Усл. печ. л. 2,32. Уч.-изд. л. 1.88. Тираж 70 экз. Зак. 3330.